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Abstract

This article considers the problem of order selection of the vector autoregressive
moving-average models and of the sub-class of the vector autoregressive models un-
der the assumption that the errors are uncorrelated but not necessarily independent.
We propose a modified version of the AIC (Akaike information criterion). This cri-
terion requires the estimation of the matrice involved in the asymptotic variance of
the quasi-maximum likelihood estimator of these models. Monte carlo experiments
show that the proposed modified criterion estimates the model orders more accu-
rately than the standard AIC and AICc (corrected AIC) in large samples and often
in small samples.

Key words: AIC, discrepancy, identification, Kullback-Leibler information, model
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1 Introduction

The class of vector autoregressive moving-average (VARMA) models and the
sub-class of vector autoregressive (VAR) models are used in time series analysis
and econometrics to describe not only the properties of the individual time
series but also the possible cross-relationships between the time series (see
Reinsel, 1997, Lütkepohl, 2005, 1993).

The parameters estimation is an important step of a VARMA(p, q) processes
modeling. Usually, this estimation is carried out by quasi-maximum likelihood
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or by least squares procedures, given the orders p and q of the model. A
companion to the problem of parameter estimation is the problem of model
selection, which consists of choosing an appropriate model from a class of
candidate models to characterize the data at the hand. The choice of p and
q is particularly important because the number of parameters, (p + q + 3)d2

where d is the number of series, quickly increases with p and q, which entails
statistical difficulties. If orders lower than the true orders of the VARMA(p, q)
models are selected, the estimate of the parameters will not be consistent and
if too high orders are selected, the accuracy of the estimation parameters is
likely to be low.

This paper is devoted to the problem of the choice (by minimizing an infor-
mation criterion) of the VARMA orders under the assumption that the errors
are uncorrelated but not necessarily independent. Such models are called weak
VARMA, by contrast to the strong VARMA models, that are the standard
VARMA usually considered in the time series literature and in which the noise
is assumed to be iid. We relax the standard independence assumption to ex-
tend the range of application of the VARMA models, allowing us to treat
linear representations of general nonlinear processes. The statistical inference
of weak ARMA models is mainly limited to the univariate framework (see
Francq and Zakoïan, 1998, 2000, 2005, 2007 and Francq, Roy and Zakoïan,
2005).

In the multivariate analysis, important advances have been obtained by Dufour
and Pelletier (2005) who study the asymptotic properties of a generalization
of the regression-based estimation method proposed by Hannan and Rissanen
(1982) under weak assumptions on the innovation process, Francq and Raïssi
(2007) who study portmanteau tests for weak VAR models, Boubacar Mainas-
sara and Francq (2009) who study the consistency and the asymptotic nor-
mality of the quasi-maximum likelihood estimator (QMLE) for weak VARMA
models and Boubacar Mainassara (2009a, 2009b) who studies portmanteau
tests for weak VARMA models and studies the estimation of the asymptotic
variance of the QMLE of weak VARMA models. Dufour and Pelletier (2005)
have proposed a modified information criterion which is a generalization of
the information criterion proposed by Hannan and Rissanen (1982).

The choice amongst the models is often made by minimizing an information
criterion. The most popular criterion for model selection is the Akaike infor-
mation criterion (AIC) proposed by Akaike (1973). The AIC was designed
to be an approximately unbiased estimator of the expected Kullback-Leibler
information of a fitted model. Tsai and Hurvich (1989, 1993) derived a bias
correction to the AIC for univariate and multivariate autoregressive time se-
ries under the assumption that the errors ǫt are independent identically dis-
tributed (i.e. strong models). The main goal of our paper is to complete the
above-mentioned results concerning the statistical analysis of weak VARMA
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models, by proposing a modified version of the AIC criterion.

The paper is organized as follows. Section 2 presents the models that we
consider here and summarizes the results on the QMLE asymptotic distribu-
tion obtained by Boubacar Mainassara and Francq (2009). In Section 3, we
present the AICM criterion which we minimize to choose the orders for a weak
VARMA(p, q) models and we establish his overfitting property. This section
is also of interest in the univariate framework because, to our knowledge, this
model selection criterion has not been studied for weak ARMA models. Nu-
merical experiments are presented in Section 4. The proofs of the main results
are collected in the appendix.

2 Model and assumptions

Consider a d-dimensional stationary process (Xt) satisfying a structural
VARMA(p0, q0) representation of the form

A00Xt −
p0
∑

i=1

A0iXt−i = B00ǫt −
q0
∑

i=1

B0iǫt−i, ∀t ∈ Z = {0,±1, . . . }, (1)

where ǫt is a white noise, namely a stationary sequence of centered and un-
correlated random variables with a non singular variance Σ0. The structural
forms are mainly used in econometrics to introduce instantaneous relation-
ships between economic variables. Of course, constraints are necessary for the
identifiability of these representations. Let [A00 . . . A0p0B00 . . . B0q0Σ0] be the
d × (p0 + q0 + 3)d matrix of all the coefficients, without any constraint. The
parameter of interest is denoted θ0, where θ0 belongs to the parameter space
Θp0,q0 ⊂ Rk0, and k0 is the number of unknown parameters, which is typically
much smaller that (p0 + q0 + 3)d2. The matrices A00, . . .A0p0 , B00, . . .B0q0 in-
volved in (1) and Σ0 are specified by θ0. More precisely, we write A0i = Ai(θ0)
and B0j = Bj(θ0) for i = 0, . . . , p0 and j = 0, . . . , q0, and Σ0 = Σ(θ0). We need
the following assumptions used by Boubacar Mainassara and Francq (2009),
hereafter BMF, to ensure the consistence and the asymptotic normality of the
QMLE.

A1: The functions θ 7→ Ai(θ) i = 0, . . . , p, θ 7→ Bj(θ) j = 0, . . . , q and
θ 7→ Σ(θ) admit continuous third order derivatives for all θ ∈ Θp,q.

For simplicity we now write Ai, Bj and Σ instead of Ai(θ), Bj(θ) and Σ(θ).
Let Aθ(z) = A0 −

∑p
i=1Aiz

i and Bθ(z) = B0 −
∑q

i=1Biz
i.

A2: For all θ ∈ Θp,q, we have detAθ(z) detBθ(z) 6= 0 for all |z| ≤ 1;
A3: We have θ0 ∈ Θp0,q0, where Θp0,q0 is compact; A4: The process (ǫt)
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is stationary and ergodic; A5: For all θ ∈ Θp,q such that θ 6= θ0, either
the transfer functions A−1

0 B0B
−1
θ (z)Aθ(z) 6= A−1

00 B00B
−1
θ0
(z)Aθ0(z) for some

z ∈ C, or A−1
0 B0ΣB

′
0A

−1′

0 6= A−1
00 B00Σ0B

′
00A

−1′

00 ; A6: We have θ0 ∈ ◦

Θp0,q0,

where
◦

Θp0,q0 denotes the interior of Θp0,q0; A7: We have E‖ǫt‖4+2ν < ∞ and
∑

∞

k=0 {αǫ(k)}
ν

2+ν < ∞ for some ν > 0.

The reader is referred to BMF for a discussion of these assumptions. Note
that (ǫt) can be replaced by (Xt) in A4, because Xt = A−1

θ0
(L)Bθ0(L)ǫt and

ǫt = B−1
θ0
(L)Aθ0(L)Xt, where L stands for the backward operator. Note that

from A1 the matrices A0 and B0 are invertible. Introducing the innovation
process et = A−1

00 B00ǫt, the structural representation Aθ0(L)Xt = Bθ0(L)ǫt can
be rewritten as the reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i.

We thus recursively define ẽt(θ) for t = 1, . . . , n by

ẽt(θ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(θ),

with initial values ẽ0(θ) = · · · = ẽ1−q(θ) = X0 = · · · = X1−p = 0. The gaussian
quasi-likelihood is given by

L̃n (θ) =
n
∏

t=1

1

(2π)d/2
√
det Σe

exp
{

−1

2
ẽ′t(θ)Σ

−1
e ẽt(θ)

}

, Σe = A−1
0 B0ΣB

′

0A
−1′

0 .

A quasi-maximum likelihood estimator of θ is a measurable solution θ̂n of

θ̂n = argmax
θ∈Θ

L̃n(θ).

We now use the matrix Mθ0 of the coefficients of the reduced form to that
made by BMF, where

Mθ0 = [A−1
00 A01 : · · · : A−1

00 A0p : A
−1
00 B01B

−1
00 A00 : · · · : A−1

00 B0qB
−1
00 A00 : Σe0].

We denote by vec(A) the vector obtained by stacking the columns of A. Now we
need an assumption which specifies how this matrix depends on the parameter

θ0. Let
�

M θ0 be the matrix ∂vec(Mθ)/∂θ
′ evaluated at θ0.

