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ABSTRACT 

 

 Equity portfolio managers typically convey instructions to their traders in the form of 

target portfolio weights for the various shares in their portfolio. We present a set of differential 

equations that allows the calculation of the share prices, number of shares, and value of each 

manager's portfolio over time, in terms of share weights. It is also necessary to know the amount 

of cash flowing into each portfolio and the number of each type of shares outstanding. 

 

 We suggest some potentially useful information that might be derived from this 

formalism, such as a quantitative estimate of the main driver of share price changes, the influence 

of index investing on the market, and the origin of the equity premium. 

 

 We believe that this realistic method could be the basis for a better understanding of how 

financial markets operate, as compared with the conventional academic approach. In our view 

standard asset pricing theory makes implausible assumptions about the existence of stochastic 

processes, the ability of participants to foretell the future, and their capacity to make sound 

deductions from the information they have. Even an imperfect alternative should be better than 

that house of cards. 
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1.  INTRODUCTION 
 

 A typical manager of an equity portfolio gathers and analyzes information from a variety 

of sources that is then used to make predictions about the future course of stock prices. From time 

to time he produces a set of instructions telling the trader what changes to make in the current 

portfolio. Holdings of some stocks should be increased, others decreased. Similarly, other 

managers provide instructions to their traders, but the instructions will differ from manager to 

manager. 

 

 The prices of the stocks in the market are continually adjusted as a result of the execution 

of the instructions by the various traders active at the time, buying and selling stocks between 

each other. We stress that the resulting prices directly depend only on the nature of the 

instructions, but not on the procedures that managers use to determine the instructions. Thus, if 

we knew what all the trading instructions were, we could in principle calculate how all the stock 

prices would change. 

 

 This report describes how such a calculation could be carried out if we use a particular 

method of representing trading instructions, namely the provision to the trader by the manager of 

a set of target weights for each of the stocks in the portfolio. To complete the information needed 

for this method we also need to know the amount of external cash flowing to and from the 

portfolio, and the number of shares newly issued or retired by each company whose stock is 

traded.  

 

 The calculation requires the solution of a number of coupled differential equations with 

time as the independent variable. It is easy to solve these equations numerically. 

 

 While no single person or organization knows all the information required to perform the 

calculations, we believe that there may be nevertheless some useful insights to be gained by 

studying the results of our work. Some possibilities for future study are mentioned below. 

 

 Our approach differs in a number of respects from the vast literature on the subject of 

asset pricing. We question the standard approach that appears to be ill-defined, unrealistic, wrong, 

or perhaps all three. The standard approach attempts to predict price behavior from an 

understanding of how market participants think and act. It usually assumes the existence of an 

underlying universal stochastic process, with little or no discussion of how the process is defined, 

even formally. For example the term 'expected return' is used frequently but without clear 

definition. Agents are assumed to have an unrealistic amount of knowledge and unbelievable 

power to make computations. The obvious diversity among agents is often completely ignored. 

 

 In contrast our goals are much less ambitious, but our method can take into account the 

fact that managers do not all think alike and do not (indeed cannot) follow the fanciful methods 

assumed in standard asset pricing theory.  

 

 Section 2 sets the stage and describes our assumptions. In Section 3 the differential 

equations are derived, with a summary appearing in Appendix 1. Section 4 shows in a simple case 

that the results of solving the equations are close to what would occur if the market participants 

traded in the conventional way. In Section 5 we discuss some of the issues that might be studied 

on the basis of the framework laid out here. This report is an extension of work done previously 

[Nu00]. 
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2.  MARKET PRICES FROM TRADING RULES 
 

For this report we consider the market to be based on a particular set of shares, such as 

all, or a specified subset of, those listed on the NYSE. We suppose that there are Q  different 

types of share, e.g. the shares of a number of different companies. 

 

The market consists of just three groups whose actions can directly influence share 

prices.  

 

• Managers -  all portfolio managers and individuals who make decisions to buy and sell 

shares in the market. Managers may also hold cash; 

• Investors - all those who decide when to commit to or withdraw cash from the portfolio 

managers; 

• Companies - all public companies that issue new shares in the defined market to 

managers, or purchase and retire existing shares from managers.  

 

Stock prices are set entirely by the actions of these three groups, although of course decisions by 

the groups are influenced by a vast array of external information, including possibly the past 

behavior of the share prices themselves.  

