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Abstract

The instantaneous nature of electricity distinguishes its spot prices from spot
prices for equities and other commodities. Up to now electricity cannot be
stored economically and therefore demand for electricity has an untempered
effect on electricity prices. In particular, hourly electricity spot prices show a
vast range of dynamics which can change rapidly. In this paper we introduce
a robust version of functional principal component analysis for sparse data.
The functional perspective interprets spot prices as functions of demand for
electricity and allows to estimate a single price curve for each day. Variations
in market fundamentals such as commodity prices are absorbed by the first
principal components.

Keywords: Functional principal component analysis, non stationary
functional time series data, sparse data, electricity spot market prices,
European Electricity Exchange (EEX).

1. Introduction

Spot prices for electricity are peculiar. Up to now electricity cannot be stored
economically therefore the amount of electricity that can be used for arbitrage
over time can be neglected and demand for electricity has an untempered effect
on electricity prices. The pricing in the power market is based on marginal gen-
eration costs of the last power plant that is required to cover the demand. The
supply curve is based on the increasing generation costs of the installed power
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plants, with a steeply increasing, exponential shape. Usually base load plants
such as nuclear and lignite plants cover the minimal load, i.e. demand for elec-
tricity, throughout the year. Load following is mostly done by medium and peak
load plants such as hard-coal and gas-fired power plants. Pricing above marginal
costs, so called peak load pricing, is typical in markets with non sortable prod-
ucts. The reason behind this are opportunity costs and incremental costs from
constraints, such as those arising from emission and capacity limits, which then
become marginal costs relevant (Cramton, 2004). This deviation from variable
cost pricing is also observable on the low demand side. Plant operators try to
avoid shutting off power plants in order to avoid ramp up costs and therefore
bid occasionally below variable costs, although latter becomes only visible if it
is allowed to sell negative prices are allowed to trade.

In micro economic theory it is common to set prices equal to the marginal
cost of production and to determine the equilibrium prices by the interaction of
demand and supply curves. Particularly, electricity spot prices are usually mod-
eled by the Cournot model or the Supply Function Equilibrium model (Klem-
perer and Meyer, 1989). A recent example is the paper of Willems et al. (2009)
an other well known example is the paper of Green and Newbery (1992). Func-
tional data analysis (fda) is able to share this perspective, since its atomic
statistical units are functions rather than points and/or vectors. The books
of Ramsay and Silverman (2005) and Ferraty and Vieu (2006) give a broad
overview to functional data analysis. As explained above, we have to distin-
guish between pricing based on marginal generation costs and pricing based on
opportunity costs. The functional approach can model the marginal cost sys-
tem well since marginal generation costs are strongly connected to the demand
for electricity. The opportunity costs system has to be modeled separately and
both models may be connected by a kind of regime switching mechanism.

Markov regime-switching models, such as in Mount et al. (2006) and Kosater
and Mosler (2006), became one of the most applied approaches in modeling and
forecasting electricity prices. These try to divide the series into regimes with
own mean and covariance structures. But the supply curve induces a continuum
of mean and covariance regimes and it is therefore difficult to assign prices to
certain regimes, even for the often used less volatile daily or half-daily averages
of spot prices. One of the few high frequency analysis is done by Karakatsani
and Bunn (2008); Karakatsani and Bunn model and forecast electricity spot
prices from the UK-Power Exchange. They divide their data into sub samples
for the 48 half hourly trading periods and additionally separate weekdays from
weekends. Within such sub samples, daily demand values for electricity have
got a clear smooth sinoidal pattern over the year with higher/lower demand
values during the winter /summer months. The demand pattern is translated
into a price pattern by the time invariant shape of the supply curve. This trans-
lation causes additional distortions and that may be the reason why the authors
present their results for the trading periods 25 (12:30pm) and 35 (17:30pm) with
low varying demand patterns. Furthermore, electricity from volatile renewable



energy sources like wind and solar is often provided with a purchase guaran-
tee. If this is the case, then not the smooth demand patterns are relevant for
the price patterns but the rougher adjusted demand patterns with netted out
hourly electricity infeeds from renewable energy sources. Regarding the role of
the supply curve as a diffuser of the (adjusted) demand pattern, we propose to
focus on the estimation of its shape rather than on the estimation of the price
pattern directly.

We propose to use (functional) principal component analysis to fit a low
dimensional factor model to the daily supply curves. From the methodological
perspective, the Dynamic Semiparametric Factor Model (DSFM) of Park et al.
(2009) and the follow up application to electricity spot prices Hardle and Triick
(2010) are very close to our approach. Park et al. use an iterating optimization
algorithm to fit an orthogonal factor model to the data and argue that (func-
tional) principal component analysis may not be able to handle sparse and non
stationary (functional) time series data. We extend the procedure of Yao et al.
(2005), that is able to handle sparse data, to the context of non stationary time
series data. Hérdle and Triick estimate a factor model to the daily N dimen-
sional electricity spot price vectors Y; = (Y7,...,Y;n)" and report that a three
dimensional factor model explains about 80% of the variation in hourly spot
prices at the European Electricity Exchange (EEX). As the above cited papers,
this application of the DSFM model focuses on modeling and forecasting the
price pattern directly and has to use a regime switching mechanism in order
to cope with the vast price-diffusions from the interactions of demand patterns
with the supply curve.

