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Abstract 

There is broad consensus that logistic regression is superior to ordinary least squares 

(OLS) regression at predicting the probability of an event.  However, OLS is still widely 

used in binary choice models, mainly because OLS coefficients are more intuitive than 

logistic coefficients. This paper shows a simple way of calculating linear probability 

coefficients (LPC), similar in nature to OLS coefficients, from logistic coefficients.  It 

also shows that OLS coefficients tend to be very close to logistic LPC coefficients.    
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I. Introduction 

There are several instances in economic studies where the dependent variable is not 

continuous but dichotomous (e.g. labour force participation, unemployment, poverty, 

reliance on social assistance).  In these situations, the more familiar OLS regression has 

limitations and a logistic regression, or its very similar probit regression, is the 

appropriate choice.  Specifically, the two main limitations of OLS are: (a) fitted values of 

y can fall outside the zero-one range; and (b) the error term e is necessarily 

heteroskedastic (Goldberger, 1964; Theil, 1981).  

Unfortunately, logistic regression coefficients do not have the same intuitive 

interpretation as OLS coefficients do. In particular, in the case of OLS the dependent 

variable is the probability of the event itself (equation 1).  

p = 0 +  ii       (1) 

In equation 1, p is the probability that the event will take place, and i is the partial 

derivative of p with respect to each i. For example, if the event is unemployment and Xi 

refers to the female gender, then the  coefficient shows how much more likely females 

are to experience unemployment than males, keeping all other attributes the same. 

By contrast, in the case of logistic regression the dependent variable is not the probability 

of the event but its logistic transformation (equation 2).  
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ln = 0 +  ii.      (2) 

Consequently, the  i coefficients show the impact of each independent variable not on 

the probability of the event itself, but on its logistic transformation. The problem now is 

that, although the logistic model is more appropriate than OLS, we are left with 

regression coefficients that are difficult to interpret intuitively. 

As a result, many practitioners recommend the OLS model as an approximation of the 

more correct logistic model or as a preliminary analysis tool (Moffit, 1999; Amemiya, 

1981). This approach has been reinforced by the fact that the two models tend to lead to 

similar results, at least in terms of the partial derivatives of the dependent probability 

with respect to individual independent variables (Pohlmann and Leitner, 2003).   

 

II. Logistic Linear Probability Coefficients 

An alternative approach to relying on OLS is to derive linear probability coefficients 

(LPC) from the logistic coefficients. This way we can combine the superior statistical 

properties of logistic regression with the intuitive nature of OLS coefficients.  

One approach that has been used to estimate LPCs is by comparing point estimates of the 

expected probability of various characteristics (Pohlmann and Leitner, 2003). For 

example, the LPC of the impact of female gender on the probability of unemployment 

can be derived from the results of a logistic regression by estimating the female and male 

probabilities, keeping the values of the rest of independent variables equal to their 

average value, and subtracting the two. Of course, since the relationship is non-linear, the 
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results will tend to differ depending on the choice of the point where the partial 

derivatives are estimated and the degree of non-linearity of the relationship.  

The difficulty with the above approach is that it is computationally demanding. However, 

there is a simpler way of estimating LPCs from a logistic regression using the odds ratio. 

The odds ratio is a standard output of statistical packages, and it is simply the exponential 

value of the logistic coefficients.  In logistic regression, odds are defined as the ratio p/(1-

p) and the odds ratio (Z) is defined as the ratio of two odds (equation 3).  
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By solving the above equation for p1 and assigning a specific value to p0 we can easily 

estimate the corresponding LPC (equation 4). 

LPC = p1-p0 = (Zp0 / (1-p0+Zp0)) – p0   (4) 

In the case of dummy independent variables, p0 will be the average probability of the 

omitted category. Using the previous example, in the case of gender the LPC will show 

the impact of being female on the probability of unemployment, keeping the rest of the 

rest of the female characteristics the same as those of males. In the case of a continuous 

independent variable (e.g. age) p0 can be simply set equal to the overall average 

unemployment rate of the data sample.  

