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Abstract

Regression Discontinuity (RD) models identify local treatment effects by associating a discrete

change in an outcome with a corresponding discrete change in the probability of treatment at a known

threshold of a running variable. This paper shows that it is possible to identify RD model treatment ef-

fects without a discontinuity. The intuition is that identi�cation can come from a slope change (a kink)

instead of a discrete level change (a jump) in the treatment probability. Formally this can be shown

using L'hopital's rule. I also interpret the identi�cation results intuitively using instrumental variable

models. Estimators are proposed that can be applied in the presence or absence of a discontinuity, by

exploiting either a jump or a kink.

JEL Codes: C21, C25

Keywords: Regression Discontinuity, Fuzzy design, Average treatment effect, Identi�cation, Jump,

Kink, Threshold

1 Introduction

Let T be a binary indicator for some treatment such as participation in a social program or repeating

a grade (grade retention) in school, let Y be some associated outcome of interest such as employment

or academic performance, and let X be a so-called running or forcing variable that affects both T and

Y . For example, X could be the income level that affects eligibility for a social program, or an exam

score affecting a grade retention decision. In the standard Regression Discontinuity (RD) framework, the

probability of treatment given by f .x/ D E .T j X D x/ changes discretely at a threshold point x D c.

Under general conditions, this discontinuity or jump in f .x/, along with any observed corresponding

jump in g .x/ D E .Y j X D x/ at x D c, can be used to recover a local average treatment effect. See, e.g.,

Hahn, Todd, and van der Klaauw (2001), Imbens and Lemieux (2008), chapter 6 of Angrist and Pischke

(2008), Imbens and Wooldridge (2009), and Lee and Lemieux (2010). The intuition is that if X and other
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covariates determing Y and T are continuous at the threshold c, then untreated individuals having X just

below the threshold can serve as valid counterfactuals for treated individuals just above.

In this paper I show that the RD local average treatment effect that is usually identi�ed by a discon-

tinuity can still be identi�ed even if there is no discontinuity or jump in the treatment probability f .x/,

given that there is a kink, i.e., a discrete change in slope in f .x/ at x D c. I also provide estimators for the

local average treatment effect that can be used regardless of whether identi�cation comes from a jump, a

kink, or both. The identi�cation results are further intuitively interpreted using IV models.

This paper's results could be applied in situations where the compliance rate changes less dramatically

than required by the standard RD. For example, in applications where there is inertia or delay in taking

up treatment, the added probability of treatment associated with crossing a threshold may rise as one

gets further away from the threshold rather than jumping the moment the threshold is crossed. In this

case, treatment effects based on standard RD estimators would either be weakly identi�ed, if the jump

is small, or unidenti�ed if the jump is zero, regardless of how much the slope changes. In contrast, the

estimators proposed in this paper make use of any changes in either the intercept or the slope of the

treatment probability at the point x D c.

For example, Jacob and Lefgren (2004) examine the treatment effect of remedial eduction programs,

including grade retention, on later academic performance, where the retention treatment is incurred by

failing summer school tests. They note that "the probability of retention does not drop sharply (discontin-

uously) at the exact point of the cutoff , ...it rapidly decreases over a narrow range of values just below the

cutoff." Indeed, their Figure 6 (reproduced in Figure 1 here) shows a dramatic slope change instead of a

discontinuity in the retention probability at the cutoff (normalized to zero). In this case, the standard RD

estimation based on a discrete change in the treatment probability is not suitable, whereas the estimators

proposed in this paper can still apply.

Figure 1: Retention Rate and Reading Test Scores Relative to the Cutoff

In some potential applications of RDmodels, there is debate about whether the probability of treatment

actually jumps at a threshold. When a discrete change is small, it could be indistinguishable from a kink
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visually. An example is Figure 2, which reproduces Figure 4 from Card, Dobkin, and Maestas (2008),

showing the probability of retirement in the US by age. It is dif�cult to determine whether a small jump

appears in this probability at age 65, the eligibility age for full social security bene�ts, but there is an

obvious difference in slopes above and below this threshold. The estimators proposed in this paper might

then be used to identify the impact of retirement on outcomes like consumption or time use, based just on

the knowledge that the propensity to retire has either a jump or a kink at 65.

Figure 2: Employment Rates by Age and Demographic Group (1992�2003 NHIS)

For simplicity, this paper will mostly not deal with covariates other than the running variable X in

the analysis. The standard RD argument applies that covariates are generally not needed for consistency,

though they may be useful for ef�ciency or for testing continuity assumptions. However, if desired, addi-

tional covariates Z could be included in the analysis by letting all the assumptions hold conditional upon

the values Z may take on. In applications, one could either partial out these covariates prior to analysis,

or include them in the models as additional regressors.

The rest of the paper is organized as follows. Section 2 provides the main identi�cation results. Section

3 gives an instrumental variables interpretation of the identi�cation. Section 4 discusses some extensions,

including possible identi�cation based on higher order derivatives. Section 5 provides associated estima-

tors, and Section 6 concludes.

2 RD Treatment Effects without A Discontinuity

I will use Rubin's (1974) potential outcome notation. Let Y .1/ and Y .0/ denote an individual's po-

tential outcomes from being treated or not, respectively. The observed outcome can then be written

as Y D Y .1/ T C Y .0/ .1� T /. As in the introduction, de�ne g .x/ D E .Y j X D x/ and f .x/ D

E .T j X D x/, so g .x/ and f .x/ are the expected outcome and expected probability of treatment when

the running or forcing variable X D x . In the standard RD model one would expect both f .x/ and g .x/

have a jump (discontinuity) at x D c.
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Let T � be a dummy for crossing the �xed threshold c, i.e., T � D I .X � c/, so T � is one for individuals

who have X above the threshold and zero otherwise. An individual is de�ned to be a complier if he has

T D T �. Let D� D I .T D T �/ be a binary indicator for compliers, i.e., those whose treatment is

determined or induced just by crossing the �xed threshold. E .D� j X D x/ then equals the compliance

rate (percentage of compliers) at X D x , i.e., the change in the treatment probability at X D x . We do not

observe D� and so do not know who are compliers.

The standard RD model requires E .D� j X D c/ 6D 0, i.e., a discontinuity at c. The sharp design RD

model is the special case where E .D� j X D c/ D 1 so everyone is a complier.