The estimation of the supply curves has a limitation that is imposed by the
auction design. Even though for each day t there are N supply curves, one
for each trading period h = 1,..., N, we can only estimate the mean supply
curve of day ¢t. The general auction design is similar for the greatest electricity
markets places like in the Netherlands, Germany, Austria, Scandinavian coun-
tries, France, and California. It is a two-sided single-price auction, which means
that there are bids from the purchase and sell side, that are matched at a singe
market clearing price. The price for each trading period, h = 1,...,24, of a
day t is settled by a separate auction, and all period specific auctions of a day ¢
are conducted simultaneously the day before. The traders register the amounts
of electricity they are willing to sell/purchase for individually selectable price
intervals in a trading tool, where each trading period is represented by a new
input line. Note that they base their bid-decisions on the same information
set for all period specific auctions. The price settlement mechanism determines
for each trading period, h, the spot price, Y, by the point of intersection of
the (over all bids) aggregated supply and demand curves. More details about
auction designs at power exchanges can be found among others in the book of
Rafal Weron (2006). The horizontally shifts of the N demand curves reveal
the shape a daily mean supply curve by the price vector, Y; = (Y1,...,Yin)’,
and the according (residual) demand values. Figure 1 shows the raw data of



three consecutive days of two different (arbitrary) weeks — obviously, the supply
curves possess depend on former supply curves and form a (functional) time
series data set.
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Figure 1: Three consecutive days from two different arbitrary weeks.

Since we estimate the supply curves from the hourly spot prices, Yy, at
the European Electricity Exchange (EEX), we will generally refer to the curves
as price curves. The market of the EEX has got a high share of producers of
electricity from volatile renewable energy sources (mainly wind), who feed their
electricity directly into the grid and receive a certain guaranteed price. Adjusted
demand, wu, shall reflect the price relevant residual amount of electricity that
is demanded from the conventional market participants. We assume that the
hourly spot prices for electricity at the EEX come from an underlying smooth
process, such that

Yii = Xe(uw)+ew, (1)

where X;(.) is a smooth monotone function of adjusted demand u € U, where
U is a closed and bounded subspace of R, we will set, without loss of generaltiy,
U =10,1]. The index i =1,...,24 in uy; refers to the i-th order statistic of the
hourly adjusted demand values defined as u;p, = dip, — pn, where dyp, is the gross
demand for electricity and py, is the corresponding infeed of electricity from
wind energy at day t = {0,4,1,42,...} in hour h = 1,..., N, with N = 24.
The noise term, ey, is assumed to be independently distributed within and be-
tween each day t, with E(e4;) = 0 and a heteroscedastic Var(ey;) = 02(u;). The
within independence is realistic since the hourly prices of the day ¢ are deter-
mined contemporaneously at 12 o’clock at day ¢ — 1. The between independence



and a model for the heteroscedasticity follows from the error-in-variables dis-
cussion in the next paragraph.

As it can be seen in figure 1 the model from equation (1) is supported by
the raw data. There are some remarkable strong deviations, especially for high
and low values of adjusted demand. This comes from an inherent inaccuracy of
adjusted demand values, u;;. The spot market of electricity is actually an one-
day-ahead future market, and the market participants (i.e. the traders) base
their decisions on their own hourly forecast values of adjusted demand. In-
stead of these price relevant but unobservable forecast values we have to form
the adjusted demand values, u;, from the actual realized values of gross de-
mand, d;;, and actual production of electricity from renewable energy sources,
pe;- Formally, we have to deal with an error-in-variables problem and formalize
the noisy covariates as u;; = wy + vy, where wy; are the unobservable price
relevant adjusted demand values, and the noise term 1y; is assumed to have
E(vy;) = 0 and Var(vy) = o2 for all t = {0,41,42,...} and i = {1,...,24}.
This inaccuracy causes stronger distortions at low and high values of adjusted
demand where the price curves have got higher slopes than for moderate values
of adjusted demand. Actually, this is a degenerated case of an error-in-variable
problem, since the dependent variable, Y;;, is observed nearly without noise.
We assume that the noise in the observations of Y;; is negligible and that we
can translate the error-in-variables problem into an usual estimation problem
with heteroscedastic error terms. A more sophisticated estimation procedure is
beyond the scope of our paper, but might be a topic for future studies.

Our aim is to estimate the daily price functions X; from the discrete data
vector Yy = (Yi1,...,Yin,). We use N; to refer to the amount of prices per
day t that are used to estimate the function X; since some prices are assigned
to the opportunity regime. We use a parsimonious ex-post assignment, price
above a certain threshold are classified to the opportunity regime, all others are
classified to the marginal cost regime. A reasonable threshold seems to be 145
EUR, since for prices > 145 EUR the traders lose their continuous marginal
cost reference and begin to bid in clusters (150 EUR, 200 EUR, 250 EUR, ...)
of prices (see left panel of figure 2). The right panel of figure 2 shows all prices
classified to the marginal cost regime.

