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Abstract

In the proto-coalition model of government formation, formateur F appoints

a proto-coalition and asks its members whether to start negotiating a coalition

contract. If all accept, then the proto-coalition forms and starts negotiating;

otherwise a caretaker government assumes office. I extend this model by al-

lowing F to revise the chosen proto-coalition after rejections, that he states pre-

conditions for the subsequent negotiations, and that F’s opponents may publicly

pre-commit to accept/reject certain proposals. The set of equilibrium outcomes

is identified as the core if F’s opponents can pre-commit and as the convex hull

of the core if they cannot pre-commit credibly. This extended model elimi-

nates two flaws of the standard model: it explains why F cannot always install

his favored coalition (whatever the status quo) and why “important” coalition

members may have more bargaining power in the subsequent negotiations than

others.
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1 Introduction

The process of government formation is central in multiparty democracies. It deter-

mines the composition of the government coalition, which in turn sets the political

agenda and essentially passes the legislation. As a result, the institutional details of

elections and government formation affect income tax rates (Austen-Smith, 2000),

economic policy (Persson, 2002), fiscal policy (Persson and Tabellini, 2004), and

many related aspects. To analyze the institutional details accurately, increasingly re-

fined models of government formation have been developed in the literature (see for

example Diermeier, 2006, for a survey). The model that seems to capture the em-

pirical regularities best is the model of “proto-coalition bargaining” introduced by

Diermeier and Merlo (2000) and Baron and Diermeier (2001): The government for-

mateur F chooses a proto-coalition c, and if all members of c accept, then a coalition

contract is negotiated (using the model of Merlo and Wilson, 1995, 1998).1 Other-

wise, a default (caretaker) government assumes office.

This model is sufficiently flexible to account for the occurrence of minority,

minimal-majority, and surplus governments (by varying the default payoffs), and if

extended to account for out-of equilibrium phenomena, its parameters can be esti-

mated based on real-world data. The estimated structural models, in turn, have been

used in counterfactual policy experiments to study institutional and constitutional de-

sign (Diermeier et al., 2002, 2003, 2007). In this paper, I analyze an extension to the

model of proto-coalition bargaining that will be shown to account for two additional

phenomena that the standard model fails to explain in equilibrium: (i) F cannot al-

ways install his preferred coalition (even if the default payoffs are low) and (ii) coali-

tion members that are “important” (to be specified) have more bargaining power in

the subsequent negotiations than other parties. Thus, the range of outcomes compat-

ible with the proto-coalition model is widened substantially, and hence the extended

model allows more precise analyses of institutional and constitutional design.

1The main alternative models of coalitional bargaining, random proposer bargaining (Baron and

Ferejohn, 1989; Eraslan, 2002; Kalandrakis, 2006) and demand commitment bargaining (Winter, 1994;

Cardona-Coll and Mancera, 2000) apply less well to government formation (as opposed to parliamen-

tary bargaining, for example), as the identity of the formateur is not constant in these models.
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The main extension that I propose is as follows. If one of the parties in the

proto-coalition chosen by F refuses to start negotiating a coalition contract, then the

standard model posits that a caretaker government is instated. In most cases, the gov-

ernment formateur F may actually make a second proposal, or a third one if necessary,

and more generally modern means of communication render the existence of remote

time lines strategically irrelevant. Hence, government formation is more aptly mod-

eled as a game with infinite time horizon, at least as long as the time line is considered

“remote,” as opposed to a finitely repeated game or even a one-round game. Thus, ac-

tion and reaction between formateur and potential coalition partners are strategically

relevant already prior to the formation of the proto-coalition. An implication of this

interaction is that F’s opponents may reject the first proposal of F to force him into

forming the proto-coalition of their choice, rather than sticking with his choice. The

strategic relevance of the coalition preferences of F in relation to those of the other

players is empirically obvious (as different parties have different political platforms

and hence prefer to coalesce with different partners), but their relation is irrelevant in

the one-round model. In contrast, the standard one-round model explains deviations

from F’s favorite choice by assuming either high default payoffs or bounded ratio-

nality of F (as in logit choice functions, see Diermeier et al., 2003). Allowing F to

revise rejected proposals eliminates this neglect of the standard model.

Two other extensions to the standard model that I analyze are as follows. On the

one hand, I allow F to offer ideological or distributive concessions during coalition

formation (formalized as “pre-conditions” below), using which he may try to assem-

ble his favored coalition. On the other hand, I allow F’s opponents to pre-commit

publicly to accept or reject certain proposals of F . The results can be summarized as

follows. The extended proto-coalition game implements a “quasi-core” if F’s oppo-

nents may pre-commit publicly and it implements a superset of the quasi-core if they

cannot. These solution sets equate with the core and the convex hull of the core (re-

spectively) under the standard assumption that the status quo is bad. This relationship

between proto-coalition bargaining and the core is novel and will be established under

fairly general conditions. I then analyze several classes of example games to illustrate

the main characteristics of the extended model, and amongst others these examples

illustrate why F cannot always form his favored coalition (essentially, when it is not
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the favored coalition of the other players) and why F may have to give up bargaining

power during coalition formation.

The notation is introduced in Section 2. Section 3 analyzes the game where F’s

opponents cannot pre-commit credibly, Section 4 analyzes the game where they can.

Section 5 analyzes the example games and Section 6 concludes.

2 The base model

Definitions The formateur is denoted as F . The remaining players are denoted as

i ∈ N = {1, . . . ,n}. The game proceeds in rounds. In each round, F chooses a proto-

coalition c⊆NF :=N∪{F} such that F ∈ c and pre-conditions r ∈R , where |R |<∞.

If at least one i ∈ c does not agree to negotiate under pre-conditions r, then a new

round begins. Otherwise, the proto-coalition forms and multilateral negotiations start.

The protocol of these negotiations is left open in the general analysis.2 Regardless

of the protocol, the expected payoffs from the negotiations are common knowledge

in equilibrium. They are denoted as vi(r,c) for all i ∈ NF and assumed to be non-

degenerate, see Eq. (1) below. Given the discreteness of the pre-conditions, non-

degeneracy is implied in most models of intra-coalitional bargaining. Examples are

discussed in Section 5. In turn, discreteness of R is required to express categorical

pre-conditions, e.g. whether new nuclear power plants may be constructed, whether

taxes may be raised, or whether one participates in international military campaigns.