ASSUMPTION A1: Assume that for each unit (individual) i we observe Yi , Ti , and X i . The threshold

c is a known constant. The conditional means E.Y .t/ j X D x; D� D d/ for t D 0; 1, and d D 0; 1,

as well as E.T j X D x; D� D 0/ and E.D� j X D x/ are continuously differentiable for all x in a

neighborhood of x D c.

For ease of notation I will drop the i subscript when referring to the random variables Y , T , and X .

It follows from Assumption 1 that E.Y .t/ j X D x/ for t D 0; 1 are continuously differentiable in

the neighborhood of x D c. Assumption A1 differs from standard RD assumptions in requiring more

smoothness. Speci�cally, standard RD models require only continuity of the conditional mean potential

outcomes rather than continuous differentiability for identi�cation. This paper requires this additional

smoothness to rule out not only jumps but also kinks (formally de�ned below) caused by factors other

than changes in the treatment probability at the threshold x D c. In practice, estimators of standard

RD models generally impose at least as much smoothness as Assumption A1. For example, asymptotic

theories of kernel or local linear regressions require differentiability.

Assumption A1 also imposes smoothness on the conditional mean potential outcomes separately for

compliers (D� D 1) and non-compliers (D� D 0). One could instead impose smoothness without con-

ditioning on D� by having either a constant treatment effect or a conditional independence of treatment

assumption (i.e., conditional on X , treatment is independent of potential outcomes) as in Hahn, Todd, and

van der Klaauw (2001). Assumption A1 also rules out a positive probability of deniers (individuals who

have T D 1 � T �) by assuming smoothness of E.T j X D x; D� D 0/. If one is willing to assume

constant treatment effects, then Assumption A1 could be extended to allowing for deniers as follows. Let

d� be a binary indicator for deniers, so d� D I .T D 1 � T �/. Then one can replace smoothness of

E.Y .t/ j X D x; D� D d/ in Assumption A1 with smoothness of E.Y .t/ j X D x/ for d D 0; 1 and

t D 0; 1, replace E.D� j X D x/ with E.D� � d� j X D x/, and replace E.T j X D x; D� D 0/ with

E.T j X D x; D� D d� D 0/.

Results in this paper require one-sided limits and one-sided derivatives. For any function h .x/, de�ne

(when they exist) hC .x/ and h� .x/ as the right-sided and left-sided limits and h
0
C .x/ and h

0
� .x/ as the

right-sided and left-sided derivatives, respectively. Also let h0 .x/ D @h .x/ =@x . If h .x/ is differentiable,

then h0C .x/, h
0
� .x/, and h

0 .x/ exist and h0C .x/ D h
0
� .x/ D h

0 .x/. With these notations, a discontinuity

at x D c means fC .c/� f� .c/ 6D 0, and the treatment effect that is estimated by standard RD models can

be written as .gC.c/� g�.c// = . fC.c/� f�.c//.

LEMMA 1: If Assumption A1 holds then

gC.c/� g�.c/ D � .c/ E
�
D� j X D c

�
(1)

and

fC.c/� f�.c/ D E
�
D� j X D c

�
, (2)

where
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� .c/ D E
�
Y .1/� Y .0/ j X D c; D� D 1

�
. (3)

Proofs are in the Appendix. Lemma 1 shows that Assumption A1 suf�ces to reproduce the standard re-

sult in the RD literature. In particular, it follows immediately from Lemma 1 that if there is a discontinuity,

meaning that fC.c/� f�.c/ 6D 0 then

� .c/ D
gC.c/� g�.c/

fC.c/� f�.c/
. (4)

That is, the standard RD treatment effect estimator estimates � .c/ D E .Y .1/� Y .0/ j X D c; D� D 1/,

the average treatment effect for the compliers (those having D� D 1) at the threshold c, as discussed in,

e.g., Hahn, Todd, and van der Klaauw (2001) and Imbens and Lemieux (2008).

If one alternatively assumes constant treatment effects and allows for deniers, then equations (1) and

(4) would hold by replacing equation (1) with fC.c/ � f�.c/ D E.D� � d� j X D c/ and replacing

equation (3) with � .c/ D E .Y .1/� Y .0/ j X D c/.

I now consider identifying the RD model treatment effect under alternative assumptions. In particular,

I consider: What if there is no jump in the treatment probability? Can we still identify the RD model

treatment effect when there is no discontinuity? Formally de�ne a jump and a kink as follows.

DEFINITION: At the point x , a jump in the function f .x/ (or simply a jump) is de�ned as fC .x/ �

f� .x/ 6D 0 and a kink in the function f .x/ (or simply a kink) is de�ned as f
0
C .x/� f 0� .x/ 6D 0.

THEOREM 1: Let Assumption A1 hold. Assume there is a kink but no jump at x D c. Then

�.c/ D
g0C .c/� g

0
� .c/

f 0C .c/� f 0� .c/
: (5)

First note that Assumption A1 suf�ces to guarantee that the one-sided derivatives g0C .x/, g
0
� .x/,

f 0C .x/, and f
0
� .x/ exist at x D c. Theorem 1 says that if there is no jump in f .x/, then the treatment

effect will equal the ratio of the kinks in g.x/ and f .x/ at x D c instead of the ratio of the jumps. The

intuition is that if f .x/ does not have a jump, then both the denominator and the numerator (equations 1

and 2) of the standard RD estimator given by equation (4) will equal zero as x goes to c. In that case, by

L'hopital's rule, that ratio will equal the ratio of derivatives of the numerator and denominator, given that

these derivatives exist.

Theorem 1 requires that the slope of the treatment probability changes at the threshold, which provides

additional identi�cation. So unlike in the standard RD model where the treatment effect �.c/ is identi�ed

off a jump in the treatment probability, here �.c/ is identi�ed off a kink.

In practice, just as a jump in the density of X or other baseline covariates at the threshold would cast

doubt on the validity of the smoothness assumption in standard RD models, a kink in the density of X or

other baseline covariates at the threshold would cast doubt on the validity of the smoothness assumption

in A1 and hence the identi�ed �.c/ may not be interpreted as a causal effect. To address this concern, one

can search for any unusual jumps or kinks in the density of X or other covariates using methods suggested

by Imbens and Lemieux (2008) and Lee and Lemieux (2010).

