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Abstract

Cause-effect relations are central in economic analysis. Uncovering empir-
ical cause-effect relations is one of the main research activities of empirical
economics. In this paper we develop a time series casual model to explore
casual relations among economic time series. The time series causal model
is grounded on the theory of inferred causation that is a probabilistic and
graph-theoretic approach to causality featured with automated learning algo-
rithms. Applying our model we are able to infer cause-effect relations that
are implied by the observed time series data. The empirically inferred causal
relations can then be used to test economic theoretical hypotheses, to provide
evidence for formulation of theoretical hypotheses, and to carry out policy
analysis. Time series causal models are closely related to the popular vector
autoregressive (VAR) models in time series analysis. They can be viewed as
restricted structural VAR models identified by the inferred causal relations.
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1 Introduction

In the middle of the last century, Wold (1954) proposed using a recursive model
structure to analyze causal relations among economic time series. His causal in-
quiry in economic time series encountered problems of the existence of observa-
tional equivalence and a then not-yet established theoretic justification of the use
of recursive equations to represent causal structure. The research activities on this
causal inquiry gave ways to the focus on identification problems in simultaneous
equation systems, which could be regarded as an alternative form of articulating
causal relations among economic time series variables (See Hoover (2008) for more
details.).

In this paper we carry on the inquiry started in Wold (1954) and ground the re-
cursive model structure for time series on theory of inferred causation. The theory of
inferred causation is a graph-theoretic approach to causality that was first developed
in the science disciplines of computer science and philosophy. A comprehensive ac-
count of this causal approach is given in Spirtes, Glymour, and Scheines (2000) and
Pearl (2000). Despite an ongoing debate on this causal approach1, the automated
causal inference based on observed data has become a powerful instrument to assess
causal relations empirically.

Recently, these graphical models have found their way into the literature on
time series analysis and econometrics. Eichler (2007) gives a graphical presentation
of the Granger causality among multivariate time series. Some pioneering works
of graphical causal models in econometrics can be found in Glymour and Spirtes
(1988). Hoover (2005) sketches the application of the graphical causal approach
to identification of structural VAR models. Swanson and Granger (1997) apply a
similar concept to identify the causal chain in VAR residuals. Demiralp and Hoover
(2004) apply the graphical causal method to VAR residuals to infer the causal orders
in the money demand and the monetary transmission mechanism.

Along this line of research we extend the application of the graphical causal
approach to VAR residuals to the time series themselves and infer the causal orders
in the multivariate time series. As a byproduct, the causal orders in the residuals
are determined by the causal orders in the time series. Concretely, we view N time
series with T observations as realizations of a set of NT random variables and embed
these NT random variables into a directed acyclic graphical (DAG) model with NT
nodes. The aim of this paper is to develop an effective method to infer the causal
relations among these NT random variables.

The paper is organized as follows.

In Section 2 we review shortly the basic idea and features of the theory of inferred
causation. Then we embed multivariate time series into a DAG model to define a
time series causal model(TSCM). We formulate assumptions under which a TSCM
can be represented through a partial DAG and hence becomes statistically assess-
able. We discuss the relation between structural vector autoregression and TSCM
and derive the Granger causality in a TSCM. In Section 3 we present a learning
algorithm to infer the causal relations among time series variables and document
simulation results to assess the performance of the learning algorithm. In Section 4
we apply TSCM to analyze the wage-price spiral in the Australian economy. The
last section concludes.

1see Cartwright (2001) and Pearl (2000) p. 41 for more details.
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2 Time Series Causal Model

2.1 Theory of Inferred Causation

2.1.1 Causal Models

The basic idea of theory of inferred causation is to present a causal structure among
variables in an acyclic directed graph (DAG) called a causal graph in which ar-
rows indicate causal orders. Based on a generally established relationship between
topologies of causal graphs and conditional independencies among variables in the
graphs, sample information on conditional independencies of a set of variables is
used to infer the topology of the data-generating causal graph and the direction of
arrows in the graph. In this way the causal structure among variables can be in-
ferred from empirical observations of the variables. Pearl (2000) gives a systematic
account of the theory of inferred causation and Spirtes et al. (2000) discuss in detail
the techniques and algorithms used to uncover the data-generating DAGs.

Formally the theory of inferred causation is built on a fundamental assumption
on the cause-effect relations as given in following definitions in Pearl (2000).

Definition 2.1 (Causal Structure in Pearl (2000) p.44) A causal structure of
a set of variables V is a directed acyclic graph(DAG) in which each note corresponds
to a distinct element of V , and each link represents direct funcitonal relationship
among the corresponding variables.

Definition 2.2 (Causal Model in Pearl (2000) p.44) A causal model is a pair
M =< D,Θ > consisting of a causal structure D and a set of parameters ΘD

compatible with D. The parameters ΘD assign a function xi = fi(pai, ui) to each
Xi ∈ V and a probability measure P (ui) to each ui, where PAi are parents2 of
Xi in D and where each Ui is a random disturbance distributed according to P (ui)
independently of all other u.

Probability measures compatible with D are called to satisfy the causal Markov
condition. The causal Markov condition implies that conditioning on PA(Xi), Xi is
independent of all its nondescendants. In particular it implies that the disturbance
Ui are independent from other Us. In addition to the causal Markov condition, the
minimality of the causal structure3 D, and the stability of the distribution4 are two
key assumptions on the data-generating causal model to rule out the ambiguity of
the statistical inference in recovering the data-generating causal model5. If there is
an arrow from Xi to Xj we say Xi is a direct cause of Xj . If there is sequence of
arrows, all pointing in one direction from Xi to Xj, we say Xi is an indirect cause
of Xj.

In Fig. 1, X3 is called a predecessor of X5, because there is a directed path from
X3 to X5. X2 is called a parent of X1 and X3, because X2 is a direct predecessor of
X1 and X3. The two arrows X1 → X5 X3 → X5 constitute a v-structure, because
the two arrows are heading at X5 and their ends are not connected.

2Parents are direct predecessors.
3See Definition 5 in Pearl and Verma (1991) and Definition 2.3.4 in Pearl (2000) p.46.
4see Pearl (2000) p.48 and p. 61. and Spirtes et al. (2000) p. 29 ff.
5It is still an ongoing debate whether causality can be formulated in such assumptions. See

Cartwright (2001), Pearl (2000) p. 41, Spirtes et al. (2000) p. 105. Freedman and Humphreys
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Figure 1: Influence Diagram

A compatible distribution of a DAG can be factored into the conditional distri-
butions according to the DAG. For example we know that for the DAG in Fig.1 the
joint distribution can be calculated as follows

f(x1t, x2t, x3t, x4t, x5t) = f(x4t|x5t)f(x5t|x1t, x3t)f(x3t|x2t)f(x1t|x2t)f(x2t).

xit is a realization of Xit. The DAG in Fig. 1 implies following conditional indepen-
dencies: given X5t, X4t is independent on other variables; given X1t and X3t, X5t is
independent on X2t; and given X2t, X3t is independent on X1t. These conditional
independencies can be used to infer the arrows in the DAG in Fig. 1.

