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Abstract
The purpose of this study is to test predictive performance of Asymmetric Normal Mixture 

Garch (NMAGARCH) and other Garch models based on Kupiec and Christoffersen tests for 

Turkish equity market. The empirical results show that the NMAGARCH perform better based 

on %99 CI out-of-sample forecasting Christoffersen test where Garch with normal and 

student-t distribution perform better based on %95 Cl out-of-sample forecasting 

Christoffersen test and Kupiec test. These results show that none of the model including 

NMAGARCH outperforms other models in all cases as trading position or confidence 

intervals and these results shows that volatility model should be chosen according to 

confidence interval and trading positions. Besides, NMAGARCH increases predictive 

performance for higher confidence internal as Basel requires.   

Key Words: Garch, Asymmetric Normal Mixture Garch, Kupiec Test, Christoffersen Test, 

Emerging markets

JEL Codes: C52, C32, G0

Özet
Bu çalışmanın amacı, Türk hisse senedi piyasası için Asimetrik Normal Karma Garch 
(NMAGARCH) ve diğer garch modellerinin öngörü performansını Kupiec ve Christoffersen 
geriye dönük testleri ile test etmektir. Ampirik bulgular %99 güven aralığı için örneklem dışı 
Christoffersen testine göre NMAGARCH modelinin,  %95 güven aralığı için örneklem dışı 
Christoffersen ve Kupiec testlerine göre normal ve student-t dağılımlı Garch modelinin diğer 
modellerden daha iyi sonuç verdiğini göstermektedir. Bu sonuçlar, NMAGARCH modeli de 
dâhil olmak üzere hiçbir modelin diğer modellere göre tüm posizyon ve güven aralıklarında 
daha iyi sonuç vermediğini göstermektedir ve bu bulgu volatilite modelinin ticaret posizyonu 
ve güven aralığına göre seçilmesi gerektiğini göstermektedir. Ayrıca, NMAGARCH modeli 
Basel’ında gerektirdiği şekilde yüksek güven aralığında öngörü performansını arttırmaktadır.  

Anahtar Kelimeler: Garch, Asimetrik Normal Karma Garch, Kupiec Testi, Christoffersen 

Testi, Gelişmekte Olan piyasalar 
JEL Sınıflaması: C52, C32, G0
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1. Introduction

Modeling return volatility of the financial instruments is a crucial task for risk management, 

trading and hedging strategies. Especially in the developing markets in which non-linear 

behaviors in stock returns and asymmetries in the return volatilities occur due to dynamic and 

chaotic financial environment, advanced financial modeling techniques are required for 

accurate and correct estimation of return volatility. 

In emerging markets, because of portfolio investments of hedge funds, low market volume 

and unstable political and economic conditions, the volatility in the returns of financial 

variables are relatively higher and shows an asymmetric character in that it increases in case 

of emergence of negative information. What is more, high volatility in the form of shocks 

causes regime switches, which are not easy to be estimated and modeled with static 

econometric models.   

In the finance literature, among many volatility models, the most successful models are seen 

as the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models by 

Bollerslev (1986), who generalizes the seminal idea on ARCH by Engle (1982), and their 

numerous generalizations that add asymmetries, long memory, or structural breaks. GARCH 

models are popular due to their ability to capture many of the typical stylized facts of 

financial time series, such as time-varying volatility, persistence and volatility clustering. 

Andersen and Bollerslev (1998) find that GARCH models do really provide good volatility 

forecasts, in particular when a good proxy for the latent volatility, such as the realized 

volatility, is adopted.  

In this paper, five main GARCH models are used to estimate the stock market volatility. In 

addition, each model is applied on the time series with different normality assumptions, 

mainly normal distribution, Student’s t distribution and skewed Student’s t distribution. In 

recent research, asymmetric normal mixture GARCH models have been used in volatility 

modeling. Research by Alexander and Lazar (2003, 2005, 2006) uses GARCH(1,1) models 

with normal mixture conditional densities having flexible individual variance processes and 

time-varying conditional higher moments.

The importance of using (asymmetric) normal mixture GARCH process lies in the fact that it 

can captures tails in the financial time series more properly. That is very important for 

modeling return volatility in the emerging financial markets where asymmetric high volatility 

observed during financial shocks. The emerging markets are open to internal or external 

shocks observed due to hot money movements, low trade volume, thin trading and instability. 

Markov regime switching models are used to capture the effects of the sudden shocks in the 

emerging markets. The normal mixture GARCH models are similar to Markov switching 

models and easier for use as it will be explained in the methodology part. This paper tries to 

estimate the return volatility in the Istanbul Stock Exchange by using five GARCH models 

including the normal mixture GARCH models with tree different normality distributions. The 

aim of this research is to examine if the normal mixture GARCH models produce more 

accurate results and are able to capture shocks as long memory processes.       

The paper is constructed as follows. In the next part, a literature review on the predictive 

performance in return volatility in financial markets is presented. The test results in the 

literature with different markets and sample periods are compared. In the third part, the 

methodologies of the GARCH models and different normality distributions are introduced. 
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The importance is given on the methodology of asymmetric normal mixture GARCH model 

introduced by Alexander and Lazar (2003, 2005). After presenting the descriptive statistics of 

the data, empirical tests and Kupiec and Christoffersen back-tests are implemented. The 

predictive performances of the fifteen GARCH models in-sample and out-of-sample 

forecasting results are compared. The paper ends with suggestions for risk management and 

trading functions for their Value-at-Risk calculations and future financial research conducted 

in the transitory economics.

2. Literature Review

Early empirical evidence has shown that a high ARCH order should be used to capture the 

dynamics of the conditional variance. The Generalized ARCH (GARCH) process constructed 

by Bollerslev (1986) solves the problem in the ARCH model. The GARCH model is based on 

an infinite ARCH specification and reduces the number of estimated parameters by imposing 

non-linear restrictions on them. 

The GARCH models are extended under different motivation and assumption by researchers. 

The alternative models are EGARCH (Nelson, 1991), GJR (Glosten, Jagannathan, and 

Runkle, 1993), APARCH (Ding, Granger, and Engle, 1993), IGARCH (Engle and Bollerslev, 

1986), FIGARCH (Baillie, Bollerslev, and Mikkelsen, 1996 and Chung, 1999), FIEGARCH 

(Bollerslev and Mikkelsen, 1996), FIAPARCH (Tse, 1998) and HYGRACH (Davidson,

2001). Ackert and Racine (1999), Darrat and Benkato (2003) and Puttonen (1995) use 

different GARCH models with different markets and time periods and conclude that the 

GARCH models are successful to model the volatility in the stock returns. As a long memory 

process, the normal mixture GARCH model captures shocks effects in the time series is used 

by Alexander and Lazar (2005, 2006). 

