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FINITE SAMPLE PERFORMANCE OF
THE ROBUST WALD TEST IN
SIMULTANEOUS EQUATION SYSTEMS

Giorgio Calzolari and Lorenzo Panattoni

The estimator of the coefficient covariance matrix proposed in White
(1982) can be used Lo robusiify the classical Wald 1est. Sampling experi-
ments recently performed on linear regressions and simultaneous
equation models, however, suggest that such an estimator fends 1o
underestimare the covariance matrix if the model is correctly specified.
In the classical framework of simultaneous equation systems, this
chapter aims at investigating the consequences of the use of robust
covartance maltrix estimators in the Wald test when there is no mis-
specification.



[. INTRODUCTION

The robust estimator of the coefficient covariance matrix discussed in
White (1980} (or the linear regression model wilh heteroscedastic
errors, then exiended in White {1982) and Gourieroux et al. (1984) to
cover more general Lypes of models angd misspecification, has become
more and more popular in the last few years. [t can easily be intro-
duced into widely adopted computer programs, and its use in practical
applications is olten recommended. As a natural consequence, those
1ests that can use the robust covamance matrix estimator (quasi-f,
Wald, and Lagrange multiplier 1ests) could be more appealing than
lests that are usually nonrobusi against misspecification (fikelihood
ratio and the traditional versions of the Wald and Lagrange mudtiplier
tests).

However, sevcral recent studies have indicaied that the robust
estimatos rends 1o underestimate \he coefficiem covariance matrix i
the model is correcily specified. Chesher and Jewitt (19384, 1987)
identify conditions under which this covariance estimalor is down-
wardly biased in the linear regression model {the heteroscedasticity
consistent covanance esiimator). They show that the bias critically
depends on the regression design and can be severe. MacKinnon and
White (1985) propose some finite sample corrections for this cova-
niance estimator in linear regressions, whereas the sampting expen-
mems in Prucha (1984) and in Calzolari and Panattoni (1984) clearly
indicate a similar need for systems of simultaneous equations,

This chapter aims at investigating the small sample performance of
the Wald test, based on the robust covariance estimator, when there
i$ No misspecibealion.

We first briefly summarize explicit formulas for the likelihood and
its first and second derivatives in a system of simultaneous equations
wilth normal errors, then ilustrate the covariance matrix estimator
and its use in the Wald test bnefiy jn Sections IV and V.

We then present detailed results of sampling experiments on a
system of simultaneous equations taken from the literature (Klein-[
model). Each group of experiments is performed on a sample period
of different length and with different values of the exogenous variables
(fixed across replications, but generated at the beginning with platy-,
mese-, ot leprokuriic distnbutions). For each Monte Carlo replication
we compute the Wald tesi staustic for the hypothesis that o/f structural
coefficients are equal to their true values. This involves reestimation
of the structural model each time with full information naxinmum

likelihood (F/M L) and computation of the corresponding tobust esti-
mate of the coefficients covariance maltrix.

We then draw several considerations [rom the experimenial results.
In Section VI, a scheme for explaining some behaviors of the robust
Wald statistic is provided for the particular case of the linear segress-
ion model. We show that a poor performance ol the test has (0 be
expecied when the explanatory (exogenous) variables exhibit, in the
sample period, large moments of the fourth order. Experimental
results on several other systems of simultanecus equations (Seclion
VJII) confirm the important influence of the sample kuriosis of the
exogenous variables oa the small performance of the robust Wald test.

fil. THE MODEL

We Tollow the notation of Amemiya (1977) for general nonlinear
systems of simultaneous equations. with additive random error lerms
that arc independently and identically distributed like multivanate
normal. Refer 1o Amemiya’s paper for details on the underlying
assumptions. Let the simultaneous equalion model be represented as

Jlynx,a) =u, {=412....mi=1L2. . T {1

where y, is the m x | vector of endogenous variables at time ¢, x, is the
vector of exogenous variables at Ume ¢ and g, is Lhe vector of
unknown structural coefficients in the /th equation. Thesa x | vector
of random error terms at time /,u, = (s, ty,. -\ u, ), is assumed
to be independently and identically disiributed as N{0,Z) with £
completely unknown, apart from being symmetric and positive defi-
nite. The complete 7 x | vector of unknown structural coefficients of
the system will be indicated as a = (&, a3,....4.)".

. THE LIKELIHOOD

The log-likehhood of the /th observation can be expressed as

L. = —;Iogli1+log|%;—5—f,'z_'ﬁ (2)
[ oy

- 4

where [, = (fi,Jis - Suw,) = 4, and the Jacobian determinan
18f,/0y,| is taken in absolute vaiue. The log-likelihood of the whole
sample 13

Lr=3Y L. (3)



For the ith equation, we define g, = 0f,/0a,, which is a column
vector with the same length as «,; for any i and J» we also define the
fnalrpf 8y = 6-‘/,_,./6(_1,0“0,’. If i s ; then &, 8 Zero; it is zero also for
h=J il the model is linear in the coefficients (even if nonlinear in the
vainables). We note now that g,, and &.,. may be regarded as functions
ol w,, x,, and a under the standard assumption of a one-to-one corre-
Spondt_ence between w, and y,. Differentiating with respect to the
coefficients of the ith equalion, we get

oL,  ag,,

fa, - du, g./a (4)

where ¢’ represents the ith column of £-1. Differentiating with respect
to the elements of 7', we get

oL
a(z—l) =2 - f_lr.[/ (5)

