
Munich Personal RePEc Archive

Unemployment Insurance in an Economy

with a Hidden Labor Market

Alvarez-Parra, Fernando A. and Sanchez, Juan M.

December 2006

Online at https://mpra.ub.uni-muenchen.de/2531/

MPRA Paper No. 2531, posted 04 Apr 2007 UTC



Unemployment Insurance in an Economy
with a Hidden Labor Market∗
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Abstract

This paper considers the problem of optimal unemployment insurance in a moral
hazard framework. Unlike existing literature, unemployed workers can secretly par-
ticipate in a hidden labor market ; as a consequence, an endogenous lower bound for
promised utility preventing “immiserization” arises. Moreover, the presence of a hidden
labor market makes possible an extra deviation and therefore hardens the provision of
incentives. Under linear cost of effort, we show that the optimal contract prescribes
no participation in the hidden labor market and a decreasing sequence of unemploy-
ment payments until the lower bound for promised utility is reached. At that moment,
participation jumps and unemployment payments drop down to zero. For the case of
non-linear effort cost we calibrate the model to Spain. As in the linear cost of effort, this
exercise reproduces no participation and decreasing payments during the initial phase
of unemployment. After around three years of unemployment, the contract prescribes
a jump in participation and an abrupt decline in unemployment payments. To the best
of our knowledge, this is the first paper justifying an abrupt drop in unemployment
payments. In addition, the quantitative analysis suggests that in an environment in
which agents differ in separation rate, the hidden labor market reinforces the benefits
from a type-dependent unemployment system.
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Jesús Fernández-Villaverde, Gianluca Violante and other seminar participants for useful conversations. All
remaining errors are our own.

†University of Rochester and Central Bank of Venezuela. Email: falvarez@troi.cc.rochester.edu.
‡University of Rochester. Email: sncz@troi.cc.rochester.edu.

1



1 Introduction

Unemployed workers face a trade-off between search effort and leisure. Since effort is unob-

servable, the design of unemployment insurance systems balances insurance and incentives.

This moral hazard problem has been the object of study since the pioneering work of Shavell

and Weiss (1979). In this literature it is assumed that employment status is observable and

hence individuals cannot cheat by working and asking for unemployment payments. But

what if there is a shadow economy that allows unemployed individuals to secretly work and,

simultaneously, ask for unemployment payments? This paper explores the implications of

a hidden labor market in the design of optimal unemployment insurance. Hopenhayn and

Nicolini (2001) stress the importance of this contribution:

Our focus in discussing optimal unemployment insurance has been the group of workers whose
unemployment risk is higher, namely, the less educated and less experienced workers. Often,
the members of this group find job opportunities mostly in the informal sector of the economy.
Therefore, it may be very hard to monitor the employment status of the worker. Our inves-
tigation assumed that while search effort is not observable, employment status is. A strong
incentive problem arises when the latter does not hold, since an unemployed worker receiving
benefits would not have incentives to disclose having found a job.

Table 1 reports three facts suggesting that incorporating a hidden labor market in the

study of optimal unemployment insurance might be crucial1:

• The hidden labor market or the shadow economy is important in many countries,

ranging from 13-30 percent of GDP in industrialized economies to 39-76 for African

countries.

• In economies with a sizeable shadow economy, unemployment is a likely event. On

average, unemployment rates range from 6.8 in industrialized economies to 11.6 for

African countries.
1We interpret the informal sector as a hidden labor market in which the worker can always find a job but

his productivity is lower than in the formal sector.
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• With different coverage, replacement rate, and benefits duration, most of the countries

protect the workers against unemployment risk.2 Replacement rates are around 45-75

percent during 1-2 years.

In light of these facts, it is reasonable to think about economies where the hidden labor

market is important, workers face high unemployment risk, and the government provides

unemployment insurance. In the current paper we study the optimal unemployment insur-

ance in economies with these features.

Incorporating a hidden labor market modifies the standard unemployment insurance

problem. Methodologically, the presence of a hidden labor market imposes an endogenous

lower bound for promised utilities that has to be incorporated as an explicit restriction in

the planner’s problem. In addition, participation in the hidden labor market hardens the

encouragement of job search effort. In fact, unless the cost of effort is linear, an extra

incentive compatibility constraint must be added to keep participation at the desired level.

Important insights can be obtained in the case of linear cost of effort, when the un-

employment insurance system can be characterized analytically. Initially, consumption is

strictly decreasing during unemployment and workers do not participate in the hidden labor

market. For sufficiently large unemployment spells, the lower bound for promised utilities is

eventually reached. Only at that moment, the optimal contract prescribes positive participa-

tion in the hidden labor market together with zero unemployment payments. Also, once the

lower bound for promised utilities binds, planner’s instruments—taxes and benefits—and

prescriptions—search effort and hidden labor market participation—remain constant over

time.

2Also, the number of countries providing unemployment insurance programs increased from 21 in 1940
to 68 in 1997. Social Security Programs Throughout the World, 1997 (Social Security Administration, US).
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Table 1: Shadow economy size, unemployment rate, and unemployment insurance
Shadow Unem- Unemployment insurance
economy ployment Replacement
% GDP rate % Coverage rates % Benefit duration

Industria- Vary 6.8 Most of the countries Vary between Most of the
lized eco- between provide and cover all 40 and 75. countries limit
nomies 13 and 30. the employed. Higher in Sweden the length between

and Denmark. 8 and 36 weeks.

Transition Vary 9.2 Most of the countries Vary between Most of the
economies between provide and cover all 50 and 75. countries limit is

9 and 43. the employed. Some countries 26 weeks. Exception
flat benefits. Hungary, 2 years.

Latin Vary 8.0 Most of the countries Vary between Maximum
America between provide and cover all 50 and 60. entitlement
and the 25 and 60. the employed. Some countries 1 year.
Caribbean flat benefits.

Asia Vary 4.8 Differs significantly. Vary between Bangladesh 30-120
between Bangladesh only 50 and 55. days. China 1-2

13 and 70. commerce and industry. years. South Korea
South Korea: all firms. 90-240 days.

Africa Vary 11.6 Egypt excludes Vary between Vary between
between public sector workers. 45 and 75. 26 weeks and

39 and 76. South Africa excludes 3 years.
highly paid workers.

Sources: Schneider and Enste (2000), ILO (2004) and Vodopivec and Raju (2002).
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For the case of non-linear effort cost, we calibrate the model to Spain. The quantitative

results resemble those obtained in the linear case. For the benchmark calibration, partici-

pation is zero during the first three years and unemployment payments decrease gradually.

Just after that moment, participation in the hidden labor market jumps to a fairly constant

level, and unemployment payments drop down to zero.

To the best of our knowledge, this is the first paper justifying an abrupt decline in

unemployment payments. The intuition goes as follow. Initially, participation remains at

zero to facilitate the encouragement of search effort. More specifically, zero participation

helps to encourage search effort because: (i) the marginal cost of search effort remains low,

and (ii) decreasing payments translates to decreasing consumption. Eventually, when the

consumption delivered by payments is too low, zero participation is not longer incentive

compatible. At that moment, unemployment payments decrease abruptly. This variation

in payments does not imply such variation of consumption because workers participate in

hidden labor market to smooth consumption. Nevertheless, this drop provides dynamic

incentives guaranteeing that long run unemployment remains a serious threat.

In addition, the results indicate that a hidden labor market reinforces the importance of a

type-dependent unemployment insurance system for economies in which labor mobility differs

among workers. In particular, payments duration should be shorter for workers with higher

separation rates. The intuition behind this result goes as follow. When separation rates are

lower, jobs are more “valuable” and therefore the planner is willing to delay participation in

the hidden labor market. Naturally, this requires more unemployment payments to workers

with lower separation rates.