The GARCH models are used with different assumptions on normality distributions. 

Bollerslev and Wooldridge (1992) shows that under the normality assumption, the quasi 

maximum likelihood estimator is consistent if the conditional mean and the conditional 

variance are correctly specified. This estimator is, however, inefficient with the degree of 

inefficiency increasing with the degree of departure from normality. Since the issue of fat-

tails is crucial in empirical finance, using a more appropriate distribution might reduce the 

excess kurtosis displayed by the residuals of conditional heteroscedasticity models. Palm 

(1996), Pagan (1996) and Bollerslev, Chou, and Kroner (1992) use fat-tailed distributions in 

the literature. Bollerslev (1987), Hsieh (1989), Baillie and Bollerslev (1989) and Palm and 

Vlaar (1997) show that these distributions perform better in capturing the higher observed 

kurtosis.

The importance of skewness is explained in many researches. In a recent study, Christoffersen 

and Jacobs (2004) show that a simple asymmetric GARCH, that captures the leverage effect, 

performs best of all GARCH model considered. Bekaert and Wu (2000) and Wu (2001)

display the fact that the ‘leverage effect’ in stocks determines a strong negative correlation 

between returns and volatility, which is the most important reason for skewness in stock 

returns. Christoffersen, Heston and Jacobs (2004), Bates (1991) focus on the connection 

between time-variability in the physical conditional skewness and the empirical 

characteristics of option implied volatility skews.

The difference between the physical and risk neutral skews is among the recent issues in 

financial research. Bates (2003) states that the difference between the risk-neutral and 
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observed distributions cannot be explained unless the existence of a time-varying volatility 

risk premium is considered. Bates (2003) conducts the research based on real-world models 

with a single volatility component. However, Haas, Mittnik and Paolella (2004) and 

Alexander and Lazar (2005) show that GARCH models with time-varying volatility provide a 

better fit to the physical conditional densities than GARCH specifications with only one 

volatility state. The conditional higher moments endogenously determined are timevarying in 

those models. Therefore, their implied volatility skews exhibit the features of risk neutral 

index skews. 

Non-normalities in conditional and unconditional returns is higher than that can be captured 

by GARCH(1,1) models with normally distributed errors. Bollerslev (1987) constructs 

GARCH(1,1) model with Student-t distribution. Fernandez and Steel (1998) extend the model 

to the skewed t-distribution. These t-GARCH models have no time-variation in the 

conditional higher moments. On the other hand, Haas, Mittnik and Paolella (2004) and 

Alexander and Lazar (2006) in their recent researches conduct GARCH(1,1) models with 

normal mixture conditional densities. The normal mixture GARCH models are flexible in 

individual variance processes and have time-varying conditional higher moments. Alexander 

and Lazar (2006) show that if the model has more than two variance components, biases in 

parameter estimates are likely to result, and the estimated conditional skewness and excess 

kurtosis can be unstable over time. For modelling major exchange rate time-series, they find 

that the mixture of two GARCH(1,1) components models outperform both symmetric and 

asymmetric t-GARCH models and normal mixture GARCH(1,1) models with more than two 

components. 

For stock market returns volatility, there are certain discrete time-varying models in the 

literature based on asymmetric GARCH models Engle and Ng (1993), Glosten, Jagahannathan, 

and Runkle (1993) Nelson (1991) show that the models capture only one source of skewness, 

namely, the leverage effect. Additional structure is needed to capture the empirical 

observations about the nature of skewness in the risk-neutral equity index skew. This paper 

deals with the problem by using asymmetric normal mixture GARCH model with reality 

check.  

3. Methodology

Reliable forecasting of return volatility in the financial markets is crucial for trading, risk 

management and derivative pricing. Return volatility is affected by time dependent 

information flows resulting in pronounced temporal volatility clustering. Therefore, financial 

time series should be parameterized with Autoregressive Conditional Heteroskedastic 

(ARCH) models modeling a time-turn varying conditional variance as a linear function of 

past squared residuals and of its past values. In other words, ARCH models are used to 

forecast conditional variances in that the variance of the dependent variable is modeled as a 

function of past values of the dependent variable or exogenous variables. ARCH models are 

constructed by Engle (1982) and generalized as GARCH (Generalized ARCH) by Bollerslev 

(1986) and Taylor (1986). 

Different GARCH models are used to estimate the return volatility of financial instruments. 

EGARCH (Nelson, 1991), GJR (Glosten, Jagannathan and Runkle; 1993), APARCH (Ding, 

Granger and Engle; 1993), IGARCH (Engle and Bollerslev; 1986), FIGARCH (Chung, 

1999), FIEGARCH (Bollerslev and Mikkelsen, 1996), FIAPARCH (Tse, 1998) and 

HYGARCH (Davidson, 2001) are the most known extensions and/or revisions of the ARCH 
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model. The researches show that GARCH models can provide good in-sample parameter 

estimates and, when the appropriate volatility measure is used, reliable out-of-sample 

volatility forecasts. Recently the asymmetric normal mixture GARCH model has been used to 

capture asymmetric volatility in the returns. This paper tests the predictive performance of 

different GARCH models with normal, Student’s t and skewed Student’s t distributions of the 

error terms. Following fifteen models are constructed and compared for estimating return 

volatility in the Istanbul Stock Exchange. 

i) GARCH with normally distributed errors

ii) GARCH with symmetric Student’s t distributed errors

iii) GARCH with skewed Student’s t distributed errors

iv) GRJ with normally distributed errors

v) GRJ with symmetric Student’s t distributed errors

vi) GRJ with skewed Student’s t distributed errors

vii) FIGARCH with normally distributed errors  

viii) FIGARCH with symmetric Student’s t distributed errors

ix) FIGARCH with skewed Student’s t distributed errors

x) HYGARCH with normally distributed errors 

xi) HYGARCH with symmetric Student’s t distributed errors

xii) HYGARCH with skewed Student’s t distributed errors

xiii) NM-AGARCH with normally distributed errors

xiv) NM-AGARCH with symmetric Student’s t distributed errors

xv) NM-AGARCH with skewed Student’s t distributed errors

In a static linear model ( iiiy   ), the error term ( i ) is accepted as a random 

variable with normal distribution and constant variance denoted in the Eq. 1. 