A8: The matrix
�

M θ0 is of full rank k0.

Under Assumptions A1–A8, BMF showed the consistency (θ̂n → θ0 a.s as
n → ∞) and the asymptotic normality of the QMLE:

√
n
(

θ̂n − θ0
)

L→ N (0,Ω := J−1IJ−1), (2)
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where J = J(θ0) and I = I(θ0), with

J(θ) = lim
n→∞

2

n

∂2

∂θ∂θ′
log L̃n(θ) a.s. and I(θ) = lim

n→∞
Var

2√
n

∂

∂θ
log L̃n(θ).

Note that, for VARMA models in reduced form, it is not very restrictive to as-
sume that the coefficients A0, . . . , Ap, B0, . . . , Bq are functionally independent
of the coefficient Σe. Thus we can write θ = (θ(1)

′

, θ(2)
′

)′, where θ(1) ∈ Rk1 de-
pends on A0, . . . , Ap and B0, . . . , Bq, and where θ(2) ∈ Rk2 depends on Σe, with
k1+ k2 = k0. With some abuse of notation, we will then write et(θ) = et(θ

(1)).

A9: With the previous notation θ = (θ(1)
′

, θ(2)
′

)′, where θ(2) = D vec Σe for
some matrix D of size k2 × d2.

3 Identification of VARMA models

Let ℓ̃n(θ) = −2n−1 log L̃n(θ) and et(θ) = A−1
0 B0B

−1
θ (L)Aθ(L)Xt. In BMF, it

is shown that ℓn(θ) = ℓ̃n(θ) + o(1) a.s, where

ℓn(θ) := −2

n
log Ln(θ) =

1

n

n
∑

t=1

{

d log(2π) + log det Σe + e′t(θ)Σ
−1
e et(θ)

}

.

It is also shown uniformly in θ ∈ Θp,q that

∂ℓn(θ)

∂θ
=

∂ℓ̃n(θ)

∂θ
+ o(1) a.s.

The same equality holds for the second-order derivatives of ℓ̃n.

Note that, minimizing the Kullback-Leibler information of any approximating
(or candidate) model, characterized by the parameter vector θ, is equivalent to
minimizing the contrast (or the discrepancy between the approximating and
the true models) defined by ∆(θ) := E {−2 log Ln(θ)}. Omitting the constant
nd log(2π), we find that

∆(θ) = n log det Σe + nTr
(

Σ−1
e S(θ)

)

,

where S(θ) = Ee1(θ)e
′
1(θ). The following Lemma shows that the application

θ 7→ ∆(θ) is minimal for θ = θ0.

Lemma 1 For all θ ∈ ⋃p,q∈NΘp,q, we have ∆(θ) ≥ ∆(θ0).
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Let X = (X1, . . . , Xn) be observation of a process satisfying the VARMA
representation (1). Let, êt = ẽt(θ̂n) be the QMLE residuals of a candidate
VARMA model when p > 0 or q > 0, and let êt = et = Xt when p = q = 0.
When p + q 6= 0, we have êt = 0 for t ≤ 0 and t > n, and

êt = Xt −
p
∑

i=1

A−1
0 (θ̂n)Ai(θ̂n)X̂t−i +

q
∑

i=1

A−1
0 (θ̂n)Bi(θ̂n)B

−1
0 (θ̂n)A0(θ̂n)êt−i,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.

In view of Lemma 1, it is natural to minimize an estimation of the theoretical
criterion E∆(θ̂n). Of course, E∆(θ̂n) is unknown, but it can be estimated if
certain additional assumptions are made. Note that E∆(θ̂n) can be interpreted
as the average discrepancy when one uses the model of parameter θ̂n.

3.1 Estimating the discrepancy

Let J11 and I11 be respectively the upper-left block of the matrices J and
I, with appropriate size. The AIC was designed to provide an approximately
unbiased estimator of E∆(θ̂n). In this Section, we will adapt to weak VARMA
models the corrected AIC version (AICc) developed by Tsai and Hurvich
(1989, 1993) for the univariate and the multivariate strong autoregressive
models. Under Assumptions A1–A9, an approximately unbiased estimator
of E∆(θ̂n) is given by

AICM := n log det Σ̂e +
n2d2

nd− k1
+

nd

2(nd− k1)
Tr
(

Î11,nĴ
−1
11,n

)

, (3)

where Ĵ11,n and Î11,n are respectively consistent estimators of the matrice J11

and I11 (see Section 4 of BMF).

Remark 1 Given a collection of competing families of approximating models,
the one that minimizes E∆(θ̂n) might be preferred. For model selection, we
then choose p̂ and q̂ as the set which minimizes the information criterion (3).

Remark 2 In the strong VARMA case, i.e. when A4 is replaced by the as-
sumption that (ǫt) is iid, we have I11 = 2J11, so that Tr

(

I11J
−1
11

)

= 2k1. In
this case, the AICM takes the following form

AIC∗

M := n log det Σ̂e + nd+
nd

nd− k1
2k1 = AICc.
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3.2 Other decomposition of the discrepancy

In Section 3.1, the minimal discrepancy (contrast) has been approximated by
−2E log Ln(θ̂n) (the expectation is taken under the true model X). Note that
studying this average discrepancy is too difficult because of the dependance
between θ̂n and X. An alternative slightly different but equivalent interpreta-
tion for arriving at the expected discrepancy quantity E∆(θ̂n), as a criterion
for judging the quality of an approximating model, is obtained by supposing
θ̂n be the QMLE of θ based on the observation X and let Y = (Y1, . . . , Yn)
be independent observation of a process satisfying the VARMA representa-
tion (1) (i.e. X and Y independent observations satisfying the same process).
Then, we may be interested in approximating the distribution of (Yt) by us-
ing Ln(Y, θ̂n). So we consider the discrepancy for the approximating model
(model Y ) that uses θ̂n and, thus, it is generally easier to search a model that
minimizes

C(θ̂n) := −2EY log Ln(θ̂n), (4)

where EY denotes the expectation under the candidate model Y . Since θ̂n and
Y are independent, C(θ̂n) is the same quantity as the expected discrepancy
E∆(θ̂n). A model minimizing (4) can be interpreted as a model that will do
globally the best job on an independent copy of X, but this model may not
be the best for the data at hand. The average discrepancy can be decomposed
into

C(θ̂n) = −2EX log Ln(θ̂n) + a1 + a2,

where a1 = −2EX log Ln(θ0) + 2EX log Ln(θ̂n) and a2 = −2EY log Ln(θ̂n) +
2EX log Ln(θ0). The QMLE satisfies log Ln(θ̂n) ≥ log Ln(θ0) almost surely,
thus a1 can be interpreted as the average over-adjustment (over-fitting) of
this QMLE. Now, note that EX log Ln(θ0) = EY log Ln(θ0), thus a2 can be
interpreted as an average cost due to the use of the estimated parameter
instead of the optimal parameter, when the model is applied to an independent
replication of X. We now discuss the regularity conditions needed for a1 and
a2 to be equivalent, in the following Proposition.

Proposition 1 Under Assumptions A1–A9, a1 and a2 are both equivalent to

2−1Tr
(

I11J
−1
11

)

, as n → ∞.

In view of Proposition 1, in the weak VARMA case, the AIC formula denoted

AICW := −2 log Ln(θ̂n) + Tr
(

Î11Ĵ
−1
11

)

(5)

is an approximately unbiased estimate of the contrast C(θ̂n). Model selection
is then obtained by minimizing (5) over the candidate models.

Remark 3 In the strong VARMA case, we have Tr
(

I11J
−1
11

)

= 2k1. There-
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fore, a1 and a2 are both equivalent to k1 = dim(θ
(1)
0 ) (we retrieve the result

obtained by Findley, 1993). In this case, the AICW formula takes the more
conventional form

AIC = −2 log Ln(θ̂n) + 2k1.

3.3 Overfitting property of the AICM criterion

For any models with k-dimensional parameter, the AICM criterion given in
(3) can be rewritten as

AICM(k) = n log det Σ̂e(k) +
n2d2

nd− k
+

nd

2(nd− k)
ck,

where ck = Tr
(

I11(θ̂n,k)J
−1
11 (θ̂n,k)

)

and Σ̂e(k) = Σe(θ̂n,k).

We define an overfitted model as a model that has more parameters than
the true model. Overfitting is analysed here by comparing the model of true
orders p0 and q0 and an overfitted model of orders p′ = p0+ℓ1 and q′ = q0+ℓ2,
where the integers ℓ1, ℓ2 > 0. Recall that, for the true VARMA model in the
reduced form, the number of unknown parameters in VAR and MA parts is
k1 = d2(p0 + q0). By analog, let k′

1 = d2(p′ + q′) the number of parameters
without any constraints of the overfitted model. Note that, k′

1 = k1 + ℓ where
ℓ = d2(ℓ1 + ℓ2) and let cℓ = ck′

1
− ck1. The overfitting property of the AICM

criterion is described here through the probability of overfitting. The following
Lemma gives the overfitting property of the VARMA models.