Generically, we assume the daily price curves to come from a stochastic pro-
cess (X;) for t = {0,1,2,...} with realizations in the space of square integrable
functions H = L?(U) on a compact set Y C R. As in multivariate statistics,
stationary functional stochastic process are usually described by their time in-
variant mean function and covariance operator. However the series of price
curves has got a clear stochastic, non stationary trend. The curves inherit this
property from the non stationary prices for raw materials (such as gas, coal,
and Co2-certificates) that are needed to produce electricity. The (functional)
random walk model,

Xt = 6+Xt—l+et7 Wltht:{o,l,Q,} (2)
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Figure 2: LerT PaNEL: Non parametric density estimation of electricity spot prices (Note:
Only prices < 325 EUR are plotted, but there are prices up to 2437 EUR). RicuT PANEL:
Pooled spot prices classified to the marginal regime, with two highlighted price vectors from
two arbitrary days.

with a linear trend, where § € H, an initial value from a random function, Z,
that is normally distributed with mean, pz, and covariance operator, I'z, and
a white noise process, (e;) € H, with mean zero and covariance operator, I'.,
seems most appropriate. Note that, as in the univariate case the EX; = uy for
all ¢, but the covariance operator depends on t, such that the process defined
in (2) is non stationary. This is a special case of the so called ARH(1) model,
i.e. an auto regressive model in H. Note that any ARH(p), with p > 1, model
can be transformed into an ARH(1) model, such that the above model is not
necessarily a restriction with respect to the lag order (see Bosq (2000)). Fur-
thermore, as usual practice in multivariate time series analysis we do not apply
functional moving average terms in order to avoid identification problems with
the AR terms.

The mean function of the functional random walk is independent of ¢ and
we can investigate, without loss of generality, the properties of the demeaned
process (X;) = (Xt — pz). This yields the same functional random walk pro-
cess as in equation (2) but with an initial functional random variable Z{ that
has the zero function as it’s mean; we write X; = 6 + X} ;| + e;. As already
noted in Park et al. (2009), we need stationary of the time series in order to use
the well developed functional principal component analysis. Traditional trans-
formation procedures such as differentiation of the time series, (X;), cannot
be used, because the prices are observed at non equidistant adjusted demand
values, u;. We propose a new transformation procedure that decomposes the
original series, (X;), into its stationary functional component, (X}), and its
non stationary univariate random walk component, (©;). The decomposition is
motivated by the unit sphere projection of functional data (see Locantore et al.



(1999) and Gervini (2008)).

In order to use a notation, that corresponds to the matrix notation of
multivariate statistics, we introduce the tensor product notation defined as
X @ Xi(u,v) = X;(u)X(v), for (u,v) € U xU € R? and t = {0,1,2,...}.
Then, the covariance function of a stationary functional series, (Xt), can be
written as p(u,v) = FE [(Xt — 1) ® (X — ,ut)] (u,v). The covariance operator
is defined as I'g, f(u) = [ p(u,v)f(v)dv, for any function f € H. Its spectral
decomposition by its eigenvalues, AL > A > ..., and corresponding eigen-
functions, ¢1, @2, ..., with the usual restrictions [, ¢7 = 1 and [;, dr¢n, = 0 for
m < k, allows us to write the functionals X; by the well known Karhunen-Loéve
decomposition as

Xi(u) = pz(u) + Zﬂtl&bk(u)-
k=1

Where pz = E(f(t) and By, = fu(f(t — 1z)ou are the principal component
scores with E(B;;) = 0 and E(8%) = A\;. Not least because of the best basis
property (in the mean square error sense) of the Karhunen-Loéve decomposi-
tion, often a relatively small number of eigenfunctions provides a good fit to the
sample curves.

One problematic fact regarding our data is that the adjusted demand values
u¢; are not uniformly distributed over the whole domain ¢/, but may be clustered
at sub-intervals within ¢/. This makes it difficult to approximate the integrals
in By, = fu ()~(t — 11z )¢ by traditional methods like the trapezoidal rule where
Ber =~ Zjv;l Yijon(uej)(ue; — we,j—1), with wo = 0. This is the same problem
as in the so called sparse data problem in functional data analysis where it is
difficult to approximate integrals from insufficiently many data points (see e.g.
Yao et al. (2005)). Yao et al. suggest to estimate the principal component
scoresf3y, by their conditional expectation given the sparse data {u1,. .., un, }-
This procedure works very well for our non uniform distributed ;.

In the next section we introduce a new decomposition of a non stationary
functional time series into its stationary spherical component and into its non
stationary scaling component. In the section 3 we discuss how to estimate the
mean function, pyz, the covariance function, p(u,v), which is the kernel of the
covariance operator, I'x f(u) = fu p(u,v) f(v)dv, and the standard deviation, o.
In subsection 3.1 we estimate the eigenfunctions of the covariance operator and
discus their interpretations. The subsection 3.2 adapts the conditional estima-
tion of principal component scores from Yao et al. (2005) in order to estimate
the pc-scores based on non uniformly (on ) distributed data, u;. Finally, we
demonstrate the goodness of fit of our estimation procedure in subsection 3.3.