222 )()0(   ii EE     (1)

Engle (1982) constructs Autoregressive Conditional Heteroscedasticity (ARCH) model to 

explicit the time-varying variance. 





q

i

tiit L
1

222 )(          (2)

In the Eq. 2, i  is the conditional variance of t  and varies on time. The model has restriction 

that the sum of i >0 and   should be 1. In order to reach for estimations with negative 

variance Bollerslev (1986) constructs Generalized ARCH (GARCH). The GARCH Model 

includes the effects of both the linear variance and conditional variance of the past.  

 
 

 
n

t

n

t

ttt

2 2

2

11

2

110

2            (3)

The volatility in the returns increases more than the expected with the negative information if 

there is asymmetry in the time series. The first GARCH model capturing the asymmetry in the 

volatility is Exponential GARCH constructed by Nelson (1991).  

11

2/1

111 )/()1()(   tttt InufLIn                        (4) 
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In the model, the parameters are positive since the logarithmic values of the conditional 

variance are employed. The Eq. 5 adds the asymmetric characteristic in the model. While “ ” 

determines the sign of the error term affecting the conditional variance “ ”states the size 

effect. If there is asymmetry in the time series,   should be less than zero. 

Gloslen, Jagannathan and Runkle (1993), and Zakoian(1994) state that asymmetry in the 

return volatility can be modeled by adding a dummy variable into GARCH model. GJR 

(Threshold GARCH) model is shown on Eq. 6. 

111

2

1

2

110 1   ttttt Iuu              (6)

In the model, if ut-1 higher than zero, It-1 is equal to 1, otherwise, equal to zero. ARCH 

parameters in the conditional variance vary between 1 + 1  and 1  in accordance with the 

sign of the error term. The positive news are affected on the 1  while the negative news do 

1  and 1 . If 1  is higher than 1, it is accepted that there is asymmetry effect while 1  is 

equal to zero, on the other hand, the news impact curve is symmetric. 

ARCH, GARCH and asymmetric GARCH models do not take into consideration the 

stationary of the conditional variance in the error terms. In the GARCH (1,1) model, if 

1 + 1 <1; ut is static. The stationary of the conditional variance depends also Alpha and Beta 

parameters. In the GARCH(p,q) model, if p,.....1 + 1,....,q <1, in case of a shock, its effect 

changes the conditional variance in time known as decay factor. When p,.....1 + 1,....,q =1, the 

conditional variance behaves like a unit root process and enables the shock effect to change 

the conditional variance. Therefore, GARCH (p,q) model has the restriction of 

p,.....1 + 1,....,q <1  (Harris ve Sollis, 2003).

In time series with high frequency, the sum of the Alpha and Beta parameters for the 

conditional variance estimated by GARCH (p,q) model is near or equal to 1 meaning that the 

volatility effects of the last observations in dataset increase. The same situation is valid for 

mean equation, as well. When sum of all AR and MA parameters is equal to 1, ARIMA 

process is expected (Laurent and Peters, 2002). The GARCH (p,q) process can be modeled as 

an ARMA process and written as on the Eq. 7 by using lag operator. 

[1- (L)-  (L)] 2

t =  +[1-  (L)]( 2

t - 2

t )                (7)

The [1- (L)-  (L)] function has a unit root, the sum of Alpha and Beta parameters is 1 and 

gives Integrated GARCH model of Engle and Bollerslev (1986). IGARCH model is denoted 

in the Eq. 8 (Laurent and Peters 2001).

 (L)(1-L) 2

t =  +[1-  (L)]( 2

t - 2

t )                     (8)

When the IGARCH process is modeled as a conditional variance of the squared error terms, it 

can be written in GARCH formulation as in Eq. 9. 
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In the time series, if the fractional difference of yt has a static process, yt is in the fractional 

integration. In the (1-L)
d 

 = yt  = t  equation, if d equals to 0, yt  is static and its 

autocorrelations are zero. If d is 1, on the other hand, yt has unit root with zero frequency. In 

case of 0<d<1, the autocorrelations of yt slowly reaches into zero. For that reason, the 

fractionally integrated models are seen as the models including long memory (Harris and 

Sollis, 2003). The models with long memory requires in case of high volatility and shocks.

Baillie, Bollerslev and Mikkelsen (1996) constructed Fractionally Integrated GARCH 

(FIGARCH) model by replacing the lag operator with (1-L)
d
 in the IGARCH model. 

FIGARCH-BBM is represented in the Eq. 10. 

 (L)(1-L)
d
( 2

t - 2

t )=[1-  (L)]( 2

t - 2

t ) 2

t                   (10)   

   

The conditional variance in the FIGARCH (BBM) model is caculated by Eq. 11 where 

 *=[1-  (L) ]
-1

 ,  (L)={1-[1-  (L) ]
-1 (L)(1-L)

d
} 2

t , 0<d<1, and 2

t = *+ (L) 

2

t = [1-  (L) ]
-1

+{1-[1-  (L) ]
-1   (L)(1-L)

d
} 2

t                     (11)

Chung (1999) modifies the FIGARCH (BBM) model as it is in the Eq. 12 since   has 

theoretical problem and difficulties in the modelling in the practice. 

2

t = 2

1t +{[1-  (L) ]
-1 (L)(1-L)

d
}( 2

t - 2

1t )     (12)

In this article, FIGARCH model suggested by Chung (1999) is tested. 

Anther integrated model developed by Davidson (2002) as a special version of FIGARCH is 

Hyperbolic GARCH. Davidson (2002) uses near epoch dependency in order to reach long-

term memory (Saltoglu, 2003). HYGARCH model can be written in the Eq. 13 (Laurent and 

Peters, 2002). 

2

t = [1-  (L) ]
-1

+{1-[1-  (L) ]
-1   (L){1+ [(1-L)

d
]}                 (13)  

Recently, normal mixture GARCH (NM-GARCH) models have been started to use in 

detecting the shocks and long-term memory in the returns of the financial instruments. 

According to Alexander and Lazar (2005), NM-GARCH model can be seen as the Markov 

switching GARCH model in a restricted form where the transition probabilities are 

independent of the past state. They argue that the NM-GARCH models are easier to estimate 

than the Markov switching model constructed by Hamilton and Susmel (1994). What is more, 

in the NM-GARCH models, the individual variances are only tied with each other through 

their dependence on the error term.  