 

It should be possible to calculate how share prices have varied or will vary over a period 

of time if we know the following information, all of which varies with time. 

 

• Share prices and the contents of the managers’ portfolios at the start of the period in question; 

• The rules followed by portfolio managers in deciding when and which shares to buy and sell; 

• The rate of flow of investors’ cash to or from the portfolios;  

• The rate at which companies by sale or purchase change the number of their shares 

outstanding. 

 

Thus, as time passes, there will be a flow of cash (possibly negative at times) from the 

investors into each portfolio (e.g. a pension fund receives cash contributions from its members 

and pays out funds to retirees). These net cash flows to each manager are regarded as given in the 

model. 

 

Shares might also be redeemed on payment of cash to the managers whose portfolios 

contain them by the company that issued them, and similarly new shares might be issued for cash, 

all based on the current market price of the share. The net flow of shares of each type into the 

system we take as given.   

 

To complete the description we need to specify the rules used by each manager to 

determine how to adjust the contents of his portfolio at any time. Many professional portfolio 

managers use optimization software that instructs the manager on the weights of the shares to 

hold in the portfolio for the next period of time. Here the weight of a share is the fraction of the 

total portfolio value to be placed in shares of that type. In this report we take the rule to be that 

the manager must change from the current weights to the weights specified by the optimizer. This 

will entail buying or selling shares of various types. After the changes have been made the share 

holdings are not further adjusted until the optimizer is run again, except for rebalancing to 

maintain the desired weights. 
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Each manager will execute a succession of trades that move his portfolio towards the 

required new weights. The other managers will be doing the same thing, and none of them can be 

sure how many shares of each stock will be needed to produce the desired weight, or what the 

share price will be at this point. This effect is called market impact, and the equations below 

calculate its value for each share. 

 

The weights will change with time, and will in general be different for each manager. In 

the following we assume that the time dependence of all weights is given. In fact an outside 

observer will not know the weights chosen by the managers, but at least the information does 

exist. This is in contrast with the situation in standard asset pricing models.  

 

In practice the above ratios and the external flows of cash and shares, the information that 

determines the behavior of the market in the model, might be discontinuous functions of time, 

which will lead to erratic changes in share prices. For convenience we assume that the externally 

determined functions have a sufficiently smooth dependence on time, and  that shares are 

infinitely divisible. The number of shares traded in a given, small time interval will be 

proportional to the length of the interval. In that interval a manager who trades will exchange 

small amounts of cash and shares with another manager on the basis of the current market prices 

for the shares.  

 

With the smoothness assumption, the process is described by a set of coupled, first order, 

nonlinear, ordinary differential equations with time as the independent variable. The equations 

are derived in the next section. It is straightforward to write a computer program which will solve 

these equations numerically with adequate accuracy, using standard techniques of numerical 

analysis.  

 

 

 

3.  DERIVATION OF THE EQUATIONS   
 

Let us suppose that there are M managers, and that at a given time t  manager j  has an 

amount of cash and a number of shares of type . If the price of a share of type  

is , we denote the value his portfolio by , so that 

)( jC ),( kjN k k
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For manager j  the weight , the fraction of the value of his portfolio in shares of type  , 

is defined by 

),( kjG k

   

)(/),()(),( jVkjNkPkjG = ,   i.e. QkMjjVkjGkjNkP ,1,,1),(),(),()( ===          (1)  

 

In the model trading begins at time 0=t  when all the above functions have specified 

values. We assume that cash from outside sources, or interest and dividends on the portfolio, is 

added to portfolio j  in such a manner that a net amount of cash has flowed into portfolio 

up to  time t . We also assume that a net amount  of shares of type  have been issued by 

the company up to time  to all the managers.  

)( jR

j )(kS k

t
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All the above functions depend on time . The functions G , t R and are specified 

externally, while , ,V  and 

S

C N P  are obtained by solving the differential equations derived 

below, given their initial values. 

 

We use the symbol G  to represent the time derivative of . From the notion that a 

manager will preserve value when trading we obtain  

′ G

 

              (2)  ∑
=

=′−′=′
Q

k

MjkjNkPjRjC
1

,1,),()()()(

 

This equation is equivalent to the statement that, for a small interval of time, the increase in the 

portfolio’s cash balance is equal to the amount of cash flowing in from external sources minus the 

amount spent to buy additional shares. 

