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Abstract. The study addresses important question regarding the computational aspect of coalition 

formation. Almost as well known to find payoffs (imputations) belonging to a core, is prohibitively 

difficult, NP-hard task even for modern super-computers. In addition to the difficulty, the task  

becomes uncertain as it is unknown whether the core is non-empty. Following Shapley (1971), our 

Singles Party Game is convex, thus the presence of non-empty core is fully guaranteed. The article 

introduces a concept of coalitions, which are called nebulouses, adequate to critical coalitions,  

Mullat (1979). Nebulouses represent coalitions minimal by inclusion among all coalitions  

assembled into a semi-lattice of sets or kernels of "Monotone System" Mullat, (1971,1976,1995),  

Kuznetsov et al. (1982). An equivalent property to convexity, i.e., the monotonicity of the singles 

game allowed creating an effective procedure for finding the core by polynomial algorithm, a  

version of P-NP problem. Results are illustrated by MS Excel spreadsheet. 
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1. Introduction 

Leo Võhandu in his article published in "Teacher’s Paper" (February, 2010) was concerned about 

students in Estonian universities and colleges stopping schooling after a half-year they start their 

studies; only 20% continue. According to Võhandu the root of problem rest on the fact that for 

many education programs are not mutually acceptable both for the students, and students themselves 

in training under particular program are not acceptable for the universities and colleges. Indeed,  

so-called mutual mismatch of priorities was the reason that students drop out of schools wasting in 

vain their time and "the entitlement to government financial support." Therefore the problem arises 

how to match students and education programs best. Berge (1958, p.104, Russian translation)  

mentioned this type of matching problem in his book “The Theory of Graphs.” Leo Võhandu  

proposed a way to solve the problem by introducing a total regret as the sum of pair-wise regrets 

selected within two directions of priorities: horizontal priorities of a student with respect  

to programs, and vertical priorities of an institution with respect to students specializing in one  

program. The best solution, following LV, is where the total regret reaches its minimum. It is the 

lowest sum (amount) of mutual regrets found over all thinkable matching assignments of horizontal 

and vertical priorities of students and programs available for schooling in the institution. However, 

finding the best solution is a difficult task. Instead, LV proposed a greedy type workaround, Carmen 

et al. (2001), which in his words will approximate (be close enough to) the best solution matching 

students and programs by moving along increasing order of their mutual regrets. 

It seems to us that LV’s proposal to the solution in this wide area of research, is a typical  

approach in the spirit of classical utilitarianism, when the sum of utilities has to be maximized or 

minimized, Bentham, The Principals of Morals and Legislation (1789), Sidgwick, The Methods of 

Ethics, London 1907,… However, the weak point of utilitarian approach noted by Rawls in his 

“Theory of Justice” is the risk that, when the max or min is reached, there will still be members left 

in the society at very low utility levels say at very low levels of regret compensations, for example, 

transfer payments to the poor. Arguing for the maximorum minmorum principal, which was called 

the "Second Principal of Justice," Rawls suggests an alternative to the utilitarian approach. Along 

the lines of monotonic game, Mullat (1979), the motive determining this study was to address by 

example an alternative to LV, as well as all other solutions, that the lowest regret compensation 

should be maximized. The reader studying matchings can also find useful information about the 

issues, including the application of the idea of monotone systems, where a number of ways of  

constructing an optimal matching have been described, Tarmo Veskioja Dr. thesis on informatics 

and system engineering (2005, p.50). 
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Learning by example is of high value because the conventional core solution in a coalition game 

and well established NM-solution (Neuman-Morgenstrn) connected to the core of convex games 

cannot be well explained unless the scholars make themselves familiar with utopian reality, which 

does not exists. Thus, a rigorous set up of the game in simple terms will help to understand the  

otherwise complicated mathematics. By this note we hope to shed lights on what we call  

"The Singles Party Game." It should be emphasized once and for all that the game primitives  

actually represent an independent mathematical object in a completely different context despite we 

have used the concept of regret proposed by Võhandu and his scholars. We used the scale of regret 

for the transition to scale of mismatch compensations as well as to scale of incitements to dating. 

The rest of the paper is organized as follows. We start with the preliminaries where the game 

primitives are explained. Next, the core concept of stability is introduced and illustrated but in  

connection to singles game. In Section 4, the reader will come across unconventional concept of 

nebulouses, coalitions minimal by inclusion, in accordance with our formal scheme. Afterwards we 

continue explaining our techniques and procedures of how to locate a core – collection of payoffs  

to all players. The results are illustrated by example in MS Excel spreadsheet where 20 single 

women and 20 single men attend a party. Section 7 ends the study with a conclusion. 