Proposition 2 The AICM criterion overfits if AICM(k′
1) < AICM(k1). The

modified probability that the AICM criterion selects the overfitted model is

PW := P {AICM(k1 + ℓ) < AICM(k1)} = P

{

χ2
ℓ >

2ℓ+ cℓ
2

}

.

Remark 4 In the strong VARMA case, i.e. when A4 is replaced by the as-
sumption that (ǫt) is iid, we have cℓ = 2ℓ. In this case, the probability that
the AICM criterion selects the overfitted model takes the following form

PS := P {AICM(k1 + ℓ) < AICM(k1)} = P
{

χ2
ℓ > 2ℓ

}

.

From Table 1, it is clear that the AICM criterion is not consistent in the strong
VAR case, since his probability of overfitting is not zero.
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Table 1
The calculated values for the standard version of asymptotic probabilities of over-
fitting by ℓ = d2ℓ1 parameters for strong bivariate VAR model.

ℓ1 1 2 3 4 5

PS 0.0915782 0.04238011 0.02034103 0.00999978 0.004995412

ℓ1 6 7 8 9 10

PS 0.002524130 0.001286361 0.0006599276 0.0003403570 0.0001763029

4 Numerical illustrations

In this section, by means of Monte Carlo experiments, we present the results
of simulations study on small and large sample performance of several AIC
criteria introduced in this paper. The numerical illustrations of this section
are made with the software R (see http://cran.r-project.org/). We generate
VAR models, with several choices of their innovation process (ǫt). Firstly, we
consider the strong case in which (ǫt) is defined by







ǫ1,t

ǫ2,t





 ∼ IIDN (0, I2). (6)

The same experiment is repeated for three weak choices for (ǫt). In the first
one, we assume that (ǫt) is an ARCH(1) model:







ǫ1,t

ǫ2,t





=







h11,t 0

0 h22,t













η1,t

η2,t





 , with







η1,t

η2,t





 ∼ IIDN (0, I2), (7)

and where







h2
11,t

h2
22,t





 =







0.3

0.2





+







0.45 0

0.4 0.25













ǫ21,t−1

ǫ22,t−1





 .

In two other sets of experiments, we assume that (ǫt) is defined by







ǫ1,t

ǫ2,t





 =







η1,tη2,t−1η1,t−2

η2,tη1,t−1η2,t−2





 , with







η1,t

η2,t





 ∼ IIDN (0, I2), (8)
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and then by







ǫ1,t

ǫ2,t





 =







η1,t(|η1,t−1|+ 1)−1

η2,t(|η2,t−1|+ 1)−1





 , with







η1,t

η2,t





 ∼ IIDN (0, I2), (9)

These noises are direct extensions of those defined by Romano and Thombs
(1996) in the univariate case.

We used the spectral estimator ÎSP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) of the matrix I

defined in Theorem 3 of BMF. In this theorem, the AR order r = r(n) is
automatically selected by BIC criterion in the weak models (in this case, The-
orem 3 requires that r → ∞), using the function VARselect() of the vars R
package. In the strong case we can be shown that, the AR spectral estimator
is consistent with any fixed value of r (or r = o(n1/3) as in Theorem 3 and we
took r = 1. The matrix J can easily be estimated by its empirical counterpart.
The reader is referred to Section 4 in BMF for a discussion of these estimators
involved in our modified criterion.

The corresponding relative rejection frequencies to the orders chosen are dis-
played in bold type in Tables 2, 3 and 4.

We simulated N independent trajectories of different sizes of a bivariate
VAR(1) model with the strong Gaussian and weak noise above-mentioned.
We took N = 1, 000 when the sample size n ≤ 2000 and N = 1, 00 in the
opposite case. For each of these N replications, we will fit 6 bivariate candi-
dates models (i.e. VAR(k) models with k = 1, . . . , 6). The quasi-maximum
likelihood (QML) method was used to fit VAR models of order 1, . . . , 6. The
standard and modified versions of AIC criteria were used to select among
the candidate models. To generate the strong and weak VAR(1) models, we
consider the bivariate model of the form:







X1t

X2t





=







0.5 0.1

0.4 0.5













X1t−1

X2t−1





+







ǫ1t

ǫ2t





 , Σ0 =







1 0

0 1





 . (10)

Table 2 displays the relative frequency (in %) of the order selected by various
standard and modified versions of the AIC criteria of a strong (Model I)
candidates models, over the N = 1, 000 independent replications. In view of
the observed relative frequency, the order p = 1 (i.e. VAR(1) model) is selected
by all versions of the AIC criteria and they have the similar performance.

Table 3 displays the relative frequency (in %) of the order selected by various
standard and modified versions of the AIC criteria of a strong (Model I) and
weak (Model II, with error term (8)) candidates models, over the N indepen-

10



dent replications. Table 3 shows that the standard AIC criteria clearly did
not perform well here when n ≥ 500, and they have tendency to overestimate
the order p. When n = 500 the order p = 1 is selected by all versions of the
AIC criteria, but the modified criterion has better performed. As expected,
when n ≥ 2000 the standard AIC criteria select a weak VAR(2) model. By
contrast, a VAR(1) model is selected by a modified criterion for all values of
n and its performance is increasing with n.

Table 4 displays the relative frequency (in %) of the order selected by var-
ious standard and modified versions of the AIC criteria of a weak VAR(k)
candidates models for k = 1, . . . , 6, firstly with error term (7) (Model III)
and secondly with error term (9) (Model IV). In view of the observed relative
frequency, a VAR(1) model is selected by all versions of the AIC criteria and
they have the same performance in Model IV. By contrast, Table 4 shows that
a modified criterion has clearly hight performance in Model III.
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Table 2
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I

n p AIC AICc AICM

1 84.9 91.1 90.6

2 9.3 7.4 7.8

3 3.0 1.3 1.2

50 4 0.8 0.1 0.2

5 1.1 0.1 0.2

6 0.9 0.0 0.0

1 86.9 90.4 90.9

2 8.9 7.5 7.1

3 2.7 1.6 1.4

100 4 0.7 0.3 0.4

5 0.4 0.0 0.0

6 0.4 0.2 0.2

1 88.6 89.4 89.6

2 6.7 7.0 6.8

3 2.8 2.4 2.4

200 4 1.0 0.7 0.7

5 0.5 0.4 0.4

6 0.4 0.1 0.1

I: Strong VAR(1) model (10)-(6)
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Table 3
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I Criteria Model II

n p AIC AICc AICM AIC AICc AICM

1 89.3 90.0 89.6 46.7 47.3 64.1

2 6.9 6.5 6.9 38.5 38.7 24.6

3 2.1 2.0 2.0 9.8 9.6 6.9

500 4 1.1 1.0 0.9 2.5 2.2 2.7

5 0.5 0.4 0.5 1.1 1.1 0.9

6 0.1 0.1 0.1 1.4 1.1 0.8

1 87.7 87.7 87.9 40.6 40.7 69.3

2 8.1 8.1 8.1 42.7 42.8 22.3

3 2.7 2.7 2.7 11.9 11.8 5.7

2, 000 4 1.0 1.0 0.9 3.5 3.5 2.1

5 0.4 0.4 0.3 0.6 0.7 0.3

6 0.1 0.1 0.1 0.7 0.5 0.3

1 88.0 88.0 88.0 34.0 34.0 61.0

2 8.0 8.0 7.0 44.0 44.0 25.0

3 3.0 3.0 3.0 16.0 16.0 10.0

5, 000 4 0.0 0.0 0.0 3.0 3.0 2.0

5 0.0 0.0 1.0 3.0 3.0 2.0

6 1.0 1.0 1.0 0.0 0.0 0.0

1 87.0 87.0 87.0 34.0 34.0 72.0

2 7.0 7.0 7.0 43.0 43.0 20.0

3 4.0 4.0 4.0 17.0 17.0 6.0

10, 000 4 0.0 0.0 0.0 5.0 5.0 1.0

5 2.0 2.0 2.0 1.0 1.0 1.0

6 0.0 0.0 0.0 0.0 0.0 0.0

I: Strong VAR(1) model (10)-(6), II: Weak VAR(1) model (10)-(8)
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Table 4
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model III Criteria Model IV