 

Differentiating  the definition of  we find )( jV
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which, with (2), gives  
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Differentiating the definition of  leads to )( jG
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The set of equations will be completed with an expression for . This can be 

obtained by summing (1) over 

)( ′kP

j , so that  

   

 

∑ ∑
= =

===
M

j

M

j

QkkSkPkjNkPjVkjG
1 1

,1),()(),()()(),( . 

 

 

Differentiating gives  
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from (3). Rearranging we have  
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where 

 

QikijNkjGkSikH ki ,1,),(),()(),( =−= δ . 

 

Thus, with being the  matrix that is the inverse of the matrix with elements 

, we have 

),( ikK QQ ×
),( ikH

 

[ ] QkiSiPjRijGjVijGikKkP
M

j

Q

i

,1,)()()(),()(),(),()(
11

=⎥
⎦

⎤
⎢
⎣

⎡
′−′+′=′ ∑∑

==

. (5) 

 

The sets of equations (3), (4) and (5) constitute the required set of coupled 

differential equations for V ,  and 

MQMQ ++
N P . Once these are solved,  is found from the definition of 
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4.  RELATION TO BID/ASK METHOD OF TRADING 
 

 The differential equations that govern time dependence of prices, number of shares and 

cash are derived under the implied assumption that the various managers collaborate to make 

changes in these quantities over a small time interval that are consistent with the basic relations 

between all the variables involved. It is of interest to understand how in a realistic situation this 

collaboration might occur. Here we examine a simple case involving two managers and one share 

type with the aim of finding out whether the price change predicted by the differential equations 

would result from a series bid/ask trades between the two managers. We find little difference 

between the two methods. This supports that view that the differential equations are a reasonable 

approximation to what might happen in the real world if managers traded continuously to adjust 

their portfolios according to specified time-varying weights.  

 

 With the previous notation, in this case we have one stock 1=Q  and two managers 

2=M . Let us assume that at time 0=t  both portfolios contain cash of  and  shares, 

with a share price of . Thus we have  at time 

5.0 5.0

0.1 0=t  

  

2,15.0)1,(,5.0)( === jjNjC ;     .1)1( =P , 

 6



so that we have share weights 

 

2,15.0)1,( == jjG  . 

 

Let us suppose that Manager 1 wishes to increase the share weight to , while Manager 2 will 

keep it constant at . We assume no external flows of cash or shares, i.e. at all 

times. 

6.0

5.0 0=′=′ SR

 

 

DIFFERENTIAL EQUATION METHOD 
 

 If we assume that weight  increases linearly with time to the value  at time 

, then a numerical solution of the differential equations leads to the following results at time 

  

)1,1(G 6.0

.1=t

.1=t
 

45204.0)1,2(,54796.0)1,1( == NN  Number of shares in each portfolio 

55306.0)1,2(,44694.0)1,1( == CC   Cash in each portfolio 

5.0)1,2(,6.0)1,1( == GG    Weight of shares in each portfolio 

22347.1)1( =P     Price of share 

 

 

BID/ASK METHOD 
 

 Now let us assume that each manager does not know the holdings or the intentions of the 

other manager. Rational strategies for the two managers are 

 

Manager 1   Offer to buy or sell some shares so as to move the share weight in the direction of the 

target weight  . This will mean that the offer must be at a price different from the current 

price. 

6.0

 

Manager 2   When a price different from the current price is offered, buy or sell an amount of 

shares just sufficient to return his share weight to , calculated using the new price. 5.0
 

These actions take place alternately until Manager 1 decides that the portfolio weight is close 

enough to .  6.0
 

 The process consists of the following steps. 

 

Step 1 Based on the latest price and number of shares in Portfolio 1, Manager 1 calculates his 

new share weight . Unless the latest value of  is sufficiently near the target weight, 

in which case the process terminates, Manager 1 chooses a new price equal to the current price 

plus an increment 

)1,1(G )1,1(G

DP , and offers to buy/sell shares depending on whether DP  is 

positive/negative. There are two cases 

 

i)  If the current price is the original price .1)1( =P , then 0DPDP = , where  is chosen by 

the manager, preferably as a small percentage of . 