2. Preliminaries.  

Imagine a situation when 5 single women and 5 single men are willing to participate in Singles 

Party in order to find a suitable partner. The entrance fee is 50€1 to cover refreshments, beverages, 

orchestra and arrangements expenses. The cashier disposes at most over the sum of 500 €. Just  

before the orchestra was ready to play the last tango all gests have been kindly asked to fulfil a 

scheme of priorities: women asked to express their priorities about men, and visa versa, for each 

man about each woman. Those who agree to fulfil the scheme have been promised to receive a 

chocolate, which costs 10€, otherwise chocolates are not available if the scheme will not be  

disclosed. By definition, these players are blind and do not participate in the game. We also suppose 

that there was a plenty of time, before the last tango, making these priorities (preferences) clear to 

everyone. Below we continue in elaborating the rules of compensations to those who disclosed the 

schemes; we call them participants. By the rules participants will be compensated regardless of 

whether someone decides to date with suitable or unsuitable partner the end of the party or not. 

                                                 
1  Note that red colour point at negative number. 



3 

We already supposed that during the party all 5 women, { }51 ,...i,...  and 5 men { }51 ,...j,...  got to 

know their mutual identities and priorities (preferences). Further on we use index i  for a woman 

notification, and an index j  for a man. Each woman i , 51,i = , expressed her straight priorities iw  

towards men, and each man j , 51,j = , towards women as priorities 
j

m . Therefore, the priorities 

may be arranged into two 55×  tables: 
j,i

wW =  and 
j,i

mM = , where the rows in table W  are 

some permutations 
i

w  of numbers 54321 ,,,, ; some other permutations 
j

m  stand in columns of the 

table M . In Table 1 below priorities ijw  (numbers 5432151 ,,,,, = ) might repeat themselves in 

columns of table W ; repetitions may also happen in rows of the table M , i.e., at identical priority 

level a woman may be chosen by more than one man, and a man by many women. Mutual regrets 

j,ij,ij,i
mwr +=  occupy the cells in table R . 

   M1 M2 M3 M4 M5   M1 M2 M3 M4 M5   M1 M2 M3 M4 M5 

  W1 1 5 3 2 4 W1 3 4 2 1 2  W1 4 9 5 3 6 

  W2 5 4 1 2 3 W2 1 3 4 2 4  W2 6 7 5 4 7 

Table 1 =W  W3 3 5 4 2 1 =+ M W3 5 2 3 4 3 == R  W3 8 7 7 6 4 

  W4 2 5 3 1 4 W4 4 5 1 3 1  W4 6 10 4 4 5 

  W5 4 3 1 2 5 W5 2 1 5 5 5  W5 6 4 6 7 10 

  Women Priorities Men Priorities  Regret compensation 

Assume that some participants will claim mismatch compensation since only unsuitable partners 

remained. Suitable were already taken, they went to dating. Others, those fortunate to go to dating 

will receive in advance an incitement payment, a prepaid ticket to happening, restaurant, concert, 

etc. Suppose that no one has found a suitable partner. Let for a moment, the mismatch compensation 

equals 102
1 ⋅=

j,ij,i
rc €. However, to compensate the participants in proportion to their level of  

regret is not just and fair, because there is a danger of misrepresentation of priorities due to profit 

motive, cheating, hiding, etc. Doing so, for example, couple ( )55,  may raise their compensation up 

to 50€! In Table 1, the lowest regret among all participants is 341 =
,

r . Therefore arrangers of the 

party are ready to follow Rawls principle of justice as fairness – the principal of minimorum, which 

equals to 1510412
1 =⋅

,
r € what we suppose they do regardless of it is a bad or good decision, right or 

wrong, etc. From the cashier point of view, it is also a reasonable compensation. Thus, the balance 

of payments for all participants, inclusive the cost of chocolate, will be negative: 50€+15€+10€ = 

25€, i.e., -50€ as entrance fee, 15€ received as mismatch compensation, and 10€ as a chocolate. 
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What happens if couple ( )41,  decides to date after the party ends? Assume that each of them will 

receive an incitement for a date. Let, for simplicity the incitement equals to a doubled value of  

mismatch compensation or higher. Nothing prevents us to apply any other rule. Notice that the  

entire table R  should be reorganized to reflect the fact that the rest, i.e., the women { }5432 ,,,  and 

men { }5321 ,,, , no longer be able to count on ( )41,  as potential partners. The priorities will fall; the 

scale 54321 ,,,,  packs together or condenses into 4321 ,,, . Table 1 transforms into: 2 

