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0. Introduction 

   The theoretical perspective based on the external effects and endogenous growth of 

increasing returns to scale technologies stressed by Romer (1986) and Lucas (1988) has in the 

past decade had a considerable influence on macroeconomics as well as growth theory and 

development theory, and a massive thesis has been produced pertaining to these matters. Aghion 

and Howitt (1998) has compactly surveied these results. Though this sort of theoretical analysis 

is in vogue, most of the empirical research supporting these theories used aggregated macro data. 

Due to restrictions on data, little research has been conducted at the industrial level. Among 

these researchers, Hall (1988,1990) measured the economy of scales of American industries. 

These measurements indicated the existence of a considerably large scale economy and 

externality of production, providing support for the theories of Romer et al. With respect to 

these results, Bartelsman (1995) indicated an ommited variable bias of these measurements and 

concluded that the large-scale economy shown in Hall’s results was invalid. Also, the results of 

a series of investigations conducted by Basu and Fernald (1995,1997) showed that constant 
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returns were the rule for the economy of scale in most American industries, with almost no 

externality of production among industries. The thing that can be understood from this empirical 

research is that when aggregated data is used, economy of scale can become conspicuous 

because of aggregation. This suggests that there are serious problems with Solow-type 

exogenous growth models and Romer-type endogenous growth models, which take only one 

sector into consideration as one type of capital good or representative industrial sector. From the 

perspective of analytical technique, it will be necessary to rely on a phase-diagram-based 

analysis to conduct a global analysis. This means that one must restrict the state variables that 

indicate the capital stock to two variables or less.  

  The purpose of this text is to, based on the results of the above empirical analysis, use 

constant returns to scale technology to construct an exoginous optimal growth model and to 

investigate the global nature of that optimal path (equilibrium path) from the view of multi 

-capital-goods economy. Also, these results will be applied to the global analysis of a 

multi-sector endogenous growth model. Ever since the 1970s, optimimal growth models that 

include multi capital goods have been reported in research results as consumption turnpike 

theories. The study of McKenzie (1984,1990,1998) can be cited as a good compilation of these 

results. However, these results are unrelated to structural models built from production functions 

and utility functions; instead, they pertain to reduced form models derived from the structural 
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models. This text aims to apply the consumption turnpike research results of a reduced form 

model to multi-sector neoclassical optimal growth, and to explain as concisely as possible 

results and application of the study of Takahashi (1985, 1992, 1999, 2008), in which he 

conducted a global qualitative analysis of the optimal path. At first glance, this global 

qualitative analysis of the multi-sector model’s optimal path seems overly complicated and 

unmanageable. However, as explained below, provided the production technology of each sector 

is constant returns to scale technology, it is possible to restrict the global analysis to a local 

analysis. Also, by analyzing only the linear system, it is possible to analyze the local behavior of 

the optimal path. Putting this in greater detail, the plane from the non-substitution theorem 

described later, known as a “von Neumann-McKenzie facet,” which includes the optimal steady 

state path as an interior point, exists in the objective function surface of the reduced form model. 

By analyzing these planar dynamics, it is possible to simultaneously clarify the global dynamics 

of the optimal path as well as the local dynamics. An important point is that by analyzing only 

the linear system included in the non-linear system, it is possible to analyze the dynamics of the 

non-linear system itself.  

  In Section 1, we explain the neoclassical optimal growth model, which includes multi 

capital goods, and is derived from neoclassical production functions; the transformations to the 

reduced model are also explained. Section 2 pertains to the explanation of the methods for 
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proving the consumption turnpike theorem demonstrated by Scheinkman (1976) and McKenzie 

(1983). Also, the case in which the essentials of the von Neumann-McKenzie facet, which plays 

an important role in the next part, became a two-sector model and is explained using figures. In 

Section 3, we postulate a two-sector neoclassical optimal growth model, and the optimal path 

behavior in the vicinity of the optimal steady state path (modified golden rule path) are 

classified using the characteristics of von Neumann-McKenzie facet. Also, we will use these 

results to prove, based on a weaker hypothesis, that the theorem that the optimal path local 

stability and the optimal path attained by Benhabib and Nishimura（1985）becomes a two-term 

periodic solution. In Section 4, the generalization of the global asymptotic stability conclusion 

achieved with two divisions into a case that includes two or more types of capital goods. In 

Addendum, the important fundamental principles used in the main text will be defined, and a 

number of theorems will be proved.  

1.  Structural and reduced-form model 

  The structural model researched here is the model of Burmeister and Graham (1975) 

generalized with the model of Srinivasan (1965) as multi capital goods.  

    
0

( ( ))t

t

Maximize u c tr
¥

=
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The symbols have the following meanings: 

n      ＝ population growth rate ),10(  n  

      ＝ subjective discount factor, 

       ＝ )()1/()1(   nn , 

u       ＝ representative individual utility function, 

  ( )c t    ＝ per-capita consumption goods consumed in period t , 

 ( ) n
t y    ＝ capital good per-capita production vector in period t , 

  (0) n

k    = initial capital stock vector, 

1:j n
f

 
   ＝ per-capita production function of the j sector, 

    )(tk ij   ＝ capital good i used in sector j in period t , 

    ( )j t   ＝ labor input used in sector j in period t , 

    i     ＝ depreciation rate of capital good i )10(  i . 

