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Abstract

This essay is aimed to provide a straightforward and sufficiently accessible demonstration

of some known procedures for stochastic volatility model. It reviews the important related

concepts, gives informal derivations of the methods and can be useful as a cookbook for a

novice. The exposition is confined to classical (non-Bayesian) framework and discrete-time

formulations.

1 Stochastic volatility modeling preliminaries

1.1 Introduction

A well-known phenomenon for financial time series is volatility clustering. The phenomenon can

be accounted for by GARCH which—with its various modifications—is the most popular model of

volatility (for an early overview see Bollerslev et al. (1994)). However, a more natural and concep-

tually simple model of volatility is probably the model of autoregressive stochastic volatility (ARSV

or simply SV). Unlike GARCH, log-volatility is modeled as a first-order autoregression (see below).

Similarly to GARCH, stochastic volatility model can be applied to various financial time series like

stock prices or exchange rates.

We illustrate our discussion of stochastic volatility modeling with examples. Here the two real-

data examples are introduced.

Example 1 (daily RTS stock market index, 1996–2009). RTSI is a stock market index of RTS

(“Russian Trading System”) stock exchange. It is “the main benchmark for the Russian securities

industry and is based on the Exchange’s 50 most liquid and capitalized shares”.1 We apply stochas-

tic volatility model to continuously compounded returns computed from the daily RTSI close data.

The returns are defined as yt = (lnRTSIt − lnRTSIt−1)×100. The length of the series is T = 3494 ob-

servations.

Example 2 (daily pound/dollar exchange rates from October 1981 to June 1985). Next dataset

is a series of weekdays close exchange rates.2 The data we use are yt = (lnEt − lnEt−1)×100, where

Et is the exchange rate. The length of the series is T = 946. The dataset initially appeared in an

empirical application in Harvey et al. (1994). Subsequently it was analyzed extensively in the liter-

ature on stochastic volatility and states-space models.3

1See http://www.rts.ru/.
2The data can be found at http://www.estima.com/textbooks/durkoop.zip, http://www.ssfpack.com/dkbook/

dkdata/sv.dat or http://www.nuffield.ox.ac.uk/users/shephard/EXCH.ZIP. The series is also distributed with

popular EViews econometric program as svpdx.dat.
3For example, Shephard & Pitt (1997), Kim et al. (1998), Durbin & Koopman (2000), Meyer & Yu (2000), Durbin &

Koopman (2001), Meyer et al. (2003), Davis & Rodriguez-Yam (2005), Liesenfeld & Richard (2006)
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Figure 1: (a) RTSI daily returns, 1996–2009, (b) £/$ daily rates of change, October 1981—June 1985.
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Figure 2: (a) RTSI, correlogram, (b) RTSI, correlogram for absolute values, (c) £/$, correlogram, (d) £/$,

correlogram for absolute values.

Both example series (Figure 1(a), (b)) do not show strong autocorrelation. This can be seen

from their correlograms (Figure 2(a), (c)). RTSI series has significant, but not very large first-order

autocorrelation. However, variance of the two series changes over time leading to volatility clus-

ters. For instance, for the exchange rates volatility is larger at the end of the period. This effect

can be measured by the autocorrelation functions of
∣

∣yt

∣

∣, y2
t or ln y2

t . Figure 2(b), (d) shows cor-

relograms of absolute values
∣

∣yt

∣

∣. Serial correlation is quite significant. This justifies the use of

volatility modeling.

The origins of the model are not very clear. Possibly, the model was a very natural one and sev-

eral researchers came to the idea independently. Discrete-time stochastic volatility models which

we discuss4 can be viewed as approximations to continuous-time models developed in mathe-

matical finance literature.

Some of the early uses of the model can be found in Taylor (1982), Taylor (1986), Scott (1987),

Hull & White (1987), Nelson (1988). Several pioneering papers on the subject are collected in Shep-

hard (2005).

Stochastic volatility modeling is an active research area. Moreover, SV model is a popular show-

case example in the flourishing literature on non-linear non-Gaussian state-space models, hidden

Markov models and other related subjects. Therefore it is not possible to cover all the methods

and ideas which are connected to SV model. Our task in this essay is somewhat limited. We are

4Continuous-time stochastic volatility models are reviewed in Ghysels et al. (1996) and Shephard & Andersen

(2009).
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trying to make SV modeling more accessible by collecting in one place several useful instruments

for a practitioner to start with.

1.2 Basic SV model

SV model based on first-order autoregression (Markov chain) can be written as5

yt =σξξt exp(ht /2),

ht = δht−1 +σηηt .
(1)

Here ht is scaled log-volatility (conditional variance6 of yt for this model is given byσ2
t =σ2

ξ
exp(ht )

if Varξt = 1). It is assumed that scale parameters σξ and ση are positive and that log-volatility

autoregressive coefficient |δ| < 1 (close to plus unity in applications). Disturbances in the basic SV

model are assumed to be two independent series of Gaussian white noise

ξt ∼N (0,1) and ηt ∼N (0,1).

The model is often called the stochastic volatility model as it is the most intensively studied model

of the SV class of models.

In what follows y = (y1, ..., yT ) is a vector of observations, h = (h1, ...,hT ) is a vector of unob-

served volatility process and θ = (σξ,δ,ση) is a parameters vector.

Example 3 (simulation example). We take δ = 0.98, ση = 0.2, σξ = 1 and T = 500 and simu-

late SV process. One realization (of both yt and σ2
t = σ2

ξ
exp(ht )) is shown in Figure 3. It can be

seen that the regions of higher σ2
t correspond to more dispersed yt while the regions of lower σ2

t

correspond to less dispersed yt . For these parameters the coefficient of variation of conditional

variance, defined as7

CV =

√

Varσ2
t

Eσ2
t

=
√

Var[exp(ht )]

E[exp(ht )]
=

√

exp
(

σ2
η/(1−δ2)

)

−1,

is 1.32 which is rather high, but is realistic for financial time series. The coefficient of variation

measures how volatile is volatility. When CV is close to zero the volatility is almost constant.

It was suggested that SV-type models can provide a more adequate description of the behavior

of many time series than GARCH-type models. The reason is that in a SV-type model volatility is

not determined functionally by the lagged disturbances of the mean equation. Instead, it is mod-

eled as a separate stochastic process driven by its own disturbances ηt . As a result for SV process

(unlike GARCH-type process) next period volatility is not fully known (ht cannot be forecasted ex-

actly given information available at time t −1). Yet SV-type models are not as popular in empirical

research as GARCH-type models, which is explained by the difficulties with statistical analysis of

the former. In 1.3 we discuss the roots of this problem.

5Alternatively we could work with

yt = ξt exp(ht /2),

ht −ω= δ(ht−1 −ω)+σηηt .

The equation for ht can also be written as ht =ω+δht−1 +σηηt . These specifications are equivalent to (1).
6The term “conditional variance” is ambiguous for an SV model (unlike GARCH). By conditional variance here

and below we mean the variance of yt conditional on ht and previous history yt−1,ht−1, yt−2,ht−2, . . . For the basic

SV model (1) it is the same as the variance of yt conditional on ht . It is clearly not the same as the variance of yt

conditional on yt−1, yt−2, . . .
7The expressions for the moments which are needed for deriving the coefficient of variation formula can be found

in Appendix C. When CV is small it is approximately equal to the unconditional standard deviation of ht which is
√

Varht =ση/
p

1−δ2.
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Figure 3: A realization of stochastic volatility process with δ= 0.98, ση = 0.2, σξ = 1 and T = 500; (a) condi-

tional variance σ2
t (logarithmic scale), (b) yt .

There are many different ways to estimate SV models. Below we focus on several methods of

approximating the likelihood function. Given an estimate of the likelihood function one can use

well-known optimization techniques8 (like the quasi-Newton BFGS algorithm with numerical first

derivatives9 or the derivatives-free Nelder–Mead simplex-reflection algorithm) to maximize the

obtained function with respect to parameters θ. The method of moments approach which can de-

liver feasible initial estimates of parameters is also discussed. Broto & Ruiz (2004) and Jungbacker

& Koopman (2009) give a survey of estimation methods.

1.3 SV model as a model with unobserved components

Many applied statistical models are stated in terms of disturbances and parameters. If u is a N ×1

vector of disturbances and θ is a m×1 vector of parameters then it is assumed that the dependent

variable y is a n ×1 vector which is generated according to some known mapping F : y =F (u;θ).

Probabilistic assumptions are made in terms of u, rather than in terms of y. However, by definition

u is not directly observed. Instead, y is observed. In some popular models F specifies a one-to-one

mapping between u and y so that u can be obtained indirectly given some vector of parameters θ.

For example, for the classical linear regression u = y−Xβ.