'whefe use has been made of dg,,jdu,, = (Cg:, [0y )(Of,1ey))7". No
restriction has yet been placed on I: considering that £~' is symme-
tric, differentiating with respect to its i,jth term we get

L,

g~ 17

nm vl (X 20500 # ). (6)

Further differentiation of (4) gives

2 a Yo Do
0 L/ _ C&ii. g, g,

;T '\—_5——0//1 .,O—I— 4"1 . :

00, &(lj i, , (/'\“_f,/ (‘_‘u'_" O '/’ 8.8, (7)
oL, )

o 2a, = —g./u (8)
&L,

0o 8a, ~&uu (9)
>L,

(1’0,:,((3'([[ - —gi.l«/l.l (|O)
&L, - . .

o e =0 ilrs#iandr # (I
ML 1 .

Ao g = T 00, (X 20000 £ ) (12)

L,
26" 80"

= —40,,0,,=,0.0,; fr#s(x2ii#)) (13)

For models that are linear in the coefficients (even if nonlinear in the
variables), g, , and its derivatives are zero, so that the first and third
term on the right-hand side of Eq. (7) vanish. Moreover, —g;, is
nothing but the vector of values, at time ¢, on the explanatory vari-
ables of the ith equation. Therefore, the numerical evaluation of al}
the above equations requires only one order of differentiation: the
computation of derivatives ol the explanatory endogenous variables
in the ith and jth equations with respect to the error terms of the same
equations. Furthermore, since dg;,/du,, = (0g,,/dy;)(8f,/dy,) ", this
differentiation could even be performed analytically without any par-
ticular difficuity. The use of Eqgs. (7-13) for the computation of the
Hessian matrix is, therefore, a sufficiently manageable matter even for
medium-large models.

The formulas given above can be used to build all the matrices used
in this study.

V. ESTIMATORS OF THE COVARIANCE MATRIX

Using the formulas of the previous section, we can build several
estimators of the asymptotic covariance matrix. We shall first deal
with the vector of all unknown structural parameters. We may stack
the estimated coefficients ¢ and the elements of the estimated £~ into
a column vector of estimated parameters, p. Obviously, since 7' is
symmetric, we shall stack into this vector only the columas of a
triangular part of £~' (operator vech)

a
p= NE (14)
vech 2 ™!

[

In this way, with #» being the number of unknown structural coef-
ficients and m the number of stochastic equations, the length of the
whole vector ol parameters p is # + »m(m + 1){2; the whole informa-
tion matrix (and the asymptotic covariance matrix of 5) has dimen-
sions [ + m(m + 1)/2] x [n + m(m + 1)/2].

Equations (7-13), with the minus sign and summed ovey the sample
period, provide the elements or the blocks of the [n + ni1(m + 1)/2] x



[7 + m(m + 1)/2] Hessian matrix of the log-liketihood

- AI\ Al_? _ r alL’ _ aZLT
Axr Az, /=1 dpdp’ dpdp’
I’ Ly *L,
dada’ dad(vech ™'Y
= . (]
a?Lr @”‘L,— ( )

O(vechZ™")0a" J(vechZ )i (vechZ ')y

Equations (4-6) provide the first derivatives of the log-likelihoods
with respect to all the unknown structural form parameters. We may
get an estimate of the whole information matrix by computing the
outer product of the first derivatives

3 8. B, _ i%%
By By =1 dp dp

i

L, oL, L, AL,
r da da’ aﬁ(vechZ")'
=2 (16)
= oL, 4L, aL, oL,

d(vech=™') dd" B(vechT ') d(vech %y

Whep all derivatives in (15) and (16} are calculated in p, the resulting
matrices will be indicated as 4 and &. If g is the full information
maximum likelthood (FIML) estimate of the parameters vector, it is
well known (see, for example, Rothenberg, 1973, pp. 10-11) that,
under correct specification of the model and of the error generating
process, A/T and B/T converge asymptotically to the information
matrix, and their inverse converge to the asymptotic covariance
matrix of the structural parameters. Therefore, both of them can be
used for constructing tests that will have the right size with large
samples.

When the distribution of the rundom error process does not coin-
cide with the distribution underlying the likelihood, FIML estimation
may nevertheless provide estimates of the parameters that are still
consistent, but the two traditional expressions for the information
matrix.are no longer equivalent, and their inverses generally provide
inconsistent estimates of the parameters covariance matrix. Under
assumptions with a varying degree of generality, White (1982, 1983,

for independently and identically distributed observations}, Gourieroux
et al. (1984, for independently, nonidentically distributed observations),
and Domowitz and White (1982, for dependent and heterogeneously
distributed observations) derive the estimator of the covariance

matrix
- Cl,l Cl,l <z
C = = A7 'B4A!