As indicated by Benhabib and Nishimura (1979a), it is possible1 to consolidate equations 

                                                  
1 Obtained by solving  



6 
 

(1.3) through (1.6) here as social transformation function ( ) ( ( ), ( ))c t T t t y k . Also, the social 

transformation function becomes a concave and continuously differentiable function under our 

assumptions. The important thing to keep in mind is the fact that the transformation function 

does not become strictly concave. As we will discuss later, the existence of the Von 

Neumann-McKenzie facet is closely related to this fact.   

Assumption 1.1 1) All the goods are produced non-jointly with the per-capita production 

functions ( ) ( 0,1, , )
i

f i n  which are defined on
1n , homogeneous of degree one, strictly 

quasi-concave and continuously differentiable for a positive inputs. 2) Any goods 

( 0,1, , )j j n  cannot be produced unless 0
ij

k  for some 1, ,i n  . 3) Labor must be used 

directly in each sector. If labor input of some sector is zero, its sector’s output is zero. 

Also, we make the following assumption so that the productive structure directly appears 

in the utility function. Of course, it is sufficient to assume the linearity of the utility function in 

the vicinity of the optimal steady state path, but here we will offer a more direct assumption.  

Assumption 1.2 ( ( )) ( )u c t c t=  

First of all, in order to guarantee the existence of an optimal steady state path (expressed as 

“OSS”  henceforce), we must make a following assumption.  

                                                                                                                                                  

0
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Assumption 1.3
2 With respect to all positive factor price vectors, the non-negative investment 

matrix a  written below is an indecomposable matrix2, and all the elements of the row vector 

element 00 01 0( , ,..., )na a a0a  are positive.   

11 1

1

...........

............

n

n nn

a a

a a


 
 
 
  

a    . 

where iijij yka /  and
0

/ ( 0,1,...., ; 1, 2,...., )
i i i

a l y i n j n   .  

Assumption 1.4 When discount factor γ and depreciation matrix   are given, the selected 

technology matrix 


a  satisfies   1

( )
 

  I γ a 0 . Also, matrices 


a ,  , and γ  are 

defined as follows.  
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...
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n

n n nn
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 
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1
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0

0
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n




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, 
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1 0 0

0 0

0 0

0 0







 
 
 
 
 
 

γ




 


 

                                                  
2 Refer to Addendum A3.  
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This assumption is referred to as “Viability.” Viability is a condition that requires the possibility 

of producing the goods in quantities equal or greater than the input. Please refer to Burmeister 

and Dobell (1970) for details.  

Assumption 1.5 Population growth rate 0g  will satisfy 1 / 'g  , where '  is the 

maximum unique root (Frobenius root)3 of  matrix 
1

( )a I a
    .  

Assumption 1.5 implies that the population growth rate should be small enoug to enable the 

steady-state equilibrium path. The following more fundamental theorem is proven on the basis 

of these assumptions.  

Lemma 1. (Non-substitution Theorem) Suppose that the production functions are differentiable 

and linear homogenous, and subjective discount factor γ is given4, the cost functions of each 

sector, based on Assumptions 1.1, should become linear homogenous. They are expressed as 

follows.  

0

0 0 1 0 0

0

1 0 0

/ ( / , , / ,1)

/
( / , , / ,1) ( 1, 2, , )

n

ii

n

i

p w C w w w w

w w
C w w w w i n

 



 




 

 

Also, the positive relative price vector 
0

/ w


p
5 and the positive relative factor price vector 

                                                  
3 Refer to Addendum  A4.  
4 Hereinafter, in place of writing “subjective discount factor   was given,” we will write “   is given.”  

 
5 From now on, a superscript   will be used for optimum steady-state path variables. 
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0
/ w


w  are unambiguously determined ( in the following discussion, each price vector has 

been normalized as wage rate 0 1w  ). Thus, it follows that input coeficients 

/ ( 1, 2, , ; 1, 2, , )
i

j ij
C w a i n j n       corresponding to these prices are also 

unambiguously determined. 

Proof.  Refering for detailed proof to Theorem 1 of Burmeister and Dobell (1972,p.242) and 

Burmeister and Kuga (1970). Also, each price to be a positive value can be shown as follows: 

The price equation of the steady path based on the non-substitution theorem and Euler’s 

theorem pertaining to homogeneous functions is expressed below.  

0
( )

      p a p γ a  or 
1

( ( ) )
      

0
p a I γ a  

where, 
0 00 01 0

( , , , )
n

a a a
   a   and

0 0 1 0 0
( / , / , , / )

n
p w p w p w

      p  . Since 0

0

a   holds 

from Assumption 1.3 and also the inverse matrix from Assumption 1.4 will satisfy 

1
( ( ) )

   I γ a 0 ,  price vectors become positive.  ■ 

 

Lemma 2. When discount factor   is given, the optimal steady state vector ( 0)
k   exists 

uniquely.  