The fundamental assumption of the method of inferred causation translates the
problem to infer causal relations among variables into a statistical problem to recover
the data generating causal structure using observed data, and then to interpret the
directed edges in the DAG as cause-effect relations. Identifying the data generating
DAG from the patterns of conditional independencies and dependencies is one of
the main research activities in the area of inferred causation.

2.1.2 Observational Equivalence and Inferrable Causation

If data are generated from a causal model, can statistical procedure always uniquely
recover the data-generating causal structure? The answer to this question leads
to the problem of observational equivalence of a causal model. Observationally
equivalent models will generate data with identical statistical properties. Therefore,
statistical method can identify only the underlying DAGs up to the observationally
equivalent classes. For the observational equivalence of causal models we quote the
result in Pearl (2000) p.19.

Proposition 2.1 (Observational Equivalence )
Two DAGs(models) are observationally equivalent if and only if they have the same
skeletons and the same sets of v-structures, that is, two converging arrows whose
tails are not connected by an arrow (Verma and Pearl 1990).

Because statistical method cannot differ the observationally equivalent DAG
models from each other, not every causal direction in a DAG can be inferred. Only

(1998) for more discussion. Spirtes et al. (2000) took an axiomatic approach to pave the logical
basis for the method of inferred causation.
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those causal directions in a DAG can be identified if they constitute v-structures
or if their change would result in new v-structures or cycles. We call these causal
directions the inferrable causal directions. If a data generating DAG has obser-
vationally equivalent models, the directions of some arrows in the DAG cannot be
uniquely inferred from the data. Hence, the existence of observational equivalence
places a limit on the ability of statistical method in inferring causal directions.

Given a set of data generated from a causal model, a statistical procedure can
principally identify all the conditional independencies. However, the statistical pro-
cedure cannot tell whether this kind of independencies are due to the absence of
some edges in the DAG of the causal model or due to the particularly chosen pa-
rameter values of the causal model such that these edges in this case imply the
conditional independencies. To rule out this ambiguity, Pearl (2000) assumes that
all the identified conditional independencies are due to absence of edges in the DAG
of the causal model. This assumption is called stability condition in Pearl (2000).
In Spirtes et al. (2001) it is called faithfulness condition. This assumption is
therefore important for interpreting the conditional dependence and independence
as causal relations.

2.1.3 Search Algorithms

To infer the data generating causal graph from sample information is call learning
of the graph in the literature. There are basically three kinds of solutions to this
learning problem. The first solution is based on sequential tests of partial correlation
coefficients. The tests run from the lower order partial correlation coefficient in
unconstrained models to the higher order partial correlation coefficients. Hoover
(2005) gives a very intuitive description of this procedure. Spirtes et al. (2000)
provide an elaborated discussion about this kind of algorithms6. A simple version
of the most popularly used PC algorithm is given as follows.7

PC Algorithm

Input: Observations of a set of variables X generated from a DAG model.
Output: a pattern (DAG) compatible with the data generating DAG.

• Start with a full undirected graph. For each pair of variables (Xi,Xj) ∈ X ,
search a subset Sij ∈ X/{Xi, Xj} such that (Xi⊥Xj |Sij)

8 holds, then delete
the edge between Xi and Xj.

• For each pair of nonadjacent variables Xi and Xj with a common neighbor
Xk, check if Xk ∈ Sij .
If it is, then continue. If it is not, then add arrowheads pointing as Xk:
(Xi− > Xk < −Xj).

• In the partially directed graph that results, orient as many of the undirected
edges as possible subject to two conditions: (i) the orientation should not

6PC algorithms named according to its inventors Peter Spirtes and Clerk Scheines is the most
popular algorithm in uncovering causal graphs. See http://www.phil.cmu.edu/projects/tetrad/ for
more details and software for this algorithm.

7For our presentation purpose, we give here a simplified version of PC algorithm. For more
sophisticated version of PC algorithm see Spirtes et al. (2000) p. 89.

8(Xi⊥Xj|Sij) means, conditioning on Sij , Xi is independent from Xj
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create a new v structure; and (ii) the orientation should not create a directed
cycle.

Since the tests in the PC algorithm are consistent, with increasing number of
observations and a significance level approaching zero the probability to identify the
edges correctly based on the tests will converge to one. This fact is summarized in
the following proposition.

Proposition 2.3 Under the assumption of faithfulness, the PC-algorithm can con-
sistently identify the inferrable causal directions, i.e. for T → ∞ the probability of
recovering the inferrable causal structure of the data generating causal model con-
verges to one.

Proof: ( See Robins, Scheines, Sprites, and Wasserman (2003) ) ✷
This Proposition says in particular that if the data generating causal model has

no observational equivalence, the PC-algorithm will uniquely identify the causal
structure consistently. If the data generating causal model has observational equiv-
alence, the PC-algorithm will uniquely identify the observational equivalent class.

The second solution is based on the Bayesian approach of model averaging.
Heckerman (1995) documents the basic technique of this approach. This technique
combines the subjective knowledge with the information of the observed data to
infer the causal relation among variables. These kinds of algorithms differ in the
choice of criteria for the goodness of fit that is called the score of a graph, and
in the choice of search strategy. Because the search problem is NP-hard9 heuristic
search algorithms such as greedy search, greedy search with restarts, best-fit search,
and Monte-Carlo method are used10. The third solution uses classic model selection
approach. Its implementation is similar to the Bayesian approach but without any
use of a priori information. A graph is evaluated according to information criteria
such as AIC or BIC. The search algorithms are similar as those in the Bayesian
approach, such as greedy search, and greedy search with restarts. A simple version
of the greedy search algorithm is given as follows.

Greedy Search Algorithm:
Input: Observations of a set of variables X generated from a DAG model.
Output: a pattern (DAG) compatible with the data generating DAG.

• Step 1 Start with a DAG Ao.

• Step 2 Calculate the score of the DAG according to BIC/AIC/likelihood cri-
terion.

• Step 3 Generate the local neighbour DAGs by either adding, removing or
reversing an edge of the network Ao.