Unemployment insurance systems have been studied from two different perspectives. One

approach uses quantitative general equilibrium models to study the influence of unemploy-
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ment insurance systems on macroeconomics variable and welfare—see for example Hansen

and Imrohoroglu (1992) and Wang and Williamson (1996). The other approach, followed by

this paper, uses contract theory in a partial equilibrium environment to study the optimal

design of unemployment insurance. In a moral hazard framework in which the planner can

only choose unemployment payments, early contributions find that payments must decrease

over time in order to encourage search effort—Shavell and Weiss (1979). A subsequent work

allows the planner to choose, together with unemployment payments, an after re-employment

tax, and numerically solves for the optimal contract using a recursive representation of the

problem. The paper finds that extending the planner’s sets of instruments does not mod-

ify the previous result of a decreasing path for unemployment payments—Hopenhayn and

Nicolini (1997).

A controversial result from this early literature is that the optimal contract leads unem-

ployed workers toward “immiserization”. More precisely, “if the workers utility function is

unbounded below then efficiency requires that workers expected discounted utility falls, with

positive probability, below any arbitrary negative level”—Pavoni (2003). To prevent this re-

sult, Pavoni (2003) imposes an arbitrary lower bound for promised utility and characterizes

the resulting optimal unemployment insurance.3 Our work is related to this idea because it

justifies the existence of a lower bound in life-time utility and connects it with the structure

of the economy through the presence of a hidden labor market. However, our problem goes

beyond a justification for the lower bound for promised utility imposed in Pavoni (2003);

in particular, the presence of a hidden labor market makes possible an extra deviation and

therefore hardens the provision of incentives.

3There are several related environments where “immiserization” does not hold. For instance, see Wang
(1995) and Phelan (1995).
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The policy implications of a hidden labor market are studied in different environments

and with different goals. Among others, labor regulations, wage controls, migration policies,

and taxation are analyzed in frameworks with hidden labor markets by Banerjee (1983),

Fortin, Marceau, and Savard (1997), and Johnson, Kaufmann, and Zoido-Lobaton (1998).

Surprisingly, there is not paper in this strand of literature considering the optimal design

of unemployment insurance. Our work fills this gap studying the implications of a hidden

labor market for the optimal unemployment insurance.

Two recent papers are related to our work because of their interest in the informal

sector or bad jobs and unemployment insurance. Hopenhayn and Nicolini (2001) study the

effects of heterogeneity on the design of optimal unemployment insurance. Importantly,

they comment that one way to cope the incentive problem generated by an informal sector

is to design programs that require those receiving benefits to appear at the insurance office.

As they mention, this monitoring schemes may come at a significant cost. We designed

an incentive compatible contract that requires no monitoring. Likewise, Hopenhayn and

Nicolini (2005) focus on workers’ incentives to accept bad jobs when layoffs and quits are

undistinguishable. In particular, their interest is about workers accepting and then quitting

those jobs just to upgrade their unemployment insurance benefits. Instead, we study the

possibility that those jobs are non-observable, what implies that workers could accept them

and ask for unemployment payments.

2 Model

2.1 Environment

The economy is populated by a continuum of infinitely-lived risk averse workers. At each

period, a worker’s labor status is denoted by mt. The variable mt ∈ {u, e}, where u stands
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for unemployment and e for employment. The employment history of a worker up to time t

is represented by ht = (m0, ..., mt).

In contrast to previous studies, this environment includes a secondary labor market in

which workers obtain a wage, ̟, for unit of participation, s. Henceforth, we refer to this

market as the hidden labor market.

Workers employed in the formal sector—employed workers—exert a constant work effort

ā, have productivity of ω, and receive wages w. Employment relationships exogenously end

with probability δ. By assumption, we rule out participation in the hidden labor market

while employed as well as on-the-job search. Productivity in the hidden labor market is

lower than in the formal sector, ̟ < ω.

Unemployed workers search for a job and can, simultaneously, participate in the hidden

labor market. When exerting search effort a, they find a job next period with probability

p(a). The total effort while unemployed, x, is restricted to lie in the compact set [0, ϑ]. The

function p is strictly increasing, strictly concave, twice differentiable and satisfies standard

Inada conditions.

The instantaneous felicity function is separable in consumption and total effort

u(c) − v(x). (1)

The function u reflects the utility from consumption. It is strictly increasing and bounded

above by u. It is also strictly concave, twice differentiable, and satisfies Inada conditions.

Similarly, the function v measures the cost of effort exerted either when searching for a job,

when participating in the hidden labor market or when employed. We assume this function

is convex, strictly increasing and twice differentiable. Notice that total effort, x, equals ā if

the worker is employed and s + a otherwise. Finally, workers can neither save nor borrow

and they discount future with the factor β ∈ (0, 1).
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We suppose there is a risk neutral planner who provides unemployment insurance and

affects workers’ earnings by levying a history dependent after-reemployment tax. The plan-

ner cannot observe either hidden labor market participation, s, or job search effort, a. He

can borrow and save at a constant interest rate r = 1/β − 1.

2.2 Optimal Contract Problem

The planner has to decide unemployment payments, after reemployment wages, search effort,

and hidden labor market participation. A contract, precisely described in the next definition,

collects those decision for each possible history node.

Definition 1 A contract or unemployment insurance system, W, is a collection of

functions specifying unemployment payments, b, wages after reemployment, w, search effort,

a, and hidden labor market participation, s, for each possible history, ht, at each period; i.e.,

W = {bt(h
t), wt(h

t), at(h
t), st(h

t)}.

Notice that a contract can be divided into two components: those representing planner’s

direct instruments, I = {bt(h
t), wt(h

t)}, and those representing planner’s prescriptions for

non-observable workers’ actions, P = {at(h
t), st(h

t)}.

Feasibility imposes some restrictions on the set of contracts. In particular, planner’s

prescriptions, P, and instruments, I, are required to belong to the following sets:

A = {P : for each ht and each t, (at(h
t), st(h

t)) ∈ [0, ϑ]2, at(h
t) + st(h

t) ≤ ϑ

if mt = u, and at(h
t) = st(h

t) = 0 if mt = e},

T = {I : bt(h
t) ≥ 0 for each ht, with equality if mt = e, and wt(h

t) > 0 }.

Thus, a contract W = (P, I) is said to be a feasible contract if (P, I) ∈ A × T. Notice

that each contract prescribes sequences for consumption, c, total effort, x, and one period
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planner’s payoffs, y, as follows:

ct(h
t) =

{
bt(h

t) + st(h
t)̟ if mt = u

wt(h
t) if mt = e

xt(h
t) =

{
at(h

t) + st(h
t) if mt = u

ā if mt = e

yt(h
t) =

{
−bt(h

t) if mt = u

ω − wt(h
t) if mt = e.

(2)

Define Ut(W ; ht) as the workers’ promised utility associated with the contract W , from

a particular history ht. Likewise, define Vt(W ; ht) as the planner’s continuation value. That

is,

Ut(W ; ht) ≡ Et

[
∞∑

n=t

βn−t(u(cn(hn)) − v(xn(hn)))|W , ht

]
, (3)

Vt(W ; ht) ≡ Et

[
∞∑

n=t

βn−tyn(hn)|W, ht

]
. (4)

In (3)-(4) expectations are taken conditional on the contract W and on the initial node

ht. This is because the actions prescribed by the contract affect the probability measure on

histories.

Since search effort and hidden labor market participation are not observable, the un-

employment insurance scheme has to be incentive compatible. That is, the levels of search

effort and hidden labor market participation prescribed by the optimal contract have to be

consistent with workers’ best responses.