0DP

)1(P
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ii)  Otherwise,  

 

DPNDP =  if  )0()( DPabsDPNabs ≤  

)(

)0(

DPNabs

DPDPNabs
DP =   if   )0()( DPabsDPNabs >

 

The quantity  is the estimate of DPN DP  obtained by Newton's method to the two most recent 

values of . See Appendix 2. )1,1(),1( GP

 

Step 2  Manager 2 sells/buys a number of shares from Manager 1 at the price offered by Manager 

1. The number is calculated so that the portfolio weight  of Manager 2 returns to its initial 

value. The share weight of Manager 1 changes accordingly. See Appendix 3.  Now Step 1 is 

repeated. 

)1,2(G

 

 Numerical results for different values of the initial price change  are given in 

Appendix 4. It will be seen that the two methods give almost identical results for small price 

change. It would be interesting to study how the two methods compare in more complicated 

cases. 

0DP

 

 

 

5.  DISCUSSION 

 

 There are several possible ways in which the formalism may be extended, and problems 

where it may be applied. Some of them are discussed below. 

 

 

EXTENSIONS 

  

Rebalancing   

 

In the procedure used to derive the differential equations each manager continually 

adjusts his portfolio as stock prices changes, even if his target weights remain the same. Price 

changes mean that share numbers must change to maintain the same weights. This effect would 

lead to excessive trading costs, so that, in practice, a manager would not trade in a share until the 

corresponding weight moved outside a specified range centered on the target weight. The 

differential equations can be modified to take account of this requirement, but we disregard this 

possibility in the remarks below. 

 

Extended Definition of Cash and Cash Transfer  

 

 We may make the model more realistic by extending the definition of portfolio cash 

and cash transferred . In addition to cash we assume that  also includes the 

value  of other financial assets held in the portfolio. That is assets in addition to the shares 

previously discussed. Their value is determined externally and not by the market process we 

described for the shares. If the value of  changes over time, that change is reflected in 

, which also takes account of investor cash flows as before, as well as dividends plus fees,  

)( jC )( jR )( jC

)( jA

)( jA

)( jR
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commissions, expenses, etc. incurred by the manager. With these extended definitions the same 

equations set out in Appendix 1 govern changes in prices, etc. The equations are a consequence 

of the assumption that shares are traded so as to maintain specified time-varying share weights, a 

weight being a fraction of the total portfolio value. 

 

 

APPLICATIONS 

 

Price Change Drivers - Internal 

 

 Let us consider the US stock market, say the largest 1000 stocks by market capitalization 

together with all the many managers that hold these stocks. In most cases the weights will 

be small compared to 1, and the number of shares of type i held by manager j will be small 

compared to , so that  it is reasonable to approximate the matrix by its first term 

),( ijG

)(iS ),( ikH

kikS δ)( . This results in the approximation  

 

[ ] QkkSkPjRkjGjVkjG
kS

kP
M

j

,1,)()()(),()(),(
)(

1
)(

1

=′−′+′≈′ ∑
=

 

 

 This equation  shows that share price changes are driven by changes in share weights 

, cash transferred , and number of shares outstanding .We call the first of 

these internal (endogenous if you are an economist) because share weights are under the control 

of the managers, and the other two are external (exogenous). 

),( kjG )( jR )(kS

 

 In the US market there is a very wide spread of portfolio values  over managers j, 

with a few very large ones down to a great many smaller ones. Since we have no reason to 

suppose that the rates of change of weights 

)( jV

),( ′kjG  will differ systematically based on portfolio 

size, it is likely that internal share price changes will normally be dominated by a relatively few 

large managers because of the factor  in the internal price change formula. Someone who 

could predict a stock's rate of weight change for a relatively small number of large managers 

would probably be able to predict price changes, especially if the changes were all in the same 

direction. Numerical simulation might shed more light on this question. 

)( jV

 

 It is clear that if a high proportion of managers making weight changes, especially the 

large ones, decided to increase their weights for a particular share, then the price would rise. That 

rise could get to the point where the approximation above would no longer be justified, and 

analysis shows that the correct formula would lead to an enhanced price rise. There is no formal 

limit to how high the price could rise based on internal factors alone, and the same applies in 

reverse to falls.  