A continuity assumption would be inappropriate in such cases, as pre-conditions prior

to government formation do generally not concern quantitative details such as size of

power plants or actual tax rates.

C(r)⊆ P (NF) denotes the set of proto-coalitions to which pre-conditions r may

be proposed; P (NF) is the power set of NF . In most applications, C(r) would sat-

isfy either uniformity (all pre-conditions are applicable to all decisive coalitions) or

2In this way, most reasonable models of the subsequent negotiations are treated in a unified manner,

e.g. random or deterministic proposer models, models of distributive and ideological decisions, and

different degrees of randomness of cake sizes. In such cases, the pre-conditions may concern relative

weights for proposal making, rights of first proposal, or restrictions of the bargaining outcome.
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specificity (every r ∈ R is applicable to exactly one coalition). The following analy-

sis treats these (and all other) cases in a unified manner. Without loss of generality,

assume that if C(r) is not a singleton, then the expected payoff vi is independent of

which proto-coalition c ∈C(r) accepts r. This comes without loss, since payoff rele-

vance can be expressed by refining R as necessary. Thus, vi(r)≡ vi(r,c) for all i ∈ NF

and all c ∈C(r), and non-degeneracy can be defined as

∀r,r′ ∈ R ∀i ∈ NF : vi(r) 6= vi(r
′). (1)

Future payoffs are discounted by δ∈ (0,1), and the valuations of the status quo (which

applies until agreement is reached) are denoted as ṽi for all i∈NF . Note that the status

quo need not be “bad” in the sense of Banks and Duggan (2006). To summarize, the

game is defined as a tuple Γ = 〈N,R ,C,(vi),(ṽi)〉.

In addition, I use r1 %i r2 as a short-cut for vi(r1)≥ vi(r2), including all obvious

variations (e.g. r1 ≻i r2), and the partial ordering “≻c” is used as follows.

∀r1,r2 ∈ R : r1 ≻c r2 ⇔ ∀i ∈ c : r1 ≻i r2. (2)

Strategies The set of t-round histories is Ht =
(

PF ×{0,1}N
)t

, with t ≥ 0 and

PF := {(r,c) | r ∈ R and c ∈C(r)} (3)

as the set of proposals that F can make. The set of all histories is H = ∪t≥0Ht .

F’s strategy is a function τF : H → PF , and for all i ∈ N, strategies are denoted as

τi : H ×Pi →{0,1}, with

Pi := {(r,c) | r ∈ R and i ∈ c ∈C(r)} (4)

as the set of proposals addressing a proto-coalition including i. For example, τi(h)(r,c)

is the probability that i accepts entering multilateral negotiations after history h un-

der the proposal (r,c). I will characterize the set of (pure) equilibria that are semi-

stationary in the following sense.

Definition 2.1 (Semi-stationarity). Let p(h) denote the sequence of proposals (rt ,ct)t≥0

implied by the history of play h ∈ H and define P = ∪h∈Hp(h). Semi-stationary per-

fect equilibria τ are perfect equilibria (Selten, 1975) that are measurable with respect
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to set of proposal sequences P, i.e. for all histories h,h′ ∈ H,

p(h) = p(h′) ⇒ τ(h) = τ(h′). (5)

That is, the strategies may depend on the proposal sequence F made before (e.g.

on which “concessions” F made), but they are independent of which player happened

to reject a proposal made in the past. This notion of “semi-stationarity” is not to

be confused with the (context dependent) alternative definitions of semi-stationarity

provided by Rubinstein and Wolinsky (1985), Wooders (1998), and Kultti (2000). I

relax the standard assumption of stationarity, as strict stationarity would imply that

players ignore which proposals/concessions had been made before, which seems un-

realistic in the context of government coalition. Fully unrestricted non-stationarity,

in turn, does not allow me to express the intuitive notion of sincere voting (which is

implied in semi-stationary perfect equilibria). Without semi-stationarity, one’s payoff

maximizing voting decision would depend on who (if any) is anticipated to reject the

standing proposal, and this would not be “sincere.”

3 Analysis of the base model

In a first step of the analysis, I characterize the outcomes that may be sustained in

stationary equilibria. Under stationarity, F proposes the same pre-conditions r to the

same proto-coalition c in every round. In equilibrium, (r,c) is accepted without delay

and no player is better off deviating unilaterally. On the one hand this implies that pre-

conditions are accepted only if no player benefits from delaying agreement. Hence, r

must dominate the status quo for all i ∈ c, i.e. r ∈ R ∗ as defined next.

R ∗ = {r ∈ R | ∃c ∈C(r) : r %c ṽi} (6)

On the other hand, if all players anticipate that some r ∈ R is going to be proposed in

all future rounds round, and if there exists some (r′,c′) that all i ∈ c′ prefer to r, then

F is better off deviating to propose (r′,c′) in any round. For, all i ∈ c′ will accept it

when evaluating it in relation to their continuation payoffs vi(r). To summarize, the
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set of stationary equilibrium outcomes is the quasi core of Γ as defined next.3

QC(Γ) =
{

r ∈ R ∗ | ∄(r′,c′) ∈ PF such that r′ ≻c′ r
}

(7)

It is called “quasi core,” because being “undominated in R ”4 is not sufficient for the

(quasi-) core property; in addition, the respective options have to dominate the status

quo. It coincides with the core of the formateur bargaining game if the status quo is

“bad,” and in this case, QC(Γ) is guaranteed to be non-empty.

Next, we characterize the outcome set under semi-stationarity. It contains all

outcomes compatible with stationarity, and additionally allows for two effects. On

the one hand, if a decisive coalition c′ prefers negotiating under r′ to some alternative

(r,c), then c′ accepts r′ if F “threatens” to go for (r,c) otherwise. Such threats can be

reiterated as long as ck prefers rk over (rk−1,ck−1) for all k ≥ 1, as in

rk ≻ck rk−1 ≻ck−1 · · · ≻c2 r1 ≻c1 r0, (8)

Any rk that is sustained by such a sequence can result in equilibrium if the seed (r0,c0)

is an equilibrium outcome. If (r0,c0) is to be sustained in a stationary continuation

equilibrium, however, then it is an element of the quasi core, and its very definition

thus rules out that it could be the seed of any such sequence. It follows that the con-

tinuation equilibrium inducing (r0,c0) cannot be stationary. A second issue with the

credibility of iterating threats as in (8) is that F must not be able to deviate profitably

to a proposal other than the one listed next in the sequence.