Definition 2 A contract W = (P , I) is incentive compatible if for each history and each

period, there is not an alternative feasible action P̃ providing a higher lifetime utility for the

worker than the one induced by the contract; i.e., for each ht and t,

Ut((P , I); ht) ≥ Ut((P̃ , I); ht) for each P̃ ∈ A. (5)
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In the standard dynamic moral hazard model—without hidden labor markets, Pavoni

(2003) shows that the constrained efficient contract “implies a weaker form of what is known

as the immiserization result: if the workers utility function is unbounded below then efficiency

requires that workers expected discounted utility falls, with positive probability, below any

arbitrary negative level”.4 In the environment presented in this paper, we show that the

contract cannot punish the worker with a promised utility below the critical value U , where

U ≡
u(s∗̟) − v(s∗)

1 − β
, (6)

and s∗ solves

u′(s∗̟)̟ = v′(s∗). (7)

We call U the lower bound for promised utilities. Notice it is the life-time utility the worker

attains when she does not search for a job at any period, receives no unemployment payments,

and chooses participation in the hidden labor market optimally. The proposition 1 formally

states this result. Before presenting the formal proof, we remark that optimality requires

mt+1 = mt = e ⇒ Ut(W ; ht) = Ut+1(W ; ht+1). (8)

As we argue next, this is because the cheapest way to provide certain life-time utility in

absence of incentive friction is to guarantee the worker a constant stream of consumption.

Proposition 1 (No “immiserization”) In the optimal contract there is not “immiseriza-

tion”; i.e., the promised utilities provided by the constrained efficient contract W∗ are bounded

below by U.

Proof: See Appendix.

4See proposition 3 in Pavoni (2003). Green (1987) and Thomas and Worral (1990) in repeated unobserv-
able endowments economies, prove a similar but stronger result.
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The intuition for this result is transparent: the hidden labor market provides a protection

for the workers that prevents “immiserization”. Whenever the planner pretends to deliver a

promised utility below U , the worker deviates to guarantee herself at least U .

A direct implication of the last result is that problem (11)-(13) is not well defined when-

ever U < U because the set of incentive compatible contracts is empty. In contrast, we prove

that for each U ≥ U there is always an incentive compatible contract providing U to the

workers. This result is formalized in lemma 1.

Lemma 1 Define C(U ; h0) as the set of incentive compatible contracts providing promised

utility greater or equal than U given initial state h0; i.e.,

C(U ; h0) ≡ {W ∈ C : U0((P, I); h0) ≥ U}. (9)

Then, for any U ≥ U , the set C(U) is not empty.

Proof: See Appendix.

Recall that u is bounded above u. As a consequence, the lifetime utilities the contract

can deliver is bounded above by U ≡ u
1−β

. Define Pm as the set of promised utilities lower

than U such that C(U ; h0) 6= ∅ when h0 = m. From proposition 1 and lemma 1 it transpires

Pu = Pe = P ≡ {U ∈ R : U ≥ U ≥ U}. (10)

The set P is the set of promised utility the contract can deliver. In order to define the

contractual problem, let F be the set of all feasible contracts and U be the utility the contract

has to deliver to the worker. When the planner offers a contract to a worker whose initial

labor status equals m0, it solves
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V m0(U) = max
W∈F

V0(W ; h0) (11)

s.t

W ∈ C(U,m0), (12)

U0(W ; h0) ≥ U. (13)

Ut(W ; ht) ∈ P∀ht, t (14)

Equations (12) and (13) are, respectively, the incentive compatibility and the promise keeping

constraints. The contract solving problem (11)-(13) is called the constrained efficient contract

and is denoted by W∗.

2.3 Recursive Representation

Due to its history dependence, the problem (11)-(13) is not tractable for quantitative pur-

poses. Fortunately, following the lines of Spear and Srivastava (1987) and Abreu, Pearce,

and Stacchetti (1990) the problem has a recursive representation in which the history is com-

pletely encoded in two single variables, namely, promised utility and labor status. As implied

by proposition 1 and lemma 1, the planner’s problem is well defined if and only if promised

utility is not smaller than U . Therefore, the recursive representation must explicitly impose

that promised utilities belong to P.

Before presenting the recursive planner’s problem we introduce the definition of a recur-

sive contract.

Definition 3 A recursive contract or unemployment insurance system, WR, is a

collection of functions specifying unemployment payments, b, wages after reemployment, w,

13



search effort, a, hidden labor market participation, s, and promised utilities in any state m,

Um, for each U in P; i.e., WR = {b(U), w(U), a(U), s(U), Uu(U), U e(U)}.

A recursive contract can be divided into two components: those representing planner’s

direct instruments, IR = {b(U), w(U), Uu(U), U e(U)}, and those representing planner’s pre-

scriptions for workers’ actions, PR = {a(U), s(U)}.

In order to define the planner’s problem recursively, let E be the set of one-period feasible

actions and M the set of one-period best response of workers, taking as given unemployment

payments and promised utilities. That is,

E ≡ {(a, s) : a ≥ 0, s ≥ 0 and s + a ≤ ϑ},

M ≡ {argmax(a,s)∈E
u(b + s̟) − v(a + s) + β[p(a)U e + (1 − p(a))Uu]}.

Then, the planner’s problem is represented by the following functional equations system:

V u(U) = max
b,a,s,Uu,Ue

−b + β[p(a)V e(U e) + (1 − p(a))V u(Uu)], (15)

s.t.

u(b + s̟) − v(s + a) + β[p(a)U e + (1 − p(a))Uu] − U = 0, (16)

(a, s) ∈ M, (17)

(Uu, U e) ∈ P2, (18)
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With

V e(U) = max
Ũu,Ũe,w

ω − w + β[δV u(Ũu) + (1 − δ)V e(Ũ e)]

s.t.

u(w) − v(a) + β[(1 − δ)Ũ e + δŨu] − U = 0,

(Ũu, Ũ e) ∈ P2,

Equation (16) is the promise keeping constraint in recursive form, while equation (17) is

the incentive compatibility constraint. Finally, (18) restricts the value of promised utilities

to the set P. We call this constraint the feasibility of promised utilities constraint (FPUC).

Pavoni (2003) also introduces a lower bound for promised utility in his recursive rep-

resentation of the optimal unemployment insurance problem. However, the framework we

propose here differs from that studied by Pavoni (2003) in some crucial aspects. First, our

lower bound is explicitly connected with the structure of the economy and it is not arbitrar-

ily imposed but arises due to incentive compatibility. More importantly, the participation

in the hidden labor market affects the incentives provision due to its effect on the marginal

cost of effort and the marginal utility of consumption. In other words, the presence of a

hidden labor market involves not only a lower bound for promised utilities, but also an extra

constraint when providing incentives.

The inconvenience with the previous representation is that constraint (17) is a compli-

cated object which makes the problem non-tractable. A common strategy is the so called

first order condition approach. To describe this strategy, consider an unemployed worker who

takes as given (b, Uu, U e) and chooses (a, s) ∈ E to maximize utility.5 For such a problem

5Under the assumption that p satisfies Inada conditions and provided that in equilibrium Ue > Uu, we

15



the first order condition are:

βp′(a)[U e − Uu] − v′(s + a) = 0, (ICC1)

−u′(b + s̟)̟ + v′(s + a) ≥ 0. (ICC2)

Now define Mfoc as the set of all (a, s) ∈ E such that equations (ICC1)-(ICC2) are

satisfied. The first order condition approach basically replaces constraint (17) in the recursive

problem (15)-(18) by the condition that (a, s) ∈ Mfoc.

