Burnecki, Krzysztof and Janczura, Joanna and Weron, Rafal (2010): Building Loss Models.

PDF
MPRA_paper_25492.pdf Download (658Kb)  Preview 
Abstract
This paper is intended as a guide to building insurance risk (loss) models. A typical model for insurance risk, the socalled collective risk model, treats the aggregate loss as having a compound distribution with two main components: one characterizing the arrival of claims and another describing the severity (or size) of loss resulting from the occurrence of a claim. In this paper we first present efficient simulation algorithms for several classes of claim arrival processes. Then we review a collection of loss distributions and present methods that can be used to assess the goodnessoffit of the claim size distribution. The collective risk model is often used in health insurance and in general insurance, whenever the main risk components are the number of insurance claims and the amount of the claims. It can also be used for modeling other noninsurance product risks, such as credit and operational risk.
Item Type:  MPRA Paper 

Original Title:  Building Loss Models 
Language:  English 
Keywords:  Insurance risk model; Loss distribution; Claim arrival process; Poisson process; Renewal process; Random variable generation; Goodnessoffit testing 
Subjects:  G  Financial Economics > G2  Financial Institutions and Services > G22  Insurance; Insurance Companies C  Mathematical and Quantitative Methods > C6  Mathematical Methods; Programming Models; Mathematical and Simulation Modeling > C63  Computational Techniques; Simulation Modeling C  Mathematical and Quantitative Methods > C4  Econometric and Statistical Methods: Special Topics > C46  Specific Distributions; Specific Statistics C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C15  Statistical Simulation Methods: General G  Financial Economics > G3  Corporate Finance and Governance > G32  Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill 
Item ID:  25492 
Depositing User:  Rafal Weron 
Date Deposited:  28. Sep 2010 20:42 
Last Modified:  13. Feb 2013 00:00 
References:  Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from modified normal distributions, ACM Trans. Math. Soft. 8: 163–179. Albrecht, P. (1982). On some statistical methods connected with the mixed Poisson process, Scandinavian Actuarial Journal: 1–14. Bratley, P., Fox, B. L., and Schrage, L. E. (1987). A Guide to Simulation, SpringerVerlag, New York. Burnecki, K., Hardle, W., and Weron, R. (2004). Simulation of Risk Processes, in J. Teugels, B. Sundt (eds.) Encyclopedia of Actuarial Science, Wiley, Chichester, 1564–1570. Burnecki, K., Kukla, G., and Weron, R. (2000). Property insurance loss distributions, Physica A 287: 269278. Burnecki, K., and Weron R. (2005). Modeling of the Risk Process, in P. Cizek, W. Hardle, R. Weron (eds.) Statistical Tools for Finance and Insurance, SpringerVerlag, Berlin, 319–339. Chernobai, A., Burnecki, K., Rachev, S. T., Trueck, S. and Weron, R. (2006). Modelling catastrophe claims with lefttruncated severity distributions, Computational Statistics 21: 537555. Chernobai, A.S., Rachev, S.T., and Fabozzi, F.J. (2007). Operational Risk: A Guide to Basel II Capital Requirements, Models, and Analysis, Wiley. D’Agostino, R. B. and Stephens, M. A. (1986). GoodnessofFit Techniques, Marcel Dekker, New York. Daykin, C.D., Pentikainen, T., and Pesonen, M. (1994). Practical Risk Theory for Actuaries, Chapman, London. Devroye, L. (1986). NonUniform Random Variate Generation, SpringerVerlag, New York. Embrechts, P. and Kluppelberg, C. (1993). Some aspects of insurance mathematics, Theory Probab. Appl. 38: 262–295. Grandell, J. (1991). Aspects of Risk Theory, Springer, New York. Hogg, R. and Klugman, S. A. (1984). Loss Distributions, Wiley, New York. Hormann, W. (1993). The transformed rejection method for generating Poisson random variables, Insurance: Mathematics and Economics 12: 39–45. Huber, P. J. (2004). Robust statistics, Wiley, Hoboken. Johnk, M. D. (1964). Erzeugung von Betaverteilten und Gammaverteilten Zufallszahlen, Metrika 8: 515. Kaas, R., Goovaerts, M., Dhaene, J., and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R, Springer. Klugman, S. A., Panjer, H.H., and Willmot, G.E. (2008). Loss Models: From Data to Decisions (3rd ed.), Wiley, New York. Panjer, H.H. (2006). Operational Risk : Modeling Analytics, Wiley. Panjer, H.H. and Willmot, G.E. (1992). Insurance Risk Models, Society of Actuaries, Chicago. Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. L. (1999). Stochastic Processes for Insurance and Finance, Wiley, Chichester. Ross, S. (2002). Simulation, Academic Press, San Diego. Stadlober, E. (1989). Sampling from Poisson, binomial and hypergeometric distributions: ratio of uniforms as a simple and fast alternative, Math. Statist. Sektion 303, Forschungsgesellschaft Joanneum Graz. Stephens, M. A. (1978). On the halfsample method for goodnessoffit, Journal of the Royal Statistical Society B 40: 6470. Teugels, J.L. and Vynckier, P. (1996). The structure distribution in a mixed Poisson process, J. Appl. Math. & Stoch. Anal. 9: 489–496. Tse, Y.K. (2009). Nonlife Actuarial Models: Theory, Methods and Evaluation, Cambridge University Press, Cambridge. Weron, R. (2004). Computationally Intensive Value at Risk Calculations, in J. E. Gentle, W. Hardle, Y. Mori (eds.) Handbook of Computational Statistics, Springer, Berlin, 911–950. Willmot, G. E. (2001). The nature of modelling insurance losses, The Munich Re Inaugural Lecture, December 5, 2001, Toronto. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/25492 