• Step 4 Calculate the scores for the local neighbour DAGs. Choose the one
with the highest score as An. If the highest score is larger than that of Ao, go
to Step 2 and update Ao with An. If the highest scores is less than that of Ao,
stop and output Ao.

9See Heckerman (1995) for details.
10See Heckerman (1995) for details. A R-package ”deal” for learning the Bayesian network using

the Baysian approach can be found at http://www.r-project.org/gR/
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It is to note that a causal model is a statistical model. If the score used in
the greedy search algorithm is a consistent model selection criterion such as BIC,
the greedy search algorithm will consistently recover the inferable causal directions,
presuming that the search space covers the true DAG.

2.2 Time Series Causal Models

2.2.1 DAGs and Recursive Structural Models

It can be shown that if an n-dimensional variable X is jointly normally distributed,
a linear causal model of X is equivalent to a linear recursive structural equation
model (SEM)(See Pearl (2000), p. 141.). The function that associates a variable
with its parents can be written as follows.

xj =

j−1
∑

k=1

ajkxk + uj forj = 1, 2, ...n, (2.1)

where uj are independently normally distributed. We call (2.1) the structural equa-
tion of the linear causal model. We summarize this fact in the following proposition.

Proposition 2.2 If a set of variables X are jointly normal X ∼ N(0; Σ), a linear
causal model for X can be equivalently formulated as a linear recursive structural
equation model (SEM) that is represented by a lower triangular coefficient matrix A
with ones on the principal diagonal. Any nonzero element in this coefficient matrix,
say αjk corresponds to a directed edge from variable k to variable j.

A =











1 0 . . . 0

α21 1
. . .

...
...

. . .
. . . 0

αn1 αn2 . . . 1











=











1 0 . . . 0

−a21 1
. . .

...
...

. . .
. . . 0

−an1 −an2 . . . 1











where A is the triangular decomposition matrix of Σ with AΣA′ = Λ and Λ is a
diagonal matrix.

Proof: See Pearl (2000) P. 141-142.

2.2.2 Time Series Causal Models

The linear causal model presented in the last subsection is applicable to independent
data. Economic time series are, however, dependent data. Nevertheless, we can
view N time series with T observations as realization of NT random variables. We
can embed these NT random variables into a large recursive structural equations
model. Under the assumption that the elements of the multivariate time series Xit,
i = 1, 2, ..., N and t = 1, 2, ...T are jointly normal, then following Proposition 2.2 a
causal model for the multivariate time series is a linear recursive structural model
in all the NT components.

Since temporal information provides a nature causal order, the recursive struc-
tural model must follow the temporal order. Hence, we can write the recursive
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system as follows.










A11 0 . . . 0
A21 A22 0
...

. . .
...

AT1 AT2 . . . ATT





















X1

X2
...

XT











=











ǫ1
ǫ2
...
ǫT











, (2.2)

where ǫt ∼ N(0, D) is a vector of independent residuals and D is a diagonal matrix,
ǫt and ǫt−τ are independent, and Xt = (X1t, X2t, ..., XNt)

′ for t = 1, 2, ...T is the
random vector at time t11.

Because we only have one observation at each time point, the recursive system
(2.2) contains too many parameters to be analyzed statistically. Therefore we need
to impose reasonable constraints on the parameters of the system to make the sys-
tem statistically assessable. Following Chen and Hsiao (2007) beside the temporal
causal constraint, two reasonable assumptions are the time-invariant causal struc-
ture constraint that the causal structure between variables at time points t and s is
the same as the causal structure between variables at time points t + τ and s + τ ,
and the time-finite causal influence constraint that Xt may have a causal influence
on Xt+τ only when τ ≤ p, where p < ∞ is a given positive integer. Under the
assumptions of the temporal causal constraint, the time-invariant causal structure
constraint and the time-finite causal influence constraint, the linear recursive system
(2.2) with p = 2 can be written as follows.



















A0 0 . . . . . . 0
A1 A0 0 . . . 0
A2 A1 A0 0 . . . 0

0
. . .

. . .
. . .

. . .
...

... 0 A2 A1 A0 0
0 . . . 0 A2 A1 A0

































X1

X2
...

XT−1

XT















=















ǫ1
ǫ2
...

ǫT−1

ǫT















. (2.3)

The parameter matrices A1, A2, ...Ap at t-th row present the causal influence of
Xt−1, ...Xt−p on Xt and A0 is the contemporaneous causal influence among the ele-
ments of Xt. The time-finite constraint implies that in each row all the parameter
sub-matrices left to Ap are zero. We call the causal model in (2.3) a time series
causal model (TSCM).

Since the coefficient matrix in (2.3) is a lower triangular matrix, A0 must be a
lower triangular matrix too. Equation (2.3) can be reformulated as follows12.

A0Xt + A1Xt−1 + ...ApXt−p = ǫt, for t = p+ 1, p+ 2, ..., T. (2.4)

Corresponding to the TSCM in (2.4) we can represent the DAG for a TSCM through
a partial DAG, namely only through (p+ 1)N nodes representing Xt, Xt−1, ..., Xt−p

and the arrows heading at the elements of Xt (see Fig. 2). This implies that
instead of a DAG with TN nodes we need now only to consider a partial DAG with
(p+1)N nodes. In the following subsections we are going to discuss the observational
equivalence in a partial DAG and the learning of a partial DAG.

11In the model above we have assumed that the random process started at t = 1.
12We take the initial value as given.

9



X1_t-1

X2_t-1
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Figure 2: Partial DAG of a TSCM

2.2.3 Observational Equivalence in TSCMs

Since TSCMs are specifically restricted DAG models, the result of Proposition 2.1
still holds. However, since we present TSCMs in partial DAGs we need to refor-
mulate the proposition in terms of partial DAGs. Because the arrow direction from
Xt−i into Xt is fixed, we need only to consider the observational equivalence due to
direction changes of arrows between the elements of Xt. For an arrow connecting
two elements of Xt, say Xit and Xjt, if Xit and Xjt have different parents, then a
change of the arrow direction will lead to a new v structure. Based on this fact we
can formulate the condition of the existence of observational equivalence.

Proposition 2.4 A partial DAG has an observationally equivalent model if there
are some arrows between elements of Xt that satisfy the following two conditions

• the lagged parents of the connected elements of Xt are the same, and

• the change of the arrow directions will not lead to a new v-structure or a cycle
in the partial DAG.

Corollary 2.5 If in a partial DAG all the elements of Xt have different lagged
parents, the partial DAG does not have an observationally equivalent model.