n p AIC AICc AICM AIC AICc AICM

1 67.0 67.9 75.1 91.9 92.5 91.1

2 22.2 21.8 15.5 5.2 5.0 6.1

3 6.8 6.6 5.8 1.9 1.7 2.0

500 4 1.6 1.5 2.0 0.6 0.5 0.5

5 1.7 1.7 1.2 0.4 0.3 0.3

6 0.7 0.5 0.4 0.0 0.0 0.0

1 62.9 63.3 78.0 92.3 92.5 90.6

2 22.3 22.2 15.0 4.8 4.7 6.2

3 9.4 9.3 4.6 2.2 2.2 2.3

2, 000 4 3.4 3.5 1.7 0.4 0.4 0.6

5 1.3 1.2 0.5 0.3 0.3 0.3

6 0.7 0.5 0.2 0.0 0.0 0.0

1 67.0 67.0 79.0 92.0 92.0 91.0

2 16.0 16.0 10.0 5.0 5.0 6.0

3 9.0 9.0 6.0 1.0 1.0 1.0

5, 000 4 2.0 2.0 2.0 1.0 1.0 1.0

5 3.0 3.0 1.0 0.0 0.0 0.0

6 3.0 3.0 2.0 1.0 1.0 1.0

1 67.0 67.0 82.0 92.0 92.0 88.0

2 17.0 17.0 10.0 5.0 5.0 7.0

3 11.0 11.0 7.0 2.0 2.0 4.0

10, 000 4 3.0 3.0 1.0 1.0 1.0 1.0

5 1.0 1.0 0.0 0.0 0.0 0.0

6 1.0 1.0 0.0 0.0 0.0 0.0

III: Weak VAR(1) model (10)-(7), IV: Weak VAR(1) model (10)-(9)
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Table 5
Modified version of asymptotic probabilities of overfitting by ℓ = d2ℓ1 parameters
for bivariate VAR models of various versions of AIC criteria.

Length Order PW Model I PW Model II

n ℓ1 P
AIC
W P

AICc
W P

AICM

W P
AIC
W P

AICc
W P

AICM

W

1 0.076 0.072 0.075 0.492 0.486 0.325

2 0.040 0.037 0.039 0.370 0.359 0.221

500 3 0.018 0.015 0.014 0.243 0.231 0.144

4 0.015 0.010 0.013 0.172 0.157 0.091

5 0.003 0.002 0.002 0.109 0.099 0.059

1 0.101 0.101 0.100 0.557 0.557 0.283

2 0.046 0.044 0.045 0.406 0.403 0.204

2000 3 0.027 0.025 0.026 0.274 0.271 0.120

4 0.014 0.013 0.012 0.172 0.168 0.077

5 0.008 0.008 0.009 0.126 0.121 0.056

I: Strong VAR(1) model (10)-(6)

II: Weak VAR(1) model (10)-(8)
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Table 5 displays the modified version of asymptotic probabilities of overfitting
by ℓ := d2ℓ1 parameters for bivariate VAR models of various versions of AIC
criteria. Table 5 shows clearly that the AICM criterion is not consistent in
the weak and strong cases, since his probability of overfitting is not zero. As
expected, the asymptotic probabilities of overfitting of the standard versions
of the AIC criteria are very strong than the modified criterion in the weak
case. By contrast, they are similar in the strong case for all versions of the AIC
criteria. The asymptotic probabilities of overfitting of the modified version is
decreasing with the sample size n.

5 Conclusion

The results of Section 4 suggest that the relative frequency of the orders
selected by the standard criteria (AIC and AICc) and by the modified AICM

versions are comparable, with a slight advantage to the modified version, in
the strong VAR model case. In the weak VAR models cases, the modified
version performs better than the standard versions, which often overestimate
the order.

6 Appendix

Proof of Lemma 1: We have

∆(θ) =n log det Σe + nTr
(

Σ−1
e

{

Ee1(θ0)e
′

1(θ0) + 2Ee1(θ0) {e1(θ)− e1(θ0)}′

+ E (e1(θ)− e1(θ0)) (e1(θ)− e1(θ0))
′
})

.

Now, using the fact that the linear innovation et(θ0) is orthogonal to the
linear past (i.e. to the Hilbert space Ht−1 generated by the linear combina-
tions of the Xu for u < t), it follows that Ee1(θ0) {e1(θ)− e1(θ0)}′ = 0, since
{et(θ)− et(θ0)} belongs to the linear past Ht−1. We thus have

∆(θ) =n log det Σe + nTr
(

Σ−1
e Σe0

)

+nTr
{

Σ−1
e E (e1(θ)− e1(θ0)) (e1(θ)− e1(θ0))

′
}

.

Moreover

∆(θ0) =n log det Σe0 + nTr
(

Σ−1
e0 S(θ0)

)

= n log det Σe0 + nTr
(

Σ−1
e0 Σe0

)

=n log det Σe0 + nd.
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Thus, we obtain

∆(θ)−∆(θ0) =−n log det
(

Σ−1
e Σe0

)

− nd+ nTr
(

Σ−1
e Σe0

)

+nTr
{

Σ−1
e E (e1(θ)− e1(θ0)) (e1(θ)− e1(θ0))

′
}

≥−n log det
(

Σ−1
e Σe0

)

− nd+ nTr
(

Σ−1
e Σe0

)

,

with equality if and only if e1(θ) = e1(θ0) a.s. Using the elementary in-
equality Tr(A−1B) − log det(A−1B) ≥ Tr(A−1A) − log det(A−1A) = d for all
symmetric positive semi-definite matrices of order d × d, it is easy see that
∆(θ)−∆(θ0) ≥ 0. The proof is complete. ✷

Justification of (3). Let J11 and I11 be respectively the upper-left block of
the matrices J and I, with appropriate size. Recall that

E∆(θ̂n) = En log det Σ̂e + nETr
(

Σ̂−1
e S(θ̂n)

)

, (11)

where Σ̂e = n−1∑n
t=1 et(θ̂n)e

′
t(θ̂n). Then the first term on the right-hand side of

(11) can be estimated without bias by n log det
{

n−1∑n
t=1 et(θ̂n)e

′
t(θ̂n)

}

. Hence,
only an estimate for the second term needs to be considered. Moreover, in view
of (2), a Taylor expansion of et(θ) around θ

(1)
0 yields

et(θ) = et(θ0) +
∂et(θ0)

∂θ(1)′
(θ(1) − θ

(1)
0 ) +Rt,

where

Rt =
1

2
(θ(1) − θ

(1)
0 )′

∂2et(θ
∗)

∂θ(1)∂θ(1)′
(θ(1) − θ

(1)
0 ) = OP

(

π2
)

,

with π =
∥

∥

∥θ(1) − θ
(1)
0

∥

∥

∥ and θ∗ is between θ
(1)
0 and θ(1). We then obtain

S(θ) =S(θ0) + E

{

∂et(θ0)

∂θ(1)′
(θ(1) − θ

(1)
0 )e′t(θ0)

}

+ ERte
′

t(θ0)

+E

{

et(θ0)(θ
(1) − θ

(1)
0 )′

∂e′t(θ0)

∂θ(1)

}

+D
(

θ(1)
)

+ERt

{

(θ(1) − θ
(1)
0 )′

∂e′t(θ0)

∂θ(1)

}

+ Eet(θ0)Rt

+E

{

∂et(θ0)

∂θ(1)′
(θ(1) − θ

(1)
0 )

}

Rt + ER2
t ,

where

D
(

θ(1)
)

= E

{

∂et(θ0)

∂θ(1)′
(θ(1) − θ

(1)
0 )(θ(1) − θ

(1)
0 )′

∂e′t(θ0)

∂θ(1)

}

.
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Using the orthogonality between et(θ0) and any linear combination of the past
values of et(θ0) (in particular ∂et(θ0)/∂θ

′ and ∂2et(θ0)/∂θ∂θ
′), and the fact

that Eet(θ0) = 0, we have

S(θ) =S(θ0) +D(θ(1)) +O
(

π4
)

= Σe0 +D(θ(1)) +O
(

π4
)

,

where Σe0 = Σe(θ0). Thus, we can write the expected discrepancy quantity in
(11) as

E∆(θ̂n)=En log det Σ̂e + nETr
(

Σ̂−1
e Σe0

)

+ nETr
(

Σ̂−1
e D(θ̂(1)n )

)

+nE
{

Tr
(

Σ̂−1
e

)

OP

(

1

n2

)}

. (12)

As in the classical multivariate regression model, we deduce

Σe0 ≈
n

n− d(p+ q)
E
{

Σ̂e

}

=
dn

dn− k1
E
{

Σ̂e

}

, where k1 = d2(p+ q).