The methodologies of the NM GARCH models are constructed and formulized by Alexander 

and Lazar (2005). We follow Alexander and Lazar (2005) in presenting the models
*
. 

                                                
*
 We present our thanks to Emeze Lazar for her help in supplying her original article and suggestions. 
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The asymmetric normal mixture GARCH model has one equation for the mean and K 

conditional variance components representing different market conditions. The error term has 

a conditional normal mixture density with zero mean as a weighted average of K normal 

density functions with different means and variances. 

),,......,,,.....,,,.....,(~ 22

1111 KttKKtt ppNMI       



K

i

ip
1

,1     



K

i

iip
1

1   (14)

From the Eq. 14, the conditional density of the error term is derived as 





K

i

iit p
1

)(                (15)

where   is normal density functions with different constant means µi and different time 

varying variances 2

it  for i = 1,…, K.

In the model, it is assumed that K variances follow normal mixture GARCH processes. The 

NM-GARCH is represented in the Eq. 16. 

2

1

2

10

2

  ititiit        for i=1,....,K     (16)

NM-AGARCH based on the Engle and Ng, (1993) model is in Eq. 17. 

2

1

22

10

2 )(   itiitiit  for i=1,....,K     (17)

NM-GJR GARCH based on Glosten et al, (1993) is given by Eq. 18. 

2

1

2

11

2

10

2



  itittitiit d    for i=1,....,K;               (18)

where 
td =1 if t <0, and 0 otherwise. 

For both models, the overall conditional variance is





K

i

ii

K

i

itit pp
1

2

1

22                (19)

When K is bigger than 1, the existence of second, third and fourth moments are assured by 

imposing less stringent conditions than in the single component in which K is equal to 1. 

For asymmetric NM-GARCH models, the conditions for the non-negativity of variance and 

the finiteness of the third moment are represented in the Eq. 20. 

0< ip <1,   i=1,....,K-1,     




1

1

K

i

ip <1,   0< i ,  10  i   (20)

   

In the NM-GARCH Model, we should have Eq. 21. 
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and 0
n

m
ii 

For the NM-AGARCH model, the Eq. 22 is valid.
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and 0( 2  iii
n

m 

and for the NM-GRJ GARCH Model, we should have Eq. 23. 
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  (23)

and 0)5.0( 
n

m
ii 

According to Alexander and Lazar (2005), both models have persistent asymmetry, when the 

conditional returns density is a mixture of normal density components having different means; 

it is generated by the difference between the expected returns under different market 

conditions. However, only the NM-AGARCH and NM-GRJ GARCH models have dynamic 

asymmetry emerging when the i  parameters in the component variance processes capture 

time-varying short-term asymmetries arising from the leverage effect. If i  is positive, the 

conditional variance is higher following a negative unexpected return at time t – 1 than 

following a positive unexpected return. In the markets, since negative news corresponds to a 

negative unexpected return, positive i  should be expected. 

One of the assumptions in linear equation is to estimate the variance with normal distribution. 

The log-likelihood function of the standard normal distribution is given by Eq. 24(Peters, 

2001) where T is the number of observations. In normal distribution, skewness and kurtosis 

take the value of (0, 3). 

 



T

T

ttT zInInL
1

22 )()2(
2

1    (24)

Starting with Bollerslev(1987) and Hsieh(1989), Baillie and Bollerslev(1989) and Palm and 

Vlaar(1997) show that fat-tailed distributions like Student-t perform better to capture higher 

observed kurtosis. The log-likelihood function of the sdudent-t distribution is given by Eq. 25 

(Saltoglu, 2003). Like normal distribution, student-t distribution is also a symmetric.
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The main drawback of these two distributions is that although student-t may account for fat 

tails, they are symmetric. Recently, Lambert ve Laurent (2001) applied skewed student-t 

distribution that is proposed by Fernandez ve Steel (1998) in Value at risk estimation 

(Peters,2001). 

The main advantage of this density is that it considers both asymmetry and fat-tailed-

ness(Saltoglu, 2003). If  (.) denotes the gamma function in the log-likelihood of a 

standardized skewed student-t is given by Eq. 26(Peters, 2001). 
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Forecasting ability of Garch Models has been determined by squared daily returns, RMSE or 

absolute failure rate that is offered by Basle Committee on Banking Supervision (1996a, 

1996b). The Basel backtesting is based on recording daily exceptions as comparing one year 

of Profit&Loss to a %99 one tail confidence 1 day value at risk with an exception whenever 

Profit&Loss<-value at risk. Since Basel backtesting procedure do not consider failure rate in 

shock positions we do not test models with this test. In order to compare asymmetric mixture 

Garch and other Garch models we use two widely used back testing procedures, Kupiec and 

Christoffersen test. 

In Kupiec test, define f  as the ratio of the number of observations exceeding Var(x) to the 

number of total observation (T) and pre-specified VaR level as   (Tang and Shieh, 2006). 

The statistic of Kupiec LR test is given by Eq. 27 (Kupiec, 1995). LR is distributed as chi-

square distribution.  

   xTxxTx ffLR   )1(log)1(log2    (27)

The VaRs of  quantile for long and short trading position are computed as in Equation 28, 

29 and 30 for normal, student-t and skewed student-t respectively(Tang and Shieh, 2006). 

^^

ttlong zVAR   ,   
^^

ttshort zVAR     (28)

^

,

^

ttlong stVAR   ,   
^

,

^

ttshort stVAR     (29)
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^

,,

^

ttlong skstVAR   ,   
^

,,

^

ttshort stVAR     (30)

Where z ,  ,st  and  ,,skst are left or right tail quantile at  % for normal, student-t and 

skewed student-t distributions respectively. 

Christoffersen test (Christoffersen, 1998) focuses on the probability of failure rate and is 

based on testing whether pvr tt  )Pr( after conditioning on all information available at 

time t (Sarma et all, 2001). The importance of testing conditional coverage arises with 

volatility clustering in financial time series. 

Christoffersen test can be applied as follows (Saltoglu, 2003). Define 

))(Pr( 
tt VaRyp   to test  pH :0  against  pH :1 .  Consider 

 )((1 VaRyt   which has a binomial likelihood 10 )()1()(
nn

pppL   .

where  


T

Rt tt VaRyn ))((10  and  


T

Rt tt VaRyn ))((11  . 