2. Principal component analysis for non stationary data

From a practical point of view it would be a great advantage to project the
infinite dimensional ARH(1) process into a finite dimensional functional space,
P, spanned by K basis functions, ¢1, ..., ¢k, such that the mean squared error
of the projection,

T N

K
3 {Xt*(utj) - Xf’K(utj)}z with X% =" By and By = /MXZFQ%
k=1

t=1 j=1

(3)
is minimized, where (X;) = (X¢ — pz). If the series (X]) corresponds (at
least with high accuracy) to a K dimensional functional time series, (X;"%), we
could transform the infinite dimensional process, (X;°), into K univariate time
series, (Bi1), (Be2) - - -, (Bt ), that are orthogonal to each other. The well known
Karhunen-Loéve theorem suggests to use the K eigenfunctions that correspond
to the K highest eigenvalues of the covariance operator of the process (X;)
as basis functions. Estimation of the eigenfunctions works perfectly for iid or
stationary data, but in the case of non stationary processes we face the problem
that each element of (X;°) has got a different covariance operator. Nevertheless,
we can show that each covariance operator, I'x» of X} for all t = {1,2,...}, is
an element of the same space (see theorem 2.1).

Theorem 2.1. Without loss of generality, given a de-meand version (X;) =
(Xy — puz) of the random walk process in equation (2).

a) The covariance operators, I'x- = EX; ® X; fort = {1,2,...}, are
elements of the same space.
As a consequence, the eigenfunctions of the covariance operators are the
same for all t = {1,2,...}.

b) The covariance operators, I'x; = EX; ® X} fort = {1,2,...}, are
asymptotically identical, apart from scale differences.

This characteristics motivated us to transformation the process by the unit-
sphere projection, that is usually used in multivariate robust statistics of iid
samples (see e.g. Huber and Ronchetti (2009), Locantore et al. (1999) and
Gervini (2008)). We propose to decompose the series, (X;), into a functional
component, (Xt*) € H, and an univariate component, (©;) € R, such that
(X7) = ()N(g* O;). We call the fist component spherical component and the

latter scaling component.

Definition The spherical component of a functional random walk as in equa-
tion (2) is given by 7X; = w6 + nX;_; + we;. Where 7 = (.)/||.||2, is the

unit-sphere projection operator, with [|.||2 = 1/ [,,(.)?, is the Ly norm in H.

Definition The scaling component of a functional random walk as in equation

(2) is given by || X2 = [[0]l2 + [ X7 1 [l2 + [lee[[2- With [[.|l2 = 4/ ;,(.)?, the Lo

norm in H.



It can be shown that the spherical component, compactly written as X;‘ =
6 + X | + &, is stationary and that the covariance operators of each element
in (X;) has got the same eigenfunctions as its non stationary counterpart in
(X7) (see theorem 2.2). Note that the scaling component, compactly written
as ©; = a+ 0,_1 + ¢, is a standard univariate random walk with drift o € R
and white noise process (e;) ~ N(0,0.).

Theorem 2.2. Without loss of generality, given a de-meand version (X}) =
(Xt — pnz) of the random walk process in equation (2).

a) Its spherical component, (X]) = (nX}), is a stationary process.

b) The covariance operators, I'y. = EX; @ X fort = {1,2,...}, are
elements of the same space as the non spherical counterparts, I'x: =
EX; @ X].

As a consequence, the eigenfunctions of the covariance operators, FXZ’
are the same as of the covariance operators, U'xx, for all t = {1,2,...}.

As a consequence of theorem 2.2, asymptotically, the covariance operators,
[xy, of the non stationary original process, (X;), are the same as the covari-
ance operators, I' X5 of the spherical process, (Xt*) except for scale differences.
Therefore, we can estimate the original covariance operators from the station-
ary spherical series, (Xt) And rescale the estimated covariance operator by the
scaling component, (0;), that has absorbed the scale differences. The K eigen-
functions that belong to the first K eigenvalues, Ai,...,Ax, of the spherical
covariance operator will fulfill the optimality criterion in (3).

3. Estimation of the mean, covariance function, and standard devia-
tion

We estimate the mean function by local linear polynomial smoothing as
proposed by Yao et al. (2005). The measurement errors are balanced when all
prices are pooled and therefore the estimation of the mean function

ﬂ(u) = Sm[u7 (uti7 )/ti)vTv Nt; h,u.}

stays satisfactory, where S{v, (w4, Ysi), T, Ny, hy] denotes the result of the lo-
cal polynomial smoothing procedure of the pooled data (u;,Y:(us)), for i =
1,....,N,and t = 1,...,T, evaluated at v € R with smoothing parameter h,.
All smoothing parameters are determined such that they are the minimizing the
generalized cross validation criterion (Silverman (1984)). Explicit formulas of
the estimators of the mean function and the covariance function are given in the
Appendix A. In figure 3 the estimated mean function, [, is plotted along with
all pooled data points, (us, Yy;) fort =1,...,T and i = 1,..., Ny, that are clas-
sified to the marginal cost regime (Y3; < 145 EUR). Furthermore, all prices with



adjusted demand values smaller than 34,000 (MW) are omitted because they
are not dense enough to guarantee subsequent stable local polynomial smooth-

ing.
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Figure 3: Estimated mean function, £, and all pooled prices minus outliers.