In particular, one could draw a histogram of X based on a �xed number of bins at each side of the

cutoff. The overall shape of the distribution can provide a sense whether there is an ususal jump or kink

at the cutoff. A more formal test of a discontinuity in the density can be found in McCrary (2008). For
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other covariates, their conditional means conditional on X will need to be continuously differentiable

in the neighborhood of c, so one can parametrically regress these covariates on T � and .X � c/T � or

nonparametrically do local linear regressions of these covariates on .X � c/ to examine if there is an

intercept or slope change in those variables at the threshold. The latter, when using a uniform kernel,

corresponds to using a �xed number of bins at each side of X D c and graphing the mean value of each

covariate in each bin against the mid-point of those bins.

Combining Lemma 1 with Theorem 1 gives the following Corollary.

ASSUMPTION A2: Assume there is either a jump or a kink (or both) at x D c.

COROLLARY 1: Let Assumptions A1 and A2 hold. Assume that the one-sided limits and one-sided

derivatives of f .x/ and g.x/ at x D c are identi�ed from the data. Then �.c/ is identi�ed.

Given identi�cation, in the following I provide results that are more directly useful for estimation. In

each of the remaining theorems and corollaries, estimators are obtained by replacing functions g and f

with corresponding estimatesbg and bf .

THEOREM 2: Assume A1 and A2. If either there is no jump or if � 0.c/ D 0, then

�.c/ D
gC .c/� g� .c/C w

�
g0C .c/� g

0
� .c/

�

fC .c/� f� .c/C w
�
f 0C .c/� f 0� .c/

� (6)

for any w 6D � . fC .c/� f� .c// =
�
f 0C .c/� f 0� .c/

�
.

Theorem 2 uses a weight w to combine both the standard RD estimator (4) and the new kink based

estimator (5). When there is no jump, i.e., fC.c/ � f�.c/ D 0, then equation (6) will reduce to equation

(5). In practice, if one is sure that there is no jump, then it will generally be preferable to base estimation

directly on equation (5) rather than equation (6), because in that case equation (6) will entail estimation of

the terms fC .c/� f� .c/ and gC .c/� g� .c/, which are known to equal zero if there is no jump.

When there may be both a jump and a kink, Theorem 2 shows that information in both the jump and the

kink can be used to estimate the treatment effect �.c/, given � 0.c/ D 0, as in the case where the treatment

effect is locally constant. However, note that � 0.c/ D 0 is a strictly weaker condition than assuming a

locally constant treatment effect, because the latter would imply that all derivatives of �.c/ were zero, not

just the �rst derivative � 0.c/. I will discuss the interpretation of this restriction in more detail in Section 3,

and provide an extension to Theorem 2 in Section 4. This extension will permit � 0.c/ to be non-zero. Note

also that when it is not clear whether there is a jump, a kink, or both, the above estimator can be used as

long as � 0.c/ D 0 holds, which might be appealing empirically.

The weight w could be chosen to maximize ef�ciency, i.e., choosing the value of w that minimizes the

estimated standard error of the corresponding estimate of �.c/. Later in Section 3 I provide a two stage

least squares estimator that uses weights based on a measure of the relative strength of the two possible

sources of identi�cation, the jump and kink.

Additionally, if in practice one knows that there is both a jump and a kink, then the results in Theorem

2 can be used to construct a simple test for locally constant treatment effects. De�ne � 1 and � 2 by

� 1 D .gC .c/� g� .c// = . fC .c/� f� .c//

� 2 D
�
g0C .c/� g

0
� .c/

�
=
�
f 0C .c/� f 0� .c/

�
.

If the treatment effect is locally constant, then � 0.c/ D 0, and by Theorem 2 we will have both � 1 D

� 2 D �.c/, so one could test the local constant treatment effect by testing whether the difference between
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the two corresponding estimates b� 1 and b� 2 is signi�cant. For parametric RD models, this amounts to a
simple t test with the test statistic .b� 1 �b� 2/ =� .b�1�b�2/, where the denominator is the standard error of the
differenceb� 1 �b� 2.
Theorem 2 requires knowing either that there is no jump or that � 0.c/ D 0. The following Corollary

provides a weighted estimator that does not require � 0.c/ D 0, nor does it require knowing whether what

one has is a jump or a kink, which may be convenient in practice. The disadvantage of this Corollary

versus Theorem 2 is that asymptotically Corollary 2 sets �.c/ equal to � 1 when there is a jump, regardless

whether there is a kink, whereas when � 0.c/ D 0 Theorem 2 can exploit information from both the jump

and the kink to estimate �.c/.

COROLLARY 2: Assume A1 and A2 hold. Given any sequence of nonzero weights wn such that

limn!1wn D 0, then

�.c/ D lim
n!1

gC .c/� g� .c/C wn
�
g0C .c/� g

0
� .c/

�

fC .c/� f� .c/C wn
�
f 0C .c/� f 0� .c/

� . (7)

The notable feature of Corollary 2 versus Theorem 2 is that it can be applied to construct estimators

for �.c/ that do not require the user to know whether an observed break at X D c is a jump or a kink, or to

know if the treatment effect is locally constant or not. Later I will show that the weights in the local linear

2SLS estimator, which is a special case of the proposed estimators here, have this property.

I will discuss estimators based on the above theorems and corollary in more detail later, but for now

observe that one could directly construct nonparametric estimators of gC .c/ and g
0
C .c/ as the intercept

and slope of a local linear regression of Y on X � c just using data having X > c. Doing the same with

data having X < c will give estimators of g� .c/ and g
0
� .c/, and replacing Y with T will give estimates

of fC .c/, f
0
C .c/, f� .c/ and f

0
� .c/. These could then be substituted into equations (6) or (7) to obtain

consistent estimates of �.c/.

3 Instrumental Variable Interpretation

In this section I provide an instrumental variables interpretation for the identi�cation results of the previous

section. I will also show how instrumental variables methods can be used to construct simple estimators

based on these results.

Suppose that for some constants �, �, and � one has the outcome model

Y D � C �.X � c/C �T C e (8)

for c � " � X � c C ", where the error e may be correlated with the treatment indicator T . In general,

e might also be correlated with X and hence T � for strictly positive ", instead of being uncorrelated as

required in an ordinary IV model. Hahn, Todd, and van der Klaauw (2001) show that the standard fuzzy

design RD estimator given by equation (4) is numerically equivalent to the IV estimator of � in equation

(8), using .X � c/ and T � as instruments for any �xed ", even if the IV assumption is violated. Instead,

continuity of conditional potential outcomes at X D c and having the bandwidth "! 0 as the sample size

n!1 establishes the consistency of the standard RD estimator.