Under the null hypothesis, it becomes 10)1()(
nn

L   . Thus the likelihood ratio test 

statistics is in Eq. 31.

)1())(/))((2
^

  dpLLInLR   (31)

We estimate VaR with  =0.01 and  =0.05 confidence interval and backtest VaR models 

with Kupiec in-sample and out-of-sample forecasting and Christoffersen in-sample and out-

of-sample forecasting test. We chose %99 C.I. as Basel II requires %99 C.I. and %95 C.I. to 

compare VaR results with different C.I. level.

4. Data and Empirical Results 

Data 

Istanbul Stock Exchange Rate (ISE-100 Index) is from Bloomberg. Our dataset covers 2412 

daily observations from 01/10/1996 to 11/07/2006. We constituted the series in log-

differenced level. Figure 1 shows ISE Index in log-differenced series. By performing 

Augmented Dickey–Fuller (Dickey and Fuller, 1981) test we found that ISE Index is 

stationary at log differenced level (as Augmented Dickey-Fuller test of I(1)                        

with  0 lags  is equal to -48.2929 {<%1}). The estimation process is run using 10 years of data 

(1996-2005) while the remaining 5 year (252*5 days) is used for out-of-sample forecasting. 
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Fig. 1. ISE Log-differenced series

Empirical Results 

In this subsection, we report estimation and Kupiec and Christoffersen tests results for 

Asymmetric Normal Mixture Garch and other Garch Models and detailed in Methodology 

section. We used Ox programming language (see Doornik, 1999) and parameters are 

estimated using Quasi Maximum Likelihood technique (Bollerslev and Woolridge, 1992) and 

BFGS quasi-Newton method optimization algorithm used. Estimation of Asymmetric Normal 

Mixture Garch is performed with modified version
‡
 of Alexander and Lazar(2006) codes and 

other Garch models is carried out with G@rch 3.0 (Laurent and Peters, 2002).

Table 1 and Table 2 shows Garch, GRJ, FIGARCH and HYGARCH estimation results with 

normal, student-t and skewed student-t distributions.   and 
1  parameters for all of the 

models statistically significant. Student parameters ( v ) are statistically significant for all the 

Garch models and thus shows that time series is fat tailed. For the skewed student-t 

distribution, the asymmetric parameters ( ) are negative and statistically significant for all 

Garch models. Thus show that the density distribution of ISE skewed to to left.  

Table 1.  Estimation Results from GARCH(1,1) and GRJ(1,1) 

Garch Garch-t
Garch-
Skew GJR GJR-t

GJR-
Skew

 0.139**

(4.52)

0.169**

(3.554)

0.181**

(3.62)

0.151**

(4.74)

0.197**

(3.827)

0.204**

(3.850)
 0.110**

(12.26)

0.109**

(7.48)

0.115**

(7.49)

0.099**

(10.43)

0.088**

(5.815)

0.0936**

(5.842)

1 0.880**

(98.00)

0.876**

(59.21)

0.871**

(56.45)

0.876**

(95.54)

0.867**

(55.65)

0.8650**

(53.90)

v -Student t - 6.560**

(7.88)

- - 6.490**

(8.032)

-

 -Skewness - - -0.056*

(-2.05)

- - -0.0479*

(-1.736)

v -Skewness - - 6.508**

(7.62)

- - 6.4409**

(7.779)

1 -GJR - - - 0.0302**

(2.50)

6.490**

(8.032)

0.0559**

(2.468)

Volatility 0.0400219 0.0352803 0.0368966 0.0251961 0.0214036 0.0222843

LogLike 5245.17 5302.81 5304.89 5247.10 5306.9241 5308.3969

AIC -4.375 -4.423 -4.423 -4.376 -4.425 -4.42604

                                                
‡

The codes for Asymmetric Normal Mixture Garch in this paper are available upon request. 
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Table 2. Estimation Results from FIGARCH(1,d,1) and HYGARCH(1,d,1)

Figarch
Chung

Figarch
Chung-t

Figarch
Chung-

Skew Hygarch Hygarch-t
Hygarch-

Skew
 8.638**

(4.106)

8.346**

(2.637)

9.051**

(2.676)

1.081**

(2.623)

1.5037*

(2.48)

1.5628**

(2.586)
 0.2948**

(4.468)

0.2734*

(2.12)

0.2726**

(2.09)

-0.5278

(-1.42)

-0.646*

(-1.740)

-0.6725*

(-1.959)

1 0.5216**

(7.596)

0.466**

(3.33)

0.4630**

(3.26)

-0.4924

(-1.27)

-0.610

(-1.550)

-0.6379

(-1.746)*

v -Student t - 6.985**

(8.00)

- - 7.070**

(7.52)

-

 -Skewness - - -0.0631*

(-2.25)

- - -0.061**

(-2.19)

v -Skewness - - 6.988**

(7.714)

- - 7.021**

(7.257)

d Figarch 0.3958**

(10.66)

0.3679**

(6.56)

0.3698**

(6.64)

0.0403

(0.969)

0.0654

(0.982)

0.0703

(1.073)

Hygarch  In( ) - - - 1.5988*

(1.71)

1.138

(1.314)

1.0852

(1.383)

Volatlity 0.068605 0.0566118 0.0585214 0.007316 0.008161 0.008224

LogLike 5264.35 5316.50 5319.08 5267.16 5317.44 5319.8413

AIC -4.390 -4.433 -4.43496 -4.39246 -4.43359 -4.43476

Estimated long memory parameter of d for Figarch and hyperbolic parameter of In( ) for 

HyGarch are statistically significant (Table 2). 

As reported in Table 3,  ,  , 
1 and  normal mixture  (Gamma) parameter statistically 

significant for all of the Asymmetric Normal Mixture Models. Besides student-t and skewed 

student-t parameters v -Student t,  -Skewness and v -Skewness are also statistically 

significant. These results shows that Asymmetric Normal Mixture Garch models may perform 

better and this hypothesis can be tested with backtesting procedures such as Kupiec and 

Christoffersen tests.  