To illustrate how these issues can be resolved, let me first illustrate how ele-

ments of R ∗ that F prefers to some element of the quasi core can result under semi-

stationarity without iterating threats. Define

QC(Γ) :=
{

r ∈ R ∗ | ∃r′ ∈ QC(Γ) : r %F r′
}

, (9)

pick any r ∈ QC(Γ) \QC(Γ), and choose r′ ∈ QC(Γ) such that r %F r′. These addi-

tional elements r ∈ QC(Γ)\QC(Γ) are potential seeds of iterated threats as in (8). An

equilibrium resulting in r along the path is: (i) F proposes r if he has never deviated

3This definition the quasi core should not be confused with alternative ones, as in Shapley and

Shubik (1966) and Shimomura (1997).
4r dominates r′ if r ≻c r′ for some c ∈C(r) and r is undominated in R if no r′ ∈ R dominates r
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from proposing r in the past, (ii) F proposes r′ otherwise, and (iii) all players vote

sincerely. Hence, if F ever deviates from proposing r, then the continuation outcome

becomes r′, and since r′ is undominated in R , no pre-conditions but r′ would be ac-

cepted when r′ is the continuation outcome. Thus, when F deviates from c, then r′

results indeed, and since r %F r′, F is indeed best off proposing r initially. In this

way, r results in equilibrium although r is not undominated in R . The following

shows how this generalizes to sequences of iterated threats as in (8).

Lemma 3.1. Generically, there exists δ ∈ (0,1) such that r ∈ R can result in a semi-

stationary perfect equilibrium for all δ ∈
(

δ,1
)

if there exists (rk,ck)k≤K for some

K ∈ N0 such that r = rK and

rK ≻cK
−F

rK−1 ≻
cK−1
−F

· · · ≻c2
−F

r1 ≻c1
−F

rk′ for some k′ ≤ K, (10)

and there exists r∗ ∈ QC(Γ) such that rk %F r∗ for all k ≤ K.

Proof. First, I show that r∗ ∈ QC(Γ) can result in a (stationary) perfect equilibrium.

Define the strategy profile τ where (i) F invariantly proposes r∗ and (ii) all opponents

vote sincerely. Formally, for all h ∈ H,

τF(h) = (r∗,c∗), (11)

∀i ∈ N ∀(r,c) ∈ Pi : τi

(

h,(r,c)
)

=

{

1, if r %i r∗,

0, otherwise.
(12)

By construction, it is a stationary strategy profile that results in r∗ along the path

of play. The voting decisions τi

(

h,(r,c)
)

are compatible with perfection, as vi(r
∗)

is i’s continuation payoff in case (r,c) is rejected. To see that F’s proposals τF(h)

are compatible with perfection, too, note first that r∗ ∈ QC(Γ) implies ∄r′ ∈ R such

that a decisive coalition prefers r′ to r∗. Hence, and given the voting decisions of

the i ∈ N, F is strictly best off proposing r∗. Any r′ ≻F r∗ that F prefers will be

accepted only with infinitesimal probability, and hence proposing any r′ ≻F r∗ is not

optimal if δ < 1. Proposing options r′ with r∗ ≻F r′ cannot be optimal regardless of

their acceptance probabilities, and for appropriately constructed tremble probabilities,

proposing (r∗,c∗) is strictly more profitable than proposing any (r′,c′) where r′∼F r∗.

Combined, this implies that τ is a perfect equilibrium.
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Second, consider r as claimed, define (rk,ck)k≤K for K ∈ N0 and r∗ ∈ QC(Γ)

such that rk %F r∗ for all k ≤ K. Consider the following strategy profile.

1. F proposes the options in the order
(

rK,cK
)

, . . . ,
(

r1,c1
)

,
(

rk′ ,ck′
)

,
(

rk′−1,ck′−1
)

, . . .

until one is accepted. If F ever deviates from this sequence, then the continua-

tion strategies are the stationary equilibrium sustaining r∗ (see above).

2. F’s opponents vote sincerely (anticipating proposals as defined in point 1).

By construction, this strategy profile is semi-stationary, and the argument establishing

perfection is similar to the one above. Sincere voting implies that any proposal (rk,ck)

along this sequence would be accepted by the respective proto-coalition. This in

turn implies that any proposal deviating from this sequence would be rejected by at

least one player of any proto-coalition (since the next proposal would be r∗ which

is undominated in R ). Given this, F is best off sticking to the outlined proposal

sequence until a proposal is accepted.

Lemma 3.1 implies that a sequence need not be seeded in some r0 ∈ QC for

being sustainable in equilibrium. Alternatively, the sequence may be circular. The

following result completes the characterization of equilibrium outcomes under semi-

stationarity. It shows that it is not necessary that the “fall-back result” r∗ is in QC(Γ),

i.e. it is not necessary that F’s opponents prefer it to the status quo. The solution

set will be defined using a notion of self-generation as it is known from dynamic

programming.

Definition 3.2 (Self-generation). r ∈ R is enforceable on R′ ⊆ R if r ≻c−F
r′ for some

c ∈C(r) and some r′ ∈ R′. The set R′ ⊆ R is self-generating in Γ if

1. for all r ∈ R′: r dominates the status quo ṽ or r is enforceable on R′, and

2. minR′ is undominated in R and minR′ ≻F ṽ

using minR′ := argminr′∈R′ vF(r
′). The largest self-generating set is denoted as SG(Γ).

As the most important special case, consider the standard assumption that the

status quo is bad, i.e. vi(r) > ṽi for all i ∈ c ∈ C(r) and all r. Then, the largest self-

generating set simply convexifies the core under %F , i.e. in this case, it simplifies
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to

Bad status quo: SG(Γ) = {r ∈ R | ∃r′,r′′ ∈ QC(Γ) such that r′ %F r %F r′′
}

.

This will be illustrated and further discussed in Section 5 (e.g. Lemma 5.2). The next

result establishes SG(Γ) as the solution set in general.

Proposition 3.3. Generically, there exists δ ∈ (0,1) such that r can result in a semi-

stationary perfect equilibrium for all δ ∈
(

δ,1
)

if and only if r ∈ SG(Γ).

Proof. The proof of Lemma 3.1 is adapted straightforwardly to show that r∗ ∈ SG(Γ)

is sufficient. To establish this point, consider the following strategy profile.