The estimation of the covariance function uses the above explained spherical
component, (X;), of the original series, (X;). The spherical estimator of the
covariance function is given in equation 4, where Sm {u, v, (¢, Gt), T, hs,linear
denotes the result of the local linear polynomial surface smoothing procedure of
the pooled data (¢t,Gy), t = 1,...,T, evaluated at (u,v) € R? with smoothing
parameter h; and ||.||g denotes the standard euclidean norm,

pn(u,v) = Sm [u,v, (t, ét),T, hﬁ,linear} , (4)
with: &, = (Ya(us) — iues)) (Ye(ueg) — filueg))
e G LlYt(Uti) — f(ug)|| ]| Ye(uef) — ﬂ(uzsj)llE} Ny (5)

for all i#j

We use the subscript n to denote the estimator of p in order to avoid messy
superscripts. One should exercise caution in estimation of the covariance func-
tion p. As equation 1 indicates, we have to take the noise term into account
otherwise the estimator of the diagonal, p(v = u, u) = p(u), would be biased. A
straight forward solution, originally proposed by Staniswalis and Lee (1998), is

10



to leave out the diagonal elements, as done in equation 5.

The variance of the curves X;(u) is usually reflected as a prominent feature
along the diagonal of the covariance function g and may be under estimated
by the above explained estimation procedure. Following Yao et al. (2003) we
rotate the coordinates, (u¢;, ut;), of each element of ét, clockwise by 45°,

(Ufz')_(\? ?)(Um)

wi) o\ 2\ )

and estimate the surface again with a local quadratic polynomial smoother,
@, v*) = Sm [u*,v*7(t,Gt),T, hﬁ,quadratic} (6)

(Yi(ufy) — fuluiy)) (Ye(udy) — filui;))

*
ti)
1¥2(uf;) = f(ugy) Y (uy) — pui)le =1, N,
for all i#j

with: Gt =

(7)

The quadratic fit orthogonal to the diagonal of the covariance function approx-
imates the variance of the functions better. The diagonal of the estimated
covariance function, j,(u,v = u) = p,(u) is set equal to p,(0,u/v/2) for all u
with j,(u) < p,(0,u/v/2); we denote this adjusted estimation of the covariance
function classically by p. In the left panel of figure 4 the estimated covariance
function, p, is shown; the sharpened diagonal is hardly visible but existent. The
right panel of figure 4 gives a comparison of the three estimated diagonals of
the covariance function, j, (), pn(u), and D, (u), where the latter uses only the
noisy diagonal elements (see equation (8)).

D,(u) = Sm {u,(t,é?),T,hD,linear} (8)

(Vi) — fues))” ] |

with: GP =

1Yy (i) — fuug)| |3

The dashed line refers to the estimator g, (u), from equation (4), the dotted line
refers to the estimator p,(u), from equation (6) with rotated coordinates and
quadratic smoothing, and the solid line is refers to the estimator, ﬁn(u), from
smoothing only the diagonal components. It is clearly visible that the inclusion
of the diagonal elements leads to a strong distortion of the covariance diagonal,
because of the noise term.

_ The difference between the diagonal estimation with diagonal components,
D, and without diagonal components but rotated coordinates, p, can be used
to estimate the variance of the noise term, o.

3.1. Spectral decomposition of the covariance operator

Given an estimation of the spherical covariance function, p, we can derive the
set of eigenvalues, {A}r=1, . K, and the set of eigenfunctions, {¢x }x=1,.. x, by the

11
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spectral decomposition of the covariance operator, f‘f(u) = fu plu,v) f(v)dv,
with f(u) € L*(U), from the solutions of the eigenequations

/ P, 0) () = Sy (v),
u

with the usual restrictions [, ¢? =1 and Iy drdy = 0 for all k < I. The stan-
dard procedure is to discretize the covariance function, p, at an equidistant grid

(ud, ... ud) x (ud,...,ul) € U xU and then to use routines from the multivari-

n
ate spectral decomposition of matrices (see e.g. Ramsay and Silverman (2005)

for a detailed explanation).

From theorems 2.1 and 2.2 above, we know that the eigenfunctions of the
spherical covariance operators, I' %y, are the same as the eigenfunctions of all
original covariance operators, I'x, such that these fulfill the best basis property
of equation (3). Note that, they are not unique in this characteristic. There may
be an other set of eigenfunctions that is as well efficient in the mean squared error
sense but is better to interpret. Again, methods from the multivariate statistics
can be used here to produce new eigenfunctions. Given a discretized set of esti-

mated eigenfunctions, [¢¢,. .., ¢%] with ¢¢ = (¢ (uf), ..., or(ul)) € R", every
K x K rotation matrix R, with R*'R = RR’' = I, leads to a new orthonormal
set of basis vectors [0, ..., v%] = R[¢f,..., ¢%].