Table 3.  Estimation Results from NORMAL MIXTURE-AGARCH(1,1) 
NM-AGARCH NM-AGARCH-t NM-AGARCH-Skew

 0.155711**

(4.822)

0.190152 **

(3.661)

0.199841 **

(3.732)
 0.116320 **

(12.26)

0.119105 **

(7.554)

0.122624 **

(7.542)

1 0.873762 **

(92.82)

0.863852 **

(54.26)

0.861064**

(52.75)

v -Student t - 6.469056 **

(8.071)

-

 -Skewness - - -0.047852 *

(-1.734)

v -Skewness - - 6.420465 **

(7.820)

 -Normal 

Mixture

0.002845 **

(2.743)

0.005639 **

(3.052)

0.005237 **

(2.825)

Volatility 0.0408031 0.036578 0.0378326

LogLike 5247.2477 5307.6638 5309.1297

AIC -4.37667 -4.42626 -4.42665
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Table 4 shows Root Mean Squared Errors(RMSE), Mean Squared Errors(MSE), information 

criteria test and Nyblom test(Nyblom, 1994) results.  Nyblom tests statistics shows that all of 

the models’ parameters are stable. 

Table 4. Forecast Evaluation Measures* 
Method MSE RMSE Akaike Q2(10)** Nyblom test
Garch-Normal 4.16e-007 0.000645 -4.268528 17.639   

[0.0241018 ]

1.76915

Garch-t 4.165e-007 0.0006454 -4.317390 17.7709   

[0.0230116 ]

2.12799

Garch-Skew 4.169e-007 0.0006457 -4.317207 17.437   

[0.0258668 ]

2.50175

GRJ-Normal 4.168e-007 0.0006456 -4.269172 15.9615   

[0.042934 ]

2.0413

GRJ-t 4.192e-007 0.0006475 -4.320163 14.832   

[0.0624966 ]

2.56872

GRJ-Skew 4.195e-007 0.0006477 -4.319635 14.7126   

[0.0649816 ]

2.9462

Figarch-Normal 4.14e-007 0.0006434 -4.282631 18.8561   

[0.0156486 ]

0.974128

Figarch-t 4.147e-007 0.000644 -4.327248 19.8371   

[0.0109701 ]

1.04441

Figarch-Skew 4.151e-007 0.0006443 -4.327241 19.9293   

[0.0106068 ]

1.31536

Hygarch-Normal 4.165e-007 0.0006454 -4.284598 16.6122   

[0.0344101 ]

1.27277

Hygarch-t 4.175e-007 0.0006461 -4.327595 17.1764   

[0.0283242 ]

1.18444

Hygarch-Skew 4.176e-007 0.0006462 -4.327535 17.1236   

[0.0288478 ]

1.46686

NMAGARCH-N. 5.239e-007 0.0007238 -4.268447 16.9429   

[0.0307096 ]

1.98177

NMAGARCH –t 5.240e-007 0.0007301 -4.319692 16.5072   

[0.0356698 ]

2.62355

NMAGARCH-Skew 5.239e-007 0.0007238 -4.319203 16.3212   

[0.0380071 ]

2.99794

* 1 day ahead out-of-sample forecasting based on 252 days evaluation. 

** Q-Statistics on Squared Standardized Residuals
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15

As reported in Çifter (2004), RMSE or MSE may not be adequate backtesting test as these 

tests do not consider tail probability and overshooting effects. This can be seen in Figure 2 as 

RMSE is maximum for NMGARCH models where Akaike criteria tests are not maximum for 

NMGARCH models. Kupiec and Christoffersen tests can be more consistent to compare 

Garch models.

We compared VaR models with Kupiec test for long and short trading positions. We define a 

failure rate for long trading position as percentage of negative returns smaller than one-step 

ahead VaR for long position (left tail of the density distribution of the returns) and a failure 

rate as the percentage of positive returns larger than one-step ahead VaR for short position 

(right tail of the density distribution of the returns).

The empirical results based on Kupiec in-sample forecasting test are summarized in Table 5

and Figure 3. The table contains Kupiec failure rates for short and long position VaR. Number 

of in-sample-forecasting is 15 days and confidence interval(C.I.) is chosen as with  =0.01 

and  =0.05. Table 5 can be read as follow. If the model is estimated accurately, it should 

explain the actual observations very well. The failure rate should be equal to the pre-specified 

VaR level, and Kupiec LR test would not reject its null hypothesis as failure rate equals to 

 (Tang and Shieh, 2006). 

In sample VaR results for long and short trading positions are reported in Table 5. The 

empirical results of Kupiec in-sample forecasting test shows that NMAGARCH with 

Gaussian distribution for short position and Figarch(1,d,1) with skewed student-t distribution 

performs better for  =0.05 where NMAGARCH  with student-t for short position and GRJ 

with student-t and Hygarch with skewed student-t distribution for long position performs 

better for  =0.01. These results show that none of the model outperforms other models based 

on Kupiec in-sample forecasting. 

Since in-sample forecasting estimates VaR with only know the past performance, out-of-

sample forecasting is more consistent. Our out-of-sample forecast evaluation uses one step 

ahead prediction for 2525 days forecast sample. Out of sample VaR results for long and 

short trading positions are reported in Table 6 and Figure 4. The empirical results of Kupiec 

out-of-sample forecasting test shows that Figarch(1,d,1) with skewed student-t distribution 

and Hygarch(1,d,1) with skewed student-t distribution for short position and Hygarch(1,d,1) 

with student-t distribution performs better for  =0.05 where NMAGARCH  with Gaussian 

distribution for short position and GRJ with Gaussian distribution and NMAGARCH  with 

Gaussian distribution for long position performs better for  =0.01. The empirical evidence is 

in favor of the Figarch with skewed student-t, Hygarch with skewed student-t, GRJ with 

Gaussian, GRJ with student-t and NMAGARCH with Gaussian distribution based on Kupiec 

in-sample and out-of-sample forecasting. 

Christoffersen test VaR results for in-sample and out-of-sample forecasting are reported in 

Table 7 and Figure 5. The empirical results in-of-sample forecasting results shows that NM-

AGARCH with Gaussian distribution for  =0.05 and FIGARCH(1,d,1) with Gaussian 

distribution for  =0.01 perfoms better where out-of-sample forecasting results show that 

GARCH(1,1) with Gaussian distribution for  =0.05 and NMAGARCH  with student-t for 

 =0.01  performs better. 

Empirical results based on Kupiec and Christoffersen tests show that volatility model should 

be chosen in accordance with confidence interval and trading positions. However, 
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NMAGARCH model has better predictive performance for higher confidence interval. The 

Basel II Accord requires accurate volatility model, which is statistically significant at 99 % 

confidence level. 

Figure 6 shows out-of-sample estimation for GARCH and NM-AGARCH with gaussian and 

skewed student-t distribution. NM-AGARCH captures fat-tailed behavior of the data(shocks) 

better than GARCH.