1. F proposes (rk,ck) in order until one is accepted; if F ever deviates, then the

continuation equilibrium sustaining rmin = minSG(Γ) is adopted

2. F’s opponents vote sincerely in all cases

As above, sincere voting implies that the players accept any proposal along the se-

quence (since every proposal dominates its respective successor), and they reject any

other proposal (since rmin is the continuation outcome, which is undominated in R ).

Anticipating this, F is best off sticking to the proposal sequence.

It remains to show that r∗ ∈ SG(Γ) is necessary. For contradiction, assume a

semi-stationary perfect equilibrium τ exists that results in some r∗ /∈ SG(Γ). Define

R′ ⊆ R as the set of options that are accepted by some proto-coalition after some

history of play under τ. I show that R′ must be self-generating in the sense of Def.

3.2, which yields the contradiction.

First, assume that minR′ is not undominated in R , and consider any subgame

where r′ := minR′ is supposed to result. Assume that F deviates (in this subgame)

from proposing r′ toward proposing any r′′ that dominates r′. In case r′′ is accepted ac-

cording to τ, then F benefits from this unilateral deviation. In case r′′ is not accepted

according to τ, then either r′ is the continuation outcome or some r′′′ ≻F r′ (since

r′ = minR′ and the valuations are generic). The former case contradicts perfection in

that the proto-coalition does not vote sincerely, and the latter implies that F benefits

by deviating toward r′′ in the considered subgame. Second, assume minR′ 6%F ṽ. In
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this case, F is best off deviating from τ in subgames where F is supposed to propose

minR′ (anything worse than minR′, in F’s eyes, cannot result from this deviation, and

minR′ itself would be delayed, to the benefit of F). Third, assume that some r′ ∈ R′

neither dominates the status quo ṽ nor is enforcable on R′. Consider any subgame

where r′ results according to τ, i.e. is both proposed by F and accepted by the re-

spective proto-coalition, and let r′′ denote the continuation outcome if it would be

rejected by the proto-coalition (under semi-stationarity, r′′ is independent of the indi-

vidual voting decisions). If r′ = r′′, then r′ is accepted in a perfect equilibrium only if

it dominates the status quo. Since r′ does not dominate the status quo by assumption,

r′ 6= r′′ must apply. Such r′ is accepted by a proto-coalition (in a perfect equilibrium,

for δ ≈ 1) only if r′ dominates r′′, i.e. if it is enforcable on R′ (the contradiction).

4 Players can publicly pre-commit

Next, we analyze the extension of the above game where F’s opponents may an-

nounce either negative or positive pre-commitments prior to F’s proposal. A negative

pre-commitment is one where i commits to reject negotiating under the respective

pre-conditions, and a positive pre-commitment is one where i commits to accept ne-

gotiating under these pre-conditions. The exact move structure is as follows.

Definition 4.1 (Extended move structure). The game proceeds in rounds as above. In

each round, first the non-formateur players announce pre-commitments with respect

to any r ∈ R , second F chooses (r,c), i.e. proposes coalition c to negotiate under

pre-conditions r, and third all i ∈ c vote on (r,c) to the degree they are uncommitted.

The proto-coalition is formed if all i ∈ c accept; otherwise a new round begins.

I assume that pre-commitments have to be renewed when a proposal of F had

been rejected, i.e. after each round. Any assumption of finite duration is outcome

equivalent to this one-round assumption. Alternatively, the game where pre-commit-

ments can be made once and for all, prior to the first round, is outcome equivalent to

a game with finite time horizon.

The additional notation can be kept brief. Primarily, D ⊆ {−1,0,1} denotes

the set of “directions” in which non-formateur players may pre-commit. By varying
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D, four kinds of games can be distinguished. If D = {−1,0,1}, then both positive

and negative pre-commitments are possible, if D = {0}, then pre-commitments are

impossible, if D = {0,1}, then only positive commitments are possible, and if D =

{−1,0}, then only negative commitments are possible. The game induced by D= {0}

has been analyzed above. The present section considers the remaining three games.

Strategy profiles are now pairs (κ,τ) with τi as defined above and κi(h,r) ∈ D as

the pre-commitment of i ∈ N chosen after history h with respect to pre-condition r ∈

R . For example, κi(h,r) = 1 implies that i pre-commits to accept r when it should be

proposed by F . I consider perfect equilibria (κ,τ) in semi-stationary strategies.5 The

next result shows that in case positive pre-commitments are impossible, the possibility

of negative pre-commitments is outcome irrelevant.

Proposition 4.2. Assume positive pre-commitments are not possible, i.e. 1 /∈D. Gener-

ically, there exists δ ∈ (0,1) such that for all δ ∈ (δ,1), r can result in equilibrium iff

r ∈ SG(Γ).

Proof. First, I show that any r∗ ∈ SG(Γ) may result in equilibrium. Fix r∗ ∈ SG(Γ),

c∗ ∈C(r∗), and define a strategy profile sustaining (r∗,c∗) as well as rmin =minSG(Γ)

as in the proof of Prop. 3.3. That is, F’s opponents do not pre-commit along the path

of play, they vote sincerely in all cases, and F picks proposals from a sequence as

above. Given Lemma 3.1, it remains to show that F’s opponents cannot benefit by

making (negative) pre-commitments. Consider an arbitrary subgame; let (r,c) denote

its equilibrium outcome, and let (r′,c′) denote the respective continuation outcome. If

any of the players i ∈ c−F pre-commits to reject (r,c), then F is best off following the

proposal sequence nonetheless (since r′ %F rmin); hence negative pre-commitments

are optimal under the constructed strategy profile only for players who would reject

the respective proposal. Since the latter is ruled out by construction of the proposal

sequence, no player can gain by deviating unilaterally to a negative pre-commitment.

Second, I show that only r∗ ∈ SG(Γ) may result in equilibrium. Assume the

opposite and let R′ ⊆ R denote the set of (continuation) outcomes of an equilibrium

5To clarify, players with pre-commitments to accept or reject specific proposals can tremble just as

players with corresponding pure strategies can. Otherwise, perfection does not induce sincere voting

of the uncommitted players.