   M1 M2 M3 M4 M5   M1 M2 M3 M4 M5   M1 M2 M3 M4 M5 

  W1 0 0 0 0 0 W1 0 0 0 0 0  W1 0 0 0 0 0 

  W2 4 3 1 0 2 W2 1 3 3 0 3  W2 5 6 4 0 5 

Table 2 =W  W3 2 4 3 0 1 =+ M W3 4 2 2 0 2 == R  W3 6 6 5 0 3 

  W4 1 4 2 0 3 W4 3 4 1 0 1  W4 4 8 3 0 4 

  W5 3 2 1 0 4 W5 2 1 4 0 4  W5 5 3 5 0 8 

  Women Priorities Men Priorities  Regret compensation 

The minmorum mismatch compensation did not change and equals to 1553 =
,

c €. However,  

couple’s ( )41,  potential balance 50− € 10+ € 152 ⋅+ €=10€ of payments improves. N.B., W1 and M4 

each receive an incitement to date of 30 € in accord with rule that the incitement is always higher 

than a doubled mismatch compensation! For the rest, the balance remains negative (in deficit) and 

equals 15€. The balance may only improve monotonically, in case the couple ( )53,  decides to date 

as well. The important thing is that given the value of the balance one can determine: who is who, 

i.e., who will go on dating and who would not, receiving the mismatch compensation. 

Orchestra starts playing the last tango. Party is over. Decisions have been made and passed in 

writing to the organizers of the party. What should represent the best collective decision in the  

Singles Party Game based on the principle of maximorum of minimorum? 

3. Concept of stability. 
3
 

Our motive here and now will be to illustrate the well-established solution in many persons’ 

games, called the core, which is a conventional concept of stability. It is helpful first to focus on our 

model of singles game without any warranty of stability. 
                                                 
2  This is the property and the only one property fostering the birth of MS, the "monotone system." Otherwise, the MS 

vocabulary remain sterile if used in any types of serialization methods applied for data analysis like regret scales or 
compensations, or what ever scales we use, etc., to bring analysis results in order for observations. 

3  Terminology, which we shall use below, is conventional. We use a payment, payoff(s), imputation, reward, etc.,  
instead of the term compensation. 
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Let us turn to a more general study of the situation. The gests attending the party are: n  single 

women { }n,...i,...
w

1=Ω  and m  single men { }m,...j,...
m

1=Ω . All arrange a union 
mw

ΩΩ ∪ , 

mn
mw

+=∪ ΩΩ . Some of the guests expressed their willingness to participate in the game by 

disclosing their priorities. Those who refused have been called blind players; see above. Those who 

agreed arrange the grand coalition 
mw

ΩΩ ∪⊆P . Further on we label them by P∈σα ,...,,j,i . 

Recall that all an only the members of P  are the participants. In contrast to j,i , labels σα ,...,  

emphasize no difference of sexes. For the reason to make notifications short we refer when needed 

to σα ,...,  as an eventual matching or couple. 

In many-persons games, by a coalition is understood a subset H  of participants/members of P , 

P⊆H . Coalition H  in singles game represents participants who did not yet decided with whom 

they wish to date. The situation when all did, ∅=H , or, in contrast, no one did, P=H , is think-

able, blind guests P∉α . Quite reasonable to think that he/she might feel sorry to date despite dis-

closing the scheme and will be hereby labeled as a dummy but not as a blind player. Among all coa-

litions P2∈H  we usually distinguish rational coalitions – a member α  in such coalition extracts 

from the interaction in the coalition a benefit, which is satisfactory for H∈α . Sometimes it is  

further stipulated that extraction of this benefit is ensured independently of the actions of the players 

entering the anti-coalition.4 Acting rationally a subset of members in a coalition H  can improve 

their individual positions joining some other coalition. Such action is an example of instability. 