 

Price Change Drivers - External 

 

Note that, in the above scenario, a sufficiently large price rise might induce managers to 

remove cash and companies to issue more shares, and the external price drivers  and )( ′jR )( ′kS  

would lead to a compensating tendency for prices to fall.  
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In general it might be expected that internal price changes would dominate for shorter 

time periods, but that the external  drivers could have a significant effect over long periods. Thus 

it would be interesting to try to estimate the contributions of the various drivers to the overall 

increase in stock market prices over lengthy periods in the past. A successful result would provide 

an explanation for the equity premium. 

 

Numerical Simulations 

 

 In addition to the suggestions above, there are other areas where it would be interesting to 

simulate aspects of  market behavior by numerical solution of the differential equations.  

 

 An earlier version of this report [Nu00] provides the results of some calculations on 

simple situations where there is only one type of share. One point to note is the surprisingly large 

price changes that can result in weight changes (in the earlier version the term 'Asset Allocation 

Ratio' is used for 'weight') , especially when the initial weights are far from being even. This work 

could easily be generalized. 

 

 A lot of historical information is available about share prices, volumes and market 

capitalizations. It would be interesting to do experiments with different choices for weight 

changes in an attempt to discover what types of weight change behavior might be responsible for 

observed volatilities, etc. It would be even more interesting if some large managers could be 

persuaded to keep a record of their weight changes for academic study at a later date when the 

information was no longer of commercial significance. 

 

Index Investing 

 

 Index investing has grown in popularity in recent years, and 'closet indexers' effectively 

add to the number of genuine index funds. We can speculate what would happen if every 

manager held the market index. Our model suggests that in this situation, not surprisingly, the 

relative weights of shares would be unchanged, no matter what happened to company 

fundamentals, although the overall price level of the index could change if cash were added to 

portfolios.  

 

 It would be of interest to examine the situation just before the advent of universal index 

holdings, when one only small active manager remained. 

 

Efficient Market Hypothesis 

 

 The approach that we are advocating stresses the importance of the considerable diversity 

that is observed among market participants. There is no doubt that different managers use 

different information sets, analyzed in different ways, to produce different trading instructions. 

Without knowing the details of the weight changes for at least a group of the most important 

managers it is not obvious how to predict price changes. The net result is likely to appear to be 

random to many observers. More accurately we should perhaps regard the outcome as uncertain 

in the sense of Keynes. We may not have enough information to determine the properties of a 

probability distribution of returns [Po02]. 
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In this very complicated situation a plausible null hypothesis would be that it is 

impossible to predict anything useful about future market prices. Thus in this view  

 

'Active investment management adds no value, except by chance.'  

 

This conclusion is much the same as that implied if we assume the validity of  the EMH, 

as does, for instance, Malkiel, who writes, paraphrased, 

 

No method of portfolio management would enable an investor to achieve returns greater than 

those that could be obtained by holding a randomly selected portfolio of individual stocks with 

comparable risk. [Ma03], p. 59 

 

 However, the reasoning behind the standard justification for the EMH is diametrically 

opposed to the view of complete ignorance. Thus Malkiel, and probably Fama, believe that the 

EMH is at least approximately correct, because  

 

When information arises, the news spreads very quickly and is incorporated into the prices of 

securities without delay [Ma03], p. 59 

 

so that 

 

Prices fully reflect all known information. [Ma03], p. 59 

 

The result is that 

 

News is by definition unpredictable so that resulting price changes must be unpredictable and 

random. [Ma03], p. 59 

 

  Both approaches agree on the futility of active investing, but simplistically the first 

believes that 

 

'Nobody knows anything' 

 

whereas the second prefers to think that 

 

'Everybody knows everything.' 

 

 We tend to favor a position in between the these two extremes, something along the lines 

of Bernstein [Be99].  Thus we think that 

 

'By taking advantage of the ignorance and incompetence of some of their competitors, a minority 

of managers may have the skill to pursue successful active management.' 
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APPENDIX 1 
 

EQUATIONS - SUMMARY 
 

DEFINITIONS 
 

Q     Number of different types of share 

M     Number of managers 

QkkS ,1),( =   Number of shares outstanding of type  at time t  k

QkkP ,1),( =   Market price of share k  at time  t

MjjR ,1),( =   Net cash transferred by investors, etc. to manager j  up to time  t

MjjC ,1),( =   Cash in portfolio j  at time t  

MjjV ,1),( =   Market value including cash of portfolio j  at time   t

QkMjkjN ,1;,1),,( ==  Number of shares of type  in portfolio k j  at time  t

QkMjkjG ,1;,1),,( ==  Weight of shares of type k  in portfolio j  at time t  

 

EQUATIONS 
 

The following two equations define the portfolio value  and the share weight . )( jV ),( kjG
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Define the matrices H and K as follows 

 

QikijNkjGkSikH ki ,1,),(),()(),( =−= δ . 