12



τ contradicting this claim. The arguments showing that minR′ need be undominated

in R and that minR′ ≻F ṽ follows equal those from Proposition 3.3. It remains to

be contradicted that ∃r ∈ R′ that neither dominates the status quo ṽ nor is enforcable

on R′. Let c denote the proto-coalition accepting r in the respective subgame, and

let (r′,c′) denote the continuation result in case F proposes (r,c) but gets rejected. If

r 6= r′, then r ≻c−F
r′ would have to apply (since r would not be accepted otherwise),

and since r′ ∈ R′ by definition of R′, r would then be enforcable on R′. Hence, r = r′

must hold true. Now, either (i) r 6≻i ṽ for some i ∈ c−F , or (ii) r 6≻F ṽ must be satisfied.

In case (i), the respective i∈ c−F would gain by deviating unilaterally toward rejection

of (r,c), which contradicts the assumption that r may result in equilibrium, and in case

(ii), a contradiction to minR′ ≻F ṽ results.

The result that the possibility of negative pre-commitments is outcome irrele-

vant may be surprising. The following explains the intuition. Announcing “knockout

criteria” (i.e. negative pre-commitments) allows non-formateur players to prevent F

from stating exorbitant pre-conditions. Now assume that a player pre-commits to re-

ject the first element (r′,c′) from a sequence of (iteratively self-enforcing) proposals.

As a result, F will have to settle with the next-best option, say (r,c). By assumption,

all i ∈ c′ prefer (r′,c′) over (r,c). Hence, pre-committing negatively with respect to

r′ indeed would prevent it, but it does so only in circumstances where i would actu-

ally want F to ask for r′. Players do therefore not benefit from announcing knockout

criteria in equilibrium, and the possibility do so is outcome irrelevant.

In contrast, consider the implications of positive pre-commitments. Their possi-

bility induces competition reminiscent of auctions between the non-formateur play-

ers, and in a first induction step F seems to benefit from it. Assume for example that

the equilibrium induces some (r,c) along the path of play, and that an option (r′,c′)

exists that all members of the proto-coalition c′ (including F) prefer to (r,c). If they

pre-commit to accept r′, then F will propose (r′,c′) instead of (r,c), and all of them

are better off. Hence, no such (r,c) may result along the equilibrium path. However,

this applies both in the beginning of the game, and more critically in any continuation

equilibrium after any history h. As a result, the “sustaining” threats required to build

complex self-generating sets are not credible anymore—i.e. the (r,c) thanks to which
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c′ accepts (r′,c′)—and for this reason, only singleton self-generating sets can now be

sustained in equilibrium. This leads us back to the quasi core, and in turn, F cannot

play the proto-coalitions off against one another if they can pre-commit positively.

Proposition 4.3. Assume positive pre-commitments are possible, i.e. 1 ∈ D. Generi-

cally, there exists δ ∈ (0,1) such that for all δ ∈ (δ,1), r can result in equilibrium iff

r ∈ QC(Γ).

Proof. First again, I show that any r∗ ∈ QC(Γ) may result in equilibrium. Fix r∗ and

c∗ ∈C(r∗), and let (κ,τ) denote a strategy profile as follows: (i) no pre-commitments

are made, (ii) F makes the payoff maximizing proposal given the actual pre-commit-

ments and anticipating (r∗,c∗) as the continuation outcome, and (iii) all i ∈ N vote

sincerely subject to standing pre-commitments. This strategy profile is stationary,

hence also semi-stationary, and results in (r∗,c∗) along the path of play. Mutual

optimality of both voting and proposal functions follows from their definitions. It

has to be shown that the players are best off not to pre-commit after any history of

play. F makes a proposal other than (r∗,c∗) iff an (r,c) exists such that r ≻F r∗, and

kir = 1 or r ≻i r∗ for all i ∈ c. It follows that only positive pre-commitments may

be payoff relevant for any i ∈ N, and they are payoff relevant only if they concern

r ∈ R : r ≻F r∗ and r 6≻i r∗. Since the continuation payoff is (r∗,c∗) in all cases,

such pre-commitments are at least weakly dominated in all subgames, and they are

generally strictly dominated under full support. Hence, F’s opponents are never best

off deviating from the above strategy profile τ by making positive or negative pre-

commitments.

Second, I show that only r∗ ∈ QC(Γ) may result in equilibrium. Assume the

opposite, i.e. some r /∈ QC(Γ) may result in an equilibrium τ. Case 1: r is not un-

dominated in R . Hence, there exists (r′,c′) such that r′ ≻c′ r. If all i ∈ c′−F would

pre-commit to accept r′, then F will be best off deviating to propose (r′,c′) in the cor-

responding subgame. For, since F cannot deviate profitably from proposing r along

the equilibrium path (recall that τ is a semi-stationary equilibrium), F must be best

off proposing r′ ≻F r in the subgame where r′ will be accepted almost surely due to

pre-commitments. In turn, as each i ∈ c′−F prefer r′ over r, each of them is thus best

off pre-committing to accept r′ under full support—contradicting the assumption that
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τ was an equilibrium.

Case 2: r is undominated in R . Hence, r /∈ QC(Γ) implies that r 6≻c ṽ. Let

c ∈C(r) denote the proto-coalition that accepts r according to τ, and let (r′,c′) denote

the continuation result in case F proposes (r,c) and it gets rejected. Since (r,c) is

not rejected, either r = r′ or r ≻c−F
r′ is satisfied generically. If r = r′, then the

fact that r 6≻c ṽ contradicts the assumption that it is accepted in equilibrium. On the

one hand, if there exists i ∈ c−F such that r 6≻i ṽ, then this i is better off rejecting

(r,c). On the other hand, if r 6≻F ṽ, then F is best off deviating from proposing r

(let r′′ denote the continuation outcome; if r = r′′, then F benefits since r has been

delayed, else r ≻F r′′ must result, since τ would not be an equilibrium otherwise, and

by transitivity r′′ 6≻F ṽ; applied iteratively this contradicts either the finiteness of R

or the fact that F is best off proposing the respective option). Alternatively, if r 6= r′,

then r ≻c−F
r′ (as r would not be accepted otherwise), and in this case, the assumption

that (r′,c′) would be the continuation outcome contradicts the arguments made above

(note that r′ is not dominated in R ).

5 Application to standard examples

Existing applications of proto-coalition bargaining assume the one-round model, where

rational F generally choose the option (i.e. the coalition) they prefer most. Deviations

from this choice are explained through bounded rationality (i.e. random utility pertur-

bations). One application of the above model of strategic interaction between F and

his opponents is that it rationalizes certain deviations from the option F prefers most.