Proof.  This is proven in Addendum A5. ■ 

Thus, when x  represents initial capital stock, and z  represents end of period capital 

stock, let us define each of the following.  
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Definition 1.1 

( , ) [(1 ) ( ) , ]V T g    x z z I x x  

 ( , ) : [(1 ) ( ) , ] 0n n
T g        D x z z I x x  , 

where                     

1

2

0 0

0

0

0 0 n






 
 
  
 
 
 


 

  


. 

Problems (1.1)–(1.6) from the above discussion can be rewritten as the following 

reduced-form  problems.  

           

0

( ( ), ( 1))

. . ( ( ), ( 1)) int

t

t

Maximize V t t

s t t t








 









 k k

k k D

                 

Now, considering period t  and period 1t , let us try to find out the necessary conditions for 

( )tk  that maximize the following 2 periods’ Lagrange function   when ( 1)t k  and 

( 1)t k  are given.  

( ( )) ( ( 1), ( )) ( ( ), ( 1))t V t t V t tk k k k kr= - + +  

For now, let us not consider only internal solutions. It can be easily found the following 

equation as a necessary condition.  

      
2 1
( ( 1), ( )) ( ( ), ( 1))t t t t   V k k V k k 0 ,                     (1.7) 

where 
1

V  and 
2

V  are vectors that are established by the first and second factor as partial 
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derivatives respectively. With respect to the optimal path, Equation (1.7) must hold for all t. 

Also, Equation (1.7) is frequently referred to as an ” Euler Equation.” The stability of the 

optimal steady state path returns us to the research pertaining to the simultaneous difference 

equations expressed here as vectors.  

2.  Consumption turnpike theory 

Here, we offer a simple explanation of the theories of Scheinkman (1976) and McKenzie 

(1983) in which he generalized Scheinkman’s study. The method they used to prove the 

asymptotic stability of the optimal stead 

 

y state path of the optimal path ( this property is often referred to as “turnpike theorem” ) is 

known as a “value loss approach.” Now, let us assume that the value function V satisfies the 

strong concavity. Then, it is possible to draw figure 1.  

<Insert figure 1 here> 

The point in response to the optimal steady state path is expressed as point M in the figure. Due 

to the nature of the strong concavity function, the supporting hyperplane that passes through 

point N unambiguously exists, and a price (shadow price) vector is obtained as a vector that 

orthogonal to that plane. Now, let us postulate that the optimal path continues to deviate from 

the  neighaborhood of optimal steady state path. For example, let us say that this period and 
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the next period’s capital stock existed in point P. The value losses at this time can be measured 

as QR, the distance between function V and the hyperplane. If the optimal path continues to 

deviate from the  neighborhood, the sum of the value losses will clearly increase, creating 

untimely contradictions in the definition of the optimality of the optimal path. Thus, it is proven 

that the optimal path must visit this neighborhood within the planning period. This value loss 

method has originally been used to prove the turnpike theorems by Ramsey (1928) and Atsumi 

(1965). However, if, as is the case in our problem, the discount factor is entered into the 

objective function, the value loss will also be discounted. Therefore, leading into the 

aforementioned contradictions without accumulating value losses becomes difficult.  

  Scheinkman (1976) applied the value loss method to a reduced-form model in which the 

objective function is strongly concave and the discount rate is positive, proving the turnpike 

theorem in two stages. First stage involves applying the value loss method to prove a lemma 

known as the “Visit Lemma.”  

Visit Lemma: For a given 0  , threre exists a suitable ' 0   such that the optimal path 

must at least once enter into the  neighborhood of the optimal steady state path. This is also 

established with respect to ' 1   .  

In figure 2, the fact that the optimal path visits the neighborhood in a finite time is depicted as a 

dotted line.  
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<Insert figure 2 here> 

  In stage 2, the local stability is proven using the differentiability of function V, developing 

the Euler Equation in the vicinity of the optimal steady state path, and investigating that 

characteristic root. The local stability is proven by the fact that the optimal steady state path is 

shown to become saddle point stability. If linear approximation is performed on Euler Equation 

(1.7) in the vicinity of the optimal steady state path, and determinant 12


V 6 is not zero, 

following equation (2.1) is established.  

     
1 1

1 12 11 22 22 21 1
( ) ( ) ( )

t t t

      
    z V V V z V V z .                 (2.1) 

Here, all the matrices are evaluated as optimal stable state paths, and t t t

 z k k .  

  First of all, the fact that in the vicinity of the optimal steady state path, the absolute value 

of the n characteristic roots of the characteristic equation of the difference equation (2.1) that 

linearized the Euler Equation of equation (1.7) is greater than 1 and that of the other n roots are 

smaller than 1, proves that the optimal steady state path will attained saddle point stability. The 

following lemma 2.1 serves an important role at this time.  

Lemma 2.1 If   is the characteristic root of equation (2.1), /1  will also be its 

characteristic root. 