Since M ⊆ Mfoc, the solution to the problem using the first order condition approach

may differ from the solution to the original problem. A recent example is provided in

Kocherlakota (2004). In our environment, given (b, Uu, U e), the worker’s problem is convex.

This implies that the first order conditions are both necessary and sufficient and hence, the

first order approach is valid.6

Using the first order condition approach, the recursive planner’s problem is

V u(U) = max
b,a,s,Uu,Ue

−b + β[p(a)V e(U e) + (1 − p(a))V u(Uu)], (PP)

s.t.

u(b + s̟) − v(s + a) + β[p(a)U e + (1 − p(a))Uu] − U = 0, (PKC)

βp′(a)[U e − Uu] − v′(s + a) = 0, (ICC1)

− u′(b + s̟)̟ + v′(s + a) ≥ 0, (ICC2)

(U e, Uu) ∈ P2, (FPUC)

s ≥ 0,

can guarantee that the non-negativity constraint for a is never binding. Likewise, we can always set ϑ big
enough to avoid a+ s = ϑ. Hence, we only focus on non-negativity constraint for participation in the hidden
labor market.

6First notice that E is a convex set. Second, the function f , defined as f(a, s) = u(b + s̟) − v(a) +
β(p(a)Ue + (1 − p(a))Uu), is a strictly concave function provided that Ue ≥ Uu.
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With

V e(U) = max
Ũu,Ũe,w

ω − w + β[δV u(Ũu) + (1 − δ)V e(Ũ e)]

s.t.

u(w) − v(a) + β[(1 − δ)Ũ e + δŨu] − U = 0,

(Ũu, Ũ e) ∈ P2,

Henceforth, we refer to the previous problem as (PP). We use this problem to analytically

characterize the first best contract—the optimal contract without information frictions—and

the constrained efficient contract with linear cost of effort. We also use it to numerically

characterize the constrained efficient contract with non-linear cost of effort. 7

2.4 First best contract

As a benchmark, we characterize the optimal contract when search effort and participation

in the hidden labor market are both observable. The problem is the same as in (PP) but

now there is no need to introduce constraints (ICC1), (ICC2), and (FPUC).

Let λ be the multiplier associated with constraint (PKC). Then the first order conditions

7As commented before, since there is not moral hazard during employment, optimality requires that
promised utility during employment remains constant; that is Ũe = U . To see this, notice that the first
order condition with respect to Ũe together with envelope condition yield

V ′e(Ũe) = V ′e(U),

which implies Ũe = U provided concavity of V e. The functions V u, V e turn out to be strictly concave in all
the numerical experiments we performed.
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satisfied by first best contract are

(s :) − u′(b + s̟)̟ + v′(s + a) ≥ 0, (19)

(b :)
1

u′(c)
= λ, (20)

(Uu :) λ + V
′u(Uu) = 0, (21)

(U e :) λ + V
′e(U e) = 0, (22)

(a :) βp′(a)[V e(U e) − V u(Uu)] = λ[v′(a + s) − βp′(a)(U e − Uu)]. (23)

Envelope condition implies

V
′u(U) = −λ =⇒ V

′u(Uu) = −λ
′

. (24)

Combining (20),(21) and (24),

1

u′(c)
−

1

u′(c′)
= 0 =⇒ c = c

′

. (25)

That is, the first best allocation implies a constant stream of consumption during unemploy-

ment.8

Notice that under hidden effort, the first best allocation is not incentive compatible

when planner values employment state and unemployment state differently. This is clear

since (23) is inconsistent with (ICC1). However, if the planner has control over search effort,

observability regarding participation in the hidden labor market becomes immaterial. This

property is formally stated in lemma 2.

Lemma 2 If search effort is observable, the first best allocation is achievable even if the

planner cannot observe participation in the hidden labor market.

8Using a similar argument, it can be shown that there is also constant consumption across labor status.
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Proof: See Appendix.

The reason for the last result is that once search effort is guaranteed at the social optimum

level, planner and worker’s positions regarding the optimal level of participation in the hidden

labor market are aligned. However, it does not imply we can discard (ICC2) when solving the

problem with asymmetric information. When search effort is not observable, the cost and the

benefit of an additional unit of participation in the hidden labor market are valued differently

by the planner and by the worker. In particular, the planner internalizes the marginal effect

of a unit of hidden labor market participation in the cost of providing incentives to make

compatible the desired search effort. In contrast, with linear cost of effort, there is no

marginal change in the cost of effort and hence this situation does not arise. This result is

presented in lemma (3).

Lemma 3 If v is linear, we can solve the problem (PP) without considering (ICC2).

Proof: See Appendix.

2.5 Constrained efficient contract

Now we turn to the case in which the planner does not observe either search effort or hidden

labor market participation. As mentioned, we characterize this contract through the problem

labeled as (PP).

Let µ1 be the multiplier associated with (ICC1), µ2 the multiplier associated with (ICC2)

and φ the one associated with non-negativity constraint for s. As before, let λ be the

multiplier associated with (PKC). Finally, let ξu and ξe be the multipliers associated with

constraints (FPUC) for Uu and U e, respectively.
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The first order conditions for the planner’s problem are

(s :) λ[u′(b + s̟)̟ − v′(s + a)] − µ1v
′′(s + a) = (26)

µ2[u
′′(b + s̟)̟2 − v′′(s + a)] + φ,

(b :) λ =
1

u′(c)
+ µ2

u′′(c)̟

u′(c)
=

1

u′(c)
− µ2ρa(c)̟, (27)

(Uu :) λ + V
′u(Uu) +

ξu

β(1 − p(a))
= µ1

p′(a)

1 − p(a)
, (28)

(U e :) λ + V
′e(U e) +

ξe

βp(a)
= −µ1

p′(a)

p(a)
, (29)

(a :) p′(a)[V e(U e) − V u(Uu)]+

µ1[βp′′(a)(U e − Uu) − v′′(s + a)] + µ2v
′′(s + a) = 0, (30)

where ρa represents the coefficient of absolute risk aversion. These conditions together

with complementary slackness and the corresponding constraints completely characterize

the contract solving (PP).

Using envelope condition and equations (27)-(28) we can get the expression that governs

the profile of consumption during unemployment spell,

1

u′(c)
−

1

u′(c′)
+ ̟[µ′

2ρa(c
′) − µ2ρa(c)]︸ ︷︷ ︸

̺

+
ξu

β(1 − p(a))
= µ1

p′(a)

1 − p(a)
. (31)

There, we can see that the presence of a hidden labor market affects the profile of con-

sumption during unemployment through three ways: (1) a direct effect represented by the

term ̺ which does not show up in the standard case, (2) an indirect effect through the term

µ1 and, (3) other direct effect through the term ξu.9

In order to provide a further characterization of the problem, we must either add as-

sumptions about functional forms, or rely on numerical solution. In the remaining of the

9Notice that the term ̺ in (31) is a function of the absolute coefficient of risk aversion. A similar result
is found in an environment with moral hazard and hidden savings. See Abraham and Pavoni (2005).
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paper we develop both strategies.

3 Qualitative analysis

In this section the cost of effort is defined by

v(x) = αx. (32)

With this additional assumption, we can provide a detailed characterization of the con-

strained efficient contract.10

When the cost of effort is defined as in (32), the dynamic of consumption is characterized

by a decreasing path, until a period when it becomes flat. This result is formalized through

a set of lemmas. The first of them shows that consumption is strictly decreasing while the

promised utility is above its lower bound U .

Lemma 4 When the constraint for promised utility if unemployed (FPUC) does not bind—

i.e., Uu > U—the consumption path during unemployment is strictly decreasing.