2.2.4 TSCMs and VAR Models

TSCMs are motivated by causal modeling to infer causal relations in time series
data. Formally, they are linear relations between time series variables at present
period and the time series variables in the past periods as well as at present period.
Therefore, there is an intimate relation between TSCMs and the popular vector
autoregressive models in time series econometrics. We summarize this relation in
the following two propositions.

Proposition 2.6
A TSCM is a restricted structural VAR model identified by the inferred causal rela-
tions among {Xt}

T
t=1, and hence it corresponds to a restricted VAR model.

Proof: Since a full DAG does not contain any inferable causal relations, a sensible
TSCM will have some null restrictions in A0, A1,...,Ap therefore they corresponds to

10



a restricted SVAR model in the causal order of Xt. Since A0, A1,...,Ap are subject
to some restrictions, the coefficients of the corresponding reduced form VAR:

Xt = −A−1
0 A1Xt−1 − A−1

0 A2Xt−2+, ...,+A−1
0 ApXt−p + A−1

0 ǫt (2.5)

= Π1Xt−1 +Π2Xt−2 + ...+ΠpXt−p + et

are also subjected to some restrictions. ✷

Proposition 2.7
An unconstrained VAR model corresponds to a full partial DAG such that the TSCM
does not contains any inferrable causal relations except the temporal causal orders.

Proof: An unconstrained VAR corresponds to an unconstrained SVAR in an
arbitrary order of the elements of Xt by using Cholesky decomposition of the covari-
ance matrix of the residuals. A unconstrained SVAR corresponds to a full partial
DAG in which every node of Xi,t−s (s ≤ p) is connected to all N elements in Xt

and the N nodes of Xt constitute a full DAG among themselves. In this case all
elements of Xt have same lagged parents and there is no v structure consisting of
arrows connecting two elements in Xt. Therefore, the partial DAG does not imply
any inferable causal relations except the temporal causal orders. ✷

2.2.5 Granger Causality in TSCM

In time series analysis one often used concept is Granger causality. Given a TSCM
we can derive the Granger causality among the time series variables in the TSCM.
Generally, Granger causality and the graphic causal models are two different con-
cepts: while the Granger causality concerns the prediction power of one time series
for the another, a TSCM concerns the causal relation among time series variables at
each time points. The following proposition gives how the Granger causality among
the time series in a TSCM can be derived.

Proposition 2.8
Let Xi,t and Xj,t be two time series variables in a TSCM. Xj,t is a Granger cause of
Xi,t given other variables in the TSCM if and only if there is a directed path from
some Xj,t−s to Xi,t for s > 0 in the partial DAG of the TSCM.

Proof (See Appendix).
This Proposition provides a causal insight into the multivariate Granger causality

between two time series. If a lagged Xj,t has a causal influence on Xi,t representing
by a directed path from the lagged Xj,t to Xi,t, then the lagged Xj,t will contain a
unique information about Xi,t that is not included in the past of Xi,t and the past of
other relevant variables. If the other relevant variables include all carefully chosen
explanatory variables, the unique information embodied in lagged Xj,t justifies to
qualify the prediction ability as ”causality”. This proposition says also that if there
no directed or indirect causal influence from Xj,t−s on Xi,t in addition to the causal
influences from other Xk,t−s (k = 1, 2, j−1, j+1, ...N) on Xi,t, Xj,t is not a Granger
cause of Xi,t.

11



3 Learning TSCM

3.1 Learning TSCM

For a TSCM we need only to learn a partial DAG with (p + 1)N nodes instead
of the complete DAG with TN nodes. Given that we want to learn a partial DAG
consisting of all arrows into the nodes at time point t, what is the pupulation/sample
information that allows a correct inference on arrows in the partial DAG? The
following proposition answers this question.

Lemma 3.1 Given the assumption of a causal model, an information set (joint
distribution) containing a node and a set of variables including its parents is suf-
ficient for PC algorithm to connect the node to all its parents and exclude all its
non-descendants from connecting to it.

Proof:
According to the causal Markov assumption, conditional on the parents of a

variable, this variable is independent from all its non-descendants. Since the parents
of the concerning variable are all included in the information set, PC algorithm will
all edges between the variable and its non-descendants.

On the other hand, for the concerning variable and one of its parents, there is no
subset of the totalNT variables excluding these two variables, such that conditioning
on this subset the concerning variable and the parent are independent. Since the
information set is a subset of the total NT variables, it follows that there is no
subset of the information set excluding these two variables, such that conditioning
on this subset the concerning variable and the parent are independent. Therefore,
no edge between the variable and its parents will be missing. ✷

Proposition 3.2 To learn the partial DAG with arrows into Xt the information set
including Xt, Xt−1, ..., Xt−p is sufficient.

Proof:
Since the information set contains all parents of Xt, Lemma 3.1 above estab-

lishes that all arrows from Xt−i into Xt will be correctly inferred. We need only to
make sure that the arrows between the elements of Xt are also inferred correctly.
Considering two nodes Xit and Xjt, if one is a parent of the other, an edge will be
inferred according to Lemma 3.1. If there is no parent-child relationship between
the two variables, then one of them must be non-descendant of the other, according
to Lemma 3.1 there will be no edge between them.

Concerning the direction of the arrows, following the assumption of temporal
causal constraint, the arrows always go from Xt−i to Xt. Among the the edges
connecting elements of Xt, the rule of orientation in PC algorithm implies that the
orientation based on the information set is the same as the orientation based on the
total variables. ✷

It is to note that Proposition 3.2 says that applying PC algorithm based on the
information set containing (Xt, Xt−1, ..., Xt−p) will only give correct arrows into Xt.
The arrows and edges among Xt−i may be incorrect. However, correct inference of
the arrows heading into Xt is sufficient to generate a correct partial DAG.

According to Proposition 3.2 we have the following algorithm to learn the partial
DAG for a TSCM.
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A Modified PC Algorithm for a Partial DAG
Input: Observations of a set of time series variables X generated from a TSCM.

Output: a partial DAG compatible with the data generating DAG.

• step 1: Choose a reasonable p̂

• step 2: Calculate the correlation matrix of Σ = corr(Xt, Xt−1, ...Xt−p̂)

• step 3: Using Σ as input to obtain a DAG for (Xt, Xt−1, ...Xt−p̂)

• step 4: Delete all arrows and edges that do not connect at least one element
of Xt

• step 5: Orient all edges between Xt−i and Xt with arrowheads at Xt.

• step 6: Orient all edges between elements of Xt using the rules in PC algo-
rithm.