Table 5.  In-Sample-Forecasting Kupiec Test 

In Sample Forecasting %95 Confidence Intervalδ

VaR for Short position VaR for Long position

Failure 
Rate

Kupiec
LR p-value

Failure 
Rate

Kupiec
LR p-value

Garch-Normal 0.94894 0.02651 0.87066 0.043134 1.1801 0.27734

Garch-t 0.94366 0.92453 0.33629 0.046655 0.27346 0.60102

Garch-Skew 0.94190 1.4943 0.22155 0.044014 0.89142 0.34509

GRJ-Normal 0.94630 0.31955 0.57188 0.039613 2.7699 0.09605**

GRJ-t 0.94190 1.4943 0.22155 0.040493 2.3054 0.12893*

GRJ-Skew 0.94014 2.1927 0.13866* 0.038732 3.2807 0.07009**

Figarch-Normal 0.94718 0.18649 0.66586 0.046655 0.27346 0.60102

Figarch-t 0.93662 3.9618 0.04654** 0.047535 0.14761 0.70083

FigarchSkew 0.93926 2.5891 0.10760* 0.048415 0.060655 0.80546
Hygarch-Normal 0.94718 0.18649 0.66586 0.046655 0.27346 0.60102

Hygarch-t 0.94454 0.68909 0.4064 0.047535 0.14761 0.70083

Hygarch-Skew 0.94102 1.8277 0.17640 0.045775 0.43889 0.50766

NMAGARCH-No. 0.95033 0.0056353 0.94016 0.037980 7.9194 0.004890*

NMAGARCH –t 0.94783 0.23440 0.62828 0.041319 4.0301 0.04469**

NMAGARCH-Skew 0.94491 1.2678 0.26019 0.038815 6.8146 0.00904**

In Sample Forecasting %99 Confidence Intervalδ

VaR for Short position VaR for Long position

Failure 
Rate

Kupiec
LR p-value

Failure 
Rate

Kupiec
LR p-value

Garch-Normal 0.98680 1.0703 0.30087 0.017606 5.4119 0.02000**

Garch-t 0.99032 0.011646 0.91406 0.010563 0.035762 0.85001

Garch-Skew 0.98856 0.22852 0.63263 0.010563 0.035762 0.85001

GRJ-Normal 0.98504 2.4542 0.11721* 0.018486 6.6087 0.01014**

GRJ-t 0.99120 0.17138 0.67889 0.0096831 0.011646 0.91406
GRJ-Skew 0.99120 0.17138 0.67889 0.0079225 0.53322 0.46526

Figarch-Normal 0.98327 4.3170 0.03773** 0.018486 6.6087 0.01014**

Figarch-t 0.98944 0.035762 0.85001 0.010563 0.035762 0.85001

Figarch-Skew 0.98856 0.22852 0.63263 0.011444 0.22852 0.63263

Hygarch-Normal 0.98327 4.3170 0.03773** 0.017606 5.4119 0.02000**

Hygarch-t 0.99120 0.17138 0.67889 0.011444 0.22852 0.63263

Hygarch-Skew 0.98944 0.035762 0.85001 0.0096831 0.011646 0.91406
NMAGARCH-No. 0.98539 4.4988 0.03391** 0.013356 2.4657 0.11636

NMAGARCH -t 0.98998 6.7415e-5 0.99345 0.0095993 0.039377 0.84270

NMAGARCH-Skew 0.98790 1.0035 0.31647 0.0087646 0.38543 0.53471

*, ** are %5 and %10 confidence level respectively.  
δ

Number of forecast:15 days
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Table 6.  Out-of-Sample Forecasting Kupiec Test 

Out-of-Sample Forecasting %95 Confidence Intervalδ

VaR for Short position VaR for Long position

Failure 
Rate

Kupiec
LR p-value

Failure 
Rate

Kupiec
LR p-value

Garch-Normal 0.97222 15.505 8e-005** 0.025397 19.442 1e-005**

Garch-t 0.97222 15.505 8e-005** 0.027778 15.505 8e-005**

Garch-Skew 0.96905 11.071 0.00087** 0.026190 18.068 2e-005**

GRJ-Normal 0.97143 14.312 0.00015** 0.026190 18.068 2e-005**

GRJ-t 0.96905 11.071 0.00087** 0.028571 14.312 0.00015**

GRJ-Skew 0.96905 11.071 0.00087** 0.027778 15.505 8e-005**

Figarch-Normal 0.96825 10.099 0.00148** 0.029365 13.177 0.00028**

Figarch-t 0.96429 5.9868 0.014413* 0.033333 8.3072 0.00394**

Figarch-Skew 0.95873 2.1441 0.14312 0.032540 9.1778 0.00244**

Hygarch-Normal 0.96508 6.7128 0.009572* 0.031746 10.099 0.00148**

Hygarch-t 0.96032 3.0295 0.081763* 0.035714 5.9868 0.014413*
Hygarch-Skew 0.95873 2.1441 0.14312 0.030159 12.097 0.00050**

NMAGARCH-No. 0.97222 15.505 8.22-e5** 0.027778 15.505 8.22-e5**

NMAGARCH -t 0.97063 13.177 0.00026** 0.027778 15.505 8.22e-5**

NMAGARCH-Skew 0.96984 12.097 0.0005 ** 0.028571 14.312 0.00015**

Out-of-Sample Forecasting %99 Confidence Intervalδ

VaR for Short position VaR for Long position

Failure 
Rate

Kupiec
LR p-value

Failure 
Rate

Kupiec
LR p-value

Garch-Normal 0.99365 1.9489 0.16271 0.007936 0.58318 0.44507

Garch-t 0.99683 8.0799 0.00447** 0.0055556 2.9961 0.083466*

Garch-Skew 0.99603 6.0036 0.01427** 0.0055556 2.9961 0.083466*

GRJ-Normal 0.99444 2.9961 0.08346** 0.0079365 0.0079365 0.44507
GRJ-t 0.99603 6.0036 0.01427** 0.0055556 2.9961 0.083466*