Proof: First observe that µ2 = 0.11 To see this, notice that if s = 0, constraint (ICC2) does

not bind and, by complementary slackness, µ2 = 0. On the other hand, if s > 0, equation

(26) implies µ2u
′′(b + s̟)̟ = 0 and then µ2 = 0. Now, manipulating first order conditions,

and letting ξu = 0, we find

1

u′(ct)
−

1

u′(ct+1)
= µ1

p′(a)

1 − p(a)
> 0. (33)

10Some results also hold under a more general specification of v. Consider v(a, s) = g(a) + q(s) with
g′(a) > 0 and q′(s) > 0. Then, the sequence of consumption during unemployed is still decreasing and
bounded below. Likewise, the lower bound for promised utility is eventually reached. Moreover, when
lower bound for promised utility is reached, the contracts prescribes zero payments and the lower bound
for consumption. However, now it is not the case that participation in the hidden labor market occurs only
when the lower bound for promised utility is reached.

11This is consistent with lemma 3 which indicates that with linear cost of effort incentive compatibility
constraint (ICC2) is not needed to formulate the constrained planner’s problem.
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Finally, by strict concavity of u we have ct > ct+1.

Due to the presence of a hidden labor market, the consumption path is bounded below.

This result is formally established in the next lemma.

Lemma 5 The sequence of consumption during unemployment is bounded below by

c ≡ u′−1(α/̟).

This consumption level is achieved whenever unemployed workers participate in the hidden

labor market.

Proof: The lower bound may be violated only if b < c. In that case, s = 0 is not incentive

compatible. Since participation in the hidden labor market must be optimal from the agent’s

point of view, it will solve u′(b + s̟)̟ = α. This implies that whenever the unemployed

worker participates in the hidden labor market, c = b + s̟ = c.

The following lemma deals with the question of whether the lower bound for utility U is

eventually reached for a worker with a sufficiently large unemployment spell.

Lemma 6 For sufficiently large unemployment spell, the lower bound for utility is reached;

i.e., there exist a period t∗ such Uu
t∗ = U .

Proof: Suppose by contradiction that constraint (FPUC) never binds. Then, we can write

the problem (PP) without it. Moreover, by corollary (1), st = 0 for each t. As a conse-

quence, the problem (PP) collapses into the problem studied by Hopenhayn and Nicolini

(1997) with no hidden labor market participation and no relevant bound for promised utili-

ties. As known, in this environment ct = bt decreases toward “immiserization”. This implies
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that lower bound for consumption is eventually violated, which contradicts lemma 5.

The next lemma shows that once the lower bound for utility is reached, promised utility

if unemployed remains constant at its minimum level.

Lemma 7 If V u is concave, the lower bound for utility is a fixed point of the function Uu;

i.e., Uu(U) = U .

Proof: Let U = U , using first order condition with respect to Uu and envelope condition

we get

V
′u(Uu) − V

′u(U) = µ1
p′(a)

(1 − p(a))
−

ξu

β(1 − p(a))
.

Clearly Uu < U is not possible because it violates (FPUC). Suppose then that Uu > U .

This implies (FPUC) does not bind and hence ξu = 0. However if ξu = 0, the concavity of

V u implies Uu ≤ U , which contradicts our assumption that Uu > U . Therefore, it must be

that Uu = U

Putting these results together we can affirm that initially consumption decreases over the

unemployment spell until the time when the lower bound for utility is reached. From that

period on, consumption remains constant. Denote the level at which consumption stabilizes

by c. We show in the next lemma that consumption stabilizes at its lower bound.

Lemma 8 If V u is concave, at the promised utility’s lower bound, the optimal contract

prescribes the consumption’s lower bound; i.e., c(U) ≡ c = c.

Proof: By lemmas 6 and 7, there exist a t∗ such that Uu
t = U and ct = c for each t > t∗.

By lemma 5, c ≥ c which rules out c < c. We prove c > c is not a solution. Suppose by
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contradiction that c > c. Since u′(c)̟ < α, at this point s = 0. Let a be the search effort

prescribed in the optimal contract. We can write

u(c) − v(a) + β[p(a)U e + (1 − p(a))U ] ≥

u(c) + βU > u(c) − v(s∗) + βU ≡ U.

The first inequality arises form the fact that incentive compatibility requires that the utility

delivered by the contract is not lower than the one associated with any feasible deviation,

in particular with s = a = 0. The second strict inequality arises form our assumption that

c > c and from the fact that v and u are strictly increasing. However, this implies that in

the contract the planner is delivering a lifetime utility strictly higher than the one promised,

which is not optimal. Hence c = c.

Corollary 1 When lower bound for promised utility is not binding, hidden labor market

participation is zero.

Proof: Suppose by contradiction that at certain period st 6= 0 but lower bound for promised

utility has not been reached. By lemma (5), ct = c, but since Uu > U , by lemma 4,

ct+1 < ct = c which is a contradiction.

Previous corollary highlights a key property of the optimal contract in the case of linear

cost of effort, namely: the planner initially does not encourage participation in the hidden

labor market. The explanation for this somehow unexpected results is that, once the planner

induces participation, it completely looses ability to punish the worker through reduction in

consumption. Moreover, any further reduction in unemployment payments motivates more
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participation in the hidden labor market and hence, increases the marginal cost of effort,

which make harder to encourage search effort. As we will see in the numerical exercise, this

property is still present, to some extent, in the case of nonlinear cost of effort .

With a hidden labor market consumption does not necessarily equal unemployment pay-

ments. Hence, the characterization of consumption is not enough to identify the optimal

path for unemployment payments. Therefore, we characterize unemployment payments un-

der linear cost of effort. The main result is presented in the following proposition.

Proposition 2 If V u is concave, bt+1 < bt If constraint (FPUC) does not binds. If constraint

(FPUC) binds, bt = 0. In other words, unemployment insurance payments decrease until the

lower bound for promised utility is reached. After that moment they become zero.

Proof: When the lower bound for U does not bind, consumption is strictly decreasing

and above c. Since in this phase st = 0, b = c and therefore, unemployment payments also

decrease. When U = U and b is constant at b because Uu(U) = U . Suppose, by contradiction,

b > 0. By incentive compatibility the contract must deliver an utility consistent with worker’s

best response, that is worker’s utility is

Ũ ≡ max
a,s

u(b + ̟s) − v(a + s) + β[p(a)U e + (1 − p(a))U ].

Moreover, this utility must be as good as any deviation, in particular one in which search

intensity is set to zero and s is set optimally. That is

Ũ ≥ max
s

u(b + ̟s) − v(s) + βU ≡ Û .

Since u is strictly increasing,

Û > max
s

u(̟s) − v(s) + βU ≡ U.
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This implies that there exist a feasible reduction in b which increase planner profit. Therefore

b > 0 is not optimum.

Corollary 2 When lower bound for promised utility is binding, hidden labor market partic-

ipation equals s∗ > 0.

Proof: The proof is trivial. When U = U , b=0. Then, by incentive compatibility for s,

s = s∗.

In summary, there a two different phases during unemployment. During the first phase,

payments (consumption) decrease smoothly without reaction of hidden labor market par-

ticipation. It is because the payments are relatively high and hence the marginal cost of

participation is higher than its marginal benefit. However, as payments decline, the marginal

benefit of participation increases, and participation is eventually optimal. At that point the

second phase of unemployment starts. In this phase, with positive participation, linearity

and incentive compatibility uniquely determined the consumption level (c). At that level

of consumption, the promised utility can be satisfied with zero payments (any positive pay-

ments deliver a higher life-time utility). Thus, during this phase, zero payments become

optimal.