Thus, using the last approximation and from the consistency of Σ̂e, we obtain

E
{

Σ̂−1
e

}

≈
{

EΣ̂e

}−1 ≈ nd(nd− k1)
−1Σ−1

e0 . (13)

An alternative to (13) is to use a slightly more accurate result, as in Hurvich
and Tsai (1993), by treating nΣ̂e as having a asymptotic Wishart distribution 1

with matrix Σe0 and n − d(p + q) degrees of freedom, so that E
{

Σ̂−1
e

}

≈

n/[n − d(p + q) − d − 1]Σ−1
e0 . See Wei (1994, p. 406) and Anderson (2003, p.

296) for these results.

Using the elementary property on the trace, we have

Tr
{

Σ−1
e (θ)D

(

θ(1)n

)}

=Tr

(

Σ−1
e (θ)E

{

∂et(θ0)

∂θ(1)′
(θ(1) − θ

(1)
0 )(θ(1) − θ

(1)
0 )′

∂e′t(θ0)

∂θ(1)

})

=E

(

Tr

{

∂e′t(θ0)

∂θ(1)
Σ−1

e (θ)
∂et(θ0)

∂θ(1)′
(θ(1) − θ

(1)
0 )′(θ(1) − θ

(1)
0 )

})

=Tr

(

E

{

∂e′t(θ0)

∂θ(1)
Σ−1

e (θ)
∂et(θ0)

∂θ(1)′

}

(θ(1) − θ
(1)
0 )′(θ(1) − θ

(1)
0 )

)

.

Now, using (2), (13) and the last equality, the third term in (12) becomes

1 The Wishart distribution arises in a natural way as a matrix generalization of the
chi-square distribution.
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ETr
{

Σ̂−1
e D

(

θ̂(1)n

)}

=
1

n
Tr

(

E

{

∂e′t(θ0)

∂θ(1)
Σ̂−1

e

∂et(θ0)

∂θ(1)′

}

En(θ̂(1)n − θ
(1)
0 )′(θ̂(1)n − θ

(1)
0 )

)

=
d

nd− k1
Tr

(

E

{

∂e′t(θ0)

∂θ(1)
Σ−1

e0

∂et(θ0)

∂θ(1)′

}

J−1
11 I11J

−1
11

)

=
d

2(nd− k1)
Tr
(

I11J
−1
11

)

,

where J11 = 2E
{

∂e′t(θ0)/∂θ
(1)Σ−1

e0 ∂et(θ0)/∂θ
(1)′
}

(see Theorem 3 in BMF).

Thus, using (13), the second term in (11) becomes

ETr
(

Σ̂−1
e S(θ̂n)

)

=ETr
(

Σ̂−1
e Σe0

)

+ ETr
{

Σ̂−1
e D

(

θ̂(1)n

)}

+E
{

Tr
(

Σ̂−1
e

)

OP

(

1

n2

)}

=
nd

nd− k1
Tr
(

Σ−1
e0 Σe0

)

+
d

2(nd− k1)
Tr
(

I11J
−1
11

)

+O
(

1

n2

)

=
nd2

nd− k1
+

d

2(nd− k1)
Tr
(

I11J
−1
11

)

+O
(

1

n2

)

.

Therefore, using the last equality in (11), we deduce an approximately unbi-
ased estimator of E∆(θ̂n) given by

AICM =n log det Σ̂e +
n2d2

nd− k1
+

nd

2(nd− k1)
Tr
(

Î11,nĴ
−1
11,n

)

,

where Ĵ11,n and Î11,n are respectively consistent estimators of the matrice J11

and I11 defined in Section 4 of BMF. The justification is complete. ✷

Proof of Proposition 1: Using a Taylor expansion of the quasi log-likelihood,
we obtain

−2 log Ln(θ0) = −2 log Ln(θ̂n) +
n

2
(θ̂(1)n − θ

(1)
0 )′J11(θ̂

(1)
n − θ

(1)
0 ) + oP (1).

Taking the expectation (under the true model) of both sides, and in view of
(2) we shown that

EXn(θ̂
(1)
n − θ

(1)
0 )′J11(θ̂

(1)
n − θ

(1)
0 ) = Tr

{

J11EXn(θ̂
(1)
n − θ

(1)
0 )′(θ̂(1)n − θ

(1)
0 )

}

→Tr
(

I11J
−1
11

)

,

we then obtain a1 = 2−1Tr
(

I11J
−1
11

)

+ o(1).
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Now a Taylor expansion of the discrepancy yields

∆(θ̂n)=∆(θ0) + (θ̂(1)n − θ
(1)
0 )′

∂∆(θ)

∂θ(1)

∣

∣

∣

∣

∣

θ=θ0

+
1

2
(θ̂(1)n − θ

(1)
0 )′

∂2∆(θ)

∂θ(1)∂θ(1)′

∣

∣

∣

∣

∣

θ=θ0

(θ̂(1)n − θ
(1)
0 ) + oP (1)

=∆(θ0) +
n

2
(θ̂(1)n − θ

(1)
0 )′J11(θ̂

(1)
n − θ

(1)
0 ) + oP (1),

assuming that the discrepancy is smooth enough, and that we can take its
derivatives under the expectation sign. We then deduce that

EY − 2 log Ln(θ̂n) = EX∆(θ̂n) = EX∆(θ0) +
1

2
Tr
(

I11J
−1
11

)

+ o(1),

which shows that a2 is equivalent to a1. The proof is complete. ✷

Proof of Proposition 2: We denote by |A|, the determinant of the matrix
A. The probability that the AICM criterion selects the overfitted model is

P {AICM(k′

1) < AICM(k1)}=P

{

n log
∣

∣

∣Σ̂e(k
′

1)
∣

∣

∣+
n2d2

nd− k′
1

+
ndck′

1

2(nd− k′
1)

< n log
∣

∣

∣Σ̂e(k1)
∣

∣

∣+
n2d2

nd− k1
+

ndck1
2(nd− k1)

}

=P {AICM(k1 + ℓ) < AICM(k1)}

=P







n log







∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∣

∣

∣nΣ̂e(k1)
∣

∣

∣







<
n2d2

nd− k1

+
ndck1

2(nd− k1)
− n2d2

nd− (k1 + ℓ)

− nd(ck1 + cℓ)

2 [nd− (k1 + ℓ)]

}

=P







n log







∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∣

∣

∣nΣ̂e(k1)
∣

∣

∣







<
−n2ℓd2

(nd− k1) [nd− (k1 + ℓ)]

+
nd(k1cℓ − ℓck1)− n2d2cℓ
2(nd− k1) [nd− (k1 + ℓ)]

}

.

Let q1 = k1/d and q2 = (k1 + ℓ)/d, we denote
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∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∣

∣

∣nΣ̂e(k1)
∣

∣

∣

=

∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∣

∣

∣nΣ̂e(k1 + ℓ) + n
{

Σ̂e(k1)− Σ̂e(k1 + ℓ)
}∣

∣

∣

∼ Ud,ℓ,n−q2,

where Ud,ℓ,n−q2 is the U-statistic (see Anderson, 2003, chap. 8), a generalized
version of the F-statistic used for the univariate case. From Theorem 3.2.15 in
Muirhead (1982, p. 100), the distribution of the determinants |nΣ̂e(k1)| and
|nΣ̂e(k1+ℓ)| are respectively the product of independent χ2 random variables,

∣

∣

∣nΣ̂e(k1)
∣

∣

∣

|Σe0|
∼

d
∏

i=1

χ2
n−q1−i+1 and

∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

|Σe0|
∼

d
∏

i=1

χ2
n−q2−i+1.

Note that in view of Theorem 7.3.2 (see Anderson, 2003, p. 260)

n
{

Σ̂e(k1)− Σ̂e(k1 + ℓ)
}

∼ Wd (ℓ/d,Σe0), where the subscript on W denot-
ing the size of the matrix Σe0. Using the previous results and Lemma 8.4.2
(see Anderson, 2003, p. 305), it follows that the distribution of the ratio
|nΣ̂e(k1 + ℓ)|/|nΣ̂e(k1)| is the multivariate Betad distribution 2 i.e. the prod-
uct of independents Beta distributions (see Anderson, 2003, Section 5.2):

∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∣

∣

∣nΣ̂e(k1)
∣

∣

∣

∼
d
∏

i=1

Beta

(

n− q2 − i+ 1

2
,
ℓ

2d

)

.

Expressed in terms of independent χ2, we obtain







∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∣

∣

∣nΣ̂e(k1)
∣

∣

∣







−1

=

∣

∣

∣nΣ̂e(k1)
∣

∣

∣

∣

∣

∣nΣ̂e(k1 + ℓ)
∣

∣

∣

∼
d
∏

i=1

(

1 +
χ2
ℓ/d

χ2
n−q2−i+1

)

.