GRJ-Skew 0.99603 6.0036 0.01427** 0.0055556 2.9961 0.083466*

Figarch-Normal 0.99444 2.9961 0.083466* 0.0095238 0.029325 0.86403

Figarch-t 0.99524 4.3316 0.037411* 0.0087302 0.21442 0.64333

Figarch-Skew 0.99444 2.9961 0.083466* 0.0071429 1.1539 0.28274

Hygarch-Normal 0.99365 1.9489 0.16271 0.011111 0.15167 0.69695

Hygarch-t 0.99444 2.9961 0.083466* 0.0063492 1.9489 0.16271

Hygarch-Skew 0.99444 2.9961 0.083466* 0.0063492 1.9489 0.16271

NMAGARCH-No. 0.99286 1.1539 0.28274 0.0079365 0.58318 0.44507
NMAGARCH-t 0.99603 6.0036 0.01427** 0.0055556 2.9961 0.083466*

NMAGARCH-Skew 0.99603 6.0036 0.0142 ** 0.0047619 4.3316 0.03741 *

*, ** are %5 and %10 confidence level respectively.  
δ

Number of forecast:252*5 days and 1 day ahead
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Table 7. Christoffersen Test
In Sample Forecasting %95.00 Confidence Interval &

Method LR p-value Method LR p-value

Garch-Normal 5.7993 0.016032 Figarch-Skew 2.0046 0.72034

Garch-t 4.0301 0.044694 Hygarch-Normal 3.6410 0.056372

Garch-Skew 1.4909 0.22207 Hygarch-t 1.2635 0.26099

GRJ-Normal 7.9194 0.0048908 Hygarch-Skew 0.00563 0.94016

GRJ-t 4.0301 0.044694 NMAGARCH-No. 7.98953 0.003214
GRJ-Skew 2.2914 0.13009 NMAGARCH-t 4.157480 0.039824

Figarch-Normal 5.7993 0.016032 NMAGARCH-Skew 5.93530 0.087203

Figarch-t 2.0047 0.15681

In Sample Forecasting %99.00 Confidence Interval&

Method LR  p-value Method LR  p-value
Garch-Normal 2.4657 0.11636 Figarch-Skew 1.4241 0.23273

Garch-t 0.37426 0.54069 Hygarch-Normal 1.4241 0.021389
Garch-Skew 1.4241 0.23273 Hygarch-t 0.65273 0.41914

GRJ-Normal 2.4657 0.11636 Hygarch-Skew 1.9122 0.16672

GRJ-t 6.7415e-5 0.99345 NMAGARCH-No. 2.4952 0.09250

GRJ-Skew 0.37426 0.54069 NMAGARCH-t 0.039377 0.84272

Figarch-Normal 6.1472 0.013162 NMAGARCH-Skew 0.170710 0.67948

Figarch-t 0.17071 0.67948

Out-of-Sample Forecasting %95.00 Confidence Interval δ

Method LR p-value Method LR p-value

Garch-Normal 19.442 1.0368e-005 Figarch-Skew 3.0295 0.081763

Garch-t 15.505 8.2294e-005 Hygarch-Normal 10.099 0.0014837

Garch-Skew 12.097 0.00050507 Hygarch-t 5.9865 0.014413

GRJ-Normal 18.068 2.1312e-005 Hygarch-Skew 4.0816 0.043354

GRJ-t 14.312 0.00015486 NMAGARCH-No. 15.505 8.2294e-005

GRJ-Skew 14.312 0.00015486 NMAGARCH-t 15.507 8.2296e-005

Figarch-Normal 13.177 0.00028346 NMAGARCH-Skew 14.312 0.00015489

Figarch-t 8.3072 0.0039488

Out-of-Sample Forecasting %99.00 Confidence Interval δ

Method LR p-value Method LR p-value

Garch-Normal 0.58318 0.4451 Figarch-Skew 0.21442 0.64333

Garch-t 2.9961 0.083466 Hygarch-Normal 0.15167 0.69695

Garch-Skew 1.1539 0.28274 Hygarch-t 1.9489 0.16271

GRJ-Normal 0.58318 0.44507 Hygarch-Skew 0.21442 0.64333

GRJ-t 2.9961 0.083466 NMAGARCH-No. 0.68250 0.23510

GRJ-Skew 2.9961 0.083466 NMAGARCH-t 3.12450 0.051542
Figarch-Normal 0.029325 0.86403 NMAGARCH-Skew 2.98457 0.085287

Figarch-t 0.21442 0.64333
&

 Number of forecast(in-sample):15 days ahead
δ

Number of forecast(out-of-sample): 1 day ahead for 252*5 days sample
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Fig. 3. In-sample Kupiec test p-value

Fig. 4. Out-of-sample Kupiec test p-value

Fig. 5. Christoffersen Test p-value
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Fig. 6. Out-of-Sample Forecasting (Last 252 days)

5. Conclusion 

Though volatility in stock returns provides opportunity in earning profit for traders, it is a 

threat for risk managers in balancing risk-return relationship. In emerging markets, return 

volatility is relatively high due to low market volume, unstable political and economic 

conditions, and hot money from international investment portfolios. High volatility and non-

linear returns in stock prices require advanced volatility measurement models based on non-

normal distribution of returns. They should catch the fat tails and regime switches, which are 

not easy to be estimated and modeled with static econometric models.   

In this paper, the return volatility of stocks traded in the Istanbul Stock Exchange is estimated 

by different GARCH models. The research is especially interested in the predictive 

performance of Asymmetric Normal Mixture Garch (NMAGARCH) based on Kupiec and 

Christoffersen tests for the Istanbul Stock Exchange National 100 Index. In this respect, this 

article includes the first research employing the NMAGARCH model in Turkish equity 

markets. What is more, it has original contribution to the finance literature by conducting 

reality check of the NMAGARCH model with comparing the classical GARCH models.  

By examining fifteen GARCH models with alternative return distribution assumptions, the 

paper shows that the NMAGARCH perform better based on 99 %confidence interval out-of-

sample forecasting Christoffersen test. On the other hand, Figarch with skewed student-t, 

Hygarch with skewed student-t, GRJ with normal, GRJ with student-t and NMAGARCH with 

Gaussian distribution perform better based on 95 % confidence interval out-of-sample 

forecasting Christoffersen test and Kupiec tests. 

The empirical evidence has a crucial concluding remark in prediction of stock market 

volatility. The results show that volatility model should be chosen in accordance with 

confidence interval and trading positions. However, NMAGARCH model has better 

predictive performance for higher confidence interval. The Basel II Accord requires accurate 

volatility model, which is statistically significant at 99 % confidence level. The paper show 

that for accurate internal volatility models being proper for the Basel II Accord, advanced 

models based on financial computing should be constructed by examining the nature of the 

markets under investigation.    
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