A feature of the optimal unemployment insurance is certain lack of smoothness. In

particular, at a certain period, payments drop to zero and hidden labor market participation

jumps away from zero. This lack of smoothness should be striking just if it is reflected

on consumption. This is not the case here since in this phase participation compensates

payments drops, and consumption is perfectly smooth.
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4 Quantitative analysis

In this section we carry out a quantitative analysis for the case of non-linear cost of effort.

First, we present the calibration strategy. Then, we describe the dynamics of unemployment

benefits, job search effort and informal sector participation under the optimal contract.

Finally, we derive welfare implications associated with the implementation of the optimal

contract. The algorithm is presented in the appendix.

4.1 Calibration

Functional forms are standard. Preferences over consumption goods are described by a

constant relative risk aversion function with parameter σ, while the cost of effort function is

v(a) = aγ/γ. Finally, the job finding probability is p(a) = 1 − exp(−ρa).

A key preliminary question regarding the calibration is, Which economy should be consid-

ered as benchmark for our calibration? Quantitative research usually uses the U.S. economy.

However, our environment naturally applies to developing countries, where unemployment

rate and informal sector participation are high. Working with developing countries involves

certain problems. First, it is hard to find reliable data for the informal sector. More impor-

tantly, there is not accurate information about unified and explicitly designed unemployment

insurance systems. We calibrate our model using data for Spain due to the importance of

its informal sector and the availability of information. In particular, we use data for the

end of the 90’s, when unemployment and the size of the informal sector were relatively high.

We aware that in the last 25 years unemployment rate, informal sector participation, and

labor markets regulations have changed significantly in Spain. Therefore, the conclusions of

this exercise may not apply to the current Spanish economy where the labor market perfor-

mance has substantially improved. However, these results may still be valid for developing
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countries, whose current labor market structure is similar to that used in the calibration.

Most of the parameters are taken from previous literature. We interpret each period as a

month and set the discount factor β = 0.994 (annual interest rate of 7.5%). We normalized

workers’ productivity, ω, and effort in the formal labor market, ā to one. Data about average

tenure in Spain prescribes δ = 0.015.12. The relative risk aversion coefficient, σ, is set equal

to 2, which is a common value in the real business cycle literature.13

The calibration strategy uses the “actual” unemployment insurance scheme instead of the

optimal contract. That is, for plausible combinations of ρ and ̟, we compute the stationary

distribution of an economy in which agents take optimal decisions considering the “actual”

unemployment insurance scheme. From this distribution, we calculate unemployment and

informal sector participation. These outcomes are then compared with those in the data.

The calibration consists in finding values of ρ and ̟ compatible with our targets. This

strategy is natural since unemployment and informal sector participation are outcomes of

the optimal reaction of individuals to the actual system.

The calibration matches unemployment rate and informal sector size in Spain for 1997.

Unemployment rate, µ, was 18.5 percent while production in the informal sector as a pro-

portion of the GDP, ζ, was 23 percent—Schneider and Enste (2000).

In Spain, unemployed workers qualify for benefits if they have contributed to social

security over a minimum period in the previous years. Depending on their employment

duration, unemployed workers receive payments from 4 months to a maximum of 2 years.

After that period, they qualify for unemployment subsidy. A typical worker receives 70

percent replacement ratio during the first 6 months, and 60 percent for the next 18 months.

12According to Arranz and Garca-Serrano (2004) the average tenure in the private sector is around 6 years.
13Here we depart from the traditional values in the literature of optimal unemployment insurance. Pavoni

(2003) works with log preferences (σ = 1) while Hopenhayn and Nicolini (1997) set σ = 0.5.
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Unemployment subsidy is 80 percent of the minimum wage. This implies a replacement ratio

of 30 percent after two years of unemployment.14 Taxes financing the system are set at 5

percent.

Workers decide effort and hidden labor market participation to maximize their life-time

utility, taking as given the ”actual” unemployment insurance scheme. This scheme is rep-

resented by (τ, {bn}
∞
n=1), where subindex n refers to unemployment duration. Since bn is

constant for n ≥ n∗, the agent’s problem has the following recursive representation

V̂ u
n = max

a,s
u(bn + s̟) − v(a + s) + β[p(a)V̂ e + (1 − p(a))V̂ u

n+1],∀n ∈ {0, 1, ..., n∗ − 1}

V̂ u
n∗ = max

a,s
u(bn + s̟) − v(a + s) + β[p(a)V̂ e + (1 − p(a))V̂ u

n∗ ],∀n ≥ n∗

V̂ e = u(ω(1 − τ)) − v(ā) + β[(1 − δ)V̂ e + δV̂ u
0 ],

where V̂ u
n is life-time utility of an unemployed agent with unemployment spell n and V̂ e

corresponds to life-time utility of an employed agent.

The backward solution to the previous problem provides policy functions an and sn that

can be used to compute the stationary distribution of agents over unemployment spell, Ω̄.

The stationary distribution is a fixed point of the transition law

Ω′

0 =
(
1 −

∑
n
Ωn

)
δ

Ω′

n = (Ωn−1(1 − p(an−1))∀n < n∗,

Ω′

n∗ = [Ωn∗−1(1 − p(an∗−1)) + Ωn∗(1 − p(an∗))].

In the stationary distribution, we measure the unemployment rate and the informal sector

size by

µ =
∑

n
Ω̄n(1 − sn),

14This number is obtained dividing 80 percent of the minimum wage by the income per capita.
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ζ =
̟χ

̟χ + (1 −
∑

n Ω̄n)ω
,

where χ =
∑

n Ω̄nsn is the average participation in the hidden labor market. Table 2

summarizes our calibration. With these parameters the artificial economy reproduces µ =

0.1787 and ζ = 0.2326, very close to our targets, 0.185 and 0.23, respectively.

Table 2: Calibration strategy

Parameter Value Description Basis and Targets
β 0.994 Discount factor Interest rate
σ 2 Relative risk aversion coefficient Standard
γ 2 Search cost elasticity Standard
ω 1 Productivity in formal sector Normalization
ā 1 Effort when employed Normalization
δ 0.015 Separation rate Average tenure
ρ 0.045 Parameter in probability of finding a job Unemployment rate
̟ 0.415 Wage in informal sector Informal sector size

4.2 Optimal policy

The dynamic of the hidden labor market participation is crucial in determining the dynamic

of optimal payments. Figure 1 shows the path for search effort and hidden labor market

participation while Figure 2 shows optimal unemployment payments and wages. In both

cases initial promised utility is set such that the planner breaks even.15

Figure 1 indicates that the optimal participation is initially zero and search effort in-

creases with unemployment spell, as it does in the economy without hidden labor market.

After approximately 3 years of unemployment, when effort peaks, participation jumps and

search effort drops. After that point, participation increases and search effort decreases

15Planner’s surplus in our contract does not consider any administrative cost. According to data from
the “Ministerio de Trabajo y Asuntos Sociales”, available at www.mtas.es, slightly above 10 percent of the
expenditures on social assistance went to administrative costs during 1999. To account for these costs, we
subtract 0.07 for each period from the surplus functions before we set them equal to 0.
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Figure 1: Search effort and hid-
den labor market participation.

Figure 2: Unemployment pay-
ments and net wages dynamics.

gradually toward fairly steady levels. Similarly, Figure 2 shows that unemployment pay-

ments and wages decrease smoothly while the agent is not participating in the hidden labor

market. When participation jumps, payments drop to zero but the dynamic of wages is not

significantly affected.