Remarks The choice of p̂ determines the lag length of the TSCM. If a chosen
p̂ is smaller then the true p, some direct parents of Xt will not be in the information
set, inference on the edges connecting Xt will be incorrect. If p̂ is larger than p all
parents of Xt are included in the information set. Therefore, the inference of edges
connecting Xt is correct. If in the output partial DAG no arrows go from Xt−p̂ to
Xt, this indicates that the choice of p̂ is large enough. However, a large p̂ will lead
to a larger graph with more nodes and will, hence, reduce the power of tests in finite
samples.

For a DAG model, evaluating graph scores is an alternative way to uncover
the data generating DAG model. For a partial DAG, what is the proper score
of the graph? We know that a partial DAG corresponds to a SVAR model as
in (2.4), it is natural to use the likelihood of (2.4) to evaluate the model. Since
unconstrained model (2.4) will always have higher likelihood than a constrained
model (2.4), a proper score can be an information criterion that adds a penalty
term to the likelihood due to the dimension of the model. For a partial DAG of Xt

we can define the BIC criterion as follows

BIC =

T
∑

t=1

logL(A0, A1, ..., Ap;Xt|Xt−1, ..., Xt−p)− (|E|+ |V |) log(T ),

where |E| is number arrows heading at Xt in the partial DAG and |V | is the num-
ber of elements in Xt. The sum of (|E| + |V |) is just the number of free varying
parameters of the TSCM under consideration. This BIC criterion is a sum of the
log likelihood function value and the number of parameters of the model times a
penalty factor log(T ). As the penalty factor satisfies the condition (1) log(T ) → ∞

as T → ∞, (2) log(T )
T

→ 0 as T → ∞, and the log likelihood function grows at
rate T , the BIC criterion is a consistent model selection criterion for TSCMs. We
summarize this fact in the following Proposition.

Proposition 3.3 Under the assumption of TSCM, the BIC criterion is a consistent
score, such that the probability of identifying the true model will converge to 1 as
T → ∞, presuming that the search space covers the true model.
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As in the case of a DAG, we can also apply a greedy search algorithm to learn
a partial DAG. Problem with greedy search algorithms is that it finds only a local
optimum. A good starting graph is crucial for a good performance of this search
method. Because PC algorithm give a consistent partial DAG and PC algorithm
converges very fast, its output provides a good initial graph for the greedy search
algorithm. We will show in next subsection that a combination of the PC algo-
rithm and greedy search will greatly improve the performance of the causal learning
algorithm.

Remarks It is to note that the learning algorithm presented above will infer
a causal structure if the data are generated from a TSCM with inferrable causal
relations. If data are generated without any causal orders, the learning algorithm
will give a DAG without any inferable causal directions, such as a full partial DAG.
In this sense, the learning algorithm follows automatically the general to specific
modeling strategy13. In the stage with PC algorithm to find a proper starting
graph, it goes from a more general model, i.e. a full partial DAG with a maximum
lag and test down to a more restrictive model with less arrows and less lags. In the
greedy search stage, the selected model is compared to its local alternative to obtain
a better model according to their respective scores.

3.2 Simulation Studies

The results of the learning procedure presented in the last section are asymptotically
valid. For empirical applications, small sample properties of the procedure are more
relevant. In this subsection we conduct a simulation study to assess the performance
of the learning procedure in small sample situations.

The data generating process in the simulation study is as follows:

A0Xt + A1Xt = ut. (3.6)

In this data generating process we consider only one lag. It is, however, less
restricted as it appears, because TSCMs with more lags can be equivalently repre-
sented as a TSCM of a higher dimension with only one lag (See Hamilton (1994) p.
7 for more details.).

A0 is set to be a lower triangular with ones on the principle diagonal. Other
non-zero elements of A0 are random numbers from a uniform distribution over [1, 2].
The nonzero elements of A1 are random numbers from a uniform distribution over
[0.4,0.9]. The zero elements in A0 and A1 are chosen randomly. The parameters in
A0 and A1 are chosen under the restriction that the time series are stationary. The
dimensions of Xt are chosen to be 3, 4 and 5, and the number of observations are
100, 200 and 400, which include the most often encountered application cases. ut is
iid normally distributed with variance one.

We summarize the simulation results as follows

• In the designed setting, PC algorithm performs poorly in recovering a com-
plete data-generating DAG. In all simulation runs the percentage of correctly
recovered graphs is zero (See the column under the header PC% in Table
1.). However, the percentage of correctly recovered arrows are much higher.
It varies from 81% to 84%. The relative high frequencies implies that the

13See Hoover (2005) for a more elaborated discussion on this point.
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T D p GS PC IC PC GS PCa GS PCa

100 3 2 83.6 4.7 0 81.4 81.4 98.3
200 3 2 99.4 1.2 0 81.6 81.6 99.9
400 3 2 99.7 0.0 0 81.4 81.4 99.9
100 3 3 96.7 4.1 0 82.6 82.7 99.9
200 3 3 99.5 1.8 0 82.4 82.4 99.6
400 3 3 99.0 0.8 0 81.4 82.6 99.9

100 4 2 89.5 6.8 0 75.5 81.5 99.3
200 4 2 96.6 1.1 0 82.5 84.3 99.6
400 4 2 97.9 0.0 0 81.5 81.2 99.0
100 4 3 81.5 8.1 0 77.5 82.2 99.4
200 4 2 93.7 2.3 0 80.5 88.5 98.8
400 4 3 96.7 0.0 0 76.1 87.8 99.3

100 5 2 83.0 8.1 0 70.5 83.7 98.2
200 5 2 93.5 5.3 0 78.5 83.8 99.4
400 5 2 96.2 0.0 0 76.5 83.7 98.3
100 5 3 82.2 9.1 0 71.5 83.4 99.0
200 5 3 92.1 6.3 0 75.5 84.1 99.3
400 5 3 95.4 0.0 0 79.5 83.9 99.1

Each row in the table records a simulation result of 1000 runs. First column under the header

T gives the number of observations used in each simulation. D is the dimension of Xt, p is the

lag length used in the learning procedures. The numbers under the header GS PC record the

frequencies of correctly recovered causal structures by using a greedy search with PC output as

starting graphs. The column under the header IC record the percentages where the score value of

the true model is not the maximal score. The column of PC records the percentages of correctly

identified causal structures using PC algorithm. The column of GS records the percentages of

correctly identified causal structures using the greedy search algorithm with a random starting

graph. PCa gives the percentage of correctly identified arrows in the graphs using PC algorithm.

GS PCa gives the percentage of correctly identified arrows in the graphs using the greedy search

algorithm with PC output as starting graphs.