Proof: Refer to Levhari and Livitan (1972). Alternately, for a more complete theorem and proof, 

                                                  
6 V function’s second order differential is defined in the following matrix that has the second- order 

differential as a factor: 2 2

11( , ) /V x z x V   , 2

12( , ) /V x z x z V    , 2 2

22( , ) /V x z z V   . 
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refer to Lemma 12 of Becker and Boyd (1997). ■ 

When the discount rate   is 1, or when it is sufficiently close to 1, if the absolute values 

of n  characteristic roots is greater (or smaller) than 1, the absolute values of the other n  

characteristic roots will become smaller (or greater) than 1. Thus, the saddle point stability in 

the vicinity of OSS is proven. However, in the saddle point stability proof, let us take heed of 

the fact that this is insufficient for proving local stability. For example, for the stable manifold 

displayed in the CD of figure 3, the path starting from point A will, no matter the case, be 

unable to intersect the stable manifold. Therefore, the local stability is not established.  

<Insert figure 3 here> 

This point was first proposed as a problem by McKenzie (1963), but has been neglected for a 

long time. Based on the condition, that determinant 


22V  from the second differential 

coefficient is zero, Scheinkman proved that no case will occur in which there exists a 

perpendicular stable manifold like the one displayed in the CD of figure 3. If discount rate   

is sufficiently close to 1, based on the visit lemma, the optimal path must at least visit the 

vicinity of the optimal steady state path at least once. At this time, the fact that the path in the 

stable manifold is the optimal path is proven by the transversality conditions and the strict 

concavity. Thus the optimal path must converge to the OSS. Here, the continuous variations of 

  and the continuous variations of the stable manifold are guaranteed by the Hirch-Pugh 
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stable manifold theorem (refer to Palis and de Melo (1982), p.75).  

    McKenzie (1983) has extended the results of Scheinkman (1976) to the case in which  

function V has a plane on its surface that includes OSS. Here, let us examine figure 4. Presently, 

function V is not strictly concave.  

<Insert figure 4 here> 

It has become a concave function with a flat portion. Point M indicates the optimal steady state 

path. That, which projects the flat portion including OSS into plane ( , )x z , is known as the von 

Neumann-McKenzie facet (hereinafter, referred to as the “NMF’). This exact definition is given 

next.  

Definition 2.1 The von Neumann-McKenzie Facet (NMF) is defined as follow: 

   ( , ) ( , ) : [ ( , ) ] ( , )F
                k k x z D V x z p z p x V k k p k p k . 

Like Scheinkman (1976), McKenzie (1983) proved the turnpike theorem in two stages. First, 

based on the condition that when 1  , no periodic solution exists in the NMF, he applied the 

value loss method and proved the following neighborhood turnpike theorem (also known as the 

Lyapunov stability).  

Neighborhood Turnpike Theorem: The optimal path is trapped in the arbitrary 

neighborhood of OSS, and cannot escape the vicinity. Also, if the discount rate   approaches 

1,   can approach 0 irrescpective of its value (this is expressed in general terms in the solid 
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line path of figure 2).  

These results and the proving of the local stability explained before allow the turnpike 

theorem to be proven by setting the value of   sufficiently close to 1. The thing to keep in 

mind here is that differentiability assumptions are totally unnecessary to prove the visit lemma 

as well as the neighborhood turnpike theorem. That is, including the turnpike theorem, the 

differentiability is only necessary in proving the local stability. The detailed and comprehensive 

discussion so far can be found in McKenzie (1984). Also, in McKenzie (1990,1998), these 

discussions are concisely explained without proofs.  

3.  Von Neumann-McKenzie facet of two-sector optimal growth models 

As described in Section 1, the results of the consumption turnpike theory based on a 

reduced-form model have hardly been applied to general neoclassical optimal growth theories 

except in the studies of Benhabib and Nisimura (1979a, 1979b), and Yano(1990). The most 

substantial reason for this is that when neoclassical optimal growth models (structural models) 

are converted to reduced-form models, based on the constant-returns-to-scale assumption 

pertaining to the productivity functions of each sector, objective function V does not become 

strictly concave, and the planar portion that includes the OSS exists in the surface of the 

function V. Because of this, as can be understood from the analysis by McKenzie (1983) of this 

sort of case, the proof of the turnpike theorem will become rather complex.  
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  The first thing that should be done here is to investigate in detail the “von 

Neumann-McKenzie facet (NMF)” of a two-sector optimal growth model that serves as a bridge 

between structural models made up of the production functions and the reduced-form models. 

Based on the definition of NMF in Section 2, each point of the NMF is supported by the 

hyperplane of price vectors that are the same as those of the OSS. In such instances, the 

non-substitution theorem is once again established in each point of the plane. Thus, it follows 

that in each point of the NMF, the same technology matrix 


a  (this vector is defined in 

Assumption 2) as is chosen in the OSS is selected uniquely. Now, we shall define the factor 

intensity comparing the consumption goods sector with the capital goods sector. 

Definition 3.1 (Capital Intensity Conditions) 

When 
11 01 10 00

/ /a a a a
     is established, the consumption goods sector is capital intensive in 

comparison with the capital goods sector. For 
11 01 10 00

/ /a a a a
    , the consemption goods sector 

is labor intensive in comparison with the capital goods sector.  

Based on the assumption that the consumption goods sector is capital intensive, it is 

possible to draw a graph on the coordinates ( ( ), ( ))y t c t , which is often used in trade theory.  