Some aspects are remarkable from this behavior. First, required effort is not mono-

tonically increasing in the unemployment spell. The reason is that in order to induce an

increase in participation, it is optimal to reduce the search effort such that the marginal

cost of inducing participation falls. Second, in the early phase of unemployment, workers

are fundamentally searchers with no participation in the hidden labor market. It is worth

noting that our contract does not imply hidden labor market participation during the first

3 years of unemployment. Thus, it is very likely that unemployed agents find a job before

they start to participate in the hidden labor market. Finally, hidden labor market partici-

pation increases. This is because at this point consumption has decreased implying a higher

marginal benefit of participation. It is also remarkable that once participation is induced,
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unemployment payments drop sharply down to zero. That is, with a hidden labor market,

it is optimal to give no payment for workers with a sufficiently large unemployment spell.

The reason is simple, if workers obtain payments and participate in the hidden labor market,

large unemployment spells are not strong enough threats to encourage search effort.

Finally, notice the qualitative similarities with the linear cost of effort case. For instance,

participation is initially zero and then increases sharply up to a fairly constant level. Like-

wise, unemployment payments reduce gradually during the initial phase, but then, when

workers participate in the hidden labor market, they drop fast to zero.16

4.3 Budget Savings

In this section we quantify the budget savings of switching from the stylized Spanish scheme

presented in the previous section to the optimal program considering participation in the

hidden labor market.

As described above, during the calibration we calculate the stationary distribution over

unemployment spell, Ω̄. With this distribution at hand, we can compute the present value

of providing unemployment insurance forever using the Spanish system (CS),

CS =
1

r

[∑
n
Ω̄nbn −

(
1 −

∑
n
Ω̄n

)
ω(1 − τ)

]
.

Similarly, using the solution to the recursive problem of an unemployed agent in Spain,

(V̂ u
n , V̂ e), we transform the distribution over n to a distribution over U . Then, we calculate

the cost of providing the same distribution of life-time utility with the optimal contract (CN),

CN = −
[∑

n
Ω̄nV u(V̂ u

n ) +
(
1 −

∑
n
Ω̄n

)
V e(V̂ e)]

]
.

16A similar reasoning to the one used in the linear case can be adopted here. First, participation also
increases consumption linearly in this framework. Second, even though v′() is no longer constant, it is
different from zero for any positive effort a. These aspects explain why no participation in the initial phase
of unemployment is possible. In addition, consumption may be smooth even with drops in the payments as
long as there exist a corresponding drop in search intensity that stimulate higher participation.
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Important inter-temporal budget savings are associated with the implementation of the

optimal contract. Given the stationary distribution of life-time utility, the cost under Span-

ish scheme is 42.18. On the other hand, providing the same life-time utility distribution with

the optimal contract costs 21.65. These savings come from two sources. First, the standard

savings arising from the Hopenhayn and Nicolini (1997) type of contract; that is, from a con-

tract considering deviation form search effort toward leisure. Hopenhayn and Nicolini (1996)

calibrate this optimal contract for the Spanish economy and find savings ranging between

20%-37%. We believe the additional savings are strictly related with the implementation of a

contract considering deviation form search effort toward hidden labor market participation.

5 A type-dependent unemployment insurance?

Separation rates may differ across workers. Therefore, it may be important to design a δ-

dependent unemployment insurance. Wang and Williamson (2002) perform an exercise in

these lines. In the case of fully experience rating, in the sense that taxes in each “industry”

fully fund unemployment benefits for workers in that industry, they find that the replace-

ment ratio is lower for agents in industries where the nature of production implies frequent

transitions between employment and unemployment. However, they find it is optimal to

extend benefits indefinitely for each type.

In this section we answer a quantitative question: Do hidden labor markets reinforce

the importance of a δ-dependent unemployment insurance? To that end, we compute the

optimal contract for three values of δ (0.01, 0.015 and 0.02) for an economy with an important

hidden labor market (̟ = 0.415)—as calibrated for Spain—and for an economy with a very

small one (̟ = 0.05). For the remaining parameters we use the values in the benchmark

calibration in both economies.
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This experiment fits in the environment of Wang and Williamson (2002) in which there

are workers employed in different industries, with different separation rates, and a worker

who is re-employed after an unemployment spell always returns to employment in the same

industry. Following the case of fully experience rating in Wang and Williamson (2002), we

start the experiment at the level of payments for which promised utility results in a balanced

budget for each δ considered.

Figure 3 shows that without an important informal sector the optimal payments’ dynam-

ics is not significatively affected by the separation rate. In fact, as in Wang and Williamson

(2002), it just changes the level at which the payments start without affecting payments du-

rations. In contrast, when we consider an economy with an important hidden labor market—

see Figure 4, the dynamics of payments varies with the separation rate. In particular, the

duration of payments increases from 29 to 55 months when the separation rate increases from

0.01 to 0.02. This result clearly prescribes an easy-to-implement contract for the optimal

δ-dependent unemployment insurance in an economy with a hidden labor market. That is,

the duration of payments should be shorter for workers with higher separation rates. Thus,

considering the existence of a hidden labor market is also relevant because it reinforces the

importance of an δ-dependent unemployment insurance system.

The intuition behind this result goes as follow. The planner considers employment of

workers with lower separation rates more “valuable”. Therefore, it is willing to delay partic-

ipation in the hidden labor marketextending the initial phase of unemployment promoting

high search intensity for longer periods.
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Figure 3: The dynamics of opti-
mal payments, ̟ = 0.05.

Figure 4: The dynamics of opti-
mal payments, ̟ = 0.415.

6 Conclusions

The problem of the optimal unemployment insurance has been addressed from the perspec-

tive of a principal-agent framework since the pioneering work of Shavell and Weiss (1979).

Early literature mainly focuses on the moral hazard problem arising under non-observability

of search effort. More recent works emphasize also the non-observability of assets. How-

ever, the implications of the existence of a hidden labor market were unknown. This was

an important omission in the unemployment insurance literature because the incorporation

of a hidden labor market has non-trivial consequences in the treatment of the problem.

Moreover, understanding the role of a hidden labor market is highly relevant given that the

informal labor market, a hidden market by nature, represents a sizeable segment of the labor

market in many countries. This paper fills this gap by providing an environment in which

unemployed workers can simultaneously search for a job and participate in a hidden labor

market.

The main conclusions are
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1. The presence of a hidden labor market imposes an endogenous lower bound for promised

utilities and, unless the cost of effort is linear, an extra incentive compatible constraint

must be added.

2. With linear cost of effort, when the optimal unemployment insurance can be char-

acterized, there are two important phases. First, consumption decreases during un-

employment and workers do not participate in the hidden labor market. Second, for

sufficiently large unemployment spells, the lower bound for promised utilities is reached.

After that period, promised utility if unemployed remains constant at the lower bound.

Moreover, during this phase consumption remains constant, payments become zero and

participation jumps to a positive constant.

3. In an economy calibrated to Spain, the initial phase of unemployment spell has workers

searching for a job with no participation in the hidden labor market and unemploy-

ment payments gradually decreasing. Around the third year of unemployment, the

participation jumps away from zero and payments drop to zero.

4. Also in the numerical exercise, fairly large budget savings—compared with the Spanish

system—are obtained when the unemployment insurance system takes into account the

existence of a hidden labor market.

This paper suggests two main policy lessons. The first one has to do with the inconve-

nience of providing unemployment payments indefinitely. This is a very important difference

with the previous literature, where efficiency requires that unemployment payments last

indefinitely. The existence of a hidden labor market together with payments forever, guar-

antee sufficiently high consumption even after a very long period of unemployment. As a

consequence, long unemployment spells are not serious threats to encourage search effort.
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The second lesson is associated with the provision of an type-dependent unemployment sys-

tem. When the hidden labor market is not important, the optimal payments’ dynamic does

not change significatively with the separation rate. However, the profile of unemployment

payments—in particular payments duration—dramatically changes with the separation rate

when the hidden labor market is important. Since the separation rates are usually different

among worker groups, this result suggests that an type-dependent contract may be optimal.