 

),( ikK  is the  matrix that is the inverse of the matrix with elements  QQ × ),( ikH

 

Below are the formulas for the time derivatives of ,  and . )(kP ),( kjN )( jV
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APPENDIX 2   
 

Suppose that the two most recent values of weight  are , with 

corresponding prices , and that the target weight is . Then Newton's method estimates 

that the price 

)1,1(G gbga,

pbpa, gt

pt  corresponding to  is given by gt

 

)(
)(

)(
gagt
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pbpa
papt −

−
−

=− . 

 

If pa is the most recent price then we define paptDPN −= . 

 

 

 

APPENDIX 3 
 

 Suppose that Portfolio 2 contains cash  and number of shares of at the start of this 

step. Manager 2 sells shares to Manager 1 at a price of 

cb nb

nd pa . The problem is to find the value 

of such that the weight of shares in Portfolio 2 becomes nd 5.02 =g  in this example. To find 

we use the definition of weight nd
 

ndpacbndnbpa

ndnbpa

CashsharesofValue

sharesofValue
g

×++−×
−×

=
+

=
)(

)(
2 , 

 

which may be solved to give 

 

pa

pbpagnb
nd

))(21( −−
= , 

 

using the fact that the weight in the starting portfolio is . 2g
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APPENDIX 4 
 

The tables show the progress of the 'bid/ask' method for different choices of  the initial price 

change . The columns give the number of shares and the share weight for Manager 1 at the 

end of the step, followed by the starting price and the price change for the step. 

0DP

 

 

        DP0           0.002  

    

       N(1)         G(1)          P         DP 
0.50050 0.50100 1.00000 0.00200

0.50100 0.50200 1.00200 0.00200

0.50149 0.50299 1.00400 0.00200

0.50199 0.50398 1.00600 0.00200

0.50248 0.50497 1.00800 0.00200

0.50297 0.50596 1.01000 0.00200

0.50346 0.50695 1.01200 0.00200

0.50395 0.50793 1.01400 0.00200

0.50444 0.50892 1.01600 0.00200

0.50492 0.50990 1.01800 0.00200

0.50541 0.51087 1.02000 0.00200

0.50589 0.51185 1.02200 0.00200

0.50637 0.51283 1.02400 0.00200

0.50685 0.51380 1.02600 0.00200

0.50733 0.51477 1.02800 0.00200

0.50781 0.51574 1.03000 0.00200

0.50829 0.51671 1.03200 0.00200

0.50876 0.51767 1.03400 0.00200

0.50923 0.51863 1.03600 0.00200

0.50971 0.51959 1.03800 0.00200

0.51018 0.52055 1.04000 0.00200

0.51065 0.52151 1.04200 0.00200

0.51111 0.52247 1.04400 0.00200

0.51158 0.52342 1.04600 0.00200

0.51204 0.52437 1.04800 0.00200

0.51251 0.52532 1.05000 0.00200

0.51297 0.52627 1.05200 0.00200

0.51343 0.52721 1.05400 0.00200

0.51389 0.52816 1.05600 0.00200

0.51435 0.52910 1.05800 0.00200

0.51481 0.53004 1.06000 0.00200

0.51526 0.53098 1.06200 0.00200

0.51572 0.53191 1.06400 0.00200

0.51617 0.53285 1.06600 0.00200

0.51662 0.53378 1.06800 0.00200

0.51708 0.53471 1.07000 0.00200

0.51753 0.53564 1.07200 0.00200

0.51797 0.53657 1.07400 0.00200

0.51842 0.53749 1.07600 0.00200

0.51887 0.53841 1.07800 0.00200
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0.51931 0.53934 1.08000 0.00200