In many models information about u is partially lost. For example, it can be that N > n, which

means that a one-to-one mapping between u and y can not exist. For some models u can be

partitioned as u = (ε,η) where ε is a n × 1 vector such that y = F (ε,η;θ) specifies a one-to-one

mapping between ε and y given η and θ. Here η is a (N −n)×1 vector of unobserved components

(or latent variables). To analyze this kind of models when N −n is small it can be convenient to

throw away information about the probabilistic properties of η. Two common approaches are:

• assigning η some reasonable values (like expectations Eη),

• treating η as parameters and estimating them together with regular parameters θ.

For example, in the MA(1) model yt = ut +µut−1 one can take u0 = 0 and then calculate u1, . . . ,un

recursively from y1, . . . , yn : ut = yt −µut−1. In the GARCH model prehistoric values ε2
t , σ2

t for t < 1

are commonly replaced by the unconditional variance.

However, if N−n is not small such a loss of information can be inadmissible. Moreover, if N−n

is of the same order as n then throwing away information is of no help. This is the case with the

SV model because one observable series yt is determined by two disturbance series, εt and ηt , so

that N = 2n. Hence the difficulties in estimation of SV model compared to oft-used GARCH.

8We do not discuss optimization algorithms here. See the literature on numerical optimization like Nocedal &

Wright (2006).
9Some of the methods discussed can be used to get analytical derivatives of the approximate likelihood function.

However, finding needed analytical derivatives can be an intricate problem so we will not explore the possibility in

this essay.
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In general, one has to deduce probabilistic properties of y from the assumptions about prob-

abilistic properties of u. For the generalized method of moments (GMM) one needs to obtain

moment conditions on y. For the method of maximum likelihood the probability density func-

tion f (y|θ) of the observable data y is needed. Obtaining f (y|θ) in general needs integration. For

some models the integration can be done analytically to yield a closed-form expression. For other

models like SV this is unfeasible.

One eminent model for which obtaining f (y|θ) is straightforward is the Gaussian linear model.

Assume that u has a multivariate normal distribution u ∼N (µ,Σ) and that the link between y and

u is given by a linear (affine) function

y = Au+b. (2)

Here µ, Σ, A, b can all depend non-linearly on θ. By the properties of multivariate normal distri-

bution y is also multivariate normal

y ∼N (Aµ+b,AΣA⊺).

Its log-density (log-likelihood function) is

ℓ(θ;y) = ln f (y|θ) =−
n

2
ln(2π)−

1

2
ln

∣

∣AΣA⊺
∣

∣−
1

2
(y−Aµ−b)⊺(AΣA⊺)−1(y−Aµ−b). (3)

The conditional distribution u|y summarizes information on u which can be inferred by ob-

serving y. This conditional distribution is also multivariate normal:

u|y ∼N (µ+ΣA⊺(AΣA⊺)−1(y−b),Σ−ΣA⊺(AΣA⊺)−1AΣ).

Mean of the conditional distribution ū(y) =E(u|y) =µ+ΣA⊺(AΣA⊺)−1(y−b) is called the smoothed

value of u. It is the best mean-square predictor of u based on y.

There is at least one weak point in this reasoning. The matrix Σ is N ×N , the matrix AΣA⊺ is

n ×n. These can be quite huge in some financial applications. Time series of length n = 10000

leading to 10000×10000 matrices are not that uncommon nowadays.

The Linear Gaussian state-space models are special cases of the linear Gaussian models. They

enable one to use low-dimensional recursions for evaluating likelihood functions. A well-known

algorithm for doing this is Kalman filter10.

Let us return to the SV model. In this model it is not possible to derive the distribution of y

from the distributions of ξt and ηt in a closed form. MLE is a natural method for estimating the SV

model, because the distributions of disturbances are known exactly (given parameters). However,

the knowledge of the distributions of disturbances cannot immediately give the knowledge of the

distribution of the observable data y.

SV models belong to the class of non-linear non-Gaussian state-space models. The log-volatility

component ht is called the unobservable (latent, hidden) state of the system at time t . Below we

treat ht as unobservable components instead of corresponding disturbances ηt . This has some

advantages in the case of state-space models.

The likelihood function is defined as L(θ;y) = f (y|θ). For the SV model it cannot be expressed

in a closed form. In the theory likelihood function can be found from f (y,h|θ) by integrating out

h. That is, it can be expressed by a multidimensional integral

f (y|θ) =
∫

f (y,h|θ)dh =
∫

f (y|h,θ) f (h|θ)dh.

The joint distribution of y and h described by density f (y,h|θ) is called distribution of complete

data. “Complete data” means the data on both observable y and unobservable h. Both f (y|h,θ)

10See Commandeur & Koopman (2007), Durbin & Koopman (2001) and Harvey & Proietti (2005) on state-space

models and Kalman filter.
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and f (h|θ) (and thus f (y,h|θ)) are known for the basic SV model (see below). However, the inte-

gral cannot be calculated analytically11. Consequently, one needs to use numerical integration to

obtain L(θ;y). Difficulties with devising and programming of efficient algorithms and substantial

computational costs lead to low popularity of SV models in applied areas. However, as computers

become faster and new methods are developed the use of SV modeling increases.

For future exposition we introduce the terminology which can often be found in the SV liter-

ature. For a given vector of parameters θ one can consider various (marginal, joint, conditional)

distributions of y and h. For the SV model the marginal distribution of h is known (given θ). When

observing the data y we obtain some additional information on the value of h. This is summa-

rized by the conditional distribution f (h|y,θ). In Bayesian terms12 h|θ is the prior distribution of

unobserved h (beliefs on h held before the arrival of new information) and h|y,θ is the posterior

distribution of h (beliefs on h held after obtaining the new information y).

An important fact is that the posterior density is proportional to the density of complete data

(both considered as functions of h for some given y) where the likelihood f (y|θ) provides the pro-

portionality coefficient:

f (h|y,θ) =
f (y,h|θ)

f (y|θ)
. (4)

This proportionality is the key to some methods described below. First, it turns out that a good

approximation for f (h|y,θ) can provide a good estimate of the likelihood f (y|θ). Second, the

distribution of h|y,θ can itself be of interest for the various tasks of smoothing, filtering and fore-

casting.

1.4 Various densities for SV model

Here we write out densities for the basic SV model (1) which are useful for an (approximate) max-

imum likelihood estimation.

Consider the model (1). Let Ωt = (y1, . . . , yt ,h1, . . . ,ht ) be the history of SV process until time t .

The distribution of the complete data y,h corresponding to parameters θ is given by the density

f (y,h|θ) = f (y|h,θ) f (h|θ) =
T
∏

t=1

f (yt |ht ,Ωt−1,θ)
T
∏

t=1

f (ht |Ωt−1,θ).

Here f (yt |ht ,Ωt−1,θ) is the density of N (0,σ2
ξ
eht ), f (ht |Ωt−1,θ) is the density of N (δht−1,σ2

η).

The density f (h1 |Ω0,θ) = f (h1 |θ) is a special case. Stationarity of the AR(1) process describing

ht implies that h1 |θ ∼ N (0,σ2
η/(1−δ2)). We see that for the basic SV model (1) the component

densities simplify to f (yt |ht ,Ωt−1,θ) = f (yt |ht ,θ) and f (ht |Ωt−1,θ) = f (ht |ht−1,θ) so that

f (y,h|θ) =
T
∏

t=1

f (yt |ht ,θ) f (h1 |θ)
T
∏

t=2

f (ht |ht−1,θ). (5)

The component log-densities are

ln f (yt |ht ,θ) =−
1

2
ln(2πσ2

ξ)−
ht

2
−

y2
t

2σ2
ξ
eht

,

ln f (h1 |θ) =−
1

2
ln(2πσ2

η)+
1

2
ln(1−δ2)−

1−δ2

2σ2
η

h2
1

11Shephard (1994) proposed a SV-type model for which this integral can be calculated. His model contains a random

walk in volatility equation and thus similar to model (1) with δ= 1.
12Do not be misled by the similarity with the terminology used in a Bayesian inference on θ. For the Bayesian

approach p.d.f. f (θ) describes the prior distribution of θ and f (θ |y) describes the posterior distribution of θ given

some data y.
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and

ln f (ht |ht−1,θ) =−
1

2
ln(2πσ2

η)−
1

2σ2
η

(ht −δht−1)2.

Using these we write the log-density of complete data:

ln f (y,h|θ) =−
T

2
ln(2πσ2

ξ)−
1

2

T
∑

t=1

(

ht +
y2

t

σ2
ξ
eht

)

−
T

2
ln(2πσ2

η)+
1

2
ln(1−δ2)−

1

2σ2
η

[

(1−δ2)h2
1 +

T
∑

t=2

(ht −δht−1)2

]

(6)

2 Estimation using a Gaussian approximation for f (h|y,θ)

In this essay we consider only Gaussian approximations for f (h|y,θ). Such approximations are the

simplest and most widely used. Other approximations (for example, those employing the Student’s

t distribution) can be treated by analogy with Gaussian ones.