Thus the probability of overfitting for AICM criterion can be rewrite as

P {AICM(k1 + ℓ) < AICM(k1)}=P

{

−n
d
∑

i=1

log

(

1 +
χ2
ℓ/d

χ2
n−q2−i+1

)

<
−n2ℓd2

(nd− k1) [nd− (k1 + ℓ)]

+
nd(k1cℓ − ℓck1)− n2d2cℓ
2(nd− k1) [nd− (k1 + ℓ)]

}

.

Recall that, log(1 + x) ≃ x for small value of |x|. Using the fact that
χ2
n−q2−i+1/n → 1 a.s. as n → ∞ for k1, ℓ fixed and 1 ≤ i ≤ d; it follows

that

2 The multivariate beta distribution generalizes the usual beta distribution in much
the same way that the Wishart distribution generalizes the χ2 distribution.
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n
d
∑

i=1

log

(

1 +
χ2
ℓ/d

χ2
n−q2−i+1

)

= n
d
∑

i=1

log

(

1 +
(1/n)χ2

ℓ/d

(1/n)χ2
n−q2−i+1

)

→n
d
∑

i=1

(1/n)χ2
ℓ/d

(1/n)χ2
n−q2−i+1

→
d
∑

i=1

χ2
ℓ/d = χ2

ℓ . (14)

Note that, as n → ∞, for k1, ℓ and d fixed, we have

−n2ℓd2

(nd− k1) [nd− (k1 + ℓ)]
+

nd(k1cℓ − ℓck1)− n2d2cℓ
2(nd− k1) [nd− (k1 + ℓ)]

=
−2n2ℓd2 + nd(k1cℓ − ℓck1)− n2d2cℓ

2(nd− k1) [nd− (k1 + ℓ)]
→ −2ℓ+ cℓ

2
. (15)

In view of (14) and (15), we deduce the following asymptotic probability of
overfitting

P {AICM(k1 + ℓ) < AICM(k1)} = P

{

χ2
ℓ >

2ℓ+ cℓ
2

}

.

The proof is complete. ✷
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Selection of weak VARMA models by modified Akaike’s
information criteria: Complementary simulations
results that are not submitted for publication

A General multivariate linear regression model

Now we need to recall several results concerning general multivariate linear
regression models.

Let Zt = (Z1t, . . . , Zdt)
′ be a d-dimensional random vector of response vari-

ables, Xt = (X1t, . . . , Xkt)
′ be a k-dimensional input variables and B =

(β1, . . . , βd) be a k × d matrix. We consider a multivariate linear model of
the form Zit = X ′

tβi + ǫit, i = 1, . . . , d, or Z ′
t = X ′

tB + ǫ′t, t = 1, . . . , n,
where the ǫt = (ǫ1t, . . . , ǫdt)

′ are uncorrelated and identically distributed ran-
dom vectors with variance Σ = Eǫtǫ

′
t. The i-th column of B (i.e. βi) is the

vector of regression coefficients for the i-th response variable. Now, given the
n observations Z1, . . . , Zn and X1, . . . , Xn, we define the n × d data matrix
Z = (Z1, . . . , Zn)

′, the n× k matrix X = (X1, . . . , Xn)
′ and the n × d matrix

ε = (ǫ1, . . . , ǫn)
′. Then, we have the multivariate linear model Z = XB + ε.

Now, it is well known that the QMLE of B is the same as the LSE and, hence,
is given by

B̂ = (X′
X)−1

X
′
Z, that is, β̂i = (X′

X)−1
X

′
Zi, i = 1, . . . , d,

where Zi = (Zi 1, . . . , Zi n)
′ is the i-th column of Z. We also have

ε̂ := Z−XB̂ = MXZ = ε−X(X′
X)−1

X
′ε = MXε,

where MX = In − X(X′
X)−1

X
′ is a projection matrix. The usual unbiased

estimator of the error covariance matrix Σ is

Σ∗ =
1

n− k
ε̂′ε̂ =

1

n− k
(Z−XB̂)′(Z−XB̂)

=
1

n− k

n
∑

t=1

(Zt − B̂′Xt)(Zt − B̂′Xt)
′

or Σ∗ = (n− k)−1∑n
t=1 ǫ̂tǫ̂

′
t, where the ǫ̂t = Zt− B̂′Xt are the residual vectors.

Note that the gaussian quasi-likelihood is given by

Ln (B,Σ;Z) =
1

(2π)d/2
√
det Σe

exp

{

−1

2

n
∑

t=1

(Zt −B′Xt)
′
Σ−1 (Zt − B′Xt)

}

,

1



whose maximization shows that the QMLE of B is equal to B̂ and that of Σ
is Σ̂ := n−1∑n

t=1 ǫ̂tǫ̂
′
t = (n− k)n−1Σ∗. Because Σ∗ is an unbiased estimator of

the matrix Σ, by definition we have E {Σ∗} = Σ, we then deduce that

n

n− k
E
{

Σ̂
}

=
1

n− k
Eε̂′ε̂ =

1

n− k
Eε′MXε = Σ.

B Kullback-Leibler discrepancy

This Section presents the definition and mains properties of the Kullback-
Leibler divergence.

Assume that, with respect to a σ-finite measure µ, the true density of the
observations X = (X1, . . . , Xn) is f0, and that some candidate model m gives a
density fm(·, θm) to the observations, where θm is a km-dimensional parameter.
The discrepancy between the candidate and the true models can be measured
by the Kullback-Leibler divergence (or information)

d {fm(·, θm)|f0} = Ef0 log
f0(X)

fm(X, θm)
= Ef0 log f0(X) +

1

2
∆ {fm(·, θm)|f0} ,

where

∆ {fm(·, θm)|f0} = −2Ef0 log fm(X, θm) = −2
∫

{log fm(x, θm)} f0(x)µ(dx)

is sometimes called the Kullback-Leibler contrast (or the discrepancy between
the approximating and the true models). Using the Jensen inequality, we have

d {fm(·, θm)|f0}=−
∫

log
fm(x, θm)

f0(x)
f0(x)µ(dx)

≥− log
∫

fm(x, θm)

f0(x)
f0(x)µ(dx) = 0,

with equality if and only if fm(·, θm) = f0. This is the main property of
the Kullback-Leibler divergence. Minimizing d {fm(·, θm)|f0} with respect to
fm(·, θm) is equivalent to minimizing the contrast ∆ {fm(·, θm)|f0}. Let

θ0,m = arg inf
θm

d {fm(·, θm)|f0} = arg inf
θm

−2E log fm(X, θm)

be an optimal parameter for the model m corresponding to the density
fm(·, θm) (assuming that such a parameter exists). We estimate this optimal

2



parameter by QMLE θ̂n,m.

C Strong and weak VARMA case

In this Section, we presents the simulations results on the VARMA model
in echelon form. We simulated N independent trajectories of different sizes
of a bivariate VARMA(1, 1) model in echelon form or, more precisely, an
ARMAE(0, 1), with the strong Gaussian and weak noise above-mentioned.
We took N = 1, 000 when the sample size n ≤ 2000 and N = 1, 00 in the op-
posite case. For each of these N replications of both models, we have 9 candi-
dates models (i.e. VARMA(1, 1), VARMA(2, 2),VARMA(2, 1), VARMA(1, 2),
VARMA(1, 3), VARMA(3, 1), VARMA(3, 2), VARMA(2, 3) and VARMA(3, 3)
models). These candidates models are constrained in echelon form (i.e. an
ARMAE(0, k) for k = 1, 2, 3). The quasi-maximum likelihood method was
used to fit candidates bivariate VARMA models and standard and modified
versions of AIC criteria were used to select among the candidates models. To
generate the strong and weak VARMA(1, 1) model, we consider the bivariate
model of the form







X1,t

X2,t





=







0 0

0 0.225













X1,t−1

X2,t−1





+







ǫ1,t

ǫ2,t







−







0 0

−0.313 0.750













ǫ1,t−1

ǫ2,t−1





 . (C.1)

Table C.1 displays the relative frequency (in %) of the orders selected by
various standard and modified versions of the AIC criteria of a strong (Model
I) candidates VARMA models, over the N independent replications. Table
C.1 shows that a standard AICc and a modified AICM have performed in the
small samples sizes (n = 20 and n = 50) and selected the true orders of the
strong model. By contrast, when n = 20 a standard AIC overfit the order
q and selected an VARMA(1, 3), but did not perform well. In view of the
observed relative frequency in Tables C.2 and C.3, the true orders (1, 1) (i.e.
VARMA(1, 1) model) are selected by all versions of the AIC criteria. They
have similar performance, with a slight advantage to the standard versions.