0.51975 0.54025 1.08200 0.00200

0.52020 0.54117 1.08400 0.00200

0.52064 0.54209 1.08600 0.00200

0.52108 0.54300 1.08800 0.00200

0.52152 0.54391 1.09000 0.00200

0.52195 0.54482 1.09200 0.00200

0.52239 0.54573 1.09400 0.00200

0.52282 0.54664 1.09600 0.00200

0.52326 0.54754 1.09800 0.00200

0.52369 0.54844 1.10000 0.00200

0.52412 0.54935 1.10200 0.00200

0.52455 0.55024 1.10400 0.00200

0.52498 0.55114 1.10600 0.00200

0.52541 0.55204 1.10800 0.00200

0.52584 0.55293 1.11000 0.00200

0.52626 0.55382 1.11200 0.00200

0.52669 0.55471 1.11400 0.00200

0.52711 0.55560 1.11600 0.00200

0.52753 0.55649 1.11800 0.00200

0.52795 0.55737 1.12000 0.00200

0.52837 0.55825 1.12200 0.00200

0.52879 0.55913 1.12400 0.00200

0.52921 0.56001 1.12600 0.00200

0.52963 0.56089 1.12800 0.00200

0.53004 0.56177 1.13000 0.00200

0.53046 0.56264 1.13200 0.00200

0.53087 0.56351 1.13400 0.00200

0.53128 0.56438 1.13600 0.00200

0.53169 0.56525 1.13800 0.00200

0.53210 0.56612 1.14000 0.00200

0.53251 0.56698 1.14200 0.00200

0.53292 0.56784 1.14400 0.00200

0.53333 0.56871 1.14600 0.00200

0.53373 0.56956 1.14800 0.00200

0.53414 0.57042 1.15000 0.00200

0.53454 0.57128 1.15200 0.00200

0.53494 0.57213 1.15400 0.00200

0.53535 0.57299 1.15600 0.00200

0.53575 0.57384 1.15800 0.00200

0.53615 0.57468 1.16000 0.00200

0.53654 0.57553 1.16200 0.00200

0.53694 0.57638 1.16400 0.00200

0.53734 0.57722 1.16600 0.00200

0.53773 0.57806 1.16800 0.00200

0.53813 0.57890 1.17000 0.00200

0.53852 0.57974 1.17200 0.00200

0.53891 0.58058 1.17400 0.00200

0.53931 0.58142 1.17600 0.00200

0.53970 0.58225 1.17800 0.00200
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0.54009 0.58308 1.18000 0.00200

0.54047 0.58391 1.18200 0.00200

0.54086 0.58474 1.18400 0.00200

0.54125 0.58557 1.18600 0.00200

0.54163 0.58639 1.18800 0.00200

0.54202 0.58721 1.19000 0.00200

0.54240 0.58804 1.19200 0.00200

0.54278 0.58886 1.19400 0.00200

0.54317 0.58967 1.19600 0.00200

0.54355 0.59049 1.19800 0.00200

0.54393 0.59131 1.20000 0.00200

0.54430 0.59212 1.20200 0.00200

0.54468 0.59293 1.20400 0.00200

0.54506 0.59374 1.20600 0.00200

0.54544 0.59455 1.20800 0.00200

0.54581 0.59536 1.21000 0.00200

0.54618 0.59616 1.21200 0.00200

0.54656 0.59697 1.21400 0.00200

0.54693 0.59777 1.21600 0.00200

0.54730 0.59857 1.21800 0.00200

0.54767 0.59937 1.22000 0.00200

0.54797 0.60000 1.22200 0.00159

0.54797 0.60000 1.22359 0.00000

 

 

 

        DP0           0.005  

    

       N(1)         G(1)          P         DP 
0.50124 0.50249 1.00000 0.00500

0.50248 0.50497 1.00500 0.00500

0.50370 0.50744 1.01000 0.00500

0.50492 0.50989 1.01500 0.00500

0.50613 0.51233 1.02000 0.00500

0.50733 0.51476 1.02500 0.00500

0.50852 0.51718 1.03000 0.00500

0.50970 0.51958 1.03500 0.00500

0.51087 0.52197 1.04000 0.00500

0.51204 0.52435 1.04500 0.00500

0.51319 0.52672 1.05000 0.00500

0.51434 0.52908 1.05500 0.00500

0.51548 0.53142 1.06000 0.00500

0.51661 0.53376 1.06500 0.00500

0.51774 0.53608 1.07000 0.00500

0.51885 0.53839 1.07500 0.00500

0.51996 0.54068 1.08000 0.00500

0.52106 0.54297 1.08500 0.00500

0.52216 0.54524 1.09000 0.00500

0.52324 0.54751 1.09500 0.00500

0.52432 0.54976 1.10000 0.00500
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0.52539 0.55200 1.10500 0.00500