& G

| T y Lok W s T (17)
. Gpap’ |, = dp op'|, apip’|,

which is generaily consistent regardless of whether or not the actual
distribution of the error process comncides with that underlying the
likelihood. This matrix extends to more general ciasses of models the
heteroskedasticity consistent estimator of the covariance matrix
proposed in White (1980) for the linear regression model (we shall
come again (o this point in Section VII). Tests that make use of this
robust estimator of the covariance matrix will have the right size for
large samples.

I[ the error process coincides with that underlying the likelihood, as
supposed in this chapter, 7C will also asymptotically converge to the
inverse of the information matrix as well as 74~' and TB™".

V. DESIGN OF THE MONTE CARLO EXPERIMENTS

[n all the experiments described in this chapter we examine the smali
sample performance of the robust Wald (RW) test when the hypothesis
being tested is that structural coefficients assume given values. All
sampling experiments are performed starting from a “true” vector of
coefficients and calculating the test statistic that a/f coefficients are
equal to their true values.

Experiments have been performed on several small to medium sized
models. The models, taken from the literature, maintain the structure
of real world models. For each model, given the set of true parameters
{coefficients and covariance matrix of the structural disturbances, held
fixed over ail the replications), we fix a sample period length and
generate values of the exogenous variables over the sample period:
platy-, meso-, and leptokurtic distributions are used in different
experiments. Whichever generation method has been used, the sample
of exogenous variables is then kept fixed in all the Monte Carlo



replications of each experiment. Also experimented with are the
historical real-world values of the exogenous variables taken from the
literature and repeated consecutrvely for the long sample cases.

Each Monte Carlo replication proceeds as [ollows. Independently
of the exogenous variables we generate random values of the struc-
tural disturbances over the sample period. Obviously, the distribution
for this random error process must be multivariate norma!l with zero
mean and the given covariance matrx. Finally we compute the values
of the endogenous variables with stochastic simulation over the
sample period.

We now compute FIML estimates' of the structural parameters 4
and £ and the robust covariance matrix estimate ¢ as in (17). In
general, if we wish to test the hypothesis Hy: s(p) = 0, where the
restrictions are formulated as a vector function of the structural
parameters, and Vs(p) is the Jacobian of the vector of restrictions, the

appropriate form of the robust Wald test statistic, given in theorem
3.4 in White (1982), is

RW = s(pY (Vs(p)C(p)Vs(pY] 's(p). (18)

Since the particular restriction being tested here is that the vector of
all structural coefficients is equal to a, we have s(p) = (¢ — a). The
Jacobian Vs( ) assumes. therefore, the form of an #n x »# unit matrix

followed by a matrix of zeroes, and the robust Wald test statistic
simply becomes

RW = (G- ay(C, ) 'a—a) (19

where C, , is the first n x n block of C, computed at the point that
maximizes the likelihood.

Using the Hessian estimator of the covariance matrix with (19), we
get the Hessian Wald (HW) test statistic

HW = (g —a) (A" d - a) (20}

where 4" is the first block of the inverse of matrix 4 [Eq. (15); see also
Engle, 1984, Eq. (11)]".

For the likelihood ratio (L R) test, since the null hypothesis restricts
the value of all the structural form coefficients, a, constrained FIMIL.
estimation is confined to the computation of the ¢ parameters. Com-
putation of the parameters that maximize the constrained likelihood 1s
performed by simply plugging the “rrue’ coefficients (under /) into
the model, then computing the corresponding structural residuals;
finally the ¢ parameters are computed from the usual cross-products

of these residuals. The values of the log-likelihood functiqn. comp_utgd
at the wnconstrained and constrained maximum poInts, give the likeli-
hood ratio test statistic

LR = 2[Ly(a) — Ly(a)]. (21)

For each model, for each sample period length, and for each dif-
ferent generation process of the exogenous variables we p_erform a few
hundred replications of the Monte Carlo process obtaining the _srna]]
sample distribution of the HW, the RW, and o_f the LR test statistics.

The three tests are asymptotically equivalent if the mo_del 1s correctly
specified. Otherwise, the likelihood ratio and the Hessian Wald tests
do not have the correct asymptotic size and generally fail to converge
to a y* distribution (White, 1982). 1n other words, they are generally
nonrobust against misspecification of the random error process. Ip
sampling experiments, in a correct specification frex_mework as in this
chapter the behavior of the LR and the HW statistics can be usAed for
comparison with the RW testin small samp]gs. Thelr_better fit W}Eh the
asymptotic ¢ distribution, which will be evidenced m.all our simula-
tion results, clearly shows that asymptotic robustness in the Wald test
has a cost in terms of finite sample performance.

V1. A CASE STUDY: KLEIN-I MODEL

In this section we describe in some detail the results of the experimenfs
performed on a system of simultaneous equations whose st.ructure is
that of Klein’s model-I (Klein, 1950). The quatitative behavior of the
results, however, is not changed very much by changing the model, as
will be clear from the summary tables of Section VIII. The structural
form of the model is the following:

C.=a+aP+af + w (W1 + W), +u,
[ = as+aF,+abf, .+ ac K, |+ g
W, = ag+ aolY + T — W2),
Fa Y+ T—=W2), | +ant+m, (22)

Y, = C+L+G—T,

il

Y, - Wi, — W2,

K =K_,+1



Number of equations = 6.