Tables C.4 and C.5 display the relative frequency (in %) of the orders selected
by various standard and modified versions of the AIC criteria of weak candi-
dates VARMA models, firstly with error term (7) (Model III) and secondly,
with error term (9) (Model IV). In view of the observed relative frequency, the

3



true orders (1, 1) are selected by all versions of the AIC criteria. They have
similar performance, with a slight advantage to the standard versions.
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Table C.1
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I

n (p, q) AIC AICc AICM

(1, 1) 27.5 64.1 62.1

(2, 2) 0.2 0.0 0.5

(2, 1) 1.6 2.0 4.1

(1, 2) 19.3 22.2 14.9

20 (3, 3) 2.8 0.0 0.8

(3, 2) 3.5 0.0 1.3

(3, 1) 0.6 0.0 1.8

(2, 3) 11.0 0.1 2.1

(1, 3) 33.5 11.6 12.4

(1, 1) 39.9 61.9 58.3

(2, 2) 0.1 0.0 0.3

(2, 1) 1.5 1.5 2.4

(1, 2) 11.8 12.0 9.6

50 (3, 3) 9.7 1.3 6.3

(3, 2) 3.0 2.0 3.2

(3, 1) 0.2 0.3 0.4

(2, 3) 24.5 13.6 15.5

(1, 3) 9.3 7.4 4.0

(1, 1) 52.2 62.6 56.9

(2, 2) 0.1 0.1 0.1

(2, 1) 0.9 1.0 2.2

(1, 2) 6.3 6.7 6.9

100 (3, 3) 12.5 6.4 10.7

(3, 2) 1.7 1.3 2.2

(3, 1) 0.2 0.1 0.6

(2, 3) 22.5 18.7 18.0

(1, 3) 3.6 3.1 2.4

I: Strong VARMA(1,1) model (C.1)-(6)
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Table C.2
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I Criteria Model II

n (p, q) AIC AICc AICM AIC AICc AICM

(1, 1) 82.0 83.4 74.4 62.6 63.7 59.2

(2, 2) 0.1 0.1 1.1 1.2 0.9 2.9

(2, 1) 0.8 0.8 2.1 1.6 1.5 3.9

(1, 2) 1.9 1.9 4.6 20.0 19.6 17.2

500 (3, 3) 11.4 10.3 12.9 9.2 9.2 10.8

(3, 2) 0.3 0.2 0.5 0.6 0.5 0.7

(3, 1) 0.0 0.0 0.3 0.0 0.0 0.7

(2, 3) 2.1 1.9 2.4 1.7 1.7 2.1

(1, 3) 1.4 1.4 1.7 3.1 2.9 2.5

(1, 1) 90.6 91.1 80.2 79.1 79.3 73.5

(2, 2) 0.8 0.7 1.7 0.3 0.3 1.5

(2, 1) 0.2 0.2 1.6 1.9 1.9 4.8

(1, 2) 1.7 1.5 4.2 11.9 11.8 10.4

2000 (3, 3) 5.5 5.3 10.5 4.6 4.5 4.9

(3, 2) 0.2 0.2 0.1 0.2 0.2 0.4

(3, 1) 0.0 0.0 0.1 0.0 0.0 0.3

(2, 3) 0.4 0.4 0.1 0.6 0.6 1.4

(1, 3) 0.6 0.6 1.5 1.4 1.4 2.8

I: Strong VARMA(1, 1) model (C.1)-(6)

II: Weak VARMA(1, 1) model (C.1)-(8)
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Table C.3
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I Criteria Model II

n (p, q) AIC AICc AICM AIC AICc AICM

(1, 1) 82.0 83.4 74.4 81.0 81.0 74.0

(2, 2) 0.1 0.1 1.1 0.0 0.0 0.0

(2, 1) 0.8 0.8 2.1 3.0 3.0 6.0

(1, 2) 1.9 1.9 4.6 11.0 11.0 7.0

5, 000 (3, 3) 11.4 10.3 12.9 4.0 4.0 6.0

(3, 2) 0.3 0.2 0.5 0.0 0.0 2.0

(3, 1) 0.0 0.0 0.3 0.0 0.0 2.0

(2, 3) 2.1 1.9 2.4 0.0 0.0 1.0

(1, 3) 1.4 1.4 1.7 1.0 1.0 2.0

(1, 1) 90.6 91.1 80.2 75.0 75.0 70.0

(2, 2) 0.8 0.7 1.7 0.0 0.0 3.0

(2, 1) 0.2 0.2 1.6 0.0 0.0 5.0

(1, 2) 1.7 1.5 4.2 20.0 20.0 11.0

10, 000 (3, 3) 5.5 5.3 10.5 1.0 1.0 4.0

(3, 2) 0.2 0.2 0.1 0.0 0.0 1.0

(3, 1) 0.0 0.0 0.1 0.0 0.0 3.0

(2, 3) 0.4 0.4 0.1 1.0 1.0 1.0

(1, 3) 0.6 0.6 1.5 3.0 3.0 2.0

I: Strong VARMA(1, 1) model (C.1)-(6)

II: Weak VARMA(1, 1) model (C.1)-(8)
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Table C.4
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model III Criteria Model IV

n (p, q) AIC AICc AICM AIC AICc AICM

(1, 1) 74.3 75.6 67.9 82.1 83.0 75.0

(2, 2) 0.3 0.3 1.0 0.3 0.3 1.0

(2, 1) 0.8 0.8 2.9 0.3 0.2 1.4

(1, 2) 8.4 8.2 11.4 1.2 1.1 4.3

500 (3, 3) 8.5 8.0 7.0 12.5 11.8 13.2

(3, 2) 0.4 0.4 0.7 0.1 0.1 0.6

(3, 1) 0.0 0.0 0.4 0.0 0.0 0.1

(2, 3) 6.1 5.9 6.0 2.3 2.3 1.8

(1, 3) 1.2 0.8 2.7 1.2 1.2 2.6

(1, 1) 84.0 84.2 73.4 90.9 90.9 87.3

(2, 2) 0.3 0.3 1.8 0.0 0.0 0.9

(2, 1) 0.8 0.8 3.4 0.3 0.3 0.9

(1, 2) 7.8 7.8 8.4 1.8 1.8 3.2

2000 (3, 3) 3.2 3.2 7.2 6.7 6.7 5.8

(3, 2) 0.1 0.1 0.4 0.1 0.1 0.1

(3, 1) 0.0 0.0 0.7 0.0 0.0 0.0

(2, 3) 0.5 0.5 0.5 0.0 0.0 0.5

(1, 3) 3.3 3.1 4.2 0.2 0.2 1.3

III: Weak VARMA(1, 1) model GARCH (C.1)-(7)

IV: Weak VARMA(1, 1) model (C.1)-(9)
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Table C.5
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model III Criteria Model IV

n (p, q) AIC AICc AICM AIC AICc AICM

(1, 1) 82.0 82.0 79.0 95.0 95.0 85.0

(2, 2) 0.0 0.0 0.0 0.0 0.0 2.0

(2, 1) 0.0 0.0 1.0 0.0 0.0 1.0

(1, 2) 8.0 8.0 9.0 1.0 1.0 2.0

5, 000 (3, 3) 3.0 3.0 4.0 2.0 2.0 6.0

(3, 2) 0.0 0.0 1.0 0.0 0.0 0.0

(3, 1) 0.0 0.0 0.0 0.0 0.0 1.0

(2, 3) 0.0 0.0 1.0 0.0 0.0 0.0

(1, 3) 7.0 7.0 5.0 2.0 2.0 3.0

(1, 1) 89.0 89.0 84.0 96.0 96.0 87.0

(2, 2) 1.0 1.0 3.0 0.0 0.0 0.0

(2, 1) 0.0 0.0 1.0 0.0 0.0 1.0

(1, 2) 8.0 8.0 8.0 3.0 3.0 7.0

10, 000 (3, 3) 0.0 0.0 0.0 1.0 1.0 5.0

(3, 2) 0.0 0.0 0.0 0.0 0.0 0.0

(3, 1) 0.0 0.0 0.0 0.0 0.0 0.0

(2, 3) 0.0 0.0 1.0 0.0 0.0 0.0

(1, 3) 2.0 2.0 3.0 0.0 0.0 0.0

III: Weak VARMA(1, 1) model GARCH (C.1)-(7)

IV: Weak VARMA(1, 1) model (C.1)-(9)

9



Table C.6
Modified version of asymptotic probabilities of overfitting by ℓ = d2(ℓ1+ ℓ2) param-
eters for bivariate VARMA models of various versions of AIC criteria.