In his work "Cores of Convex games" Shapley (1971) studied convex games, where this type of 

instability could be eliminated, so-called games with a nonempty core. The core is a convex set of 

end-points (imputations) of a multidimensional octahedron, i.e., the payoffs to all players. Using 

membership to the coalition H  in the singles game we can always construct payoffs to all players 

P . The inverse is also true that any payoff (imputation) clearly states who belongs to the coalition 

and who is the member of anti-coalition. Recall that the members of the anti-coalition H  receive an 

incitement to date, which is equal or is higher than doubled mismatch compensation. Therefore, in 

the singles game a one to one correspondence exists between the core and a set of special coalitions 

generated by the core. We call them nebulouses. Members of nebulouses are not able to improve 

their positions by participating in any other coalition belonging to a nebulous, say internally stable. 5 

                                                 
4  This situation leads to 2-person game, the coalition H  against anti-coalition ,H  HH ∪=P . It was proved that 

2-person game always has a solution. In particular, for the coalition game it establishes the Shapley value. 
5  Our vocabulary is somewhat unconventional in this connection, but convenient. 
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In contrast to individual payoffs, improving or worsening the positions of members, when playing 

a coalition game, a payoff to a coalition H  as a whole is called the characteristic function 

0>)H(v . In classical cooperative game theory payoff )H(v  to coalition H  is known with  

certainty. The convex property reflects a kind of synergy effect when two coalitions S  and T  join 

together subject to )TS(v)TS(v)T(v)S(v ∩+∪≤+ , called super-modularity condition. In 

case a couple or participant σ  joins or leaves the coalition H , { } )H(v)H(v)H,( σσπ \−=  

defines marginal utility )H,(σπ  of H∈σ . Marginal utility expresses an increase (decrease) in 

utilities { } )H,()H,( απσαπ ≤\  of the membership for σα ≠ , { }σα \H∈  and is analogous 

to returns to scale, associated with convex production functions in economics, etc. Monotonic  

condition { } )H,()H,( απσαπ ≤\  is equivalent to super-modularity of characteristic function 

)H(v , which provides a full guarantee of the existence of a nonempty core. In general such a  

warranty cannot be given. This property, but inverse, was used to find solutions of many combinato-

rial problems, Petrov and Cherenin (1948), Edmons (1970), Nemhauser et al. (1978). In current 

study we analyze marginal utilities independently of super-modularity as a self-object.  

Below we define, the payoffs for all members H∈α  using pair-wise minimum of regrets in table 

R , see above. Recall that we eliminated rows and columns in tables W  and M  for the members of 

anti-coalition H . The pair-wise priorities in H  will decrease yielding to recalculation of  

regrets. The elimination result is labeled by )H(r j,i
, Hj,i ∈ . Aligning the minimorum principle 

with the principle of justice as fairness, the reward or payoff (mismatch compensation) to any  

member H∈α  is defined and equals to ( ) 102
1 ⋅= ∈ )H(rmin)H(F j,iHj,i

€; all receive an equal 

reward )H(F . Payoffs to dating couples as incitements to members of anti-coalition H , Hj,i ∈  

will be doubled. Thus, the value )H(FH)H(v ⋅=  defines the characteristic function of singles 

game 
6. Monotonic property { } )H,()H,( απσαπ ≤\  holds, because participant σ , joining 

{ }σ∪← HH , expands the priority scale for members in H . A member H∈σ  leaving H , 

{ }σ\HH ← , in contrast, condense the scale. Thus, the following proposition is valid. 

Proposion 1. Singles Party Game is a convex and there exists a non-empty core. 

                                                 
6  Check that P)(v , for 

mw
ΩΩ ∪=P , 10=P , see the Table 1, equals to 150€. 
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4. Concept of a nebulous.  

In view of "monotone system," Mullat (1971), exactly as in Shapley’s convex games, the basic  

requirement of our model validity lies in monotonic property { } )H,()H,( απσαπ ≤\ . In other 

words, this means that eliminating an element α  from H  the utilities (weights) on the rest will fall 

or remain the same. To our knowledge there exist two kinds of monotone system, which we think is 

important to distinguish. The first class of monotone systems, called p-monotone: the order of  

utilities (weights) )H,(απ  on each subset H  follows the initial order ),( Wαπ  on the grand 

set W , or the grand coalition P . The fall of utilities on p-monotone system does not change the 

weights ordering on any subset H , Kuznetsov et al. (1985). The second class: the grand order does 

not necessarily hold on some subset W⊂H .  

Clearly, any serialization (greedy) method on the grand set W  immediately catches the structure 

of any subset W⊂H  of p-monotone system. One may argue that p-monotone systems are quite 

sterile and do not bring much on the surface comparing to any serialization method. Economists, 

according to Narens and Luce (1983), will say that subsets H  of p-monotone systems perform on 

interpersonally compatible scales. The singles game is twisted enough. The levels of regret in  

contrast to their initial ordering may fall in the table C  in inverse order despite that priorities them-

selves of participants about each other remain in tact on any coalition P⊂H . One will say then 

that levels of regret, in general, are not necessarily interpersonally compatible. Indeed, the order of 

two different pair-wise levels of regret for two eventual couples of participants can move when  

falling in the opposite direction compared to their original order in grand coalition P . 