Table 1: Simulation results of recovering A0 and A1 in equation (3.6)
.

graphs identified by the PC algorithm are very similar to the corresponding
true graphs, but with one or two wrong arrows. This suggests that the output
of PC can be a good starting graph for greedy search algorithm.

• The greedy search algorithm with a random staring graph performs better than
the PC algorithm but its performance is not very satisfactory (See the column
under the header GS in Table 1.). The percentage of correctly recovered
graphs ranges from 70% to 82%. Because of the nature of a local search, the
performance of the greedy search algorithm depends crucially on the starting
graph.

• Using PC output as an initial graph for the greedy search algorithm improves
the performance of the search algorithm greatly. Overall the results are sat-
isfactory. The percentages of correctly identified data-generating DAG varies
from 83% to 98% (See the column under the header GS PC in Table 1.).
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With increasing number of observations the percentage of correctly identified
data generating DAG is getting higher. The percentage of correctly identified
arrows in each simulation runs are over 95%.

4 An Application to Wage - Price Spiral Dynamic

System

In this section we apply the TSCM developed in previous sections to analysis the
causal structure in the wage-price spiral in the Australian economy in order to
answer the question whether wage inflation causes price inflation or the other way
around. A bivariate Granger-causality test for the two time series: dpt the price
inflation and dwt the wage inflation gives the following result.

F-statistic p-value

DW -> DP 3.254229 0.01449963

DP -> DW 3.158491 0.01682668

The mutual Granger Causality is often seen as an evidence that supports wage-
price spiral hypothesis, which suggests that rising wages increase income, thus in-
crease the demand for goods and cause prices to rise. Rising prices cause demand
for higher wages, that leads to higher production costs and further upward pressure
on prices. This is a reason why it is called wage-price spiral. However, the mutual
Granger causality does not necessarily implies that they are mutual cause to each
other.

To investigate the mechanism behind this mutual temporal dependence, we adopt
the theoretical framework as set out in Flaschel and Krolzig (2003) and Chen and
Flaschel (2006), in which two Phillips curves, one for price inflation and one for
wage inflation are used to describe the dynamic wage-price spiral. The theoretical
formulation of the Phillips curves are as follows.

dw = βw1(V
l − V̄ l) + κwdp+ (1− κw)π

m + βw2dz (4.7)

dp = βp1(V
c − V̄ c) + κpdw + (1− κp)π

m + βp2dz (4.8)

In these symmetrically formulated two Phillips curve equations, we can describe
wage and price dynamics separately from each other. Both variables react to their
own measure of demand pressure: namely V l − V̄ l and V c − V̄ c, in the market for
labor and for goods, respectively. We denote by V l the rate of labour utilization on
the labor market and by V̄ l the NAIRU-level of this rate, and similarly by V c the
rate of capacity utilization of the capital stock and V̄ c the normal rate of capacity
utilization of firms. These demand pressures are both augmented by a weighted
average of cost-pressure terms. Cost pressure perceived by workers is a weighted
average of the currently evolving rate of price inflation dp and the expected price
inflation, πm. Similarly, cost pressure perceived by firms is given by a weighted
average of the currently evolving rate of wage inflation, dw and again the measure
of expected inflation. Further the Phillips curves are augmented by changes of labor
productivity dz that impacts positively on the wage inflation and negatively on
the price inflation (see Flaschel and Krolzig (2003) for more details of theoretical
arguments on this type of two Phillips curves.)
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The two Phillips curves present a theoretical hypothesis how the wage-price
spiral is interacting. The objective of our empirical analysis is to infer the causal
relations among the 6 variables involved in these two Phillips curves in order to
investigate in how far the causal relations implied by the observed data can support
the hypothetical formulation of wage price spiral as given in (4.7) and (4.8), and to
investigate the mechanism behind the mutual Granger causality between the wage
inflation and the price inflation.

The empirical data for the relevant variables are taken from Australian Bureau
of Statistics14. The data shown below are quarterly, seasonally adjusted, annualized
where necessary. The data used in this investigation are from 1978:3 to 2009:2, which
correspond to the longest commonly available time series for the set of variables used
in the investigation.

Variable Transformation Description

e 100− URATE URATE: Unemployment Rate(%)
e: Employment Rates

u GDP
GDP HPtrend

100 GDP: Real Gross Domestic Product
Chain volume measures.
DGP HPtrend: the trend component of
HP filter applied to GDP.
u: Capacity utilization rate, ratio

dw AWE−AWE(−1)
AWE(−1)

400 AWE: Average Weekly Earnings,

dw : wage inflation, annualized

dp CPI−CPI(−1)
CPI(−1)

400 CPI: Consumer price index, all groups,

Index 1990 = 100
dp : price inflation, annualized

z GDP
HOURS

HOURS: Total (Actual hours worked)
z: labor productivity

dz z−z(−1)
z(−1)

400 dz: change of labor productivity, annualized

πm : CIE Consumer inflation expectation (%), survey data,
Westpac-Melbourne Institute Consumer Survey.

Table 2: Raw data used for empirical investigation of the wage-price spiral

We construct a TSCM consisting of six time series variables (dp, dw, πm, e, u, dz)15.
Through a series of unit root tests dp, dw, πm, e, u, dz are confirmed to be stationary,

14See the web site for more details. http://http://www.abs.gov.au/
15We correct the data of dp with a dummy variable d GST , to take into account of the impact

of the introduction of the good and service tax (GST) on prices in the third quarter 2000.
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Figure 3: Data for the analysis of wage-price spiral

where the unit test for πm is run after controlling for a structural break in 1991:2.

We take p = 4 to derive the partial DAG for the TSCM. The choice of p = 4 is to
make sure that the lag length is chosen long enough to avoid bias in the specification.
If the lag length of the true TSCM is less than 4, the estimated partial DAG will not
include any arrows from Xt−4 to Xt. Figure 4 shows the output of the procedure.

In the partial DAG in Figure 4 there are no arrows from (dpt−4, dwt−4, π
m
t−4, et−4, ut−4, dzt−4)

into (dpt, dwt, π
m
t , et, ut, dzt). This implies that the TSCM has a lag length of 3. One

important feature of this partial DAG is that (dpt, dwt, π
m
t , et, ut, dzt) have different

lagged parents. Following Proposition 2.4 the inferred DAG does not have any ob-
servationally equivalent models, i.e. all arrow directions in the partial DAG in Fig.
4 are uniquely determined by the data.