For the above model, one could assume that for a small positive " neighborhood of x D c, X and

hence T � are independent of e as " ! 0. Then for compliers, their treatment is determined only by T �,
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and hence is independent of e, i.e., T ? e j D� D 1; X D x for c � " � x � c C " as " ! 0.1 This

in practice could hold if individuals, in particular compliers, can not precisely manipulate the running

variable X , which immediately means that they will be randomly above or below the threshold. Thus,

treatment will be randomly assigned among compliers. (See details regarding this assignment mechanism

in Lemieux, 2008). For example, let T be a grade retention treatment and X be negative test score, so c is

then the negative threshold score and T � indicates whether one fails the test or not. Y could then be later

academic performance, and e could be ability, which in general is correlated with test score X and hence

T �. Individuals may try to be just below the threshold score and hence avoid the treatment; however,

depending on whether or not they are lucky on the test day, they will be randomly below or above the

threshold, which implies a local independence of X (and hence T �) and e.

One can take Equation (8) as a parametric functional form that holds for some small �xed ", which

then requires independence of X (and hence T �/ from e for c � " � X � c C ". In this case, equation (8)

assumes a constant local average treatment effect. One could relax the constant local average treatment

effect assumption by adding interaction terms like .X � c/T and .X � c/2T , etc., to the model; however,

in this case one would still be imposing some parametric functional form on � .c/. In the extension section

I will consider this type of generalization of equation (8).

Instead of assuming a parametric model, one could alternatively take equation (8) as one that only

holds in the limit as " ! 0. In this case the model would not be placing any functional restrictions on

the function � .x/, since if the true model contained any interaction terms like .X � c/T and .X � c/2T

that were omitted from equation (8), those terms would converge to zero as "! 0. Similarly, in this case

even if misspeci�cation of equation (8) caused e to be correlated with any function of X when " > 0, that

correlation would go to zero as " ! 0, because in the limit X would no longer be a random variable, but

would just converge to the constant c. Note however that e could still be correlated with T in this limit.

Correlation of e with T means that the assignment to treatment could be related to the outcome through

factors other than X . For example, if the treatment is grade retention and the decision of who to retain is

based both on whether test score X is below a threshold and on teachers' judgments of who would bene�t

the most from being retained, then that judgement criterion could induce a correlation between T and e.

Now consider T � D I .X � c/. If the treatment probability f .x/ has a jump at x D c, which means

it will depend on T �, then T � will be a valid instrument for T in equation (8). One could then estimate

equation (8) using two stage least squares, with instruments X � c and T �.

Similar to how a jump in f .x/ at x D c implies that T � is a valid instrument, a kink in f .x/ at the

threshold implies that the interaction term .X � c/ T � would also be a valid instrument for T . So if there

is no jump but a kink in the treatment probability, one would still be able to use this kink, the slope change

in the treatment probability, to identify the RD model treatment effect.

To include either T � or .X � c/ T � or both as possible instruments for T , write the �rst stage of a

linear two stage least squares regression as

T D r C s.X � c/C pT � C q.X � c/T � C V (9)

for c � " � X � c C ". Note that this treatment equation (9) is not a structural equation, but is simply

de�ned as the linear projection of T on a constant, .X � c/, T �, and .X � c/T �, where r , p, and q, are

just the coef�cients of that projection and the error V is by construction uncorrelated with .X � c/, T �,

and .X � c/T �. Substituting equation (9) into equation (8) yields the reduced form Y equation

Y D A1 C A2.X � c/C BT
� C C.X � c/T � CU , (10)

1Note that in this case, T for all individuals may still depend on e, as for noncompliers, including always takers and never

takers, their treatment is not a deterministic function of T �.
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where A1 D � C �r , A2 D � C � s, B D p� , C D q� , and U D �V C e.

As with equation (8), one may interpret equations (9) and (10) in one of two possible ways. If " is a

�xed constant then these linear regressions are parametric reduced form equations that imply that f .x/

and g .x/ have the functional forms f .x/ D r C s.X � c/ C pT � C q.X � c/T � and g .x/ D Y D

A1 C A2.X � c/C BT
� C C.X � c/T �, which in turn would imply that

fC.c/� f�.c/ D p, f 0C.c/� f 0�.c/ D q , (11)

gC.c/� g�.c/ D B, g0C.c/� g
0
�.c/ D C . (12)

Alternatively, if "! 0 then equations (9) and (10) are numerically identical to local linear regressions of

T and Y respectively on X , using a uniform kernel, and estimated separately using data where X is above

and below the threshold. In this case it will no longer be true that the functional forms for f and g are

linear in .X � c/, T �, and .X � c/T � but equations (11) and (12) will still hold since the coef�cients in

local linear regressions equal conditional means and derivatives of conditional means regardless of their

true functional forms (as long as they are suf�ciently smooth).

Let the residuals from linear regressions of Y , T , T �, and .X � c/ T � on a constant and .X � c/ be y,

t , t�, and z, respectively. Then the �rst and second stage regression equations can be rewritten as

t D pt� C qz C v;

y D � t C e;

and the reduced form for y as

y D Bt� C Cz CU:

The IV estimator is then

� D
cov .y; pt� C qz/

cov .t; pt� C qz/
D
cov .Bt� C Cz; pt� C qz/

cov .t; pt� C qz/

D
var .t�/ Bp C cov .t�; z/ .Bq C Cp/C var .z/Cq

cov .t; t�/ p C cov .t; z/ q

D

�
var .t�/ p C cov .t�; z/ q

�
B C

�
cov .t�; z/ p C var .z/ q

�
C

cov .t; t�/ p C cov .t; z/ q

D
cov .t; t�/ B C cov .t; z/C

cov .t; t�/ p C cov .t; z/ q

which is the same as

� D
w1B C w2C

w1 p C w2q

where the weights are given by w1 D cov .t; t
�/ and w2 D cov .t; z/, so the relative weight re�ects the

relative strength of the two IVs, T � and .X � c/T �. Plugging in B, C , p, and q, gives

� D
w1B C w2C

w1 p C w2q
D
w1 .gC.c/� g�.c//C w2

�
g0C.c/� g

0
�.c/

�

w1 . fC.c/� f�.c//C w2
�
f 0C.c/� f 0�.c/

� . (13)

This shows that, asymptotically, the IV estimator in equation (13) is equivalent to the special case of the

estimator in Theorem 2 where w D w2=w1.