Number of stochastic equations m = 1.

Number of structural unknown coefficients » = 12.

Number of structural unknown parametersn + m(m + 1)j2 = 8.

As “‘rrue” values of the unknown parameters, we use the (wo stage
least-squares estimales based on the 2)-year sample period, 1921-1941,
in Rothenberg (1973, Chap. 5).

The model 15 dynamic; however, this should not raise particular
problems, since we are operating in a correct specification framework
{see White, 1983). In any case, all experiments are repeated twice. [n
one case, the model is treated as static in which variables thal appear
as lagged endogenous are replaced by current exogenous variables. In
the other case, the model i1s ireated as dynamic; therefore in each
replication, the model is dynamically solved over the sample period,
and the simulated values of the lagged endogenous vanables are used
when reestimating the structural parameters. Agam, it will be clear
lhat the quality of the results does not change. Convergence to the
appropriate asymptolic distribution will be evidenced in almost all
experiments, although, in some cases, this wall require very long
samples.

[n the first group ol experiments, we use the 21 historical observa-
tions of the exogenous varables {and of the Jagged endogenous for the
static case). Larger samples lengths {42, 63, etc.) are obtained replicai-
ing the same 21 observations.

The figures in Tables | and 2 display the experimental results in
terms of cumulated distribution funciions. The continuous curve
cotresponds to the asymptotic distribution of the est stansucs, thatis
%i. Each figure is related to 500 Monte Carlo replications. and ihe
curves are smoothed by joining 17 poiats of each distribution. Some
experimenis have also been performed with a larger number of
replications—up to 10000. Sipce none of them evidenced any substan-
tial difference (rom the overall behavior of the small sample distribu-
tions. the slight gain in accuracy did aot seem to compensate the much
higher cost of the experiment.’

The LR test does not perform 100 badly in the short sample, at least
as far as the entire distribution s concerned. A more careful inspection
of Lthe critical region (the rightmost tail of each curve) shows that both
1ests give a probability ol 1ype-1 errors slightly* larger than the nomi-
na) (asymptotic) size of the tesis. For example, for 7 = 42, and
nominal sizes 10 and 5%. the estimated rejection probabilities are

Table 1. Klein's Model-1. Stauc—Historicat Exogenous Variables

T=2
T =210
T = 1050 &

“Small sample distribulion of LR, RW and HW st stalintivs g7,

upproximately 19 and 9% for ihe likelihood ratio tesi. The per-
formances of the HW test are less brilliant: 25 and 17% ure the
expected probabilitics of type-[ ercors corresponding 10 nominal sizes
10 and 5%. The discrepancy is larger for the hislorical period, but
T = 211s presunably 100 short lor a model with 12 coefficients. The
pecformance of the RW test is even less brilliant. Of course. it
wnproves as the sample 1senlarged. A sample period with 420 observa-
tions makes all small sample distcibutions hardly distinguishable from
lhe asymplolic ones.

An important observation, as will be clear in the next section, is
related 1o the kuriosis of the exogenous vaniables in the sample period



Tuble 2 Klein's Model-I- Dynamic—Histaricsl Exogenous Variables

T =1l T =4
/...L
- L
l:’) L
T=at0 i £ T=a20
10 = 10
fr _-_..-—
I(':z,/. f » = LR
T = 050 - (,{ B = HW
| / + = AW
-\:: il ol In —

YSmull vamply distributign of LR, RW and HW 1oyl vedushex ;f,n

(more precisely, the ratio between the fourth moment and the squared
second moment about zero; 1t would be the kurtosis if the vanables
were previously normalized); its value vanes betwecn | ({01 the con-
stant) and 1 8 (for the variable ()

[115 interesiing to obscrve that the corresponding static and dynamic
cases do not exhibil substantial differences ol behavior.

A characterisuie common to all the cases is the relative position of
the distributions. The right-most sampling distribunon s that of the
RW test statistic: the left-most 1s that of the LR, and the distribution
of HW test stauistic 1s between the other two. All Lhree are right shifted
with respect 10 the asympiotc y’.

The three small sample distnbutions are right shifted from the y°,
thus implying for each t2st a probability of type-I errors greater than
the nominal size of the test Perhaps itas not clear enough from the
resuits what happens in the very right-most part of the critical region,
and, therefore, an analysis of (he tests” behavior at 1% would require
sampling experimen(s with more replicalions and the use of some
suilable computational method to reduce the sampling varrability,
such as Davidson and MacKinnon's {1981) control variates. At 10 or
5%. however, (here seem Lo be no doubls thal the expected rejection
probability 1s greatest for the RW (est, less for HW. and least for 1he
LR test,

The fact that the expecied rejection probability 1s [arger than the
nominal wze lor the Wald test 13 consistent with results previgusly
obtaimed by Calzolan and Panattom (1984, 1988) on svsiens ol
simultaneous equations and wath the results obtained by MacKinnon
and While (1985) on a linear regression s thouw! correcing faclors on
the robust covariance matrix esumator.