Often, eigenfunctions are only interpretable after a suitable rotation scheme.
The well known VARIMAX rotation tries to maximize the variance of each
discretized eigenfunction ¢¢ = (¢(ud),...,d(ul)) by either scaling the values
é(uf) against zero or against very high absolute values. Figure 5 shows the
four rotated eigenfunctions that belong to the four highest eigenvalues. The

12



different types of power plants become apparent surprisingly well. The greatest
part (70.88%) of the total variations of the spot prices, which belong to the
marginal cost regime, is between 50,200 MW and 62,000 MW. This region
is generally supplied by coal power plants, which face the most price volatile
resource commodities (hard coal, brow coal, and CO2 certificates). The second
greatest part (22.16%), between 62,000 MW and 73,720 MW, generally can be
assigned to gas and oil power plants that are often used in hours with peak
demands for electricity. The third part (5.49%) of the total variance, between
34,520 MW and 50,200 MW, can be assigned to the base power plants, mostly
nuclear power plants.

VARIMX Eigenfun. 1 VARIMX Eigenfun. 2
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° o
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Figure 5: VARIMAX rotated eigenfuncitons.

3.2. Conditional estimation of the principal component scores

From the theorem 2.2 we know that the spherical covariance operator, I' .,
is asymptotically the same as the covariance operator, I'x;, except for scale
differences. This allows us to model, first, the spherical sample curves, (X;), as
a K dimensional process (see equation (3)),

and then to rescale them to their original size, (X;), by their scaling compo-
nent, (f;). For simplicity, we do not distinguish notationally between sample
and generic versions of (X;). The usual estimation of the pc-scores approxi-
mates the integral, & = fu qf)kf(;‘. Given the non uniformly distributed data,
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Ugl, - - -, UtN,, over the domain, U, we cannot adequately approximate the pc-
scores by numerical integration procedures. The PACE approach of Yao et al.
(2005) uses the conditional expectation, E(8u|X}), given a joint normal distri-
bution of the random vector (B, X:)’. This procedure can be applied to our
problem, when we use the assumption that the spherical scores, g}k, and the

discrete spherical curve values, Y;* = Wiﬁ with V; = (Yz1,... ,Y}]yt)’ ;ind
pe = (p(uer), - - ., w(uen, ), come from a joint Gaussian distribution of (B4, X¢).

We estimate the conditional principal component scores, £, given the non uni-
formly distributed discrete observed curve data, Y;*, by

& = BlBulVy] = Ml Sy- (), )

where By, = [p(usi, utj)]ij=1...n, +72In, is a N; x N; symmetric matrix and
bk = (d(uer), ..., d(un,)) a Ny dimensional vector.

3.3. Fitted Curves

Different from traditional methods our estimation procedure does not focus
on estimation of the hourly spot prices directly, but on the estimation of daily
mean price curves (or supply curves, respectively). The left panel of figure 6
shows the estimated price curve of Thursday the 9t* February in 2006. The
circle points are assigned to the marginal cost regime and contribute to the
estimation procedure. The two prices corresponding to the two triangle points
are assigned to the opportunity regime and do not contribute to the estimation
procedure. The right panel of figure 6 shows the whole week from Monday the
6" to Sunday the 12! February in 2006. Here, the prices are plotted in the
traditional in correspondence to their trading periods.

We want to emphasize that our separation of the data into a marginal cost
regime and an opportunity cost regime is more fundamental than standard
regime switch models that usually switch between two or more (often compa-
rable) time series models. (See Jong (2006) for an overview of classical regime
switch models in the context of electricity spot market data.) Here, we base the
regime switch on a change in the bidding behavior of the traders. Ex post this is
easily done with a hard threshold price; see discussion to figure 2. Ex ante this
is not a trivial thing to do, since every trader may be forced to switch into the
opportunity cost regime on basis of private information such as delivery obli-
gations and unexpected changes in power plant capacities. On basis of public
available data it will be hardly possible to predict individual regime switches,
but it might be possible to predict situations in which (nearly) all market par-
ticipants will have to switch into the opportunity regime. This will be part of
future research.
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Figure 6: Estimated price curve, X¢(u), of Th. 9/Feb./06; with superimposed 24 prices,
Y: = {Yi1,. .., Yeoua}, of that day. The two prices corresponding to the two triangle points are
assigned to the opportunity regime.

4. Conclusion

In this paper we support a new angle of vision in modeling hourly electricity
spot market data. We argue that the intra-day seasonality cannot be estimated
by traditional time series models, that are based on the assumption of a hourly
updating information set (as already done by Huisman et al. (2007)). This as-
sumption is often not valid because most electricity exchanges use a singe price
auction where the hourly price vectors, {Yi5}r=1,... 24 for day ¢, are determined
simultaneously the day before at t—1. We use a functional time series model and
estimate daily mean supply functions by functional principal component analy-
sis. Here, the intra-daily raw data is not the traditional consecutive price vector,
{Yin}n=1,... 24, but the re-ordered price vector, {Y;}i=1, .24, corresponding to
the covariate vector of adjusted demand values, up; < - < ugy < -+ < Ugoq.