<Insert figure 5 here> 

Here, ( , )y c
 

 is a production vector corresponding to the OSS and is written as a point of 

intersection for the labor-constraint line and the capital-constraint line. Also, the fact that the 
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labor-constraint line intersects the capital-constraint line from the above is due to the capital 

intensity assumed above. Note that production specialization occurs at points A and B.  

Now, suppose that 
10

( ) ( 1 / )k t a
 , which is greater than OSS,{ }k


were given. Then, if we 

leave the capital-constraint line and the price vector as they are, then move upward along the 

labor-constraint line, a new point of intersection “E” is obtained. Also, the corresponding 

production vector ( ( ), ( ))y t c t  is obtained at point E. Also, by substituting this value for 

accumulation equation (1.2), the next period’s capital stock ( 1)k t   can be attained. The 

capital stock pairs ( ( ), ( 1))k t k t   obtained in this manner can be plotted as point E on plane 

),( zx . By further altering ( )k t  and repeatedly conducting the similar procedure, line AB can 

be drawn on plane ),( zx  in the manner of figure 6. Now, it can be understood that 

labor-constraint line AB on the production plane ( , )y c  directly corresponds to line AB on 

plane ( , )x z . The portions of this line AB excluding the ends are the von Neumann-McKenzie 

facet.  

<Insert figure 6 here> 

  Based on the above discussion, it is possible to redefine NMF in a neoclassical model as 

follows.  

Definition 3.2  (Characterization of NMF) 

( , ) {( ( ), ( 1)) :F k k k t k t
    D  There exist ( ) 0c t  and ( ) 0y t  such that they satisfy 
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following conditions (1) through (5): (1)
0 00 10

1 w a w a
     , (2)

0 01 11
p w a w a
      , (3)

00 10
1 ( ) ( )a c t a y t

   , (4) 
01 11

( ) ( ) ( )k t a c t a y t
   , (5) ( 1) ( ) (1 ) ( ))},k t y t k t     

where, consumer commodity prices are normalized as 1; also, for simplification, the population 

growth rate has been postulated as zero.  

Equations (1) and (2) are cost minimization conditions; equations (3) and (4) are equilibrium 

conditions for labor and capital goods. Also, (5) is a capital good accumulation equation.  

Based on (3) and (4),  

    01( ) ( )y t b k t b
   .                  (3.1) 

Here, b


 and 10b


 are defined below as elements of the following matrix.  

1 00 01

10

( )
b b

a
b b

 
 

 

 
 
 
 

B . 

Also, based on accumulation equation (5) and equation (3.1), we obtain the following difference 

equation: 

10( 1) [ (1 )] ( )k t b k t b
      .            (3.2) 

By defining ( 1) ( )t k t k
    , difference equation (3.2) is rewritten as 

 

 ( 1) [ (1 )] ( )t b t
      .              (3.3) 

 

It is clear that the behaviors of the path on the NMF can be obtained by investigating this 
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differential equation.  

Now, by making a suitable selection of units, it is possible to normalize the element b


 of 

the matrix 


B  as follows.  

00 00 11 01 10/( ) 1b a a a a a
        . 

Due to the local stability from the discussion in the previous section, it is a necessary condition 

that at the very least, the determinant 12V


 made up of the second differential coefficient, 

should not be zero. In the two-sector model, 12V


 is calculated as follows (see in detail 

Benhabib and Nishimura (1985)).  

1 2

12
(( ) ) (1 )

w
V b b

k

    
   


       

.           (3.4) 

Based on this, equation (3.4) does not become zero other than in (1 )b
    .   

In the two-sector reduced-form model, the question that in what manner does the optimal 

path behave in the global sense can be clearly answered by examining the neighborhood 

turnpike theorem and the local behaviors of the optimal path.  

 First, we shall rerecord the neighborhood turnpike theorem explained in Section 2 as Lemma 

3. 1. 

Lemma 3.1 (Neighborhood Turnpike Theorem) Provided that no periodic solution exists in 

the NMF of 1 ( )g   . Then, for 0  there exists a
'

0  such that with respect to for 

'
1   , the optimal path 0{ ( )}tk t

 
 , ultimately will be trapped in the  neighborhood of 
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the optimal steady state path { }k


.  Also, by making   sufficiently close to 1, it is possible 

to make   close to zero.  

Proof: please refer to Theorem 3 of McKenzie (1983). ■ 

The fact that Lemma 3.1 is established in the case of a multi-sector model that has neoclassical 

production functions has been demonstrated by Takahashi (1985). An important point of this 

proof is the fact that uniform value losses occur in the vicinity of the NMF, which is proven 

based on the fact that the NMF is a lower semi-continuity correspondence of  .  

  Based on the above theorem, by making   sufficiently close to 1, it can be understood 

that the optimal path comes trapped in the neighborhood of the optimal steady state path. 

Therefore, it is possible to make clear the global behavior of the optimal path by investigating 

the actions of the optimal path in this neighborhood. In the case of a two-sector model, the 

behaviors of the optimal path in the neighborhood of the OSS will be made clear by the 

following lemma.  