Another imeresting consideration that can be drawn from Tables |
and 2 15 1hat the relative position of the samphing distributions of the
hkefihood ratio and the Wald stansiics is consistent with the waditional
inequality LR € W derived by Savin (1976). Berndt and Savin (1977),
and Evans and Savin (1982) lor the linear regression and maluvariate
linear regression models. This suggests (hat the nequality holds on
average even for simultancous cquations systems (where it does nol
hold algebratcally in each replicanon given the nonzero correlation
between estimated coefficients and o parameters. as observed in
Breusch. 1979).

We now perform a second group of expenments withoul using
the historical observalions of the exogenous vanables but with
randomly penecrated values, However, as already indicated, the
scheme of the expenment is still with fixed exogenous variables,
since they are génerated once at the beginning 4nd then kept fixed
in 4l replications We first adopt a multivariale normal distridbu-
ton with medans and ¢ovariance matrix tuken from lhe historical
sample

=T M) e+ (23)
where (he scalar random numbers ¢, are 1d M(0, |). Normality wnplies

d vample kariovic Tor each generated exogenous approximilely = 3,
A sample of exogenous variables with length 7 15 gencrated at the



Tahle 3. Klein's Model-I: Static -Norma) Exogenous Variables

T = 42

T = 1050

“Small sumple distnbution of LR, &W and HW test stalistics A:-‘u:.

Tuble 4. Klein's Model-): Dynamic—Normal Exogenous Variables

T =42
e |
#i3 | LR
T = 1050 @ - Hw
+ aw |
. — . o — oy

“Small sample distnbution of LR, RW and HW test statistics. ¢ -

beginning and then kept hxed over the 300 replications of each
experiment.

Table 3 displays the results related to sample period lengihs
T = 42, 210. und 1050 for the stayc version of the model. Table 4
displays corresponding results lTor the dynamic model There are no
remarkable differences between results [rom the two models.

A new group ol experiments is performed by generaling ran-
dom values of the exogenous variables with plaiykurtic distribuion
(kurtosis < 3). This is obtained with a simple medification of the

Table 5. Klein's Model-I: Stanc—Plaiykurtic Exogenous Variables

'| -'(‘.-T"d‘r'"'\ 13
r" "/: . . . J.’;ffv‘—
T =42 / - . _“

&y { « - Ln
T = 1050 6 - HW
r W

“Smutl sample distribution of LR, @W and HW 1est sistisues. x,

Table 6. Klein's Model-1: Dynamic—Platykurtic Exogenous Variables

) [ P aididn
. fugt h i /

T = a2 7 ik T =110 Ve

A . ,?.'

/s
[ : — .

“Small @mple distribution of LR, RW and HW 101 latisties. 7).

geaeralor {23)
T
% = T3 xlel'sign(e,) + % (24}
=1

still with e/s generated iid N(0, 1) and with a value of the exponent ¢
less than 1 (0.2 in our experiments; this gave values of the kuriosis Jess
thaa 1.5 lor all variables). The results displayed in Tables S and 6 show
a vecy slight improvement in the behavior of the RW (est statisc.
whose distribution appraximates faster the asympiotic one,



Tahle 7. Kilein's Model-I: Static—Leptokurtic Exogenous Varables

el : r

i . -
. FIRps L5t}
T =42 ' / T - 210 /

T = 1050

S sumple distribution of LR, RW and HW 1est statistics. g7y,

Tauble 8. Klem's Model-I: Dynamic—Leptokurlic Exogenous Variables

—
1

42

T = 1050
/

%

. . 4
“SimaM sumple distribution of LR, RW and HW fear stiisves, 77,4,

The last group of experiments, displayed in Tables 7 and &, has bf{en
performed generating random values of the exogenous variables with
a distribution strongly leptokurtic. The generator adopted 1s

¥
Y, =T ) xe + % (25)

=1
with an odd value of ¢ > |. We have used a rather large valueof ¢ = 7
{or better exemplifying the behavior of the test statistics. This has

produced samples of exogenous variable with kuwrtosis up to 16. This
seems 1o have no particular effect on thedistributions of LR and AW
test statistics, but has a dramatic impacton the RW statistic. For the
static model with a rather long sample (2 = 210. 10 times longer than
the historical sample), for a nominal siz of 5%. the estimaled rejec-
tion probability is over 90%. Still with avery long sample (7 = 1050,
50 times longer than the historical sanple) at $%. the estimated
rejection probability is almost 50%. Tle discrepancy in this case is
considerably larger for the static moel (Table 7). where all the
predetermined variables, including laggd endogenous. are strongly
leptokurtic, than for the dynamic mode (Table 8).