0.52646 0.55423 1.11000 0.00500

0.52751 0.55645 1.11500 0.00500

0.52856 0.55865 1.12000 0.00500

0.52961 0.56085 1.12500 0.00500

0.53064 0.56303 1.13000 0.00500

0.53167 0.56520 1.13500 0.00500

0.53269 0.56736 1.14000 0.00500

0.53371 0.56951 1.14500 0.00500

0.53472 0.57165 1.15000 0.00500

0.53572 0.57378 1.15500 0.00500

0.53672 0.57590 1.16000 0.00500

0.53771 0.57801 1.16500 0.00500

0.53869 0.58010 1.17000 0.00500

0.53967 0.58219 1.17500 0.00500

0.54064 0.58427 1.18000 0.00500

0.54161 0.58633 1.18500 0.00500

0.54256 0.58838 1.19000 0.00500

0.54352 0.59043 1.19500 0.00500

0.54446 0.59246 1.20000 0.00500

0.54541 0.59448 1.20500 0.00500

0.54634 0.59650 1.21000 0.00500

0.54727 0.59850 1.21500 0.00500

0.54796 0.59999 1.22000 0.00375

0.54797 0.60000 1.22375 0.00002

0.54797 0.60000 1.22377 0.00000

 

 

 

        DP0 0.01

    

       N(1)         G(1)          P         DP 
0.50248 0.50496 1.00000 0.01000

0.50491 0.50988 1.01000 0.01000

0.50732 0.51474 1.02000 0.01000

0.50969 0.51956 1.03000 0.01000

0.51202 0.52432 1.04000 0.01000

0.51432 0.52904 1.05000 0.01000

0.51659 0.53371 1.06000 0.01000

0.51883 0.53834 1.07000 0.01000

0.52104 0.54292 1.08000 0.01000

0.52322 0.54745 1.09000 0.01000

0.52536 0.55194 1.10000 0.01000

0.52748 0.55638 1.11000 0.01000

0.52957 0.56077 1.12000 0.01000

0.53164 0.56512 1.13000 0.01000

0.53367 0.56943 1.14000 0.01000

0.53568 0.57370 1.15000 0.01000

0.53767 0.57792 1.16000 0.01000

0.53963 0.58209 1.17000 0.01000
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0.54156 0.58623 1.18000 0.01000

0.54347 0.59032 1.19000 0.01000

0.54536 0.59437 1.20000 0.01000

0.54722 0.59838 1.21000 0.01000

0.54797 0.59999 1.22000 0.00403

0.54797 0.60000 1.22403 0.00002

0.54797 0.60000 1.22406 0.00000

 

 

 

        DP0 0.05

    

       N(1)         G(1)          P         DP 
0.51191 0.52409 1.00000 0.05000

0.52300 0.54699 1.05000 0.05000

0.53337 0.56877 1.10000 0.05000

0.54309 0.58948 1.15000 0.05000

0.54783 0.59966 1.20000 0.02541

0.54798 0.60000 1.22541 0.00085

0.54798 0.60000 1.22626 0.00001

 

 

 

        DP0 0.1

    

       N(1)         G(1)          P         DP 
0.52273 0.54644 1.00000 0.10000

0.54261 0.58845 1.10000 0.10000

0.54774 0.59946 1.20000 0.02750

0.54799 0.60000 1.22750 0.00136

0.54799 0.60000 1.22886 0.00001

0.54799 0.60000 1.22887 0.00000

 

 

 

 

        DP0 0.5

    

       N(1)         G(1)          P         DP 
0.58333 0.67742 1.00000 0.50000

0.54787 0.59914 1.50000 -0.21818

0.54829 0.60005 1.28182 0.00239

0.54827 0.60000 1.28421 -0.00013

0.54827 0.60000 1.28408 0.00000
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