Finally, we are ready to formulate some propositions. 

Definition 1. By kernel of singles game we call a coalition )H(FmaxargH
H

*

P⊆= ; { }*H  is 

the set of all kernels. 

Proposition 2. The set of all kernels { }*H  arrange an upper semi-lattice of sets, i.e., the union 

{ }*** HHH  ∈∪ 21 . The set { }*H  is closed under union operation of sets. 

Definition 2. A kernel { }*H ∈n  minimal by inclusion is called a nebulous – it does not include 

any proper kernel n⊂*H : n⊄*H  is true for all n≠*H . 

The final step will require the concept of imputation, Owen (1968). A simple variant of imputation 

definition connected to singles game is a P -vector of payoffs to all participants. Each coalition H  

induces an imputation )H(s , cf. Tables 3,4. 

Proposition 3. The set { })(s n  of imputations, induced by nebulouses, arranges a core of the  

singles game. Imputations in { })(s n  are non-dominant by any other imputation { })(s)(s nn' ∈ , 

)(s)(s nn' �  or )(s)(s nn' }  not true. 
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5. Finding the core.  

Finding the core is a NP-hard task. The number of "operations" increases with exponent speed  

depending on the number of participants. However, we claim that the core of singles game may be 

found by polynomial algorithm. The basic idea lies in "Monotone System" technique by construct-

ing so-called defining sequences of pair-wise matches first in increasing order of their pair-wise 

regrets (peakedness), and then decreasing. There are several variants of the same procedure, which 

do not coincide. Apparently there is no need to cover all the details. However, the algorithm below 

is given in a more convenient form to combine the procedure with a singles game.  

Following algorithm finds maximal by inclusion kernel H , i.e., for { } H⊂→∈∀ *** HHH  . 

1. Input. Build the regret table R , MWR += , simple operation in MS Excel spreadsheet. 

2. Output. Highlight by 
t

H  those participants who have not yet decided to date after the 

party ends; 0←t , P←
t

H ; define F  as maximizer of 
t

F ; pointer tt
p
=  

points to 
t

H  accompanying the maximizer F . Recall that P  is the coalition  

of participants of the game. 

 While P  is not empty 

( ) ( ) )H,j,i(minF
tHj,it t

π2
1

∈= €; ( ) ( ) )H,j,i(minarg
tHj,it t

πα 2
1

∈← €, 

{ }
ttt

HH α\←+1   highlights the row and column of indicated by couple t
α  in tables 

W , M and R  as deleted, { }
t

α\PP ← : 1+← tt . Rearrange priorities in tables W  

and M  counting on participants from P  as potential partners for matchings, then  

recalculate remaining levels of regret in table R , those not yet highlighted as deleted. 

 End While Returns the set accompanying the maximizer coalition 
pt

H←H  

Definition 3. A sequence of participants 
P

ααα ,...,
t 1=  ordering participants of P  is called 

the defining sequence of the singles game if in the sequence of coalitions 
P

P H,...,H1= , 

t
\ α

tt
HH =+1 , P,t 1= , there exists a subsequence 

pttt
,...,,H ΓΓΓ

211 ==P  such that: 

 a) for any matching 
1+

∈
kk ttt

ΓΓα \  of the sequence 
t

α   

 the pair-vise regret 
kttt

F)H;( <απ  )p,...,k( 11 −= ; 

b) in coalition 
pt

Γ  no sub-coalitions exist at the level of regret higher than 
pt

F . 

Definition 4. Coalition D  is called defining when 
p

Γ=D  for certain defining sequence 
t

α . 

Proposition 4. The algorithm returns the largest kernel H  of the singles game, 
pt

Γ== DH . 