VII.  THE SAMPLE KURTOSIS OF XOGENOUS VARIABLES

We start from consideration of a linea regression model with one
explanatory variable

¥o=ax, + 4w, ndN(0.0%). (26)

With the notations of Sections 111 andIV. the vector of unknown
parameters is

p = [a,o07 (27N
while g;, = —x,. FIML estimators are

T -7 r [
i = ( Y xf) Yoy ¢ = T( > Lif) , (28}
=1 sl '

As is well known, the Hessian of the loglikelihood computed at the

point which maximizes the likelihood is diagonal (ffl_! = {0 and
A,y = 0). From this it follows that

T s
G = AVB, A = (Z ) S oxhid (29)
t r=1

We have now

£ = o [l - Zr:; \_3] (30)
ral

Therefore. compulting the expected vatu of (29), we gel

) s ’ M
E(C. ) = o o R e
) =9 (;ZI ‘!) [ O J']

3D

I

3
{'_"‘\
i

-

}
PoanEnnN
T

I:"‘:-
s S



where k_ is the average fourth power of the explanatory vanable
divided by the square of its mean square. 1f the exlanatory vanable has
zero mean, k. is the sample kurtosis of the explanatory varnable. T
being the length of the sample period, &£, may assume values between
| and T. Under the assumptions given in (26), the vanance of (@ — a)
is o2 (£ x2)~", and we easily see [rom Eq. (31) that C,, is in any case
biased downward.

The amount of this bias in a practical application may be small
enough to be negligible if k, is small. For example, the smallest would
be for a constant series where &, = 1 yields the least bias, with a bias
factor | ~ 1/7, similar to that obtained by the traditional OLS
variance estimator without degrees of freedom correction.

A platykurtic behavior of the explanatory variable k, < 3 also will
cause a downward bias, usually negligible, and the same can be said
for a mesokurtic behavior (k. = 3, as for x,’s generated by a normal
process). Of course, whether bias is negligible or not depends on how
large the sample is, For example, 7 = 10 may already be considered
sufficiently large if there is only one coefficient to be estimated as in this
example. In that case the variance would be biased downward by
30%, which may not be considered a small amount.

Obviously, the most dramatic effects are obtained when the
explanatory variable is strongly leprokurtic (k, > 3) as is clear {from
Eq. (31). Platykurtic explanatory vaniables are certainly more likely to
be encountered in practical applications (e.g., constants, or variables
that exhibit a constant growth over time), but large values ol the
kurtosis may also be encountered in some cases (e.g., seasonal dumniy
variables)’.

Most of the argument above can be extended to the case of general
linear regression models with more than one explanatory variable. [n
this case. if there 1s no misspecfication, it is no more true that the
robust covariance matrix estimator is always more biased than the
traditional estimator; we may have cases in which it is less biased.
Bias, however, is always downward and it is larger when the fourth-
order sample moments, or cumulants, of the explanatory variables are
large. This will be clear if, for the linear regression with K explanatory
variables

yo=Xa+u, X =[%.%.. .. ,%, . ... xr); u~NO) (32)

we compute the FIML estimator (= OLS) of the coefficients, ¢ =
(X’ X)™' Xy, then their robust covariance matrix estimator (recalling

that the Hessian is still block diagonal),
;
Cop= A"B A" = (X' X)" Y X (X X)) (33)
(=1

which is equal to the heteroskedasticity consistent estimalor given in
White (1980). Recalling that

i=[I— XX X)'X'u (34)
and computing the expected vaiue of (33) we get

.
E(CA'...) =X X)) —a (X' X) Z X (X X)) e x)](X X)) (35)
t=1
It 1s clear that the estimator is biased downward, since the covariance
matrix of 4 — « is equal to the first term on the right-hand side of Eq.
(35); however, the second term is not necessarily greater than or equal
to ¢* (XX )™ ' K/T in matrix sense [we can only prove that it is always
>0’ (X' X)™"/T]. Thus, the bias is not necessarily greater than the one
given by the Hessian covariance matrix estimator, that is, the tradi-

tional OLS formula, without degrees of freedom correction.

Equation (35) also makes clear the role of the fourth powers of the
x;s: the higher they are, the Jarger the second term on the nght-hand
side of (35), and the smaller the expectation of the robust covariance
matrix estimator.

The robust covariance matrix estimator in (33) must be inverted to
compute the RW test statistic on a vector of coefficients [see Eq. (19)].
Cases in which the estimator shows strong downward bias are likely
to produce absolute values (oo large of the statistic. Therefore, for the
RW test statistic we should expect, in these cases, a right shift of the
small sample distribution with respect to its asymptotic distribution
(y%). The probability of type-I error will be larger than the nominal
size of the test.

For a system of simultaneous equations, we are unable to give a
simple interpretation of the phenomenon analytically. The sampling
experiments described in the previous and following sections suggest
that sornething similar to the linear regression model is likely 10 occur
also 1n that case. Exogenous variables with a large fourth-order
moment cause a strong downward bias to the robust covanance
matrix estimator, and, therefore, imply values of the RW test statistic
that tend to be too large.

This also follows from the Monte Carlo experiments described in
Prucha (1984) and in Calzolari and Panattoni (1984, 1988). [t was



shown there that the covariance matrix ¢stimator based on the outer
product of the first-order derivatives of the likelihood (87') tends to
be systematically targer than the Hessian estimator A~'. Therefore,
A~" B tends 1o be smaller than the unit matrix, and € tends to be even
smaller than the Hessian covariance estimator. This implies a value of
the RW statistic usually larger than the corresponding value of the
HW statistic.

Finally we observe that in the linear regression mode} a large
fourth-order moment of the exogenous variables strongly affects the
estimator B. while it has no effect on 4. The sampling experiments per-
formed for the present study (not included in the chapter for brevity’s
sake) confirm that the influence of leptokurtic exogenous variables is
on the outer product covariance estimator, and that their influence on
the robust covariance matrix estimator follows as a consequence.