In the above IV estimator, if q D 0 and p 6D 0, meaning there is a jump, but no kink, then C D 0

and w2 D 0, and hence � equals equation (4), which is the standard fuzzy design RD treatment effect

estimator. Identi�cation comes from T � being a valid instrument for T in this case.
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If p D 0 and q 6D 0, meaning there is no jump, but a kink, then B D 0 and w1 D 0, and hence the

IV estimator reduces to (5), which is the estimator proposed in Theorem 1. In this case T � drops out of

both the instrument equation (9) and the reduced form Y equation (10) but .X � c/T � appears in both,

providing a valid instrument for T . The resulting estimator for � , given by equation (5), equals the ratio of

the coef�cient for T �.X � c/ in the reduced-form Y equation and that in the T equation, which con�rms

that the slope change of the treatment probability provides identi�cation.

Note that the local linear 2SLS estimator that has a variable bandwidth (i.e., "! 0 as the sample size

n ! 1) has the property speci�ed in Corollary 2. Asymptotically the local 2SLS puts a zero weight on

the slope change if there is a discrete jump. As the sample size n ! 1, the bandwidth used in the local

regressions shrinks to zero (using observations closer and closer to the threshold), so X � c and hence

.X � c/T � goes to zero, which makes z go to zero. It follows that w2 D cov .t; z/, and hence w2=w1
goes to zero. So with the local 2SLS if there is a jump, i.e., p D fC.c/ � f�.c/ 6D 0, the 2SLS weight

w2=w1 D wn ! 0 as n ! 1. Alternatively, if the treatment probability does not have a jump, i.e.,

p D fC.c/� f�.c/ D 0, then the weights are asymptotically irrelevant, since in that case one has

w1B C w2C

w1p C w2q
D
w2C

w2q
D
C

q
.

4 Extensions

The previously described estimator in Theorem 2 uses either just a jump, or just a kink, or both, but

asymptotically if there is a jump, then the only case in which the kink information is used is when � 0 .c/ D

0 in Theorem 2. Having � 0 .c/ D 0 means that the treatment effect does not vary linearly with X . For

example, in the true parametric form, Y cannot be a function of .X � c/T .

This section provides an extension of Theorem 2 to allow � 0 .c/ 6D 0, so the treatment effect can

vary with the running variable X , while exploiting information in both a jump and a kink. For example,

if the treatment is grade retention, the running variable is test score, and the outcome is later academic

performance. Then � 0 .c/ 6D 0 would mean the effect of repeating a grade on later performance depends

on the pre-treatment test score, and in this case one still could use both jump and kink information to

estimate the treatment effect.

For convenience of notation, formally de�ne B.c/ D gC .c/� g� .c/, C.c/ D g
0
C .c/� g

0
� .c/, p.c/ D

fC .c/ � f� .c/, and q.c/ D f 0C .c/ � f 0� .c/. Further de�ne D.c/ D g00C .c/ � g
00
� .c/ and r.c/ D

f 00C .c/ � f 00� .c/. So B.c/, C.c/, D.c/, p.c/, q.c/, and r.c/ are the intercept (level), slope, and second

derivative changes in the outcome functions and treatment probability, respectively. The proof of Theorem

1 shows that B 0.c/ D C.c/ and p0.c/ D q.c/. Similarly it follows that B 00.c/ D D.c/ and p00.c/ D r.c/.

Whenever possible, I will drop the argument .c/, and simply use B, C , p, q, D, and r , but note that all

these parameters are in general functions of c.

THEOREM 3: Assume A1, A2, and further assume the conditional means speci�ed in A1 are contin-

uously twice differentiable. If either there is no jump or � 00 .c/ D 0, then

� .c/ D
B C w .2qC � Dp/

p C w
�
2q2 � rp

� (14)

for any weights w 6D �p=
�
2q2 � rp

�
. Similar estimators can be constructed if the d-th derivative

� .d/ .c/ D 0, as is the case if the treatment effect is up to a polynomial of degree d � 1, for any posi-

tive integer d .
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The conditional means in Assumption A1 are twice differentiable, which guarantees that all the in-

volved derivatives in B, C , D, p, q, and r exist. They can be estimated by regression coef�cients if one

does local quadratic regressions using a uniform kernel at each side neighborhood of the cutoff c.

Analogous to Theorem 2, the assumption for Theorem 3 that � 00.c/ D 0 will hold if the treatment

effect is locally linear or locally constant. However, while a locally linear or constant treatment effect is

suf�cient for � 00.c/ D 0, it is stronger than necessary, because it implies that all derivatives higher than

the �rst are zero, instead of just the second derivative being zero. With the assumption � 00 .c/ D 0, the

estimator does not allow the treatment effect to be quadratic in .X � c/. So for example, in the parametric

form, Y cannot be a function of T .X � c/2, but can be a function of T or T .X � c/ or both.

Similar to the estimator in Theorem 2, when there is no jump, i.e., p D 0 and B D 0, then the above

estimator reduces to C=q, which is the estimator in Theorem 1. So when one is sure there is no jump, it

is more ef�cient to use the estimator in Theorem 1. Otherwise if one assumes that the treatment effect is

locally linear or locally constant, then this estimator works regardless of whether there is a jump, a kink,

or both, and exploits the identi�cation information in both when both are present.

Construction of the estimator when � .d/ .c/ D 0 for some �nite d is brie�y discussed in the Appendix.

In this case, the treatment effect can be an arbitrarily high-order (e.g., up to the d-th order) polynomial of

.X � c/, as long as the order is �nite.

From Theorem 3, one has the following corollary.

COROLLARY 3: Assume A1 and A2 hold. Given any sequence of nonzero weights !n such that

limn!1 !n D 0, then

�.c/ D
B C !n .2qC � Dp/

p C !n
�
2q2 � rp

� (15)

Compared with the estimator in Corollary 2, when the treatment effect is locally linear instead of

locally constant, the above estimator takes into account this local linear effect, while the estimator in

Corollary 2 does not. In particular, for a local linear treatment effect model, given a kink (q 6D 0),

.2qC � Dp/ =
�
2q2 � rp

�
would be a valid estimator for the treatment effect �.c/ regardless whether

there is a jump or not, while C=q is not unless there is no jump (p D 0/.