Lemma 3.2 Provided that 
*

(1 ) 0b     (however,
*

b indicates the b


under 1   

whenever). There exists 0   such that for [ ,1]  , optimal path  
0

( )
t

k t
 


 asymptotically 

converges to either OSS or the cyclic solution of period 2.  

Proof: This is proven in Addendum (6). ■ 

 From this lemma, it becomes clear that the local nature of the optimal path becomes subject 
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to only cyclic solution of period 2 term matter how complicated the situation. The matter of how 

the optimal path will change in the neighborhood of the optimal steady state path is classified on 

the basis of dynamics of the NMF path when 1 ( )namely g   . In Section 3.1, we will 

consider cases in which the NMF becomes unstable manifold, and in Section 3.2, we will 

consider cases in which the NMF becomes stable manifold.  

3.1  Case 1： 
* (1 ) 1b      

In equation (3.3), all the NMF paths diverge. In other words, the NMF becomes unstable 

manifold. This means that the absolute value of the characteristic root of the NMF direction 

becomes 1  . In this instance, based on Lemma 2.1, the characteristic equation (2.1) has 

1 1 / 1    as an inherent root. Therefore, linear space spread within the corresponding 

inherent vector is a stable manifold. Thus by selecting   close enough to 1, the optimal path, 

based on Lemma 3.2, asymptotically converges to the OSS, and a local stability is established. 

By combining the local stability and the neighborhood turnpike theorem, the following turnpike 

theorem is proven. 

Theorem 1 (Turnpike Theorem
7
) 

Based on Case 1, there exists ' 0  such that for any [ ',1)  , lim ( )
t

k t k 


  holds with 

                                                  
7 With respect to the matter of whether the Turnpike theorem can actually be observed, the fact that this 

sort of phenomenon could be observed in the various OECD countries (the former West Germany in 

particular) was reported by Brems (1985).  
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any sufficient initial stock 0k 8.  

Next, with case 1 established, let us add the following hypothesis.  

Assumption 3.1 *
1 (1 ) 1/b       where   is obtained in lemma 3.2.  

In this instance, the following important theorem can be proven.  

Theorem 2 (Existence of a stable periodic solution)  

Under Assumption 3.1, there exists  [ , ')    such that the optimal path  
0t

t
k
 


 for 

 [ , ]    converges to the cyclical solution of period 2.  

Proof: Based on Assumption 5, by selecting  ( )  , it can be made into1 (1 ) 1 /b
     
  . 

In this instance, it is understood that the characteristic equation has the roots 

1 1 / 1and    simultaneously from Lemma 2.1. Thus, it becomes totally unstable in 

OSS (


{ }k


) (refer to Figure 2). This means that it is impossible for the optimal path to 

asymptotically converge to the OSS to which the optimal path corresponds. Based on Lemma 

3.2, the optimal path must converge on the cyclical solution of period 2. ■ 

Thus, the matter of whether a turnpike theorem is established or convergence occurs upon 

the periodic solution of term 2 is proven in instances when the NMF becomes unstable manifold. 

The results of theorem 2 are in theorem 5 of Benhabib and Nishimura (1985) and are proven on 

                                                  
8 The sufficiency of the capital stock is defined as follows. If the capital stock x will establish ( , )x y D and y x , 

then x  is referred to as “expendable.”  Also, with respect to the finite period path 0 2{ , , , }Tk k k , when 

0 1, ( , ) ( 1, , )t tx k k k t T  D   is established, the capital stock is described as satisfying “sufficiency.”  
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the basis of more exacting assumption that follows: all points in the domain D of function V are 

such that
12

0V  . Because they did not introduce a NMF, they obtained sufficient conditions that 

were the result of the existence of a cyclic solution of period 2 based on the fixed-point theorem 

and use those in their proof. The point that is different here is the fact that by introducing a NMF, 

our proof is made directly based on a weaker hypothesis.  

It is understood that in the consumption turnpike theorem, if the discount rate   is made 

sufficiently close to 1, the optimal path becomes stable, and if the discount rate   becomes 

close to zero, periodic solutions or chaos occur. For example, if   is set sufficiently close to 

zero, the breadth of the interval defined in Assumption 3.1 becomes unlimited in size, the 

breadth of the cyclic solution of period 2 will increase, and the possibility of a periodic solution 

will become high. However, conversely, irrespective of the discount rate being close to 1, as 

proven in Theorem 2, by suitably taking up b


and  , it becomes possible to bring about a 

periodic solution.  

3.2  Case 2： 
* (1 ) 1b     

In this instance, the path of the NMF from equation (3.3) will once again become 

asymptotically stable. Therefore, NMF itself will become stable manifold. Also, by taking   

sufficiently close to 1, it is possible to make the NMF stable manifold in the neighborhood of 

1  . Thus, a local stability is established, and similar to that in the previous section, by 
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combining it with the neighborhood turnpike, a turnpike theorem is established.  

 

4.  Generalization into a multi-sector model  

In this section, we will expand the two-sector model demonstrated in Section 3 into a 

multi-sector model that includes multi capital goods, and also prove similar results that were 

attained in Section 3. However, we will advance our arguments by postulating that population 

growth rate g  is not zero.  

  First, we will define the “Generalized Capital Intensity Conditions” researched by Inada 

(1971).  