Specifically, the numerical exercise indicates that the duration of payments should be shorter

for the high-separation-rate group.

The current work induces interesting directions for future research. A natural extension

is to incorporate different sources of heterogeneity among workers. For instance, we could

consider an environment with human capital depreciation and two type of workers, namely,

skilled and unskilled. The worker’s type and human capital are both observable. It is

plausible that the depreciation rate while not employed in the formal sector differs across

workers’ type. This introduces interesting consequences in the design of the optimal contract.

For instance, it is possible that the contract prescribes a higher search effort and a lower

hidden labor market participation for workers whose human capital depreciates faster—

presumably more skilled workers. Alternatively, we could consider an environment with

non-observable types. Types can play a role either in the productivity in the hidden labor

market or in the cost of effort. In any case, it could be interesting to analyze incentive

provision under such frameworks.
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Appendix

Proof of Proposition 1

Proof: Suppose by contradiction that at any arbitrary period of time T, the constrained

efficient contract W∗ = (P∗, I∗) delivers a promised utility UT (W∗; hT ) < U . We prove this

violates incentive compatibility by constructing a feasible deviation for any possible labor

status mT providing a utility higher than U .

• If mT = u, consider the following feasible deviation P̃ , with (ãt(h
t), s̃t(h

t)) = (0, s∗) if

mt = u, and (ãt(h
t), s̃t(h

t)) = (0, 0) if mt = e. Clearly, P̃ ∈ A and UT ((P̃, I); hT ) =

U > UT ((P , I); hT ). Hence, the contract W∗ is not incentive compatible and therefore,

cannot be the constrained efficient contract.

• If mT = e, define T̂ as the first period of that employment spell. By property (8),

UT̂ (W∗; hT̂ ) = UT (W∗; hT ). Now consider the situation in T̂ −1. By definition, mT̂−1 =

u. Moreover, since mT̂ = e, it has to be the case that the contract prescribes aT̂−1(·) >
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0. However, if UT (W∗; hT ) < U , it is the case that aT̂−1(·) > 0 is not compatible

incentive because a deviation with ãT̂−1(·) = 0 implies higher utility than U . To see

this notice that since v is strictly increasing,

UT̂−1(W
∗; hT̂−1) = u(cT̂−1) − v(sT̂−1 + aT̂−1)+

β[p(aT̂−1)UT̂ (W∗; hT̂ |mT̂ = e) + (1 − p(aT̂−1))UT̂ (W∗; hT̂ |mT̂ = u)]

< u(cT̂−1) − v(sT̂−1)+

β[p(aT̂−1)UT̂ (W∗; hT̂ |mT̂ = e) + (1 − p(aT̂−1))UT̂ (W∗; hT̂ |mT̂ = u).]

We showed in the first part of this proof that during unemployment, promised utility

must be at least U ; i.e.,

U ≤ UT̂−1(W
∗; hT̂ |mT̂ = u).

Then if UT̂−1(W
∗; hT̂ |mT̂ = e) < U , it is the case that

UT̂−1(W
∗; hT̂−1) < u(cT̂−1) − v(sT̂−1) + βUT̂ (W∗; hT̂ |mT̂ = u). (34)

The last expression indicates that W∗, which prescribes aT̂−1 > 0, is not incentive

compatible because a deviation with ãT̂−1 = 0 provides higher utility to the worker.

Hence, W∗ cannot be the constrained efficient contract.

Proof of lemma 1

Proof: Take U ≥ U and consider the contract W̃ . For each t and ht it assigns bt(h
t) = b̃,

st(h
t) = s̃, at(h

t) = 0, and wt(h
t) = w̃. Define (b̃, w̃, s̃) by

u′(b̃ + s̟̃)̟ = v′(s̃), (35)

41



U =
u(b̃ + s̟̃) − v(s̃)

1 − β
, (36)

u(b̃ + s̟̃) − v(s̃) = u(w̃) − v(ā). (37)

By construction u(ct(h
t))−v(xt(h

t)) is constant across time and histories and Ut(W̃ ; ht) = U .

It remains to prove that W̃ ∈ C. Since deviations are only possible during unemployment

and a contract is incentive compatible against any possible deviation if and only if it is

incentive compatible against one period deviation, incentive compatibility implies that for

each t and each ht

U ≥ max
(s,a)

u(b̃ + s̟) − v(s + a) + βU.

s.t a ≥ 0, s ≥ 0, and s + a ≤ ϑ.
(38)

In (38) we impose the fact that for each history and period, Ut(W̃ ; ht) = U . Clearly, (38) is

satisfied because the solution of the maximization problem implies a = 0 and s = s̃. Hence,

W̃ ∈ C(U ; h0).

Proof of lemma 2

Proof: The proof is straight forward. The first best contract is characterized by equations

(19)-(23). Under observability of effort, (ICC1) is not relevant while (ICC2) is satisfied by

(19).
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Proof of lemma 3

Proof: Consider the following Relaxed Problem:

V u
R (U) = max

b,e,s,Ue,Uu
−b + β[p(a)V e(U e) + (1 − p(a))V u

R (Uu)] (RP)

s.t.

u(b + s̟) − v(s + a) + β[p(a)U e + (1 − p(a))Uu] − U = 0 (PKC)

βp′(a)[U e − Uu] − v′(s + a) = 0 (ICC1)

(U e, Uu) ∈ Φ2 (FPUC)

s ≥ 0.

We need to prove that if v is linear, the solution for (RP) also solves (PP). To that end,

denote D(U) the set of all (b, a, s, Uu, U e) satisfying (ICC1),(ICC2),(PKC), (FPUC), and non

negativity for s. Likewise, denote DR(U) the set of all (b, a, s, Uu, U e) satisfying previous

restriction but (ICC2). Clearly D(U) ⊆ DR(U). Hence, V u
R (U) ≥ V u(U). Notice however

that

(ẽ, s̃, Ũ e, Ũu) ∈ argmaxDR(U)V
u
R (U)

satisfies (ICC2). To see this, take first order condition with respect to s and notice that

λ > 0 and φ ≥ 0. In consequence, (ẽ, s̃, Ũ e, Ũu) ∈ D(U) and solves (PP); otherwise, it will

not be true that V u
R (U) ≥ V u(U).

Algorithm

1. Define a grid for promised utilities: U = {U1, ..., UN}. The range of U is set such that

U1 = U and UN is big enough to guarantee that the value functions become negative.

2. Define search effort grids for effort and participation: Ef = {a1, ..., aM} and S =
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{s1, ..., sM}, where a1 = s1 = 0, and aM and sM are big enough to avoid grid-dependent

corner solutions.

3. Make initial guess V u,0(U) = V u,FB(U) for each U ∈ U, where V u,FB(U) is the first

best planner’s surplus. For values out of the grid, use piece-wise linear interpolation.

4. Iteration i starts. Get V u,i+1 = TV u,i as follow:

(a) Suppose s = 0. Use equation (27) to obtain b. Given b, for each a ∈ Ef use

(ICC1) and (PKC) to solve for the values of U e and Uu. Choose the combination

{a, b, U e, Uu} maximizing (PP). Check if (ICC2) is satisfied for s = 0. If it is

satisfied, the maximization ends. If not, go to the next step.

(b) Look for the best solution {a, s} ∈ Ef × S, using (ICC1), (ICC2) and (PKC) to

solve for the corresponding b, U e and Uu.

5. Check convergency. That is, given a metric d, evaluate d(V u,i, V u,i+1) > ǫ? If so, let

V u,i = V u,i+1 and go to (4), otherwise END.
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