A second application that seems important can be explained best if we recall

that subsequent to the formation of the proto-coalition, intra-coalitional negotiations

start to allocate cabinet posts (and the like). Most existing studies assume that the

proto-coalition chosen by F bargains over the allocation of a cake using a random

proposer protocol (an exception is Baron and Diermeier, 2001). A general feature

of random proposer models is that a player’s expected utility is (weakly) increasing

in his recognition probability (i.e. in the probability that he is selected to make the

next proposal, see e.g. Eraslan, 2002). Hence, the allocation of proposal power likely
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becomes a topic during coalition formation. This is neglected in the existing applica-

tions of proto-coalition bargaining. For example, Diermeier et al. (2003) assume that

the recognition probabilities are exogenous and satisfy (slightly adapting notation and

neglecting cases where single parties have absolute majority)

ρi =
exp(aiλπi)

∑ j∈c exp(a jλπ j)
where λ ∈ R+ and ai ∈ R+∀i ∈ c, (13)

if c is the proto-coalition selected by F and πi is the seat share of i ∈ c in the parlia-

ment. Diermeier et al. assume ai = 1 for all i, i.e. symmetry after controlling for seat

shares, but this symmetry assumption is likely violated in certain cases. For exam-

ple, consider the case that i is more important for a successful coalition than j (e.g.

because i is ideologically central while j is one of several extreme options). Then

ai > a j intuitively follows. Naturally, empirical analyses of this hypothesis do not

yet exist, but the following theoretical results provide the basis for such an analysis.

First, let us define a class of proto-coalition games that endogenize the weights ai

underlying the recognition probabilities in Eq. (13).

Definition 5.1 (Distributive game). Let A = {a ∈ NN
0 |∑i∈N ai = k}, for some k ≥ n,

denote the set of allocations and let C ⊂ P (N) denote the set of decisive coalitions.

The set of feasible proposals is

F = {(a,c) ∈ A×C | ∀i ∈ c : ai > 0 and ∀ j /∈ c : a j = 0}. (14)

For the following analysis, I assume the payoff functions vi satisfy the following

restrictions for all i. (A1) “more is better” in every coalition, (A2) separability of dis-

tributive preferences and coalition preferences, (A3) the status quo is bad but better

than nothing, and (A4) players prefer small coalitions. In relation to the existing liter-

ature, assumptions (A1) and (A4) are implied by typical models of random proposer

bargaining, (A3) is standard, and (A2) is satisfied for example under linear separabil-

ity as assumed by Diermeier et al. (2003). The term ∆i(c,c
′) that is implicitly defined

in (A2) represents the compensation i requires when changing from c′ to c.

(A1) ai > a′i ⇒ vi(a,c)> vi(a
′,c)

(A2) For all c,c′ such that c∩ c′ ⊇ {i} there exists ∆i(c,c
′) ∈ Z such that ∀a,a′ ∈ A:

ai −a′i > ∆i(c,c
′)⇔ vi(a,c)> vi(a

′,c′)
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(A3) ai > 0 ⇒ vi(a,c)> ṽi and ai = 0 ⇒ vi(a,c)< ṽi

(A4) i ∈ c ⊂ c′ ⇒ ∆i(c,c
′)< 0

The first result characterizes the relevant solution sets QC and SG and shows that

QC actually equates with the core.

Lemma 5.2. In distributive games, the quasi-core equates with the core,

QC(Γ) = {(a,c) ∈ F | ∄(a′,c′) ∈ F such that (a′,c′)≻c′ (a,c)}, (15)

and in addition, SG = QC and SG convexifies the core under %F ,

SG(Γ) = {(a,c) ∈ F | ∃(a′,c′) ∈ QC(Γ) such that (a,c)%F (a′,c′)}. (16)

Proof. By (A3), all feasible proposals (a,c) ∈ F dominate the status quo, and hence

the definition of QC simplifies to (15). (A3) also implies that all proposals in F \QC

dominate the status quo, and hence QC contains all (a,c) that F weakly prefers to

minQC. Finally, by definition of SG, (A3) implies that minSG (under %F ) equates

with minQC (under %F ). This yields the characterization of SG.

These characterizations of the solution sets will be helpful in the subsequent

analysis. The purpose is to show that the solution sets intuitively change as we vary

the circumstances of the coalition formation problem. In order to characterize the

circumstances, let us next formalize three kinds of restrictions that may be imposed

on distributive games. First, the game is simple (i.e. a simple majority game) if (i)

the complement to any minimal winning coalition (plus F) is also a winning coalition

and (ii) all minimal coalitions are of the same size. In the following, Cmin ⊂C denotes

the set of minimal winning coalitions and |c| denotes the cardinality of c ∈C.

Definition 5.3 (Simple). (i) For all c ∈Cmin there exists a unique c′ ∈Cmin such that

c∩ c′ = {F}. (ii) For all c,c′ ∈Cmin, |c|= |c′|.

Second, the game is pure (i.e. purely distributive) if increases of the own weight

ai lexicographically dominate both one’s coalition preferences and one’s distributive

preferences concerning the allocation a−i between one’s opponents. Implicitly, this

requires that the compensations defined in (A2) satisfy ∆i(c,c
′)∈ {0,−1} for all c,c′.
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Definition 5.4 (Pure). For all i ∈ N, all c,c′ ∈ C, and all a,a′ ∈ A: ai > a′i implies

vi(a,c)> vi(a
′,c′).

Third, the game is homogenous if the players’ coalition preferences are aligned

in the sense that if one player prefers coalition c to coalition c′ (assuming he belongs

to both of them), then any other player in both of these coalitions prefers c, too.

Definition 5.5 (Homogenous). For all a∈A, all i, j ∈N and c,c′ ∈C such that {i, j}⊆

c∩ c′: ∆i(c,c
′)< 0 ⇒ ∆ j(c,c

′)< 0.

First, let us look at cases where all three assumptions are satisfied. Then, the

outcome most preferred by F uniquely results. In these cases, the solution sets of the

infinite horizon games therefore equate with the one of the one-round proto-coalition

game that is used in the existing literature.

Lemma 5.6. If Γ is simple, pure, and homogenous, then SG(Γ) = {(a∗,c∗)} is a

singleton where c∗ ∈ argmaxc∈C vF(a
∗,c) and a∗i = 1 for all i ∈ c∗ \{F}.