Definition 4.1 The inverse matrix 


B  of the technology matrix 


a  of the OSS is referred to 

as the “SSS-I matrix” when the diagonal elements are positive ( 0ijb
  ) and the non-diagonal 

elements are negative ( 0ijb
  ).  

Definition 4.2 The inverse matrix 


B  of the technology matrix 


a  of the OSS is referred to 

as the “SSS-II matrix” when the diagonal elements are negative ( 0ijb
  ) and the non-diagonal 

elements are positive ( 0ijb
  ).  

If 1n  , the factor intensity conditions coincides with these matrices conditions. Also, 

when 2n  , it is possible to lead to the intensity conditions from these matrices conditions. 

That is, it is possible use the SSI-I matrix to lead to intensity conditions in which the capital 
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good sector is more labor-intensive than the consumption good sector, or use the SSI-II matrix 

to lead to intensity conditions in which the consumption good sector is more capital intensive 

than the capital goods sector. However, if 3n  , the relationships between both become unclear.  

Here, the 
12


V  matrix obtained in the last section is expressed as the following equation, in 

the manner of the proof provided by Takahashi (1990).  

 1 1

12
(1 )( ) ( ) / ( )g

             V b b I w k b .          (4.1) 

Based on equation (3.4) of capital good model 1 from part 3, it is easy to imagine the expression 

of a multi capital goods case as the above sort of equation. Thus, based on the concavity of each 

production function and generalized intensity conditions, determinant 


12V  does not become 

zero. Therefore, it is possible to attain simultaneous difference equation (2.1), and lemma 1.2 is 

established.  

  In the same manner, based on equation (3.3) of part 3, the difference equation that 

expresses the behaviors of the path of the facet can be generally rewritten as follows.   

( 1) 1 / (1 ) ( ) ( )t g t
        b I .             (4.2) 

This differs from equation (3.3) only in the sense that it includes the population growth rate g , 

and that the depreciation rate is rewritten as a matrix .  

  The following lemma is applied in the proof of the local stability.  

Lemma 4.1 Let us consider the following difference equation system that possesses x  as a 
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stationary solution.  

( 1) ( ) ( )t t  x C I x . 

where ( )
n

t x  , and matrix C  become an nn  matrix.  

In this instance, if matrix C  has a negative dominant diagonal9, C I  becomes ( )t x 0  

based on the norm defined below and is contractive, the system attains global asymptotic 

stability, and the Lyapunov function is ( )V x x . Here norm   is defined as 

max
i i

c xx , and ic  is a positive constant. Conversely, if matrix C  has a positive 

dominant diagonal, the system becomes totally unstable.  

Proof: The first half is proven in Newman (1961, pp. 27-24). We can easily be led to the total 

instability results of the latter half from the fact that if a positive dominant diagonal is possessed, 

the inherent root of that matrix possesses a positive real part. ■ 

Because we are applying Lemma 4.1, let us pay attention to the fact that it is possible for the 

coefficient matrix to change into the form written below.  

1/(1 ) ( ) 1/(1 ) ( )g g g
                b I b I I .           (4.3) 

Theorem 4 The NMF becomes stable manifold when matrix 


b  is SSS-II, and if it is SSS-I, it 

becomes unstable manifold.  

                                                  
9 Matrix A has a negative (positive) dominant diagonal when positive vector nh  establishing sort of 

relationship below exists, and possesses negative (positive) diagonal elements. Refer to McKenzie (1959). 

                       
1

i ii j ii

j
j i

h a h a



   1, 2,....,i n . 
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Proof: Proving that matrix ( )g
     b I  has a negative dominant diagonal is sufficient.  

 The following is established based on the resource restrictions of the optimal steady state 

path.  

           0

    y b k b .                  (4.4) 

where 00 10 0( , ,...., )nb b b
   0b .  

Also, from an accumulation equation,  

        ( )g
   y I k                    (4.5) 

is established. 

Based on (4.4) and (4.5),  

0( )g
        b I k b                (4.6) 

is obtained. It can be understood that if matrix 


b  is SSS-II, 0 0 b  is established, and the 

matrices of the problem has a negative dominant diagonal. Therefore, because all the conditions 

of Lemma 5 are satisfied, lemma can be used to prove the asymptotic stability of the path of the 

facet. Thus, the NMF becomes stable manifold. Also, it can be understood that if matrix 


b  is 

SSS-I, 0 0 b  is established, and the matrices of the problem has a positive dominant 

diagonals. Once again, the NMF becomes stable manifold based on the second results of 

Lemma 5. ■ 

  It can be understood that based on Theorem 4 above, it is possible to generalize the 
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Theorem 1 obtained using the two-sector model as a multi-sector case. Because Theorem 2 is 

dependent upon Lemma 3.1, which is established only with respect to the two-sector model, it 

cannot be generalized.  

5.  Conclusion 

 In this text, we have used the results of the latest empirical analyses to formulate a 

hypothesis that each industrial sector possesses constant return technology, which we have used 

as the foundation to create a multi-sector model based on industrial divisions. Then we 

conducted a global analysis of its optimal path. Exogenous optimal growth models to which 

population growth rates have been applied as a postulate have become central to our analyses. 