 

III. An Example 

We now present a simple example to illustrate the proposed methodology. The dependent 

variable is the probability of experiencing unemployment during the year among those 

who were in the labour force for at least part of the year. The independent variables 

include a continuous one (age) and several dummy variables (gender, education, 

province, area, and disability). The source of data is Statistics Canada’s Survey of Labour 
and Income Dynamics (SLID), 2007. The sample includes 30,543 labour force 

participants, age 18-64. 

Table 1 presents the standard SPSS regression results for OLS and logistic regression. 

The last column shows the LPCs of the logistic regression, based on equation 4 presented 

earlier. In addition to illustrating the method of estimating logistic LPCs, Table 1 

reconfirms the finding in the literature that logistic and OLS regression results tend to be 

similar. In the case of the particular example, virtually all OLS coefficients were within 

one percentage point of the corresponding logistic LPCs. 

 

IV. Conclusion 

This paper has presented a simple way of estimating LPC from logistic regression results. 

It has also demonstrated with an example that OLS coefficients tend to be very close to 

logistic LPCs. Thus the paper provides analysts a simple way of combining the benefits 

of using logistic regression with the practical advantage of producing intuitive 

coefficients that are easier to communicate to a broader audience. 
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TABLE 1 

OLS vs. logistic regression estimates of the rate of unemployment 

 

           OLS                                Logistic                         .  

                                                             b    t    b    t    Z LPC 

Constant    0.542 24.19 0.937 6.257 2.551  

Age (continuous)   -0.005 -31.02 -0.040 -29.63 0.960 -0.006 

Sex       

  - Male (omitted)       

  - Female   -0.001 -0.204 -0.005 -0.172 0.995 -0.001 

Education       

  - Less than 9 years (omitted)       

  - 9-10 years   0.020 1.355 0.114 1.132 1.121 0.019 

  - 11-13 years   0.039 2.582 0.097 0.955 1.101 0.016 

  - High school diploma  -0.054 -4.184 -0.394 -4.332 0.674 -0.056 

  - Some college   -0.031 -2.276 -0.264 -2.829 0.768 -0.039 

  - Some university  -0.021 -1.458 -0.210 -2.141 0.810 -0.031 

  - College diploma  -0.078 -6.404 -0.575 -6.669 0.563 -0.076 

  - University BA   -0.066 -3.737 -0.482 -3.662 0.618 -0.066 

  - University above BA  -0.108 -7.700 -0.909 -8.317 0.403 -0.108 

Province       

  - Newfoundland (omitted)       

  - PEI    -0.014 -0.402 -0.091 -0.401 0.913 -0.018 

  - Nova Scotia   -0.055 -2.607 -0.318 -2.309 0.728 -0.059 

  - New Brunswick  -0.054 -2.450 -0.294 -2.032 0.745 -0.055 

  - Quebec   -0.088 -4.963 -0.515 -4.541 0.597 -0.091 

  - Ontario   -0.102 -5.793 -0.621 -5.507 0.537 -0.107 

  - Manitoba   -0.160 -7.806 -1.094 -7.605 0.335 -0.165 

  - Saskatchewan   -0.130 -6.197 -0.850 -5.878 0.428 -0.137 

  - Alberta   -0.151 -8.263 -1.013 -8.419 0.363 -0.156 

  - BC    -0.124 -6.862 -0.801 -6.771 0.449 -0.131 

Area       

  - Rural (omitted)       

  - Urban: 0 to 29,999  -0.007 -0.783 -0.042 -0.645 0.959 -0.007 

  - Urban: 30,000 to 99,999 -0.017 -1.710 -0.112 -1.585 0.894 -0.017 

  - Urban: 100,000 to 499,999 -0.026 -3.016 -0.185 -2.944 0.831 -0.028 

  - Urban: 500,000 and higher -0.010 -1.261 -0.066 -1.192 0.936 -0.010 

Disability       

  - No (omitted)       

  - Yes    0.079 14.617 0.560 14.763 1.751 0.091 

Note: The OLS R
2
 was 6%; the logistic Nagelkerke R

2
 was 9%.   
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