Note that the above estimator exploits possible higher order derivative changes for identi�cation. For

example, in the absence of both a jump and a kink, the above estimator reduces to D=r . Similar to C=q

identifying the RD model treatment effect in the absence of a jump, applying L'hopital's rule to C=q gives

D=r as a valid estimator when there is neither a jump nor a kink, but second derivative changes. However,

a possible disadvantage of using Corollary 3 for estimation instead of Corollary 2 is that Corollary 3

requires estimation of higher order derivatives (second instead of �rst), which in practice might be very

imprecisely estimated.

So far, all the estimators have been discussed without other covariates except for X . Sometimes it

may be desirable to include covariates in the RD model, for example, treatment effects could vary with

the other covariates. In that case, additional covariates Z could be included by letting all the assumptions

hold conditional upon the values Z may take on. The treatment effect estimators are then all conditional

on the speci�c value of Z . For estimation, one could directly include Z , possibly interacted with T and X ,

as additional regressors in the local polynomial or IV regressions. Then by averaging the estimates over

all possible values of Z one could get unconditional RD model treatment effects. Alternatively, one could

partial covariates out by �rst regressing Y and T on covariates both above and below the threshold, and

then use the residuals from those regressions in place of Y and T in estimation.

11



5 Estimation

In this section I describe how to implement the proposed RD estimators. The estimation methods provided

here are not new. All that is new is their application to the Theorems in this paper.

One convenient way to implement the proposed RD estimators is to do local linear or polynomial

regressions using a uniform kernel. The coef�cients in the local linear or polynomial regressions provide

parameters one needs to construct estimates for the proposed estimators. For example, for a constant

treatment effect model, one could estimate gC .X/ D E.Y j X; T � D 1/ D BC C .X � c/CC and

fC .X/ D E.T j X; T
� D 1/ D pCC .X � c/ qC by ordinary least squares using observations right above

the threshold c, and estimate g� .X/ D E.Y j X; T � D 0/ D B� C .X � c/C� and f� .X/ D E.T j

X; T � D 0/ D p� C .X � c/ q� using observations right below the threshold. Here B, C , p, and q are

constant regression coef�cients, and the subscripts C and � denote whether they are estimated using data

from above or below the threshold. With these estimates the standard RD fuzzy design treatment effect

given a jump can be estimated by

b� .c/ D
bBC � bB�
bpC � bp�

: (16)

This estimator can also be implemented as the estimated coef�cient of T using IV estimation, regressing

Y on a constant, X � c, and T , using with T � along with .X � c/ as instrumental variables.

The RD treatment effect estimator given a kink but no jump at the threshold c (the estimator in Theorem

1) can be estimated by

b� .c/ D
bCC � bC�
bqC �bq�

. (17)

Equivalently, one could takeb� .c/ to be the estimated coef�cient of T in an IV estimation, regressing Y on
a constant, X � c, and T , using .X � c/ and .X � c/T � as instrumental variables.

The RD treatment effect estimator proposed in Theorem 2 can be implemented as

b�.c/ D
bBC � bB� C bw

�bCC � bC�
�

bpC � bp� C bw .bqC �bq�/
. (18)

where the weight bw can be chosen to minimize the bootstrapped standard error for b�.c/. Alternatively,
equation (18) could be estimated by a 2SLS regression of Y on a constant, X � c, T , and .X � c/T , using

as instruments .X � c/, T �, and .X � c/T �. The resulting estimated weights will then be as described in

Section 3.

For all the estimators in the above, one could use the Delta method to calculate standard errors. Al-

ternatively, parametric IV estimation provides standard errors directly along with the point estimate of the

average treatment effect.

These estimators can be interpreted as a special case of nonparametric local linear based estimation,

using a uniform kernel. The bandwidth might be chosen using cross validation or other methods as de-

scribed in, e.g., Imbens and Kalyanaraman (2009) or Lee and Lemieux (2010) and references therein. Just

as Porter (2003) recommends using local linear estimation to reduce boundary bias in the constant terms

of these regressions, it might be advisable to use local quadratic rather than local linear estimation for

reducing boundary bias in the derivative estimates.

To apply the estimator proposed in Theorem 3, where the treatment effect is allowed to vary with X ,

one would need to estimate local quadratic or higher-order polynomial regressions to obtain the second or

higher-order derivatives involved in those estimators. Similarly, IV estimation can be implemented using

the higher-order interaction terms as additional instruments. Since these extensions are straightforward, I

do not explicitly give their formulas here.
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6 Conclusions

Regression discontinuity models identify local treatment effects by associating a discrete change (a jump)

in the mean outcome with a corresponding jump in the probability of treatment at a �xed threshold value of

the running variable. Lack of discontinuity would make the standard RD estimator inapplicable. However,

this paper shows that it is possible to identify the RD model treatment effect from a slope change (a kink)

rather than, or in addition to, a jump in the probability of treatment. The intuition for identi�cation off a

kink in the absence of a jump is based on L'hopital's rule.

I propose extensions of the usual RD estimator that can be used regardless of whether the source of

identi�cation is a jump or a kink. This is empirically appealing because in some potential applications

of RD models, it is hard to determine whether the probability of treatment actually jumps or just have a

kink at the threshold. In these cases, treatment effects based on standard RD estimators would either be

weakly identi�ed, if the jump is small, or unidenti�ed if the jump is zero, regardless of how much the

slope changes. In contrast, this paper's estimators make use of any changes in either the intercept (a jump)

or the slope (a kink) of the treatment probability at a threshold of the running variable.

The identi�cation results in this paper can be intuitively interpreted using IV models. I show that a

kink in the treatment probability provides an additional valid instrument that one can use to identify the

same RD treatment effect as a jump. Speci�cally, similar to a jump in the treatment probability at the

threshold implying that the binary indicator for crossing the threshold is a valid instrument, a kink at the

threshold implies that the interaction term between this binary indicator and the running variable could

also be a valid instrument for the treatment. So if there is no jump but a kink in the treatment probability,

one would still be able to use this kink, or the slope change in the treatment probability, to identify the RD

model treatment effect. I also show that in some cases (e.g., when the treatment effect is locally constant

in the neighborhood of the threshold), one can use the information in both the intercept change and the

slope change, i.e., both the jump and a kink to estimate the RD treatment effect.