This introduces two problems, first, the data looses its equidistant design,
actually the adjusted demand values, us;, even are not uniformly distributed
within the domain &/ C R. Second, (functional) principal component analysis
needs iid data or at least stationary data, but our data set is non stationary. The
first problem is solved by an adaption of the principal component analysis for
spaces data (see Staniswalis and Lee (1998) and Yao et al. (2005)). The second
problem is solved by the introduction of a new decomposition of the functional
times series into a stationary spherical component and a non stationary scaling
component. The latter is one of our main contributions that might be very use-
ful for many other functional times series estimation problems. Furthermore,
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Figure 7: Original and fitted prices of the week: Mo. 6/Feb./06 — Su. 12/Feb./06. Here, the
prices are re-ordered into the traditional hourly perspective.

our approach handles the information set correctly as a daily updating infor-
mation set. The result that we need only three components in order to explain
98.53% of the total variation supports the importance to account for the correct
consideration of the data generating process. Other studies that work with sim-
ilar approaches but use the traditional hourly price vectors, {Yin }n=1, .. 24, need
higher numbers of principal components for comparable fractions of explained
variance (see e.g. Wolak (1997) and Hérdle and Triick (2010)).
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Appendix A. Explicit Formulas

Mean function p(u):

/:L(u) = Sm[u, (utiaYti)aTa Nt7hu]
fi(u) = Bo(u)
R T N, Cu
With £o(u) from: g)llﬁri Z ngl ti )[Yai — Bo — Bu(u — u)]?
pn(u,v) = Sm {u,v, (t,Gy), T, hﬁ,linear]

(Yi(uei) — fi(ui)) (Vi(ueg) — iug))

fi
Ve (uei) — (i)l £|[Ye(uey) — ﬂ(utj)lE] b=l Ny
for all i#j

with: ét = [

plu,v) = Bo(u v)

A . utz — Uty
With Bg(u,v) from:  min K , J
60( ) Bo,B11,B12 zt: 1<l§j:<Nt 2( hG )
(G (uti, Utj) = Bo = Bur(u — ugi) — Pra(v — Utj)]2
B (1—|w?)? |wl <1 . . .

Where  Ki(w) = { 0 otherwise (Or any other valid univar. kernelfunction.)

Where: w = “h;“’"

Ko(w,z) = Ki(w)Kqi(x)
Where:  w =3 and z = 524

The bandwidths are determined by Generalized Cross Validation (CGV). These
routines are already implemented in the R package locfit (Loader, 2010).
Appendix B. Proofs

Proof of theorem 2.1.
Part a):
From the definition of the covariance operator and the random walk.

Ix;(u,v) = E(X*®X*( v)) = E(X*( ) Xi(v))

Ix;(u,v) = Zet i(u) + Zg(u Zet i(v) + Z5(v)))-

With T (u,v) = Zle s ds @ ¢ (u,v) we can write e, (u) = Yoo, Bigi(u) for
all t = {1,2,...}, where g5 ~ N(0,)%). And similar for Zj, with I'z(u,v) =

17



Zszl N7 @ ¢ (u,v), we can write Zo(u) = > po BZ¢7 (u), where BE ~
N(0,\?). This yields,

Px:(u,v) = tTe(u,v)+Tz(u,v), (B.1)

which corresponds to the usual univariate and multivariate random walk char-
acteric of an with O(¢) increasing covariance. Given the spectral decompositions
of the covariance operators, we have,

Txr(u,v) = t Y Mof ®@oh(u,v) + > AoF @ oF (u,v).
k=1 k=1

Note that I'x+ (u,v) is an element of an addition of two vector spaces,

(oo} (oo}
PP+ Qe = {pp=> oprtdf®e5, > (0pr)? <00, a € RVE}
k=1 k=1
+ {qlg= Z aq.k OF ® OF, Z(O‘q”“)2 < 00, gk € RVE}.
k=1 k=1

Without loss of generality we can investigate the degenerated case where AZ = 0
for all k. Then we have

Tx:(u,v) = t Y MNof®d(u,v) € PP
k=1

With the property that vector spaces are closed with respect to scalar multipli-
cation we can directly show that P, ® Py = Pryi @ Piti,

Pe@Py = span{t ¢{© 61,1 ¢5® 5, }
= {plp= Zak t ¢} ® ¢f, and oy, € RVk}
k=1

= {plp = (t+1) ¢f ® ¢} and vy, € RVE} where v = (a t)/(t + 1)
k=1

for arbitrary ¢,i = {1,2,... }. Therefore each covariance operator, I'x (u,v), is
an element of the same space

K

K
PP = {plp=> api o5 @5 Y (apr)® < 00,05, € RVE}.
k=1 k=1

This shows part a) of theorem 2.1.
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Part b):
From equation (B.1) we have,

(t/s) = const. — (t/s) = const.

(

Le

+(1/(t+5)) I'z)

i O T« oo( t(Te+(1/t)Ty)
(t+s)

This shows part b) of theorem 2.1.

Proof of theorem 2.2.