If g (h|y,θ) is a Gaussian approximating density then ln g (h|y,θ) is quadratic in h by the proper-

ties of the multivariate normal distribution. This allows to find g (h|y,θ) without knowing f (h|y,θ).

By writing ln f (h|y,θ) = ln f (y,h|θ)−ln f (y|θ) one can see that only the log-density of the complete

data ln f (y,h|θ) is needed to find an approximation, because the log-likelihood ln f (y|θ) does not

depend on h.

Let ln fa(y,h|θ) be some approximation to ln f (y,h|θ) which is quadratic in h. Such an approx-

imation can be written as

ln fa(y,h|θ) = u(y)+h⊺v(y)−
1

2
h⊺W(y)h,

where u(y), 1×1, v(y), T ×1, W(y), T ×T are some functions of y only. We assume that g (h|y,θ) is

multivariate normal with mean h̄(y) and covariance matrix Σ(y). Then the log-density is given by

ln g (h|y,θ) =−
T

2
ln(2π)−

1

2
ln

∣

∣Σ(y)
∣

∣−
1

2
(h− h̄(y))⊺Σ−1(y)(h− h̄(y)).

Equating the coefficients for the second-order and first-order terms we obtain Σ(y) = W−1(y),

h̄(y) = W−1(y)v(y). Thus,

ln g (h|y,θ) =−
T

2
ln(2π)+

1

2
ln

∣

∣W(y)
∣

∣−
1

2
(h−W−1(y)v(y))⊺W(y)(h−W−1(y)v(y))

=−
T

2
ln(2π)+

1

2
ln

∣

∣W(y)
∣

∣−
1

2
v(y)⊺W−1(y)v(y)+h⊺v(y)−

1

2
h⊺W(y)h

(Obviously, this approximation will work only if W(y) is symmetric and positive definite).

Then an approximation for ln f (y|θ) is given by

ln fa(y|θ) = ln fa(y,h|θ)− ln g (h|y,θ)

following the analogy with the

ln f (y|θ) = ln f (y,h|θ)− ln f (h|y,θ)

identity. So the approximate log-likelihood function is

ℓa(θ;y) = ln fa(y|θ) = u(y)+
T

2
ln(2π)−

1

2
ln

∣

∣W(y)
∣

∣+
1

2
v(y)⊺W−1(y)v(y).
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The idea of a Gaussian approximation is very general and it has to be elaborated upon to make

it applicable to the case of the SV model. For the basic SV model distribution of h|θ is already a

multivariate normal one so that ln f (h|θ) is quadratic in h. Consequently, we only need quadratic

approximations of ln f (yt |ht ,θ) with respect to ht .

Suppose that

ln f (yt |ht ,θ) = At + A0
t ht + A00

t h2
t +Rt (ht ; yt ,θ),

where At , A0
t , A00

t are coefficients.13 We replace ln f (yt |ht ,θ) in (5) by

ln fa(yt |ht ,θ) = At + A0
t ht + A00

t h2
t (7)

to get a quadratic approximation for ln f (y,h|θ). Combining powers of h1, . . . ,hT we can write the

approximation as14

ln fa(y,h) =
T
∑

t=1

(B 0
t ht +B 00

t h2
t +B 01

t ht ht−1)+B. (8)

The formulas connecting coefficients B 0
t , B 00

t and B 01
t with A0

t and A00
t are given in Appendix A.

Then quadratic approximation for log-density of h|y has a form similar to (8):

ln g (h|y,θ) =
T
∑

t=1

(B 0
t ht +B 00

t h2
t +B 01

t ht ht−1)+ const .

It is possible to decompose a multivariate distribution g (h|y,θ) into a chain of conditional uni-

variate distributions as follows:

g (h|y,θ) =
T
∏

t=1

g (ht |h1, . . . ,ht−1,y,θ).

Since only terms with ht ht−k for k = 0 and k = 1 are present, the decomposition is simply

g (h|y,θ) =
T
∏

t=1

g (ht |ht−1,y,θ),

where ht |ht−1,y ∼ N (Kt +Lt ht−1, Mt ), t = 1, . . . ,T for some coefficients Kt , Lt , Mt (with L1 = 0).

This is a time-inhomogeneous Markov chain or AR(1) process. The elementary univariate densi-

ties are given by

ln g (ht |ht−1,y,θ) =−
1

2
ln(2πMt )−

1

2Mt
(ht −Kt −Lt ht−1)2. (9)

Approximate Gaussian log-density is the sum of logarithms of these elementary densities:

ln g (h|y,θ) =−
T

2
ln(2π)−

1

2

T
∑

t=1

ln(Mt )−
1

2

T
∑

t=1

1

Mt
(ht −Kt −Lt ht−1)2. (10)

From this we obtain an approximate log-likelihood (see Appendix A):

ℓa(θ;y) = B +
T

2
ln(2π)+

1

2

T
∑

t=1

ln(Mt )+
1

2

T
∑

t=1

K 2
t

Mt
(11)

13The notation for coefficients is a bit strange at first glance, but it is mnemonic and allows to economize on symbols.
14We accept a non-strict notation for the terms corresponding to t = 1 (and t = T ). Any term containing ht−1 for t = 1

(or ht+1 for t = T ) should be removed and the corresponding coefficient should be equated to zero. Also f (ht |ht−1)

for t = 1 is just f (h1).
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or

ℓa(θ;y) =
T
∑

t=1

At −T lnση+
1

2
ln(1−δ2)+

1

2

T
∑

t=1

ln(Mt )+
1

2

T
∑

t=1

K 2
t

Mt
. (12)

One can be also interested in an estimate of h given the observable data y. It is easy to compute

the mean h̄ = h̄(y) of an approximating distribution g (h|y,θ) (which is also the median and the

mode by the properties of multivariate normal distributions). This “smoothed” h can be obtained

by the following recursion

h̄1 = K1, h̄t = Kt +Lt h̄t−1, t = 2, . . . ,T. (13)

Similarly estimates of the variance of ht are given by

s2
h,1 = M1, s2

h,t = Mt +L2
t s2

h,t−1, t = 2, . . . ,T. (14)

Assuming the log-normal distribution eht ∼ L N (h̄t , s2
h,t

) we can also obtain approximate the

smoothed conditional variance as15

E[σ2
ξeht |y,θ] ≈ σ̄2

t =σ2
ξ exp(h̄t + s2

h,t /2). (15)

More generally, the chain of univariate Gaussian distributions N (Kt +Lt ht−1, Mt ) can be consid-

ered as a simple “smoother”.16

3 Gaussian approximation for ln(χ2
1) and QML estimation

We can square yt in (1) and take logarithms. Then

ln(y2
t ) = lnσ2

ξ+ht + ln(ξ2
t ).

Since ξt is standard normal it follows that ln(ξ2
t ) ∼ ln(χ2

1). The mean and variance of ln(χ2
1) distri-

bution are17
C ≈−1.27036 and π2/2. Thus, we can write this equation as

ln(y2
t ) = lnσ2

ξ+C +ht +ωt , (16)

where ωt = ln(ξ2
t )−C . This together with

ht = δht−1 +σηηt

makes up a linear state-space model.18 The only problem with it is that the error ωt is not Gaus-

sian. Consequently it is not possible to write out the exact likelihood function.

Harvey et al. (1994) suggest using the quasi maximum likelihood (QML) method to estimate

the model (see also Scott (1987), Nelson (1988)). The QML method approximates the distribution

of ωt = ln(ξ2
t )−C by N (0,π2/2). Thereby the SV model is approximated by a linear Gaussian state-

space model. The approximation is not very accurate, as ln(χ2
1) has a thick left tail and thin right

tail (see Figure 4).

For another illustration of the approximation we turn to generated data.

Example 3 (continued). We take the realization of SV process from Figure 3. In Figure 5 both

ht +lnσ2
ξ

and ln(y2
t )−C = ht +lnσ2

ξ
+ωt are plotted. The log-volatility ht +lnσ2

ξ
is an AR(1) process

while ln(y2
t )−C is an AR(1) plus noise process. The noise ωt is not Gaussian which shows up in a

disproportional number of “negative outliers” in the plot.

15Alternatively the smoothed value of conditional variance can be defined as σ̄2
t =σ2

ξ
exp(h̄t ) which corresponds to

a geometric mean rather than an arithmetic mean.
16The method is equivalent to a more widely known Kalman smoother, but its computation omits an additional

Kalman filtering step.
17More exactly, C =ψ(1/2)− ln(1/2) where ψ(·) is the digamma function.
18It is also possible to rewrite this as the ARMA(1, 1) model for ln(y2

t ).
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Figure 4: Densities of ln(χ2
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Figure 5: Log-volatility ht + lnσ2
ξ

and ln(y2
t )−C for Example 3, illustration of QML.