9 

Before we finish this section a comment is in place. Technically minded person may notice that 

coalitions 
t

H  are of two types. The first when operation ( ) ( ) )H,j,i(minarg
tHj,it t

πα 2
1

∈← €  

produces only one 
tt

H∈α . The second type when many t
α  are available. In general, independ-

ently of 
pt

ttH ≥∃   such that 
t

FF =  holds, 
t

α  might be of first or second type. Let 
Rt

H  is the last 

coalition to the right in the sequence 
t

α  maximizing F , thus the inequalities 
t

FF >  are true for 

the rest of 
R

tt > , where P≤<
Rp

tt . Clearly, in case the coalition 
Rt

H  is of first type it represents 

only one coalition, which is the only nebulous 
Rt

H=n  of the game, and hereby the only one  

imputation )H(s
Rt

 belonging to the core. However, when 
Rt

H  is of second type the situation is 

different. In fact, a difficulty arrives: In which order to select couples 
t

α  to facilitate constricting 

the defining sequence t
α ? We can solve the problem by backtracking technique. Explanation of 

backtracking is out of the scope of current investigation. However, one may find useful guidelines, 

Dumbadze (1989), who investigated different algorithms that effectively solve the problem. We 

intend to clarify the essence of this difficulty by experiment, that is the subject of the next section. 

6. Experiments.  

Recall that in the singles game the input to the algorithm above contains two tables: 
j,i

wW = – 

priorities 
i

w  of women about men in the form of permutations of n,1  in rows, and the table 

j,i
mM =  – priorities 

j
m  of men about women in the form of permutations of m,1  in columns.  

Tables are well-suited objects in MS Excel spreadsheet that features calculation, graphing tools, 

pivot tables and a macro programming language called VBA (Visual Basic for Applications). 

A spreadsheet was developed in order to illustrate our idea in search for nebulouses of the singles 

game, i.e., stable coalitions with imputations belonging to the core induced by these coalitions. 

Spreadsheet is available for downloading from http://www.datalaundering.com/download/singles-game.xls, or from 

http://www.datalaundering.com by (contact) request, as attached to E-mail. It takes for granted a "state of 

arts" of MS Excel uses. We first provide the user with the list of macros written in VBA, and then, 

after the macro has performed the calculus, we supply by comments the tables, extracted from the 

spreadsheet. We also hope that the spreadsheet exercise will be useful facilitating or at least  

illustrating programming technology of backtracking. 
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List of singles game macro-programming routines. 

•  Dummy.  Ctrl+d Removing (blind) gests from the list of participants who  
   wish not play the game, or who feel sorry for dating.  
   We call them DUMMY players.7 

•  Match.  Ctrl+a Constructing defining sequence by performing  
   arg min operation, see the algorithm above. 

•  Perform.  Ctrl+p Re-establishes payoffs of dummy players counting that  
   she/he once again is available for dating. 

•  RandM.  Ctrl+m Randomly rearranges columns constructing random  
   permutations, priorities, in men’s priority table M. 

•  RandW.  Ctrl+w Randomly rearranges rows constructing random permutations,  
   priorities, in women’s priority table W. 

•  TrackB.  Ctrl+b Restores the status of Women-W and Men-M priorities  
   saved by TrackF macro: Performing Backtracking. 

•  TrackF.  Ctrl+f Saves the status of Women-W and Men-M priorities  
   to backtrack by TrackB macro: Preparing Backtracking. 

Spreadsheet layout. There are 20 single women and 20 single men attending the party, 20=m,n . 

Three tables will present themselves: the Pink table W, women’s priorities, the Blue table M, 

men’s priorities, and the Yellow table R – the mutual regrets table. The column to the right of the 

table R  shows 
j,i,j

rmin
201=  level of regret of couples ( )j,i  listing all women 201,i = . The row 

down of the bottom of table R  shows 
j,i,i

rmin
201=  level of regret of couples ( )j,i  listing all men 

201,j = . In the corner-cell, down-to-the right stands the lowest 
j,i,j,,i

rmin
201201 ==  level of regret over 

the whole table R . Notice that the green cells in the table R  visualize the effect of 

j,i,j,,i
rminarg

201201 ==  operation. In the areas V24:AO25 and V26:AO26, will be implemented the construc-

tion process of the defining sequence accordingly, together with the levels of regret accompanying 

this sequence; the players’ balance of payments occupies the area V31:AO32. Some cells reflecting the 

state of finances of cashier are located below the area V31:AO32. Cells in row-1 and column-A contain 

the names of the guests. We use names of guests in macros Dummy and Perform. 

Functional test. Users of the spreadsheet are invited first to perform a functional test. Calculations 

in MS Excel can be done in two modes, automatic and manual. Choose properties and set the  

calculus in manual mode. Manual mode significantly speeds up performance of our macros. The 

purpose of the test is to be familiar with the effects of ctrl-keys attached to macros and what to do 

when something goes wrong. Recommended order of actions performing the test follows below. 

                                                 
7  Actually it is irrelevant who is who, blind or dummy players. 
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•  TrackB.  Ctrl+b When something goes wrong use this macro. However,  
   it can also be used when backtracking is useful, see above. 