The partial DAG says that dpt is influenced by πm
t and ut−3; and dwt is influenced

by πm
t−1, et and dzt−1. But dpt, dwt and their lags don’t influence other variables:

dzt, π
m
t , et and ut. In other words the latter four variables are determinants of the

price inflation and wage inflation. Further, the causal structure of the partial DAG
explains that the mutual bivariate Granger causality between dpt and dwt is the
effect caused by common cause variables: πm has a direct influence on both dp and
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Figure 4: Partial DAG of the Wage Price Spiral

dw; dz has a direct influence on dw and an indirect influence via u on dp; e has
similarly a direct influence on dw and an indirect influence via u on dp; and dz has
a direct influence on dw and an indirect influence on dp.

The linear causal equations derived from this TSCM are

dpt = 0.76
14.69

πm
t + 0.52

3.50
ut−3 − 53.03

−3.61
+ ǫpt (4.9)

dwt = 0
8.34

.72πm
t−1 + 0.48

2.59
et + 0.21

3.94
dzt−1 − 45.28

−2.63
+ ǫwt (4.10)

πm
t = 0.96

40.92
πm
t−1 + 0.23

−1.18
+ ǫπmt (4.11)

et = −0.08
−4.57

ut−3 − 0.36
−9.81

et−3 + 1.35
38.13

et−1 + 9.06
5.72

+ ǫet (4.12)

ut = −0.67
−6.88

et−2 + 0.72
7.00

et + 0.73
14.17

ut−1 + 0.03
3.83

dzt − 22.41
4.95

+ ǫut (4.13)

dzt = −0.40
−4.81

dzt−1 + 2.23
4.3

+ ǫzt. (4.14)

The first two equations (4.9) and (4.10) are the inferred structural Phillips curves
for the price inflation and the wage inflation respectively. Unlike most empirically
estimated Phillips curves, these two structural equations have the following features:
(1) these two Phillips curve equations possess a causal interpretation: the right hand
side variables have causal influence on the left-hand side variables; (2) the causal
relations are not imposed on the variables a priori, but derived from the observed
data using the theory of inferred causation: they are obtained through a data-driven
learning procedure merely under the assumptions that there exits causal relations
among the 6 time series variables. (3) Importantly, the two Phillips curve equations
confirm largely the theoretical formulation as given in (4.8) and (4.7), albeit some
variables are statistically not significant: the price inflation and the wage inflation
are driven by the common cost pressure variable πm

t at different lags, both direct
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cost pressure dwt and dpt have no significant influence on the price inflation and the
wage inflation respectively. A labour productivity increase dzt will impact positively
on the wage inflation with one lag, but has no impact on the price inflation. The
market specific demand pressure et for wage inflation and ut−3 for price inflation
have significant influence on dwt and dpt respectively.

An implication of the two Phillips curves is that the real wage dynamics can be
conducted as difference of the two Phillips curves (See Flaschel and Krolzig (2003)
for more detailed discussions on the stability of the real wage dynamics.).

dwt−dpt = 0.72πm
t−1−0.76πm

t +0.48et−0.52ut−3+0.21dzt−1+7.25+ǫwt−ǫpt (4.15)

For the first two terms in the right hand side of the equation above it holds
roughly 0.72πm

t−1 − 0.76πm
t ≈ −0.76(πm

t − 0.96πm
t−1) = −0.76ǫπt the inflation expec-

tation term will drop out of the real wage equation. We have a more concise real
wage equation:

dwt − dpt = 0.47et−1 − 0.52ut−3 + 0.21dzt−1 + 7.25 + ǫt (4.16)

The real wage equation above says that an increase in labor productivity in
the previous period dzt−1 causes an increase in the current real wage. Beside the
growth of labour productivity, a higher rate of labour utilization in the previous
period et−1 will also lead to an increase of the current real wage, but a higher
rate of capacity utilization before three periods ut−3 will damp the growth of the
current real wage. It is of interest to compare our derived formulation of the real
wage dynamics with a traditional formulation of the real wage dynamics as given
by equation (10) in Blanchard and Katz (1999). In their specification, the real wage
growth depends on the growth of labour productivity, the rate of labour utilization
and an error correction term of the difference between the lagged real wage and the
lagged labour productivity. This real wage equation has been estimated for many
OECD countries. For most European countries the error correction term appears
significantly with a correct sign in the equation. For US data the error correction
term is insignificant with a wrong sign. With our data set for Australia this error
correction term is also insignificant. Without the error correction term, the real wage
equation given in Blanchard and Katz (1999) is very similar to our formulation of
the real wage equation. We have an additional rate of capacity utilization ut−3

as another influence variable on the real wage. In this sense, the our structural
equations for the wage-price spiral derived by the data-driven causal inference is
consistent with the findings in the literature.

In this analysis we come to the conclusion that both the wage inflation and the
price inflation are driven by the inflation expectations. The temporal dependence
between wage inflation and the price inflation, i.e. the mutual Granger causality is
mainly the effect of the common causes: the inflation expectation, the capacity uti-
lization, the labour utilization and the labour productivity growth. The estimated
TSCM is very uninformative in providing an explanation how the inflation expec-
tation is formed. It gives merely a AR1 process as a statistical description of the
inflation expectation process. This is however not surprising, our model framework
is designed to explain the wage price spiral but not the formation of inflation ex-
pectation, which will definitely need a more general theoretical framework including
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elements such as monetary policy and consumer behaviour. We will leave this for
further research. Our empirical results show that although both the wage inflation
and the price inflation are influenced by the inflation expectation, the real wage
dynamic is not influenced by the inflation expectation. This a moderate support of
the hypothesis of the classical dichotomy between real and nominal variables.

To assess the robustness of the inferred causal orders among the 6 variables,
a bootstrap exercise was implemented. We use the estimated linear causal model
(4.9) to (4.14) to generate bootstrap samples by bootstrapping the residuals. Based
on the bootstrap residuals and the estimated TSCM we can generate bootstrap
samples. Then we run the learning algorithm to obtain bootstrap partial DAGs.
The frequencies of the inferred arrows in the bootstrap DAGs are reported in Table
3.