>:(1+clonst-)'

O

Part a):
Without loss of generality, we investigate the de-meand process, (X't*), given by
t—1
m(Xe—pz) = 0+m(Xe1—pz)+me, = Y mep+m(Zo— piz)
i=0
X; = 0+X;,+é with X; = (X, —pz) and ()

t—1

=0

S+ & +7Zy with Z; = (Zo — piz) and Zj

. *
T2

We proof that the spherical component, (X;), is a (weak) stationary process.
Le. (i) has got constant mean function for all ¢ = {0,1,2,...}, (ii) finite covari-
ance operator, and (iii) autocovariance operators that are independent of ¢ (see
any introductory time series book, such as Shumway and Stoffer (2006)). Given

the functional random walk process defined by equation (2).

generality, we set § equal to the null function such that,

X = X/, +é

Condition (i):
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The mean function is given by,

t—1
Xr = X +é =) é+7;
=0

X; E« SiobtZs N _ 0
I

157112 S e+ 73 EVC:
t—1 oo o'}
With & = [ (33" sudi+ Y sty
U =0 k=1 k=1
Taylor series expansion at E(C1):
EVC; = E(Cl)+T: tl'e+1T'z+7r
1 3
Where 0> 7 = Z(B(C1))"#(E(C1) — C1) = L(B(C1) "3 (E(CY) — C1)* — O(CF)
sucht that 0<EvCi <
(We exclude the degenerated case:) r.=TIz=0.
Finally: E(rX;) = 0 =0, Vvt={0,1,2,...}

EvCy

And therefore suffices the condition (i) of a (weak) stationary process.

Condition (ii):
The covariance operator is given by (similar to proof of theorem 2.1),

~ ~ X X7
Tewe) = BX7@Xi(wo) = B (e o (o)
i e X2 11X ]2
g [ e emi(w) + Zo(w)(Zizg er—iv) + Zo(v))
Ig. (u,v) = E = 5
12250 €t—i + Zoll3
b YTy Aok ® 95 (u,v) + 375y AR ® 6 (u,0)
b3 M+ i MY
Asymptotically,
lim > %
t— oo (lga(u,v)) = (ke> b5 @ o (u,v)
( = ) kz::l POAEPY:
By definition of T’ : Z(AZ)2 < o0
k=1
And therefore also: Z 007]“6 < 00
1 2ke1 AL

And therefore suffices the condition (ii) of a (weak) stationary process. Further-
more, this shows part b) of theorem 2.2.

20



Condition (iii):

EX; ® X{\p(u,v)

*
Xt* Xt+h

i g (u.0))
HXt ||2 HXt+hH2

(S12h ermilw) + Zo(w) (S0 eppni(v) + zo<v>>>
12020 ei + Zollz 1| 20" ersnmi + Zoll2

(Y20 Sones B iai () + 002y BEGF () (ko™ S0 Bran—indi(v) + 20 BESE (v)

El[(Xi20 Soney B nf(w) + 352, BE ¢

t D km1 Mk © Si(u,

v) + 3y MOE © 6 (u,v)

SF (W)l 116" X021 Bfn—i ki (v) + 202 BESE ()12

-
|

M8

1

ﬂt %, k¢k

)+ B (u)
k=1

> .
1
- O
~
Il
-

NE

5f+h—i,k¢2(u)

0k

Il
—

i

tl'e+TI'z

B/ 0?) (82 +2B a+a?)

E\/(fuo‘z) (JuB?+2 [ Bat f,a?)
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EX] ® X[\, (u,v)

With /C5

Taylor series expansion at E(Cy):
EvCs

Where 0 > r
EV/Cy
Ev/Cy
Ev/Cy
Ev/Cy

EvC;

EvCs
EvC;
Ev/Cy

EX; ® X7,y (u,0) =

t Fe + FZ
EvCo

\/(/MaZ) (/Mﬂua/uﬁm/uaz)
\/E« L oa([ #2n+B(([ 022 s

S (B(Co)) H(B(Cy) — Co) — S(B(C2)) H(B(Cy) — 02)? — O(CH)

\/E((/u a2)—1(/u a2)2(/u 52))_,_]3((/” a2)?) 47
\/(E(/an)‘l(/uB?)H) E((/M 02)2) 41
\/<t Ju Fe}zu{zfi(lf;?z(u,u) * 1) E((/u a?)?) +r

(h/t) [, Te(u,u)) -
\/(fu Fofurw) + (1) T Ta(ww) 1> E<</ua )?) +r
With h = {0,1,2,...} fix but arbitrary:

\/ (O(t-1) + 1) B(( / 02)2) 4 1

u
By the displacement law

\/(O(tl) +1) (E(/u 02))? +V(/u 0?) 41

\/(O(tl) +1) (E(/ 02))2 + O(t) +r

u

\/(O(t—1)+1) (t /ure(u,u)+/Mrz(u,u))2+o<t)+r

tre +FZ
Ev/Cs
e+ (1/t) Tz

EX;®X;,(u,v) =

EX; @ X[\ (u,v)

VO +1) (fy Teliw) + (1) fy, Tz(w,w)) +0(=1) + (1/8) 7

- . T.

t—oo [} To(u,u)
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