The quasi log-likelihood for (ln(y2
1), . . . , ln(y2

T )) can be defined similarly to (3) in the linear model

(2):

ℓQ (θ) =−
T

2
ln(2π)−

1

2
ln|Σ(θ)|−

1

2
z(θ)

⊺

Σ
−1(θ)z(θ).

HereΣ(θ) is the covariance matrix of (ln(y2
1), . . . , ln(y2

T )) and z(θ) consists of zt = ln(y2
t )− lnσ2

ξ
−C .

Harvey et al. (1994) employ Kalman the filter technique to do the calculations. Here we show

how to obtain the QML estimates by assuming that ln(ξ2
t ) is approximately normally distributed

without writing out the full Kalman filter equations.

We do not need the error component corresponding to ξt to have a zero mean so we write

simply

ln(y2
t ) = lnσ2

ξ+ht +εt

where εt = ln(ξ2
t ) . The exact distribution of εt = ln(ξ2

t ) is given by the density function

f (εt ) =
1

p
2π

exp

(

1

2
εt −

1

2
eεt

)

and is approximated by N (µε,σ2
ε) where µε =C ≈−1.27036 and σ2

ε =π2/2. Thus,

ln f (ln(y2
t )|ht ,θ) = ln f (εt ) =−

1

2
ln(2π)+

1

2
εt −

1

2
eεt ≈−

1

2
ln(2πσ2

ε)−
1

2σ2
ε

(εt −µε)2

or

ln f (ln(y2
t )|ht ,θ) ≈−

1

2
ln(2πσ2

ε)−
1

2σ2
ε

(ln(y2
t )−ht −2lnσξ−µε)2

The link between densities of yt and ln(y2
t ) (conditional on ht ) is given by

f (ln(y2
t )|ht ,θ) = f (yt |ht ,θ) ·

∣

∣yt

∣

∣ .
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So we can write

ln f (yt |ht ,θ) = ln f (ln(y2
t )|ht ,θ)−

ln(y2
t )

2
≈−

1

2
ln(2πσ2

ε)−
1

2σ2
ε

(ln(y2
t )−ht −2lnσξ−µε)2 −

ln(y2
t )

2

=−
1

2
ln(2πσ2

ε)−
1

2σ2
ε

(ln(y2
t )−2lnσξ−µε)2 −

ln(y2
t )

2
+

1

σ2
ε

(ln(y2
t )−2lnσξ−µε)ht −

h2
t

2σ2
ε

.

In terms of (7) we have

At =−
1

2
ln(2πσ2

ε)−
1

2σ2
ε

(ln(y2
t )−2lnσξ−µε)2 −

ln(y2
t )

2
,

A0
t =

1

σ2
ε

(ln(y2
t )−2lnσξ−µε),

A00
t =−

1

2σ2
ε

.

The QML estimates are obtained by maximizing (12) with respect to parameters θ.19

A practical difficulty with the method is that y2
t for real data can have an excessive proportion

of observations which are close to zero (or equal to zero if the values are rounded or if holidays are

not accounted for). For such observations (so-called inliers) ln(y2
t ) would assume large negative

values (or would be undefined). To cope with the difficulty, one can simply truncate small values

of y2
t by replacing y2

t with max{y2
t ,αs2

y } were α is a small positive number and s2
y is the sample

mean of y2
t (e.g. see Sandmann & Koopman (1998)). Breidt & Carriquiry (1996) propose to replace

y2
t with

ln(y2
t +λs2

y )−λs2
y /(y2

t +λs2
y )

for a small positive λ. Their choice for λ is 0.005. They show that the transformation reduces the

excess kurtosis and improves the performance of the QML estimator.

From QML we can obtain a smoothed value of h. Suppose that Kt , Lt and Mt correspond to the

QML approximation. Then we can use E(h|y) ≈ h̄(y), where h̄(y) is given by (13). This estimator is

the best mean-square linear predictor of h in terms of {ln(y2
t )}.

By means of Kalman filter one can obtain a decomposition of the quasi log-likelihood function:

ℓQ (θ) =
T
∑

t=1

ℓQt (θ). (17)

It can be demonstrated that for each t

E[∇θℓQt (θ)] = 0.

This representation shows that the QML estimator can be viewed as a particular case of the gener-

alized method of moments estimator. This suggests consistency and asymptotic normality of the

QML estimator.

The most intricate aspect of the QML approach to SV modeling is obtaining the covariance

matrix and the standard errors of QML estimates θ̂Q . We cannot just use the minus inverse Hessian

(−Ĥ−1
Q ) of the quasi log-likelihood ℓQ (θ), where

ĤQ =∇2
θℓQ (θ)|θ=θ̂Q

,

19It was suggested to include σ2
ε in θ and estimate it along with the other parameters rather than fixing it at the

known value σ2
ε = π2/2. The purpose is to improve the small-sample properties of the estimates. See Jungbacker &

Koopman (2009).
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as an estimator of the covariance matrix which is usual for the maximum likelihood estimation. It

is inconsistent. The literature on extremum estimators (including the literature on QML estima-

tors; see White (1984)) suggests that asymptotic distribution of θ̂Q is given by

p
T (θ̂Q −θ) ∼N (0, (H ∞

Q )−1
I

∞
Q (H ∞

Q )−1), (18)

where H
∞
Q is the asymptotic expected Hessian

H
∞
Q =H

∞
Q (θ) = lim

T→∞

1

T
H

T
Q (θ), H

T
Q (θ) =E[∇2

θℓQ (θ)]

and I
∞

Q is the asymptotic information matrix

I
∞

Q =I
∞

Q (θ) = lim
T→∞

1

T
I

T
Q (θ),

I
T

Q (θ) =Varθ[∇θℓQ (θ)] =Eθ[∇θℓQ (θ)∇
⊺

θℓQ (θ)].

For the genuine maximum likelihood we have the information matrix identity I
T

Q (θ) = −H
T
Q (θ)

and its asymptotic variant I
∞

Q = −H
∞
Q . For QML this is no more true and we get a sandwich

covariance matrix which is typical for misspecified models.

Several estimators of H
∞
Q and I

∞
Q are available. A straightforward (but computationally in-

tensive) method is to use H
T
Q (θ̂Q ) and I

T
Q (θ̂Q ) where the expectations should be approximated

by Monte Carlo simulations.

Another way is to use the “spectral” approximations to H
T
Q (θ̂Q ) and I

T
Q (θ̂Q ) which can be ob-

tained analytically, but require a rather tedious derivation. See Appendix B for the final expressions

without intermediate calculations. (The derivation is available from the author upon request.)

By passing to the limit in the spectral approximations one can obtain the analytical expres-

sions for H
∞
Q (θ) and I

∞
Q (θ). This allows to use H

∞
Q (θ̂Q ) and I

∞
Q (θ̂Q ) as estimates of H

∞
Q and

I
∞

Q . Formulas for H
∞
Q (θ) and I

∞
Q (θ) are given in Ruiz (1994), but she uses a slightly different

parametrization of the SV model.

Another way to estimate I
∞

Q is to use (17) to write

I
T

Q (θ) =
T
∑

s=1

T
∑

t=1
E(∇θℓQs(θ)∇

⊺

θℓQt (θ)).

Taking into account this representation we can write the following asymptotic estimate:

I
∞

Q ≈
1

T

T
∑

s=1

T
∑

t=1

k
( |t − s|

L+1

)

∇θℓQs(θ̂Q )∇
⊺

θℓQt (θ̂Q ),

where k(z) is a kernel function which is usually chosen in such a way that k(0) = 1 and k(z) = 0 for

|z| > 1 and L is lag truncation parameter. A popular kernel20 is the Bartlett kernel defined as

k(z) =
{

1−|z|, |z| ≤ 1,

0, otherwise.

This way of estimating I
∞

Q is naturally complemented by a simple Hessian estimator of H
∞
Q :

H
∞
Q ≈

1

T
ĤQ .

20See Andrews (1991) for a discussion of the estimator and examples of other popular kernels.
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Figure 6: (a) The smoothed value of conditional variance from QML estimates, Example 2, (b) the smoothed

value, an approximate confidence band and the actual conditional variance, Example 3. (Logarithmic axes

are used for the conditional variance).

Table 1: QML estimates

Example 2 Example 3 Example 3, simulation

estimates std. err. estimates true values std. err. mean RMSE mean std.err.

δ 0.9889 0.0092 0.9732 0.9800 0.0209 0.9370 0.0844 0.0401

ση 0.0934 0.0345 0.1901 0.2000 0.0735 0.2709 0.1403 0.1037

σξ 0.6654 0.0725 0.8036 1.000 0.1117 1.0349 0.2246 0.1354

The derivatives needed to obtain the estimates of covariance matrix can be evaluated numerically.