Proof. The proposal (a∗,c∗) defined above is the unique maximizer of vF , and hence

necessarily in QC (thus also in SG) if the status quo is bad. It has to be shown that it

is unique in QC; by the definition of SG, minQC = minSG under (A3), which then

extends the singleton property to SG. For contradiction, assume QC contains some

(a,c) 6= (a∗,c∗). Case 1: c 6= c∗. By feasibility of (a,c) and |c| ≥ |c∗|, an alternative

(a′,c∗) ∈ F exists such that a′i ≥ ai for all i ∈ c∗, and by preference homogeneity, all

i ∈ c∗ prefer it to (a,c). Case 2: a 6= a∗. If c 6= c∗ applies as well, then case 1 applies.

Otherwise, c = c∗ ∈Cmin applies, i.e. there is c′ ∈Cmin such that c∩c′ = {F}. Hence

(a′,c′) ∈ F exists such that a′i = 1 for all i ∈ c′ \{F}, and since a 6= a∗ implies either

ai > 1 for some i ∈ c\{F} or a j > 0 for some j /∈ c, this additionally allows a′F > aF .

Hence, all i ∈ c′ prefer (a′,c′) over (a,c), the contradiction.

Now, let us drop “homogeneity” of coalition preferences. In this case, F’s po-

tential coalition members may prefer other coalitions than F (e.g. because of their

relative ideological positioning). As we will see, this is sufficient to rationalize the

phenomenon that F cannot always install his most preferred coalition. Lemma 5.7

first establishes a necessary condition for inclusion in QC and SG, namely that every
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solution must sustain a minimal winning coalition and minimal weights for F’s op-

ponents, and second it shows by example that all but one minimal winning coalition

may be included in SG. In contrast, recall that if all players’ coalition preferences are

aligned (“homogenous”) then only F’s favorite coalition is included in SG.

Lemma 5.7. Assume Γ is simple and pure. (i) All (a∗,c∗) ∈ SG satisfy c∗ ∈Cmin and

a∗i = 1 for all i ∈ c∗ \ {F}. (ii) There are constellations of preferences where all but

one c ∈Cmin are sustained in SG.

Proof. Point (i): First, we show c∗ ∈ Cmin for all (a∗,c∗) ∈ QC. For contradiction,

assume there exists (a′,c′) ∈ QC such that c′ /∈ Cmin. Thus, there is c ∈ Cmin such

that c ⊂ c′, and by (A4) this implies ∆i(c,c
′) < 0 for all i ∈ c. Define a such that

(a,c) ∈ F and ai = a′i for all i ∈ c \ {F}. By ∆i(c,c
′) < 0, vi(a,c) > vi(a

′,c′) for

all i ∈ c results, the contradiction. Knowing c∗ ∈ Cmin for all (a∗,c∗) ∈ QC, we next

show a∗i = 1 for all i∈ c\{F}. Assume there exists (a′,c)∈QC such that c∈Cmin but

ai > 1 for some i 6= F . By simplicity, there exists c′′ ∈Cmin such that c′′∩ c′ = {F},

and hence there also exists (a′′,c′′) ∈ F such that a′′i = 1 (implying a′′i > a′i) for all

i ∈ c′′ \{F}. Now, |c′′|= |c′| implies a′′F > a′F , and hence vi(a
′′,c′′)> vi(a

′,c′) for all

i ∈ c′′ follows (the contradiction). Thus the result is established for all (a∗,c∗) ∈ QC,

and since |c| = |c′| for all c,c′ ∈Cmin under simplicity, this implies a∗F = k−|c∗| for

all (a∗,c∗)∈QC. Hence, a∗F > aF for all (a,c)∈F where c /∈Cmin, and by purity, this

implies vF(a
∗,c∗) > vF(a,c). Due to minQC = minSG under %F , this extends the

claim to all (a∗,c∗)∈ SG. Point (ii): Let aF,max denote the maximal bargaining weight

ai that F can attain subject to feasibility (a,c)∈F , and define the worst-case coalition

c ∈ argminc′∈Cmin
vF(a,c

′) subject to aF = aF,max. Let c denote the complement to c,

i.e. the unique c ∈Cmin such that c∩c = {F}. Construct preferences such that c is the

second-worst coalition in F’s eyes, i.e. ∆F(c,c
′) = 0 for all c′ 6= c, and such that all

i 6= F have coalition preferences that oppose those of F , i.e. for all c,c′ ∈ Cmin such

that c∩ c′ ∋ i: ∆i(c,c
′) =−1−∆F(c,c

′). Due to ∆F(c,c) =−1, i.e. F prefers c to its

(unique) complement, there must be some a such that (a,c) ∈ QC (by construction,

for alternative c′, there is at least one i 6= F that prefers c to c′). By convexity of SG

under %F and the fact that c is the second-worst coalition in F’s eyes, this implies

that all c′ ∈Cmin but c are sustained in SG.

19



An alternative explanation for the possibility that F is unable to install his favored

coalition is that the majority game is not simple, i.e. that the complement to a decisive

coalition plus F is not decisive. To illustrate this, let us look at the case that the

formateur has no voting power himself. If the majority game is simple otherwise,

this implies that the intersection of all pairs of minimal winning coalitions has two

elements, F and one other player. The next result shows that in such cases, QC

sustains only F’s favorite coalition, while SG sustains all minimal winning coalitions.

Thus, if F’s opponents cannot make positive pre-commitments, any minimal winning

coalition may result in equilibrium.

Lemma 5.8. Assume Γ is pure, homogenous, and satisfies |c| = |c′| as well as |c∩

c′|= 2 for all c,c′ ∈Cmin. Then, the following applies.

1. (a∗,c∗) ∈ QC only if c∗ ∈ argmaxc∈C vF(a
∗,c) and a∗i ∈ {1,2} for all i 6= F

2. There is at least one (a∗,c∗) ∈ QC where a∗i = 2 for some i 6= F

3. For all c ∈Cmin, there exists some a such that (a,c) ∈ SG

Proof. Point 1: c ∈ Cmin follows from (A4). Given this, c = c∗ follows from homo-

geneity and |c| = |c∗| for all c ∈ Cmin. For any alternative (a,c), there exists (a′,c∗)

that F prefers by definition of c∗ and that all i ∈ c∗∩c prefer by homogeneity. Finally,

assume (for contradiction) that there exists (a∗,c∗) such that a∗i > 2 for some i 6= F .