Arrow Frequency Arrow Frequency

ut−3 → dpt 869 dpt−3 → dpt 5
πm
t → dpt 1000 ut−2 → dpt 5

πm
t−1 → dwt 996 πm

t−3 → dwt 5
dzt−1 → dwt 965 et−4 → dwt 21
et → dwt 623 ut → dwt 5
πm
t−1 → πm

t 100 dwt−2 → dwt 5
et−3 → et 1000 et−2 → dwt 5
ut−3 → et 997 ut−2 → dwt 11
et−1 → et 1000 dzt−2 → dwt 5
et−2 → ut 1000 et−2 → dwt 8
ut−1 → ut 1000 ut−2 → dwt 13
et → ut 1000 ut → dwt 5
dzt → ut 935 dwt−1 → πm

t 5
dzt−1 → dzt 995 et−1 → πm

t 5
dwt → πm

t 6
DAG 512 et → πm

t 7
ut−2 → et 9
dpt−1 → ut 13
ut−1 → dzt 5
πm
t → dzt 8

Notes: This table reports the frequency of identified arrows in the partial DAGs of the

TSCMs estimated using 1000 bootstrap samples. We report the frequencies of all single

arrows which are large than 4. Here we make no difference whether the arrows presenting

causal direction or not. The frequencies of the true arrows are decisively larger than the

frequencies of the wrongly estimated arrows.

Table 3: Frequency of Identified Causal Relations

The bootstrap results show clearly that all inferred causal relations (arrows) are
very stable. The true arrows are all inferred with very high frequencies, while the
wrongly identified arrows are with very low frequencies. Among the 14 arrows of the
TSCM, 6 arrows are identified with a frequency of 100% 7 arrows are identified with
frequencies close to one. Only one arrow et → dwt has a frequency of 62.8%. This
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is responsible for the relatively low frequency of 51.2% in correctly identifying the
complete partial DAG. All wrongly identified arrows with frequencies under 0.5%
are not reported.

5 Concluding Remarks

In this paper we develop a method to uncover the causal relations in stationary
multivariate time series. Grounded on the theory of inferred causation we embed-
ded multivariate time series into a directed acyclic graphical model. Under the
assumptions of the temporal causal constraint, the time-invariant causal structures
constraint and the time-limited causal influence constraint, we define a time series
causal model - TSCM. The DAG of a TSCM can be represented in a partial DAG.
Combining a modified PC algorithm and a greedy search algorithm we are able to
uncover the data-generating partial DAG effectively.

Our method extends the literature on causal analysis of VAR residuals to causal
analysis of time series themselves and give the dynamics of multivariate time series
a possible causal explanation. This method provides a new instrument to investi-
gate the causal dependence among time series variables. Complex directionality of
dependence among economic variables, such as uni-directional dependence, mutual
dependence, temporal dependence and contemporaneous dependence can be repre-
sented in TSCMs. Further, a TSCM provides a causal explanation for the Granger
causality among the time series in the TSCM.

We apply this method to analyze the wage-price spiral of the Australian econ-
omy for the period from 1978:3 to 2009:3. The mutual bivariate Granger causality
between the price inflation and the wage inflation is the effect driven by common
cause processes: the inflation expectation, the capacity utilization, the labour uti-
lization and the productivity growth. Output of the learning algorithm includes the
structural equations for the price inflation and the wage inflation, which gives not
only the dependence among the variables but also directions of the dependence. It
turns out that the two structural equations derived by the data-driven method of
inferred causation confirm largely the structure equations postulated by theoretical
consideration. The real wage dynamics implied by the two Philips curve structural
equations gives a similar explanation to the real wage growth as it was given in Blan-
chard and Katz (1999). A bootstrap assessment of the robustness of the inferred
causal order shows that our result is to a large extent reliable.

6 Appendix

Lemma 6.1 Let A be the lower triangular adjacent matrix of a DAG. A(i, j) = 1
means there is an arrow from vertex j to vertex i and A(i, j) = 0 means there is no
arrow between vertex j and vertex i. Let A−1(i, j) denote the (i, j) element of A−1.
A−1(i, j) 6= 0 if and only if there exists a directed path from vertex j to vertex i.

Proof: Since A is a triangular matrix it can be solved recursively. For a 4×4 matrix
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we obtain








1 0 0 0
A21 1 0 0
A31 A32 1 0
A41 A42 A43 1









−1

=









1 0 0 0
−A21 1 0 0
−A31 + A32A21 −A32 1 0
−A41 + A42A21 + A43A31 − A43A32A21 −A42 + A43A32 −A43 1









.

It is easy to see that the (i, j) element in A−1 consists of summands each of whom
represents a directed path from j to i. For example A−1(3, 1) = −A31+A32A21. A3,1

represents an arrow 1 → 3 and A32A21 represents a directed path consisting of the
arrows 1 → 2 → 3. These two directed paths are the only paths from vertex 1 to
vertex 3. For A−1(4, 1) = −A41 +A42A21 +A43A31 −A43A32A21. The summands in
the sum represent the directed paths from vertex 1 to vertex 4: 1 → 4, 1 → 2 → 4,
1 → 3 → 4 and 1 → 2 → 3 → 4 respectively and they include all possible paths
from vertex 1 to vertex 4. It is easy to verify that for an N × N matrix the same
rule holds. Assuming that all element in A are unconstrained varying parameters,
the sum will be zero, if and only if each summand in the sum is zero. This implies
that if there is a path from j to i then the (i, j) element of A−1 will be nonzero. ✷

Proof of Proposition 2.8
Given the correspondence between VAR (2.5) and TSCM (2.4), we have the

relation

Πs(i, k) =

N
∑

j=1

A
(−1)
0 (i, j)As(j, k) =

j
∑

j=1

A
(−1)
0 (i, j)As(j, k). (6.17)

where Πs(i, k) is the (i, k) element of the VAR coefficient matrix Πs, A
(−1)
0 (i, j) and

As(j, k) are the (i, j) and the (j, k) element of the TSCM coefficient matrices A−1
0

and As, respectively. The second equality in equation (6.17) is because that the
inverse of A0 is a lower triangular matrix. In the VAR framework Xk,t is a Granger
cause of Xi,t if and only if Πs(i, k) 6= 0 for some s > 0. If there is a path from Xk,t−s

to Xi,t via Xj,t we have A
(−1)
0 (i, j)As(j, k) 6= 0. If there is a direct path from Xk,t−s

to Xi,t we have A
(−1)
0 (i, i)As(i, k) 6= 0. Both cases imply Πs(i, k) 6= 0, i.e. Xk,t is a

Granger cause of Xi,t.

If Xk,t is a Granger cause of Xi,t, we have Πs(i, k) =
∑n

j=1A
(−1)
0 (i, j)As(j, k) 6= 0,

for some s > 0. This implies that there is either one pair A
(−1)
0 (i, j) and As(j, k) are

nonzero, or As(i, k) is nonzero. This corresponds to that there is either a directed
path from Xk,t−s to Xi,t via Xj,t or a direct arrow from Xk,t−s to Xi,t. ✷
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