Example 2 (continued). We programmed21 the QML method in the Ox programming lan-

guage.22 The approximate log-likelihood function was maximized using the BFGS algorithm im-

plementation built-in in Ox. Figure 6(a) shows the smoothed value of the conditional variance σ̄2
t

based on the QML estimate for exchange rates (see (15) above). The left part of Table 1 shows the

estimates and their standard errors (based on the “spectral” estimator of covariance matrix). Note

that the proximity of the estimated δ to 1 where the quasi likelihood functions has a singularity

can lead to serious distortions in the standard errors for short series.

Example 3 (continued). The central part of Table 1 shows the QML estimates for the realization

of the SV process from Figure 3. The right part of the table reports the root mean squared errors

(RMSE) for the QML estimator. The RMSEs were estimated from 1000 Monte Carlo simulations

with the same true values of the parameters. Figure 6(b) compares the smoothed conditional vari-

ance based on the QML estimates σ̄2
t with actual one. An approximate pointwise confidence band

based on σ̂2
ξ

exp(h̄t ±1.64sh,t ) is also shown (see (13) and (14)) which would correspond to the 0.05

and 0.95 quantiles if the QML approximation for the posterior distribution were correct. Here σ̂2
ξ

is the QML estimate of σ2
ξ

and h̄t , s2
h,t

, σ̄2
t are given by (13), (14) and (15).

4 Quadratic expansion around the mode. Laplace’s approxima-

tion

A natural method of finding a Gaussian approximation of ln f (h|y,θ) is to use the second-order

Taylor expansion of λ(h) = ln f (y,h|θ) around some point h∗:

λ(h) ≈∇λ(h∗)⊺(h−h∗)+
1

2
(h−h∗)⊺∇2λ(h∗)(h−h∗)+ const ,

where ∇λ(h) is the gradient and ∇2λ(h) is the Hessian matrix of λ(h).

21The source code of all the programs for this essay is available from the author.
22Doornik (2009). A free Ox Console version can be downloaded from http://www.doornik.com/download.html.
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Recall that the log-density of yt |ht ,θ is

ln f (yt |ht ,θ) =−
1

2
ln(2πσ2

ξ)−
ht

2
−

y2
t

2σ2
ξ
eht

,

To get the quadratic approximation of ln f (yt |ht ,θ) as a function of ht it is necessary to approxi-

mate e−ht . The second-order expansion of e−ht around h∗
t is given by

e−ht ≈ e−h∗
t

(

1−ht +h∗
t +

1

2
(ht −h∗

t )2

)

.

Thus, we write

ln fa(yt |ht ,θ) =−
1

2
ln(2πσ2

ξ)−
1

2

(

ht + ỹ2
t

(

1−ht +h∗
t +

1

2
(ht −h∗

t )2

))

=−
1

2
ln(2πσ2

ξ)−
ỹ2

t

2

(

1+h∗
t +

1

2
h∗2

t

)

+
(

ỹ2
t

2

(

1+h∗
t

)

−
1

2

)

ht −
ỹ2

t

4
h2

t ,

where

ỹ2
t =

y2
t

σ2
ξ
eh∗

t

.

In terms of (7) we have

At =−
1

2
ln(2πσ2

ξ)−
ỹ2

t

2

(

1+h∗
t +

1

2
h∗2

t

)

,

A0
t =

ỹ2
t

2

(

1+h∗
t

)

−
1

2
,

A00
t =−

ỹ2
t

4
.

Davis & Rodriguez-Yam (2005), Shimada & Tsukuda (2005) suggest using the mode ĥ of the

posterior distribution h|y,θ as h∗. Although the p.d.f. f (h|y,θ) is not directly known, the propor-

tionality (4) allows to acquire the mode by maximizing f (y,h|θ) with respect to h:

ĥ = argmax
h

f (h|y,θ) = argmax
h

f (y,h|θ).

The idea of such an approximation can be found in Durbin & Koopman (1997). See also Meyer

et al. (2003).

There is a simple iterative algorithm for finding ĥ. Suppose that we have an approximate mode

h∗. We already considered a quadratic expansion of ln f (y,h|θ) as a function of h. The expansion

of λ(h) = ln f (y,h|θ) around h∗ is given by

ln f (y,h|θ) ≈∇λ(h∗)⊺(h−h∗)+
1

2
(h−h∗)⊺∇2λ(h∗)(h−h∗)+ const .

Then the next approximation for the mode, h∗∗, is the maximum of this quadratic function:

h∗∗ = h∗−
(

∇2λ(h∗)
)−1∇λ(h∗).

This is the classical Newton’s method of nonlinear optimization (see Nocedal & Wright, 2006). If

the current step does not give an improvement, that is, if λ(y,h∗∗) < λ(y,h∗) then a new approxi-

mate value of the mode can be obtained by a line search over h∗+α(h∗∗−h∗).
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It is not necessary to invert the T ×T Hessian matrix ∇2λ(h∗) directly. Note that the Hessian is a

band (tridiagonal) matrix. The step h∗∗−h∗ is found as the solution of a system of linear equations

∇2λ(h∗)(h∗∗−h∗) =−∇λ(h∗),

which is simple for a tridiagonal symmetric matrix ∇2λ(h∗). Actually, we already have all necessary

data to solve the system. From h∗ we get Kt , Lt , Mt . Then the next approximation h∗∗ can be

constructed recursively from the modes of N (K1, M1) and N (Kt +Lt h∗∗
t−1, Mt ), t = 2, . . . ,T . That is

h∗∗
1 = K1, h∗∗

t = Kt +Lt h∗∗
t−1, t = 2, . . . ,T. (19)

(Here we skip the derivation of these formulas from that of the Newton’s method. It is an ordinary,

but a bit lengthy exercise.)

For the typical data several iterations of the Newton’s algorithm are enough. In order to control

the convergence we can inspect

∇λ(h∗)⊺
(

∇2λ(h∗)
)−1∇λ(h∗)/T =−∇λ(h∗)⊺

(

h∗∗−h∗)

/T.

If it is close to zero (say, less than 10−12) then the iterations can be stopped. The gradient ∇λ(h)

can be found, for example, by differentiating (8) with respect to h. An element of ∇λ(h) is given by

B 0
t +2B 00

t ht +B 01
t ht−1 +B 01

t+1ht+1.

Davis & Rodriguez-Yam (2005), Shimada & Tsukuda (2005) do not prove statistical properties

of their estimator. However, empirical examples show that the method can give estimates which

are quite close to the exact maximum likelihood estimates, as reported in Davis & Rodriguez-Yam

(2005), Shimada & Tsukuda (2005) and Skaug & Yu (2007).

The method is very similar to the Laplace’s approximation (LA; it is also known as saddle-point

approximation). The Laplace’s method is used for an approximate evaluation of integrals of the

form
∫

eM f (x)dx.

We assume that f (x) is a vector-function with a unique global maximum at x̂ and x is a n×1 vector.

Point x̂ is characterized by the first-order condition ∇ f (x̂) = 0. The function f (x) is approximated

by the second-order expansion around x̂:

f (x) ≈ f (x̂)+∇ f (x̂)(x− x̂)+
1

2
(x− x̂)⊺∇2 f (x̂)(x− x̂) = f (x̂)+

1

2
(x− x̂)⊺∇2 f (x̂)(x− x̂).

Accordingly, the integral is approximated by

∫

eM f (x)dx ≈ eM f (x̂)

∫

exp

(

M

2
(x− x̂)⊺∇2 f (x̂)(x− x̂)

)

dx.

The integral in the right-hand side is closely related to the probability density function of the mul-

tivariate normal distribution N

(

x̂,−
(

M∇2 f (x̂)
)−1

)

. Knowing that the integral of the density is one,

we can write
∫

eM f (x)dx ≈
(

2π

M

)n/2
∣

∣−∇2 f (x̂)
∣

∣

−1/2
eM f (x̂).

The Laplace’s approximation is valid asymptotically as M →∞.

It is clear that the above argument is not applicable to SV model. There is no multiplier similar

to M which can be assumed to be “sufficiently large” to allow an asymptotic justification of the

Laplace’s approximation. It is wise therefore to be a bit cautious when using this estimator, as its

bias would not vanish in large samples. Davis & Rodriguez-Yam (2005) propose to use a bootstrap

to reduce the bias.
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Figure 7: The smoothed value of the conditional variance from the Laplace’s approximation (solid) and the

QML estimates (dotted), Example 2.

Table 2: Estimates for the Laplace’s approximation method

Example 2 Example 3 Example 3, simulation

estimates std. err. estimates true values std. err. mean RMSE mean std.err.