•  RandM.  Ctrl+m Make the cell A1 active! Perform the macro by Ctrl+m.  
   Notice the effect upon men’s priority table M. 

•  RandW.  Ctrl+w Make the cell A1 active! Perform the macro by Ctrl+w.  
   Notice the effect upon women’s priority table W. 

•  Dummy.  Ctrl+d Select an active cell in the row-1 or column-A to mark a man  
   or women as a DUMMY player. Perform the macro by Ctrl+d. 

•  Perform.  Ctrl+p Warning. This macro can be used only when all dummy or blind  
   players of the game have been selected in row-1 or column-A,  
   and the macro Dummy performed for each of selected dummy  
   player accordingly. Otherwise, that could lead to inconsistencies  
   of calculations. Select an active cell in row-1 or column-A. Perform  
   by Ctrl+p, as needed. Notice the effect in the area V24:O26. 

•  Match.  Ctrl+a We recommend first making the cell A1 active, however,  
   it is not mandatory. Perform the macro, for example,  
   twice: Ctrl+a, Ctrl+a. Notice the effect in the area V24:O26. 

•  TrackF.  Ctrl+f The effect of this macro is invisible. It can be used whenever  
   it is appropriate to save the current status of all tables  
   and areas necessary to restore the status by TrackB macro. 

Extracting nebulouses of the game. We came closer to the goal of our experiment, where we 

visually demonstrate the main features of the theoretical model of the game by example. So-called 

defining sequence construction constitutes the skeleton of the theory. Defining sequence constriction 

goes on by steps. At each step in the construction sequence, we add to the right to already built  

sequence on previous steps, a matching with the lowest level of regret, i.e., a couple that decided to 

date after the party ends. Doing so until all participants are matched finishes the construction. On 

can easily check that at the beginning the levels of regrets increase, while to the end the levels will 

fall. The peakedness of levels of regret in row 3 of Table 3, rests on the monotonic property 

{ } )H,()H,( απσαπ ≤\ , see above. Recall that after a couple was matched we always recalcu-

late levels of regret: the priority scales will "condense" or "pack together" upon all not yet matched 

participants are matched together. Let us try to build up a defining sequence using the Match macro 

20 times: press Ctrl+a 20 times. Following data will occupy the area V4:O28: 

Table 3.  Nr.1 Nr.2 Nr.3 Nr.4 Nr.5 Nr.6 Nr.7 Nr.8 Nr.9 Nr.10 Nr.11 Nr.12 Nr.13 Nr.14 Nr.15 Nr.16 Nr.17 Nr.18 Nr.19 Nr.20

Row 1 Women matched 2 5 7 10 20 1 4 16 6 9 11 15 8 13 18 3 14 12 19 17 

Row 2 Men matched 12 2 9 1 18 8 14 6 10 3 17 11 19 13 7 16 20 15 5 4 

Row 3 Levels of regret 4 5 5 4 4 5 6 5 5 5 5 4 4 4 3 3 3 3 2 2 

Row 4 W-payoffs 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 €

Row 5 M-payoffs 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10 €
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As agreed we label a couple ( )j,i  by α , thus the notation 
t

α  of a defining sequence, 201,t = , 

is appropriate. Rows 1,2 correspond to the sequence 
t

α  together with levels of regret in Row 3;  

mismatch compensations incitements for dating are not payable, only the costs of chocolates of 

10€’s occupy rows 4,5. Observe, that in accordance with monotonic property, the minimorum  

levels of regret first increase starting at 4, reaching 6 and then are falling down to 2. In column nr.2 

regrets jump from 4 to 5, and in column nr.7, from 5 to 6. There are two nested coalitions accompa-

nying the jumps: the coalition 2Γ  starting at column nr.2, and 7Γ  starting at nr.7. Notifying by 0Γ  

the initial coalition P  (the grand coalition) of participants, we conclude that 720 ΓΓΓ ⊃⊃=P . 

We also claim that the coalition 7Γ  is the maximal coalition DH =  by inclusion. Therefore 

{ }
7nnn Γ⊂∈∀    , D=7Γ : each nebulous of the game lies inside the coalition D  say the cloud of 

nebulouses. The cloud D  was found by the algorithm but how to find a nebulous? 

Let us backtrack to the status, when only 6 matches (dates) accomplished, i.e., all columns to right 

including the Nr.7 are empty. The status is tracked back by Ctrl+b, and 6 times by Ctrl+a. However, 

one can check that the coalition 7Γ  is not a nebulous because it is not minimal by inclusion. Pay 

attention to green cells at the level of regret 6. In fact, a nebulous can be found in the following way. 