All of the proposed estimators can be computed using just the estimated coef�cients from the same

local linear or polynomial regressions that are typically used to estimate standard RD models, so no new

estimation methods are required. As usual, one can alternatively do IV or 2SLS estimation using observa-

tions in the neighborhood of the threshold to obtain not only point estimates of the average treatment effect

but also parametric standard errors, with an added advantage in this paper's context that 2SLS provides

the type of weights that some of the proposed estimators require.

Given our results, it would be useful to explore identi�cation and estimation of other treatment related

parameters in the presence of kinks instead of jumps, such as the marginal policy effects of Carneiro,

Heckman, and Vytlacil (2010) and Heckman (2010).

7 Appendix: Proofs

First note that for any x such that c�" � x � cC", given Assumption A1, one has that E .Y .t/D� j X D x/,

E .Y .t/ .1� D�/ j X D x/, for t D 0; 1, and hence E .Y .1� D�/ j X D x/ and E .T .1� D�/ j X D x/

are all continuously differentiable in the neighborhood of x D c. The last two equations hold because

Y D Y .0/ C .Y .1/� Y .0// T and because E .T j X D x; D� D 0/ and E .D� j X D x/ are assumed to

be continuously differentiable. The following proof will use these results.

PROOF of LEMMA 1:

13



Consider the conditional mean of Y in a RD model for a �xed threshold c,

E .Y j X D x/ D E
�
Y D� C Y

�
1� D�

�
j X D x

�

D E
�
Y D� j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�

D E
�
Y j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�

For any x > c, by de�nition of compliers D� D I .T D T �/ , one has

E
�
Y j X D x; D� D 1

�
D E

�
Y .1/ j X D x; D� D 1

�
. (19)

By continuity of E .Y .1/ j X D x; D� D 1/, equation (19) also holds in the limit as x # c. Then by

de�nition of gC.c/, one has

gC.c/ D lim
x#c
E .Y j X D x/

D E
�
Y .1/ j X D c; D� D 1

�
E
�
D� j X D c

�
C E

�
Y
�
1� D�

�
j X D c

�
.

Similarly, for any x < c, one has

E
�
Y j X D x; D� D 1

�
D E

�
Y .0/ j X D x; D� D 1

�
. (20)

By continuity of E .Y .0/ j X D x; D� D 1/, equation (20) also holds in the limit as x " c. Then by

de�nition of g�.c/, one has

g�.c/ D lim
x"c
E .Y j X D x/

D E
�
Y .0/ j X D c; D� D 1

�
E
�
D� j X D c

�
C E

�
Y
�
1� D�

�
j X D c

�
.

Further continuity of E .Y .1� D�/ j X D x/ at x D c implies,

gC.c/� g�.c/ D E
�
Y .1/� Y .0/ j X D c; D� D 1

�
E
�
D� j X D c

�
:

Recall E .Y .1/� Y .0/ j X D c; D� D 1/ is denoted as �.c/. It follows that

gC.c/� g�.c/ D �.c/E
�
D� j X D c

�
,

which is equation (2).

Similarly, given T D T D� C T .1� D�/, one has

E .T j X D x/ D E
�
T j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�

D E
�
T � j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
.

E .T � j X D x; D� D 1/ D 0 for all x < c, so it must hold in the limit as x " c. E .T � j X D x; D� D 1/ D

1 for all x � c. By continuity of E .T .1� D�/ j X D x/ and E .D� j X D x/, one has

fC.c/� f�.c/ D E
�
D� j X D c

�
,

which is equation (1).

PROOF of THEOREM 1:

Since Assumption 1 holds for all x in the the neighborhood of x D c, similar to the proof of Lemma

1, for some small positive "1 < ", one has
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gC .c C "1/ D lim
x#cC"1

E.Y j X D x/

D E
�
Y .1/ j X D c C "1; D

� D 1
�
E
�
D� j X D c C "1

�
C E

�
Y
�
1� D�

�
j X D c C "1

�

and

g� .c � "1/ D lim
x"c�"1

E.Y j X D x/

D E
�
Y .0/ j X D c � "1; D

� D 1
�
E
�
D� j X D c � "1

�
C E

�
Y
�
1� D�

�
j X D c � "1

�

Given continuous differentiability of E .Y .t/ j X D x0; D
� D 1/ for t D 0; 1 and E .Y .1� D�/ j X D x0/,

the one sided derivatives g0C .c C "1/ and g
0
� .c � "1/ exist and are given by, respectively,

g0C .c C "1/ D
@ .E .Y .1/ j X D x; D� D 1/ E .D� j X D x//

@x
j x D c C "1

C
@E .Y .1� D�/ j X D x/

@x
j x D c C "1

and

g0� .c � "1/ D
@ .E .Y .0/ j X D x; D� D 1/ E .D� j x//

@x
j x D c � "1

C
@E .Y .1� D�/ j X D c C "1/

@x
j x D c � "1

Note that continuous differentiability of the involved conditional means also implies that g0C .c C "1/

and g0� .c � "1/ are continuous. It follows that that g
0
C .c/ and g

0
� .c/ exist and are given by lim"1!0g

0
C .c C "1/

and lim"1!0g
0
C .c � "1/, respectively. Therefore,

g0C .c/� g
0
�.c/ D

@ .E .Y .1/� Y .0/ j X D x; D� D 1/ E .D� j X D x//

@x
j x D c

D � 0 .c/ E
�
D� j X D c

�
C � .c/

@E .D� j X D x/

@x
j x D c. (21)

This equality holds as @E .Y .1� D�/ j X D x/ =@x j x D c cancels out.

Similarly, one has

fC .c C "1/ D lim
x#xcC"1

E.T j X D x/

D E
�
D� j X D c C "1

�
C E

�
T
�
1� D�

�
j X D c C "1

�

and

f� .c � "1/ D lim
x"c�"1

E.T j X D x/ D E
�
T
�
1� D�

�
j X D c � "1

�
.
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Given the continuous differentiability of E .T .1� D�/ j X D x/ and E .D� j X D x/, the one sided

derivatives f 0C .c C "1/ and f
0
� .c � "1/ exist and are continous in the neighborhood of c. So similar to the

above, one has

f 0C .c/� f 0�.c/ D
@E .D� j X D x/

@x
j x D c. (22)

This equality holds as @E .T .1� D�/ j X D x/ =@x j x D c cancels out.