However, this discussion has, without making hardly any revisions, indicated that it is possible 

to apply it to a Lucas-type endogenous optimal growth model that does not include primary 

factors, like labor. In this way, it can be understood that there is no major difference between the 

analyses of a Lucas-type endogenous growth model including human capital and a neoclassical 

multi-sector endogenous growth model. Please refer to Takahashi (2008) for a more detailed 

discussion.  

Addendum 

For readers’ convenience, the fundamental overall concepts and theorems used in the main 

text will be explained in this addendum; also, the important theorems of the main text will be 
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proven.  

A1.  In this text, as long as there is no objection, the vectors will express column vectors. The 

row vectors are expressed with the transposition symbol “t.” 

A2.  The definitions of the symbols that express the major and minor relationships between the 

vectors and matrices are shown below.  

(a) When x  expresses vectors and 0  expresses zero vectors,  

: 0ix x 0  is established for all i .  

    : 0ix x 0  is established for all i , and for a certain i , 0ix   is established.  

: 0ix x 0  is established for all i . 

(b)  When A  expresses arbitrary matrices, and 0  expresses zero matrices, 

: 0ija A 0  is established for all ( , )i j . 

: 0ija A 0  is established for all ( , )i j , and 0ija   is established for certain 

( , )i j . 

: 0ija A 0  is established for all ( , )i j . 

 When a square matrix A  is converted into the following matrix by P   

12

2

 
  
 

1T
B B

PAP
0 B

, 

it is referred to as a “decomposable matrix,” and when such a conversion is impossible, it is 

referred to as “indecomposable.”  Here, ,
1 2

B B  expresses a square matrix, and 0  expresses 
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a zero matrix.  

A4. Frobenius Theorem: if square matrix A 0  is indecomposable, the following is 

established.  

(i) The maximum characteristic root (Frobenius root) F  of A 0  exists, and it is 

both a simple root and a real number.  

(ii) ( )  1
I A 0  is established for F  .  

A5.  Proof of Lemma 1.2 : it is clear that the following relationship is established. 

1( ( ) ) ( ) ( )             I g a I ga I a I a . 

If the inverse matrix of the left hand side’s inverse matrix exists, the following is established.  

1
1 1 1[ ( ) ] ( ) ( )                I g a I a I ga I a . 

Based on Assumption 1.3, the first inverse matrix of the left hand side exists and positive. Based 

on Assumption1.3, the Frobenius theorem (refer to Addendum A4) is established, and the 

second term of the left hand side also becomes positive. Therefore, we have established that 

1
[ ( ) ]

    I g a 0 . Based on the steady state path and the market equilibrium conditions of 

the capital,  

( , ) ( ) ( , ) ( , )t t t
c c c
        y g a y 0  

or 

1( , ) [ ( ) ] ( , )t t
c c
      y I g a 0 , 
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are established. Therefore, if 0c
   is applied, then the ( )

 y 0  vector is unambiguously 

determined.  Since, based on the equilibrium conditions of the labor market,  

1

0 ( , ) [ ( ) ] ( , ) 1t t
c c

         0a y a I g a 0  

is established, 0c
   is also unambiguously determined. Now, let us have 

0
0

n

i ijj
k k
 


 

with respect to a certain i . This means that 0ijk
   is established for all j . This also means 

that in the investment matrices 0ija
   is established for all j . Therefore, it runs into 

contradiction to the fact that A  is an indecomposable matrix. Therefore, 0ik
   must be true 

for all i . Also, based on the accumulation equation, ( )
i i i

y g k
    is established. Therefore, 

0iy
   must also be established for all i . Therefore,


k 0 , 


y 0 , and 0c

   are 

obtained unambiguously. 

A6. Proof of Lemma 3.2: 
*

12V  is dependent upon intensity conditions, and takes positive and 

negative symbols. Now, let us suppose that
*

12
0V  . This same sort of proof will be possible for 

*

12
0V  . Because of 

*

12
0V  , there exists a  0  such that 

12
0V

   for [ ,1]  . Now let us 

define the OSS neighborhood as follows.  

( ) {( , ) : ( , ) ( , ) }N k x z x z k k
  

     

Here, it is possible to discover a neighborhood in which 12 0V
   is established for all 

corresponding ( )  -neighborhood points with respect to each [ ,1]  . That is, the following 

is established.  
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 12 ( )' limsup ( ) 0 : ( , ) 0 ( , ) ( )V x z for all x z N k


       . 

Here, limsup  is taken for all { }k


 for [ ,1]  . Then, by applying the neighborhood 

turnpike theorem, there exists 0   for ' 0  such that any optimal path is trapped in 

neighborhood ( )N k


 . Now by redefining that  { , }Max   , it is possible to apply Theorem 

3 of Benhabib and Nishimura (1985) to ( )N k


 , and the proof is completed.■  
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-Figure 1: Value-loss - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 

-Figure 2: Visit Lemma- 
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-Figure 3: Stable Manifold- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-Figure 4: von Neumann-McKenzie Facet- 
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-Figure 5: Derivation of NMF- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                          

-Figure 6: NMF- 
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