Perform exactly as follows. Make m5 active and press Ctrl+d. Make w19 active and press Ctrl+d. 

Activate m5 and Ctrl+p. Activate w19 and Ctrl+p. Column 7 instead of couple ( )144,  contains now 

( )519, , a new matching – a dating couple nr.7. The nebulous, visualized below by Table 4, is found 

(manually) as the complement: a) of the set of original matchings, couples nr.1-nr to nr.6 in Table 3; 

b) together with couple ( )519, , to the set of all participants P . Pink and Blue colors mark those 

who decided to date after the party ends, Yellow – those who did not yet taken decisions. Hereby, 

Yellow participants mark the members of a nebulous coalition inducing an imputation occupying 

rows 4-5 belonging to the core, i.e., a payoffs to all 40 participants. N.B., the green cells. 

Table 4.  Nr.1 Nr.2 Nr.3 Nr.4 Nr.5 Nr.6 Nr.7 Nr.8 Nr.9 Nr.10 Nr.11 Nr.12 Nr.13 Nr.14 Nr.15 Nr.16 Nr.17 Nr.18 Nr.19 Nr.20

Row 1 Women matched 2 5 7 10 20 1 19               

Row 2 Men matched 12 2 9 1 18 8 5              

Row 3 Levels of regret 4 5 5 4 4 5 6              

Row 4 W-payoffs 70 € 70 € 40 € 40 € 70 € 40 € 70 € 40 € 40 € 70 € 40 € 40 € 40 € 40 € 40 € 40 € 40 € 40 € 70 € 70 €

Row 5 M-payoffs 70 € 70 € 40 € 40 € 70 € 40 € 40 € 70 € 70 € 40 € 40 € 70 € 40 € 40 € 40 € 40 € 40 € 70 € 40 € 40 €
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7. Conclusion.  

One of the drawbacks in the application of formal schemes of monotone systems is its weakness 

or absence of appropriate interpretation of the results of the analysis. When the process of extracting 

nebulouses with the basic procedures ends, our nebulouses itself challenge the researcher's further 

advance. Usually, trying to interpret the results, the most in that what the researcher can expect is 

common sense. Regardless of the mathematical complexity, cleverly twisted rules, compensations, 

incitements etc., the singles game still has a point how to arrange a singles party. However, this is 

not enough in the social sciences, particularly in the economy, when it comes to reality that does not 

exist, e.g., the difference in political views, positions, political affiliation, etc. Monotone system’s 

scheme does not allow coming closer in answering the question what is right or wrong, what is good 

and what is bad. Therefore, applying well-known and well-understood concepts and categories that 

have been successfully applied in the past, we can move forward in the right direction. Our advan-

tage is that such a relationship was found and came out in the form of a well-known concept of the 

core in the theory of coalition games say in the theory of collective behavior.  

In the theory of coalition games we usually do not indicate clearly what kind of coalition will be 

able to enforce or accomplish one or another imputation in the list belonging to the imputations in 

the core. Given imputation(s) of singles game (the game is so arranged) one can always specify by 

which coalition it was accomplished. Therefore, going through all of the coalitions, we are going 

over all of the imputations, there are simply no others. Consequently, setting the core, one can 

uniquely specify by which coalitions the core was accomplished. This allowed determining both by 

theoretical means and by experimental simulation that the computational aspect of coalitions forma-

tion in singles game is a version of P-NP problem.  

We have not yet investigated the connection between the core induced by our nebulouses and 

NM-solution. Typically, the NM-solution must coincide with the core. Apparently it would be easy 

to give a constructive proof of this fact. All necessary facilities are available as it is possible to  

position all participants of any but not nebulous coalition in the order of the corresponding defining  

sequence. Now, it is easy to figure out that payments to all players grow, as mentioned earlier, while 
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the construction of the sequence proceeds reaching a certain maximum point, then the payoffs  

decrease. Therefore, "moving" the players "to the right or to the left" along the defining sequence, 

formed in this way, the coalition would be either inside or cover some nebulous coalition. Now, we 

only need to add some players into the "emerging coalition" expanding the coalition in question by 

these players to form a coalition, or to exclude players from the "emerging coalition, " in order to 

coincide exactly with some nebulous coalition. The verification of the validity of our conjecture is 

quite possible. To do this, one who doubts or wish to confirm the conjecture just made, we recom-

mend performing an experiment using the MS-spreadsheet available by request. 
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