We may conclude that asympitotic robustness for the Wald test may
have a large cost in terms of finite sample performance, mainly
depending on the behavior of the exogenous variables. 1n models that
involve strongly leptokurtic vanables (for example, seasonal dummy
variables), the use of the robust covariance matrix estimator in Wald
test does not seem (o be recommended. Correcting factors are needed
for simultaneous equation systems, analogous to those proposed by
MacKinnon and White (1985) for the covariance matrix in the linear
regression model.

Vill. RESULTS ON OTHER MODELS

In this section we briefly summarize the resulls of experiments per-
formed on three other simultaneous equation systems. Two are small
models of the ltalian economy proposed in the literature, and one is
a nonlinear version of Klein's model-I. The following remarks apply
to all models and experiments.

1. Models have been treated either as static models (with lagged
endogenous vaniables replaced by fixed current exogenous) or
as dynamic ones. No particular divergence has been shown by
the experiments, including the case of the nonlinear dynamic
model. For brevity's sake, the tables of results refer only to the
static version of the models.

2. Aswith the experiments discussed in Section Vi, we display the
sampling distributions of the {ikelihood rario test statistic and of
the robust and Hessian versions of the Wald test statistic.

3. For each mode! in static version. we repeal lhe experiment
12 times, that is, with 4 different sets of exogenous variables
(historical—repeated consecutively for long samples, normal,

platykurtic. and leptekurtic) and 3 different lengths of the
sample period.

The results, which are displayed in Tables 9-20, suggest constdera-
_tions that are essentially the same as those derived for Klein's model-I
in Section VI. The only behavior remarkably different is in the Sitzia
and Tivegna (1975) model for the [talian economy using the historical
values of the exogenous variables. The presence in the model of 4
dummy variable (all values are zero, except in 3 years; therefore, . is
much greater than 3) seems sufficient to expiain this behavior in ]ight
of the considerations of Section VII.

Table 9. A Simple Macroeconomic Model of the Italian Economy*

C=a+aY +al  +n,

|

-"l = 4, +a¥, — Y,_,} + unf.r—l + iy,
M, = aytad, + (Y= 1), + vy,
VV=Crh+2 =M,

Number of equanions = 4

Number of stochaslic equations m = 3

Number of siructural unknown coefficienis # = ¢

Number of struciural unknown parameters n + mim+ )2 = 15

“The mode!, specifically designed For the purpase of unslyzing the efevts of current revisions in

d Uy d . lealian
natianal decount series. 15 described 1n Rettore jnd Trivellslo (19883,

Tahle 19. Simple lialian Model (y2,; T = 19)

- Tt

Fixed exogenous

y——

E

Platykurtic exogenous

Leptokurtic exogenous




Table 17. Simple lahan Mode! (y5,: T = 200)

t e LY sl
. w
s w
7
- / .
1 . - o
Platykurtic exagenous Leptokurtic exogenous

Table 2. Simple Ttalian Model (x4, 7 = (000)

e

® = B < <
Fixed exogenous Nermal exagenous
7
i L
» [3 i ) . T A E
Platykwtic exogenous Leptokurtic exogenous

Table 13 A Linear Model lor the lizlian Economy”

CPN, = a, + 0 WIT + WG + X2),
T o PIT + PAFY, + a (PIT + FAFY, | +u,,
ILIT, ~ a, +a, PIT, | + ¢, KOCC, + a fLIT, | + ",
My = to + | (CPN + 1LIT) 4 0,0 + iy,
WIT, = oy, + o\ (\WIT + PIT), 4 u,, KOCC,
+ 0 DUS o WIT, |+ oy,
KOCT, = my + Gy (LI, + ILIT, | 4 ILIT, 1)
o (FLET, |+ 2 R ILIT, ) 4o,
PIT, = RNLCE, — WIT, ~ WG, — PAF, - X2,
ANLCF, = CPN,+ ILIT, = M, % WG, = TL + X1,

Number of cquations = 7

Number of siochastic equations 1 = §

Number of siructural unknown cockicents n = 19

Number of structural unknown parametecs 5t + mim e 132 = 34

“Model. meaning of the vanables, and Jata (o1 1he laban eonomy [952-197) can be Teund 10 Sitzi and
Trveuna (1973}

Table 14.  Linear Tralian Model (7, 7 = 40)

Platykustic exogenous Leplokurlic exogenous




Table 15. Limear [talian Model (. 7 = 200)

o

Platykurtic exogenous

Leplokurtic exogenous

Table 6. Linear liatian Model {x)q: 7= 1000)

A

Platykurtic exogenous

Leptokurtic exogenous

Table 17.