Given equations (21) and (22) and the assumption E .D� j X D c/ D fC .c/� f�.c/ D 0, one has

� .c/ D
g0C .c/� g

0
� .c/

f 0C .c/� f 0�.c/
.

Note that the above essentially applies L'hopital's rule. To see this, let B .x/ D gC .x/ � g� .x/ and

p .x/ D fC .x/ � f� .x/. From the above analysis, B .x/ and p .x/ are continuously differentiable at

x D c. Given p .c/ D 0, one has B .c/ D � .c/ p .c/ D 0. L'hopital's rule gives

� .c/ D
limx!c B .x/

limx!c p .x/
D
limx!c B

0 .x/

limx!c p0 .x/

D
B 0.c/

p0.c/
D
g0C .c/� g

0
� .c/

f 0C .c/� f 0� .c/
.

PROOF of COROLLARY 1:

If there is a jump, i.e, the identi�ed difference fC.c/ � f�.c/ is nonzero, then �.c/ is identi�ed by

equation (4). Alternatively, if there is no jump ( fC.c/ � f�.c/ D 0), then by Assumption A2 there must

be a kink. So by Theorem 1 �.c/ is identi�ed by equation (5).

PROOF of THEOREM 2:

For convenience I continue to use the B .c/, p .c/, B 0.c/, and p0.c/ as in the proof of Theorem 1. If

there is no jump, by Assumption A2, there is a kink. Then Theorem 1 gives

� .c/ D
B 0 .c/

p0 .c/
D
B .c/C wB 0 .c/

p .c/C wp0 .c/

where the second equality follows from p.c/ D 0 and hence B.c/ D 0 when there is no jump.

Now consider the case where � 0 .c/ D 0. By equations (21) and (22), if � 0 .c/ D 0 then B 0 .c/ D

� .c/ p0 .c/ and in addition it is already showed that B .c/ D � .c/ p .c/ with equations (2) and (1). So

regardless of whether there is a jump, a kink or both, if � 0 .c/ D 0 then taking a weighted sum of these two

equations gives B .c/C wB 0 .c/ D � .c/ .p .c/C wp0 .c// and so

� .c/ D
B .c/C wB 0 .c/

p .c/C wp0 .c/
.

The denominator of this equation is nonzero since by Assumption A2 either p .c/ or p0 .c/ is nonzero.

PROOF of COROLLARY 2:

Suppose �rst that there is a jump, fC .c/� f� .c/ 6D 0, then

lim
n!1

gC .c/� g� .c/C wn
�
g0C .c/� g

0
� .c/

�

fC .c/� f� .c/C wn
�
f 0C .c/� f 0� .c/

� D gC .c/� g� .c/

fC .c/� f� .c/
D �.c/.
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Alternatively, suppose there is no jump, fC .c/� f� .c/ D 0, then gC .c/�g� .c/ D �.c/ . fC .c/� f� .c// D

0. So
gC .c/� g� .c/C wn

�
g0C .c/� g

0
� .c/

�

fC .c/� f� .c/C wn
�
f 0C .c/� f 0� .c/

� D
wn
�
g0C .c/� g

0
� .c/

�

wn
�
f 0C .c/� f 0� .c/

� D �.c/,

where the last equality follows from Theorem 1. This equality holds for all n, and so it must also hold in

the limit as n!1.

PROOF of THEOREM 3:

Use the notation in the proof of Theorem 1, and rewrite equation (1) as

B D � .c/ p

Twice differentiability gives

B 0 D � 0 .c/ p C � .c/ p0 (23)

B 00 D � 00 .c/ p C 2�.c/0 p0 C �.c/p00 (24)

Recall by notation B 0 D C , p0 D q, B 00 D D, and p00 D r . If there is no jump, then p D 0. By A2,

there is a kink, so p0 D q 6D 0. From Theorem 1, one has

� .c/ D
B 0

p0
D
C

q
D
B C w .2qC � Dp/

p C w
�
2q2 � rp

�

for any w 6D �p=
�
2q2 � rp

�
. The last equality follows from p D 0 and hence B D 0.

If � 00 .c/ D 0, then p� 00 .c/ D 0. Then regardless if there is a jump, a kink or both, one has

� .c/ D
B C w .2qC � Dp/

p C w
�
2q2 � rp

� .

First, if there is no jump, which, given A2, means there is a kink, then by Theorem 1, � .c/ D C
q
D

2qC�Dp

2q2�rp
D

BCw.2qC�Dp/

pCw.2q2�rp/
, where the last equality follows from p D 0 and B D 0. Second, if there

is a jump, the standard RD estimator applies, so � .c/ D B
p
. Also by assumption, � 00 .c/ D 0 in this

case, so solving for � .c/ from equations (23) and (24) gives � .c/ D
2qC�Dp

2q2�rp
. By the rule of fraction,

� .c/ D
BCw.2qC�Dp/

pCw.2q2�rp/
.

So either there is no jump or � 00 .c/ D 0, one has

� .c/ D
B C w .2qC � Dp/

p C w
�
2q2 � rp

�

for any w 6D �p=
�
2q2 � rp

�
.

The same procedure can be applied to cases where the d-th derivative � .d/ .c/ D 0 for any �nite

positive integer d. Keep doing derivatives on both sides of equation (4), until the d-th derivative. With the

system of d equations and � .d/ .c/ D 0, one can back out � .c/, as the system of equations are recursive in

nature.

PROOF of COROLLARY 3:

Similar to Corollary 2, suppose �rst that there is a jump, p 6D 0, then
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lim
n!1

B C !n .2qC � Dp/

p C !n
�
2q2 � rp

� D
B

p
D �.c/.

Alternatively, suppose there is no jump, p D 0, and hence B D �.c/p D 0, so

B C !n .2qC � Dp/

p C !n
�
2q2 � rp

� D
!n .2qC � Dp/

!n
�
2q2 � rp

� D C
q
D �.c/,

where the last equality follows from Theorem 1. It holds for all n, and so it holds in the limit as n!1.
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