δ 0.9750 0.0122 0.9613 0.9800 0.0180 0.9653 0.0361 0.0186

ση 0.1632 0.0363 0.2397 0.2000 0.0486 0.2120 0.0538 0.0495

σξ 0.6360 0.0685 0.8031 1.0000 0.1106 1.0133 0.2167 0.1731

The covariance matrix of the estimates based on the Laplace’s method can be approximated by

the minus inverse Hessian as is common in the maximum likelihood estimation. Of course, con-

sistency of this estimator cannot be assured. Judging from the results of the theory of extremum

estimators it can be conjectured that there should be asymptotic normality similar to (18):

p
T (θ̂L A −θ∗

L A) ∼N (0, (H ∞
L A)−1

I
∞

L A(H ∞
L A)−1),

where I
∞

L A and H
∞
L A are defined similarly to I

∞
Q and H

∞
Q and θ∗

L A is the pseudo-true value of

the parameters vector. The finite-sample analogues, I
T

L A and H
T
L A, can be straightforwardly es-

timated by Monte Carlo. This would provide a consistent estimator of covariance matrix. An-

other possibility is to estimate the covariance matrix using a bootstrap (see Davis & Rodriguez-Yam

(2005)).

Example 2 (continued). Figure 7 shows the smoothed value of the conditional variance based

on the Laplace’s approximation estimate for the exchange rates data. The left part of Table 2 shows

the estimates and their standard errors (based on the minus inverse Hessian).

Example 3 (continued). The central part of Table 2 shows the Laplace’s approximation esti-

mates for the realization of the SV process from Figure 3. The right part of the table reports the

root mean squared errors for the estimator based on the Laplace’s approximation. The RMSEs

were estimated from 1000 Monte Carlo simulations with the same true values of the parameters.

The RMSEs are lower than the RMSEs for the QML estimator.

5 Simulation-based likelihood approximation

5.1 Introduction

The maximum likelihood method has clear advantages in the case of the SV model as the proba-

bility distribution of the data is fully specified by the assumptions of the model. The maximum

likelihood is a classical and well-understood method for which a rich theory and a battery of

useful procedures are available. However, it requires resorting to computer-intensive techniques.

With steady increase of computer power computer-intensive techniques become more practica-

ble, thus making the maximum likelihood a method of choice for stochastic volatility modeling.
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To apply numerical optimization algorithms to the problem of finding the (arg)maximum of

the likelihood one needs a method to evaluate the likelihood for a given value of parameters vector

θ. To evaluate a multidimensional integral

L(θ;y) = f (y|θ) =
∫

f (y,h|θ)dh

one needs numerical integration algorithms. Ordinary deterministic algorithms of numerical in-

tegration are not very suitable for multidimensional integrals due to the “curse of dimensionality”.

Consequently, the most practical family of algorithms is based on Monte Carlo simulations. Esti-

mators of θ which are defined as solutions to

LMC (θ;y) → max
θ

,

where LMC (θ;y) is a Monte Carlo approximation to the likelihood function L(θ;y) are called simu-

lated maximum likelihood (SML) or Monte Carlo maximum likelihood estimators.

Monte Carlo methods were introduced to the SV literature by Danielsson & Richard (1993),

Danielsson (1994), Shephard (1993). Simulation-based likelihood approximations were first de-

veloped in Danielsson & Richard (1993), Danielsson (1994). Other important contributions to the

classical (non-Bayesian) simulation-based maximum likelihood approach are Durbin & Koopman

(1997), Shephard & Pitt (1997), Sandmann & Koopman (1998), Durbin & Koopman (2000), Liesen-

feld & Richard (2003), Durham (2006). For the Bayesian approach to the SV model see Jacquier

et al. (1994), Shephard & Pitt (1997), Kim et al. (1998), Durbin & Koopman (2000), Meyer & Yu

(2000), Chib et al. (2002), Hautsch & Ou (2008).23

5.2 Monte Carlo integration and importance sampling explained

The basic idea of the Monte Carlo integration is that an integral

I =
∫

f (x)dx

can be rewritten as

I =
∫

f (x)

µ(x)
µ(x)dx =Eµ

f (x)

µ(x)
=Eµ v(x),

where µ(x) is the p.d.f. of some suitable distribution (called a proposal distribution24), Eµ is the

expectation taken under the assumption that x ∼µ(x) and

v(x) = f (x)/µ(x).

It is assumed that µ(x) is known in a closed form and there exist efficient methods of generation

(pseudo-)random variables from µ. Given a sample of size S of random variables xs ∼µ(x) we can

compute a Monte Carlo approximation to I as

I =Eµ v(x) ≈
1

S

S
∑

s=1

v(xs)

or

I ≈ v̄ ,

23In fact, almost all of the techniques described in this essay can be adapted to the Bayesian inference after suit-

able modifications. The widespread use of MCMC methods (see footnote 36) for Bayesian computations is explained

mostly by historical reasons. The importance sampling is no less adequate for the task, but it is possibly more intuitive

due to a simpler probability theory used.
24Other terms are instrumental distribution, importance distribution, importance sampler or just sampler.
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where v̄ is the arithmetic mean of S values v s = v(xs) = f (xs)/µ(xs). (Below we write xs
 µ(x) to

show that independent random variables xs , s = 1, . . . ,S are to be generated according to a distri-

bution with the density µ(x)).

This approximation is based on the Law of large numbers from which it follows that v̄ con-

verges almost surely to I . Of course, there is no guarantee that this approximation would be good

for an arbitrary µ(x) unrelated to f (x). The values of v s in Monte Carlo samples can be too differ-

ent, some very small and some very large, but rare, which makes the sample mean a poor estimate.

In probabilistic terms, there is no guarantee that v̄ has a finite variance. Note that

Var v̄ =
1

S2

S
∑

s=1

Varv s =
1

S
Varµ v(x).

It is advisable to choose µ for which the variance Varµ v(x) (and hence Varµ v̄) is finite and low.

In practice a badly chosen proposal distribution would show up in the problems with the speed

of convergence of v̄ to the limit I . As S goes to infinity one would see from time to time extremely

large values of v s = f (xs)/µ(xs) which would lead to leaps in v̄ .

The minimal variance of v̄ is attained when f (x) and µ(x) are proportional so that v(x) does

not depend on x. In this case Varµ v̄ = 0 and I = v̄ with probability one. This seems paradoxical.

Explanation of this seeming paradox is that if we know exactly a density function µ(x) such that

µ(x) ∝ f (x) then f (x) = µ(x)I (because by definition
∫

µ(x)dx = 1) which would mean that I is

known.

It follows that a good proposal density µ(x) should be approximately proportional to f (x) (as-

suming that f (x) is non-negative). A good approximation would lead to a small Monte Carlo vari-

ance and a fast root-S convergence of v̄ to I . A bad approximation would lead to a large Monte

Carlo variance even for large S and lack of convergence of v̄ to I .

The importance sampling (IS) is a particular case of Monte Carlo integration which refers to

the situation when the integral I to be evaluated is represented from the start in the form of the

expectation of some function τ(x) with x distributed according to some p.d.f. π(x), that is,

I =
∫

τ(x)π(x)dx =Eπτ(x).

There is no guarantee that the direct approximation

I ≈
1

S

S
∑

s=1

τ(xs) with xs
 π(x)

would be accurate enough. The reason is the same as was set forth for the general Monte Carlo

integration. A suitable choice of the proposal distribution µ(x) can improve the accuracy. The

integral is written as

I =
∫

τ(x)W (x)µ(x)dx =Eµτ(x)W (x),

where W (x) =π(x)/µ(x). Then the new approximation is

I ≈
1

S

S
∑

s=1

τ(xs)W (xs) with xs
 µ(x).

This is a weighted average with weights W s = W (xs) (called the importance weights). Note that

in general the weights are unnormalized; they do not sum to one. It is also possible to use the

normalized importance weights

w s =
W s

∑S
k=1

W k
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so that

I ≈
∑S

s=1τ(xs)W s

∑S
s=1 W s

=
S
∑

s=1

τ(xs)w s with xs
 µ(x).

For the importance sampling to provide good accuracy the proposal distribution should be

chosen in such a way that its p.d.f.µ(x) is approximately proportional to τ(x)π(x). This should work

for positive25 functions τ(x). When µ(x) is approximately proportional to τ(x)π(x) the function

τ(x)W (x) is approximately constant and the variance of the Monte Carlo estimator is small.