Take any c ∈Cmin such that c∩c∗ ∋ j 6= i and define a such that a j = a∗j +1 and ak =

for all k /∈ { j,F}. This implies aF > a∗F and hence vk(a,c) > vk(a
∗,c∗) for all k ∈ c,

which contradicts (a∗,c∗) ∈ QC. Point 2: Define a∗ ∈ argmaxa vF(a,c
∗) s.t. ai = 2

for at least one i 6= F . I claim (a∗,c∗) ∈ QC. Define i 6= F as the player with a∗i = 2.

By purity, i is unique. Hence, for all (a,c) such that vF(a,c)> vF(a
∗,c∗), a j = 1 for

all j 6= F holds true. Also for all such (a,c), c∩ c∗ contains at least one j 6= F , and

by homogeneity and a j ≤ a∗j , v j(a,c) < v j(a
∗,c∗). Hence, no such (a,c) dominates

(a∗,c∗). Point 3: Since (a∗,c∗) as constructed in point 2 is in QC, and since SG con-

vexifies QC under %F , all (a,c) satisfying c ∈ Cmin and ai = 1 for all i 6= F are in

SG.

20



Finally, by relaxing “purity” we can investigate the case that F strongly favors

a specific coalition. Intuitively one may suspect that the members of F’s favorite

coalition are able to exploit F’s desire to coalesce with them and extract additional

bargaining power. Again, structural empirical analyses of this intuition do not yet ex-

ist, but as I show next, this intuition is indeed compatible with the solution sets derived

above. Formally, define the “relative (opportunity) costs” RC(c) = minc′ ∆F(c,c
′) as

the compensation required by F for choosing c instead of the best alternative to c.

The unique minimizer of RC(c) is the coalition favored by F , i.e. it is

c∗ ∈ argmax
c∈C

max
a∈A

vF(a,c). (17)

The following lemma shows that F’s favored coalition c∗ necessarily results, while its

members can extract up to RC(c∗) units of bargaining weight from F during coalition

formation. The resulting allocation of this bargaining weight is not restricted in equi-

librium (i.e. any of c∗’s members may get it). For simplicity, the following assumes

that F prefers c∗ equally strongly over all alternatives to c∗ in terms of ∆F(c
∗, ·).

Lemma 5.9. Assume Γ is simple, homogenous, and ∆F(c
∗,c′) = ∆F(c

∗,c′′) for all

c′,c′′ such that c′ 6= c∗, c′′ 6= c∗, and c∗ ∈ argminc RC(c). Then, both QC and SG are

the sets of all (a∗,c∗) ∈ F satisfying

c∗ ∈ argmax
c∈C

max
a∈A

vF(a,c) |c∗| ≤ ∑
i 6=F

a∗i < |c∗|−RC(c∗). (18)

Proof. All (a∗,c∗) satisfying the above constraints also satisfy vF(a
∗,c∗) > vF(a,c)

for all (a,c) ∈ F where c 6= c∗ (by definition of RC). Hence, all such (a,c) /∈ QC in

general, and (a∗,c∗) /∈ QC only if there exists (a,c∗) ∈ F such that a weakly Pareto

dominates a∗. The latter applies only if ∑i∈c∗ ai > ∑i∈c∗ a∗i (over all i ∈ c∗), which

in turn violates feasibility. Hence, all these (a∗,c∗) are in QC and hence in SG. It

remains to show that no (a∗,c∗) is in QC that satisfies ∑i 6=F a∗i ≥ |c∗|−RC(c∗). All

such a∗ thus satisfy a∗F ≤ k−|c∗|+RC(c∗). Define c ∈C such that c∩ c∗ = {F}. By

assumption RC(c∗) = ∆F(c
∗,c), and thus by (A2), vF(a

′,c) > vF(a
∗,c∗) if a∗i −a′i ≤

∆F(c
∗,c), i.e. if aF = k−|c|+1. The latter applies if ai = 1 for all i ∈ c\{F}, and is

therefore feasible. Hence, no (a∗,c∗) is in QC where a∗F ≤ k−|c∗|+RC(c∗).
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6 Conclusion

The paper analyzed the formation of proto-coalitions without the assumption of a fi-

nite time horizon. The existing literature focuses on one-round models, which imply

that a rational F forms his favored proto-coalition if the payoffs under the caretaker

government are not prohibitive (and they often are not, since the caretaker has lim-

ited legitimacy). The one-round assumption prevents the possibility that F’s potential

coalition partners strategically interact with F , say to implement their favored coali-

tions or to extract bargaining power from F . I have characterized the solution sets of

the infinite horizon games (assuming semi-stationary strategies) for two alternative

regimes. If F’s opponents can publicly pre-commit, then the “quasi core” is imple-

mented, which in turn equates with the core if the status quo is “bad.” If F’s oppo-

nents cannot pre-commit, then the solution can be characterized as a self-generating

set, which exactly convexifies the core if the status quo is bad. In this sense, we can

conclude that proto-coalition bargaining implements or convexifies the core.

These characterizations of the solution sets are straightforwardly applicable in

empirical analyses if the valuations of all participants are well defined (as in Dier-

meier et al., 2002, 2003, for example). This seems promising, since the infinite hori-

zon game has been shown (in Section 5) to be compatible with the phenomena that

F’s favored coalition may not form and that F may have to give up bargaining power

toward “strong” coalition partners. In the existing literature, the former has not been

rationalized yet for non-prohibitive default payoffs, and the latter has not yet been

formalized explicitly. These extensions of the proto-coalition model should facilitate

future empirical work.

Finally, let me comment on the fact that the characterization of the equilibrium

outcomes yielded a solution set, but obviously not a probability distribution over the

solution set. There does not seem to be a generally accepted approach to the resolu-

tion of such a multiplicity of equilibria for empirical analyses. However, empirical

applications of the one-round game assumed logit choice of F , rather than rational

choice, to account for deviations from F’s favored choice. The same approach can

be applied in applications of the infinite horizon game if we substitute “logit equi-

librium” for logit choice (following McKelvey and Palfrey, 1995, in general, and
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Breitmoser et al., 2010, for dynamic games)—and in the case of logit equilibria, the

standard approach is to focus on the equilibria located on the “the principal branch”

(Turocy, 2005, 2010). In this way, the multiplicity is resolved immediately, while the

interaction between F and the other parties can be modeled accurately.
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