Length Order PW Model I PW Model II

n (ℓ1, ℓ2) P
AIC
W P

AICc
W P

AICM

W P
AIC
W P

AICc
W P

AICM

W

(1, 0) 0.009 0.009 0.028 0.057 0.056 0.104

(0, 1) 0.025 0.024 0.060 0.237 0.231 0.228

(1, 1) 0.003 0.002 0.021 0.086 0.079 0.136

(0, 2) 0.016 0.016 0.036 0.130 0.117 0.139

500 (2, 0) 0.002 0.002 0.011 0.016 0.016 0.057

(1, 2) 0.027 0.024 0.036 0.073 0.065 0.103

(2, 1) 0.006 0.005 0.011 0.043 0.039 0.076

(2, 2) 0.126 0.114 0.140 0.127 0.121 0.168

(1, 0) 0.007 0.007 0.026 0.083 0.081 0.124

(0, 1) 0.020 0.017 0.058 0.258 0.251 0.221

(1, 1) 0.009 0.009 0.022 0.103 0.102 0.133

(0, 2) 0.010 0.010 0.036 0.147 0.146 0.141

2000 (2, 0) 0.001 0.001 0.006 0.026 0.025 0.069

(1, 2) 0.005 0.005 0.011 0.071 0.071 0.096

(2, 1) 0.005 0.005 0.011 0.053 0.052 0.082

(2, 2) 0.057 0.055 0.108 0.073 0.071 0.122

I: Strong VARMA(1, 1) model (C.1)-(6)

II: Weak VARMA(1, 1) model (C.1)-(8)

10



Table C.6 displays the modified version of asymptotic probabilities of overfit-
ting by ℓ = d2(ℓ1 + ℓ2) parameters for bivariate VARMA models of various
versions of AIC criteria. Table C.6 shows clearly that the AICM criterion is
not consistent in the weak and strong VARMA cases, since his probability
of overfitting is not zero. The modified asymptotic probabilities of overfitting
of the standard and modified versions of the AIC criteria are similar in the
two cases. Note that the asymptotic probabilities of overfitting of the AICM

criterion decreases when n is large.

D Others simulations on strong and weak vector moving average
(VMA) case

We simulated N independent trajectories of different sizes of bivariate VMA(1)
model with the strong Gaussian and the weak noise above-mentioned. We took
N = 1, 000 when the sample size n ≤ 2000 and N = 1, 00 in the opposite case.
For each of these N replications of VMA(1) model, we will fit 6 candidates
models (i.e. VMA(k) models with k = 1, . . . , 6). The QML method was used to
fit candidates bivariate VMA models of order 1, . . . , 6; standard and modified
versions of AIC criteria were used to select among the candidates models.

To generate the strong and weak VMA(1) models, we consider the bivariate
model of the form







X1,t

X2,t





=







ǫ1,t

ǫ2,t





−







0.5 0.1

0.4 0.5













ǫ1,t−1

ǫ2,t−1





 , Σ0 =







1 0

0 1





 . (D.1)

Table D.1 displays the relative frequency (in %) of the order selected by vari-
ous standard and modified versions of the AIC criteria of a strong (Model I)
VMA(k) candidates models, for k = 1, . . . , 6, over the N independent replica-
tions. Table D.1 shows that the standard AIC criteria have overfit the order
q in the small sample size (i.e. n = 50) and selected a VMA(6) model. By
contrast, the modified criterion selected a VMA(1) model. In view of the ob-
served relative frequency, when n > 50, the order q = 1 (i.e. VMA(1) model)
is selected by all versions of the AIC criteria, but the modified criterion has
clearly hight performance.

Table D.2 displays the relative frequency (in %) of the order selected by various
standard and modified versions of the AIC criteria of a strong (Model I)
and weak (Model II, with error term (8)) VMA(k) candidates models, for
k = 1, . . . , 6, over the N independent replications. Table D.2 shows that the
standard AIC criteria have overfit the order q in the small sample size (n = 20

11



and n = 50). In view of the observed relative frequency, the order q = 1 (i.e.
VMA(1) model) is selected by all versions of the AIC criteria in Models I and
II. As expected in Model II, the observed relative frequency of the standard
AIC criteria is very smaller than a modified one. Table D.2 shows also that
the standard AIC criteria clearly did not perform well here, and they have
tendency to overestimate the order q = 3. By contrast, in Model I all versions
of the AIC criteria have the same performance.

Table D.3 displays the relative frequency (in %) of the order selected by var-
ious standard and modified versions of the AIC criteria of a weak VMA(k)
candidates models for k = 1, . . . , 6, firstly with error term (7) (Model III)
and secondly with error term (9) (Model IV). In view of the observed relative
frequency, a VMA(1) model is selected by all versions of the AIC criteria and
they have the same performance in Model IV. By contrast, Table D.3 shows
that a modified criterion has clearly hight performance in Model III.

12



Table D.1
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I

n q AIC AICc AICM

1 1.8 5.8 53.4

2 0.0 0.0 1.3

3 1.8 4.5 9.7

50 4 7.4 12.0 9.4

5 25.0 28.8 13.5

6 64.0 48.9 12.7

1 65.3 72.5 85.3

2 0.2 0.1 0.5

3 6.5 5.1 5.2

100 4 3.2 2.4 1.4

5 5.9 4.8 2.9

6 18.9 15.1 4.7

1 92.4 93.8 94.2

2 0.0 0.0 0.0

3 3.1 2.7 3.2

200 4 1.8 1.9 1.2

5 1.4 1.0 0.8

6 1.3 0.6 0.6

I: Strong VMA(1) model (D.1)-(6)
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Table D.2
Relative frequency (in %) of the order selected by various standard and modified
versions of the AIC criteria.

Length Order Criteria Model I Criteria Model II

n q AIC AICc AICM AIC AICc AICM

1 95.1 95.8 95.6 57.3 58.5 73.4

2 0.0 0.0 0.0 0.0 0.0 0.0

3 2.9 2.6 3.0 34.8 34.4 19.7

500 4 1.4 1.1 1.0 4.5 4.1 4.3

5 0.4 0.4 0.3 2.0 1.8 1.6

6 0.2 0.1 0.1 1.4 1.2 1.0

1 95.0 95.0 95.2 54.7 55.1 77.5

2 0.0 0.0 0.0 0.0 0.0 0.0

3 3.1 3.1 3.1 37.9 37.8 17.2

2, 000 4 1.6 1.6 1.4 4.8 4.7 2.8

5 0.2 0.2 0.2 1.5 1.3 1.4

6 0.1 0.1 0.1 1.1 1.1 1.1

1 95.0 95.0 95.0 44.0 44.0 73.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 2.0 2.0 2.0 42.0 42.0 17.0

5, 000 4 1.0 1.0 1.0 9.0 9.0 5.0

5 1.0 1.0 1.0 3.0 3.0 4.0

6 1.0 1.0 1.0 2.0 2.0 1.0

1 95.0 95.0 95.0 44.0 45.0 84.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 5.0 5.0 5.0 50.0 50.0 15.0

10, 000 4 0.0 0.0 0.0 5.0 4.0 1.0

5 0.0 0.0 0.0 1.0 1.0 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0

I: Strong VMA(1) model (D.1)-(6); II: Weak VMA(1) model (D.1)-(8)
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Table D.3
Relative frequency (in %) of the order selected by various standard and modified
versions of the criteria AIC.

Length Order Criteria Model III Criteria Model IV

n q AIC AICc AICM AIC AICc AICM

1 75.9 77.2 82.8 96.0 96.5 95.6

2 0.0 0.0 0.0 0.0 0.0 0.0

3 17.2 16.5 12.2 2.2 2.1 3.0

500 4 3.7 3.5 2.9 1.3 1.1 1.2

5 2.0 1.9 1.7 0.5 0.3 0.2

6 1.2 0.9 0.4 0.0 0.0 0.0

1 72.0 72.3 84.8 96.1 96.3 95.6

2 0.0 0.0 0.0 0.0 0.0 0.0

3 19.4 19.3 10.9 2.8 2.7 3.2

2000 4 5.4 5.4 2.6 0.5 0.5 0.6

5 2.4 2.2 1.1 0.4 0.4 0.4

6 0.8 0.8 0.6 0.2 0.1 0.2

1 70.0 71.0 80.0 95.0 95.0 93.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 18.0 18.0 13.0 2.0 2.0 3.0

5, 000 4 3.0 2.0 0.0 2.0 2.0 2.0

5 7.0 7.0 5.0 1.0 1.0 2.0

6 2.0 2.0 2.0 0.0 0.0 0.0

1 69.0 69.0 85.0 97.0 97.0 97.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 23.0 23.0 12.0 2.0 2.0 2.0

10, 000 4 4.0 4.0 3.0 1.0 1.0 1.0

5 2.0 2.0 0.0 0.0 0.0 0.0

6 2.0 2.0 0.0 0.0 0.0 0.0

III: Weak VMA(1) model (D.1)-(7), IV: Weak VMA(1) model (D.1)-(9)
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