Another use of the importance sampling applies to the case where the p.d.f. π(x) is known only

in an unnormalized form, that is, only Π(x) is known where Π(x) = Cπ(x) and C is an unknown

constant given by C =
∫

Π(x)dx. The goal is to estimate I =Eπτ(x). One can write I as

I =
∫

τ(x)Π(x)dx
∫

Π(x)dx
=

∫

τ(x)W (x)µ(x)dx
∫

W (x)µ(x)dx
,

where W (x) =Π(x)/µ(x). The importance sampling approximation for I is the same as above:

I ≈
∑S

s=1τ(xs)W s

∑S
s=1 W s

=
S
∑

s=1

τ(xs)w s with xs
 µ(x),

with26

w s =
W s

∑S
k=1

W k
=

Π(xs)/µ(xs)
∑S

k=1
Π(xk )/µ(xk )

.

When τ(x) does not vary much, a good choice of the proposal distribution would ensure that

all the weights w s are approximately the same (about 1/S) so that {xs} represent approximately an

equally weighted sample from π(x).

If integrals should be estimated for a set of different functions τ(x) it would be time-consuming

to adapt µ(x) to each new function. Suppose that the corresponding expectations do exist and the

IS estimates have low enough variances when π(x) is used directly as µ(x) (if π(x) were known).

Then it would be natural to fit µ(x) to Π(x). A popular sample characteristic of the quality of such

approximation (given a sample xs
 µ(x) with weights w s) is the effective sample size

ESS =
1

∑S
s=1(w s)2

.

When all of the weights w s are 1/S one has ESS = S. If ESS ≪ S then µ(x) is a poor approximation

to π(x).27 (One can also use the coefficient of variation for w s , the variance of ln w s , the entropy

and other accuracy measures.)

Additional information about Monte Carlo integration and importance sampling can be found

in Evans & Swartz (1995), Gentle (2003), Rubinstein & Kroese (2008).

25For functions which are sometimes negative and sometimes positive µ(x) should be chosen approximately pro-

portional to |τ(x)|π(x). However, this would not make the variance of the Monte Carlo estimator close to zero.
26There is a minor technical point in computing the normalized importance weights. The weights can be quite huge

in some situations. So it is better to obtain them in logarithmic form as lnW s = lnΠ(xs )− lnµ(xs ). Then one can find

the largest weight W L and use the following formula for the normalized weights:

w s =
exp(lnW s − lnW L)

∑S
k=1

exp(lnW k − lnW L)

to avoid an arithmetic overflow (or underflow).
27If ESS ≪ S then empirical ESS as given in the text is also a poor estimator of the theoretical effective sample size

(which we don’t define here). Thus, it is hard to decide which of two poor proposal distributions is better on the basis

of empirical ESS values.
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5.3 Monte Carlo integration for SV model

Monte Carlo integration for dynamic models with unobserved components like the SV model

comprises simulation of several trajectories for the unobserved dynamic components. In the case

of the SV model a typical Monte Carlo method uses a sample h1, . . . ,hS of trajectories generated

according to some distribution which resembles the posterior distribution h|y.

For the SV model a crude (“brute force”) approach to Monte Carlo evaluation of f (y|θ) is to use

f (y|θ) =
∫

f (y,h|θ)dh =
∫

f (y|h,θ) f (h|θ)dh =E f (h|θ) f (y|h,θ).

This gives a crude approximation

f (y|θ) ≈
1

S

S
∑

s=1

f (y|hs ,θ)

with hs
 f (h|θ). However, this direct approach is not usable. Even for enormous number of

simulations S the approximation would be inaccurate.

To get a better Monte Carlo approximation we can use some other proposal density g (h|y,θ):

f (y|θ) =
∫

f (y,h|θ)

g (h|y,θ)
g (h|y,θ)dh =Eg

f (y,h|θ)

g (h|y,θ)
.

Denote

v(h;y,θ) =
f (y,h|θ)

g (h|y,θ)
.

Then

f (y|θ) =Eg v(h;y,θ)

and the Monte Carlo approximation for the likelihood function L(θ) = f (y|θ) is given by the corre-

sponding sample average28

LMC (θ) = v̄(y,θ) =
1

S

S
∑

s=1

v(hs ;y,θ) with hs
 g (h|y,θ). (20)

The Monte Carlo approximation for log-likelihood is then

ℓMC (θ) = ln v̄(y,θ). (21)

As was explained above, g (h|y,θ) should be chosen to be approximately proportional to f (y,h|θ) =
f (y|h,θ) f (h|θ). The ideal choice of g (h|y,θ) is f (h|y,θ) because then v(h;y,θ) is a constant equal

to f (y,h|θ)/ f (h|y,θ) = f (y|θ). However, f (h|y,θ) is no more known than f (y|θ). Therefore, the

key requirement for using Monte Carlo integration to evaluate the likelihood function is to find a

good approximation to f (h|y,θ).

Note that the problem of finding a good approximation to f (h|y,θ) should be solved anew for

each value of the parameters vector θ. Also such an approximation should depends on the avail-

able data y. We emphasized this in our notation by writing the proposal distribution as g (h|y,θ),

not simply as g (h|y) or g (h).

We can compare the use of a general proposal distribution g (h|y,θ) with the crude approach

based on prior distribution of h. Denote W (h;y,θ) = f (h|θ)/g (h|y,θ). Then f (y|θ) can be written

as

f (y|θ) =Eg

[

f (y|h,θ)W (h;y,θ)
]

.

28Some v s = v(hs ;y,θ) can be quite large to be dealt directly. When implementing the method one would prefer to

obtain the weights in the logarithmic form as ln v s = ln f (y,hs |θ)− ln g (hs |y,θ) and take precautions similar to those

described in footnote 26.
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This demonstrates that (20) is the importance sampling with respect to sampling from the prior

distribution f (h|θ). That is why in the SV literature the Monte Carlo methods of approximating

f (y|θ) by numerical integration are called importance sampling methods. However, there is no

good reason to consider the crude proposal distribution f (h|θ) as a natural one. It is not difficult

to find much better approximations to f (h|y,θ).

If the distribution g (h|y,θ) is T -dimensional normal N (µ,Σ) for some Σ = Σ(y,θ) and µ =
µ(y,θ) and ζs

 N (0T ,IT ) for s = 1, . . . ,S is a set of initial standard normal random numbers then

a Monte Carlo set of trajectories hs
 g (h|y,θ) can be obtained by

hs =µ+Σ1/2ζs ,

where Σ1/2 is some square root of Σ. (The most natural square root of Σ can be obtained by the

Cholesky decomposition). Obviously, the dimensionality of Σ can be too high which makes the

direct method unsuitable for the actual computations. However, we have a decomposition

g (h|y,θ) = g (h1 |y,θ)
T
∏

t=2

g (ht |ht−1,y,θ)

which allows to sample from g (h|y,θ) recursively using hs
1  g (h1 |y,θ), hs

t  g (ht |hs
t−1,y,θ) (t =

2, . . . ,T ) or

hs
1  N (K1, M1), hs

t  N (Kt +Lt hs
t−1, Mt ), t = 2, . . . ,T.

Given an initial standard normal random vector ζs we can obtain hs as follows:

hs
1 = K1 +ζs

1

√

M1 and hs
t = Kt +Lt hs

t−1 +ζs
t

√

Mt , t = 2, . . . ,T.

Note that LMC (θ) is to be maximized with respect to θ and that it most probably would be used

to evaluate numerical derivatives. So it is important that LMC (θ) is smooth with respect to θ. If

for each evaluation of the Monte Carlo likelihood we used a newly generated set of ζs , it would

make the maximization very troublesome due to random noise. In practice to avoid the Monte

Carlo “chatter” the same sample of initial random numbers ζ1, . . . ,ζS is used for each likelihood

evaluation. This is called the method of common random numbers.

The most popular proposal distribution in the SV literature is the one based on the Laplace’s

approximation. We will call the corresponding SML method SML-LA. It can utilize the Kalman

filter for needed calculations as in Durbin & Koopman (1997), Shephard & Pitt (1997), Sandmann

& Koopman (1998), Durbin & Koopman (2000). Alternatively, Durham (2006), Skaug & Yu (2007)

develop a direct approach utilizing the well-known properties of band matrices. Our discussion

above which utilizes a simple factorization of the multivariate Gaussian density is a convenient

reformulation of this later approach.

The simulated maximum likelihood method provides estimates which asymptotically coincide

with the maximum likelihood estimates if S grows to infinity together with T at a sufficiently fast

rate.29 Under this assumption an asymptotic approximation to the distribution of SML estimates

θ̂MC is given by

θ̂MC ∼N (θ,−Ĥ−1
MC ), (22)

where

ĤMC =∇2
θℓMC (θ̂MC ) =∇2

θℓMC (θ)|θ=θ̂MC

is the Hessian matrix of the Monte Carlo log-likelihood. However, Monte Carlo method for finite

S has an associated numerical error. In practice we have some finite S and T and would like to

estimate the size of the Monte Carlo errors in the parameters estimates.