Log-Lincar Version of Klein's Madel-}”

tn C,

gy Fenin P adn B
+on{¥ 5 W23+

ot A P Py e K 4
ey Fa ¥+ T —Wh,

+a (Y + T—WDH _| +a,t+uw,
C+4=G -7

Y,— Wi, — W2,

=K _ +4

Number of equalions = 6

Number of stochastic equalions m = 3
Number of structura] unknown coefficients n = 12
MNumber of structural unknown parameters a 4+ m(m + 12 = 18

“The mode!, ypeaifically designed for expertmenting algerithms for nonlineur systems, 18 1sken from

Belsley {19200,

Table 18. Log-Linear Version of Klein's Model-l (¢},,; T = 42)

Platykurtic exogenous

A e

Leplokurtic exogenous




Tahle 19. Log-Linear Version of Klein's Model-1 (3. T = 210)

R I; o il
P g
/ g
y A
[ igghta - ==
Fixed exogenous Normal exogenous
—— T
e s /'
L—i

Platykurtic exogenous Leplokurlic exogenous

Table 20. Log-Linear Version ol Klein's Model-I (;(f.:,'. T = 1050)

o o
g n‘,r_t/‘/
| / \_//—
Fixed exogenous Normal exogenous

Platykurtic exogenous Leptokurtic exogenaus

IX. CONCLUSIONS

In this chapter we have experimentally evaluated how costly it is Lo use
the robust estimator of the ¢oefficienis covariance matrix in the Wald
test on sysiems of simultaneous equations when there is no misspecifi-
cation. We have investigated how {ast the sampling distribution of the
test converges to the asymptotic y* distribution and have performed
comparisons with the fikelihcod ratio 1est and with the traditionul
Hessian version of 1he Wald test.

The results have indicated that the cost may be very large depending
on the values assumed by the explanatery vanables of the model. The
enormous deviations of the sampling distribution from the asymptotic
%~ recommend a careful investigation of the problem of small sample

correcling factors belore the robust Wald test can be expected to have
approximately the correct si1ze for the sample lengths used 1n econo-
mietric apphcations.
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NOTES

I, We lirst perform a icast-squarces estimation ol the cocticients lor all the
equations ol the model in such 1 way us (0 gC1a repyanabiy good starting point Tor
1he maximization process. Then we perform some tteritions ol FIML using a gradient
Algotithm bused on a geneialized feasi-sgueres repe matrix that usually proves 1o he
computatonally more etficicnt 10 the first iterations (sce Calzolari ev al.. 1987).
[ntermediute terations are then made using o Nen ton-fihe alporithm based on (he
Hessiun ol the hkchhood Tollowed by a scarch of the maximum in the chosen
dircction. The last werations are performed using Newton's method  An accurale
computation of the maximum peint is cnsured by choosing a very tight convergence
criterion: 107 as a relative tolerance on all coctticients m cach Monte Carlo rephcation.

2. When dealing with maximum likclihood esumaton, itis usual w0 corcenirate
ouf the 7 purameiers and then deal with the concenrranied log-hkelihood. which s only
a function of the o purameters The formulas Yor 1he Birst and second denvatives of
1he conceniraled log-hkelihood would be more complicited than those displayed in
section T (for cxampie, scc Amemuya. 1977, p. 957 lor the sccond denvatives)y, bat
would give several computational benetits, In parnculur, the dimensions of all the
maririces involved in the computanion would be i < winsicad of {ir + m(m + 1§2] x
[+ i + 112). 1 can custly be proved that the Hessian of the concenirited
leng-likelihood is cqual 10 (4%") ' This cqualuy dees net hold for the covariance
estimators based on the outer products of the Arst derivatives of the log-hkelihoods
or af the comcentrated log-likchihoods. However, Prucha (1984) proves that the
cyuadity holds :ipain (algebratcally, ind nav only in probability limit) lor the Acst
block of mainx O in other words, ¢, could also be obtaned rom Hesstan and outer
products of first-order derivatives ol the concentraied log-likelihoods. There are. of
course. applications of the Weld test where i01s neeessary 1o evaluale the covariance
matrix of the entire sct of estimated parameters (sce. lor cxample. Bhargava, 1987).
the fonmatkts of sections 1 and IV can be used also in thexe applications

I O cowrse. it would not be <o il we were interesied i geling very docurae
meisurements of the distributions in the erineal region, o such o case accuracy would
he helped not unly una lurger number of rephcrtions, but itlse by the use of varance
reduction aleorthms, In particular. the control vamiate nwethod proposed by Davidson
and MacKinnon (1951 and appled by them (19%3) 1o the Lagrarnve muttiplier W03t on
s inenr regression inoded should be suitable, Alse in the cuse of lincae sunultaneous



cquations. we may cafeulale a control vanate that has a known disiribution in the
small sample case. /-, and 1s at the same time. hopefully. strongly correlated with the
Wald and LR test statistics. Tn sampling experiments such a variable may be obiained
asan LM statistic. using the rree values of the o parameters in (he score vector and
using the vwe information matrx. This. however. scems not 1o be so simple il the
sysiem is nonlincar.

4. Whether or not the diffierences can be considered slight is certainly @ matier
ol optmon. However. there ss surcly no doubt Lhat they wre very shght if compared
with the differences that will be shown in some of the following experiments.

5. The extreme case of a dununy vanable that is always zero except in ane
period cannot obviously be considered. This Tollows from Eq. (31). where &, would
be equal 7. and from Chesher and Jewitt (1987, p. 1219): even more cleurly. it follows
from the proposicion in Chesher and Jewitt (1984, p. 10).
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