29More specifically, the requirement is T →∞, S →∞ and
p

T /S → 0. See Gourieroux & Monfort (1997), Proposi-

tion 3.2.
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Table 3: SML-LA estimates (S = 1000)

Example 2 Example 3

estimates std. err. MC std. err. estimates true values std. err. MC std. err.

δ 0.9753 0.0121 0.00015 0.9613 0.9800 0.0180 0.00021

ση 0.1630 0.0360 0.00064 0.2417 0.2000 0.0491 0.00101

σξ 0.6363 0.0690 0.00020 0.8027 1.000 0.1112 0.00005

Table 4: SML-LA estimates, Example 3, simulation

mean true values RMSE mean std.err.

δ 0.9628 0.9800 0.0324 0.0274

ση 0.2191 0.2000 0.0539 0.0504

σξ 1.0192 1.000 0.2058 0.2049

A straightforward (but computationally demanding) way to evaluate the Monte Carlo errors is

to use the Monte Carlo method. At first several SML estimates θ̂MC for independent sets of initial

random numbers are obtained. Then the standard errors due to Monte Carlo are computed as the

standard deviations of these estimates. For example, see Liesenfeld & Jung (2000).

Durbin & Koopman (1997) propose the following approximation for the mean squared error

matrix due to Monte Carlo (that is, the mean squared error matrix with respect to the unknown

exact maximum likelihood estimate θ̂):

E[(θ̂MC − θ̂)(θ̂MC − θ̂)
⊺

] ≈ Ĥ−1
MC

[ 1

S2v̄2

S
∑

s=1

(qs − q̄)(qs − q̄)
⊺
]

Ĥ−1
MC , (23)

where v̄ = v̄(y, θ̂MC ) given by (20), qs = ∇θv(hs ;y,θ)|θ=θ̂MC
and q̄ = 1

S

∑S
s=1 qs . The details can be

found in Durbin & Koopman (2001), pp. 217-219.

Example 2 (continued). The left part of Table 3 shows the SML-LA estimates for the exchange

rates data and their standard errors (based on (22)). The estimator uses S = 1000 simulations. The

results are very similar to those for the Laplace’s approximation method without simulation (see

Table 2). ESS at the maximum is about 300 which shows that the proposal distribution is reliable.

The Monte Carlo standard errors are the square roots of the diagonal elements of the Durbin–

Koopman estimate (23). These standard errors due to Monte Carlo are rather low compared to

the standard errors of the parameters estimates. Actually, for practical purposes we could take

much smaller number of simulations, S = 100 or less. Sandmann & Koopman (1998) recommend

to choose S as low as 5.

Example 3 (continued). The right part of Table 3 shows the SML-LA estimates based on S =
1000 simulations for the realization of SV process from Figure 3. In this example ESS is about 211,

which confirms that the proposal distribution is reliable. Table 4 reports the root mean squared

errors for the SML-LA estimator based on S = 100 simulations. The RMSEs were estimated from

300 Monte Carlo simulations with the same true values of the parameters. The RMSEs are very

close to the RMSEs for the parent LA estimator (see Table 2).

Besides the Laplace’s approximation we could obtain a proposal distribution from the QML

approximation. However, its performance is hopelessly inferior. For example, for the exchange

rates data with S = 10000 and the same parameters as in Table 3 its application resulted in an ESS

value as low as 1.74.

An interesting development of the idea of simulation with the QML proposal distribution is the

method proposed in Kim et al. (1998). The distribution of ln(ξ2
t ) can be approximated as a mixture

of normals. If st is a variable corresponding to the index of a normal distribution in a mixture for
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time t then conditionally on s1, . . . , sT one has a linear Gaussian state-space model, which is easy

to handle. We will not explain this method further; see Kim et al. (1998).

5.4 Efficient importance sampling

Liesenfeld & Richard (2003), Liesenfeld & Richard (2006) propose to use the efficient importance

sampling (EIS) technique due to Richard & Zhang (2007) to estimate stochastic volatility models.

The idea is to select a proposal distribution used in Monte Carlo integration in such a way that

it approximately minimizes the variance of the estimate. This approach to SV modeling can be

traced back to Danielsson & Richard (1993) and Danielsson (1994) where a special case of it is

developed under the name of “accelerated Gaussian importance sampling”.

Suppose that there is a family of possible proposal distributions µ(x,ψ) used for Monte Carlo

integration which depends on a vector of parameters ψ. The integral I =
∫

φ(x)dx is estimated as

Î =
1

S

S
∑

s=1

v(xs ,ψ) with v(xs ,ψ) =
φ(xs)

µ(xs ,ψ)
, xs

 µ(xs ,ψ).

As the realizations xs are drawn independently it follows that

Var Î =
1

S
Varψ v(x,ψ).

(We use Eψ (Varψ) to denote the expectation (variance) with respect to µ(x,ψ)). We want to find

the value of ψ for which the variance is approximately minimal. It can be seen that the variance

Var Î is proportional to

Varψ v(x,ψ) =Eψ

[

(v(x,ψ)− I )2
]

=
∫

(

v(x,ψ)− I
)2
µ(x,ψ)dx.

The integral would not be known in a closed form, but it can be approximated by the sample

average of (v(xs ,ψ)− I )2 with xs
 µ(x,ψ). However, using µ(x,ψ) as a proposal distribution30

creates difficulties for minimization of the estimated variance with respect to ψ. To circumvent

these difficulties, we can use a proposal distribution with some preliminary parameters vector

ψ∗. If ψ∗ is the current vector of parameters then

∫

(

v(x,ψ)− I
)2 µ(x,ψ)

µ(x,ψ∗)
µ(x,ψ∗)dx =Eψ∗

[

(

v(x,ψ)− I
)2 µ(x,ψ)

µ(x,ψ∗)

]

,

where the expectation is taken with respect to µ(x,ψ0). This can be approximated by

1

S

S
∑

s=1

(

v(xs ,ψ)− I
)2 µ(xs ,ψ)

µ(xs ,ψ∗)
=

1

S

S
∑

s=1

(

φ(xs)

µ(xs ,ψ)
− I

)2 µ(xs ,ψ)

µ(xs ,ψ∗)
(24)

with xs
 µ(x,ψ∗). The function can be minimized with respect to ψ (and I ) to get a better pro-

posal distribution than µ(x,ψ∗). The procedure can be repeated until convergence by replacing

ψ∗ with the estimated ψ.

The problem of minimizing (24) can be roughly approximated by a least squares problem for

log-densities. The corresponding regression is

lnφ(x) = γ+ lnµ(x,ψ)+ residual.

(See Richard & Zhang (2007). They also give a better approximation by a weighted least squares

problem). So one can simply fit lnµ(x,ψ) to lnφ(x) (with an additional constant term γ) at a set of

points x = xs , s = 1, . . . ,S, where xs
 µ(x,ψ∗).

30In some cases it is possible. We need generated xs to depend smoothly on ψ.
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Table 5: EIS estimates (S = 100)

Example 2 Example 3

estimates std. err. MC std. err. estimates true values std. err. MC std. err.

δ 0.9751 0.0122 0.00017 0.9615 0.9800 0.0179 0.00020

ση 0.1640 0.0364 0.00068 0.2408 0.2000 0.0490 0.00084

σξ 0.6360 0.0689 0.00023 0.8027 1.000 0.1114 0.00006

In the case of the stochastic volatility model this approach cannot be applied directly. Suppose

that the proposal distribution for h|y is multivariate normal. In general a T -dimensional mul-

tivariate normal distribution has T (T + 1)/2 parameters. We can take into account the dynamic

structure of the h|y distribution for our basic SV model. There is an immediate link between ht

and ht−1, but there is no direct link between ht and ht−k for k > 1. So we can assume a tridiag-

onal covariance matrix. This reduces the number of parameters to 3T −1. However, this is still a

fairly large number taking into account that in general we need no less simulations than there are

parameters of the proposal distribution.

To resolve this problem it is reasonable to use a simpler piecemeal approach for the basic SV

model. Note that

ln f (y,h|θ) =
T
∑

t=1

[ln f (yt |ht ,θ)+ ln f (ht |ht−1,θ)].

The terms ln f (ht |ht−1,θ) are already quadratic in ht−1 and ht . We need only quadratic approxi-

mations for ln f (yt |ht ,θ) (as a function of in ht ) to obtain a quadratic approximation of ln f (y,h,θ).

We already discussed this approach. So we can simply run the following linear regression:

ln f (yt |ht ,θ) = At + A0
t ht + A00

t h2
t + residual

and calculate Kt , Lt and Mt as before (see section 2 and Appendix A). The regressions are run

one by one independently of each other for t = 1, . . . ,T . The observations for the regressions are

obtained from simulated hs
t , s = 1, . . . ,S. A single hs

t for a particular t is taken from hs , where hs ,

s = 1, . . . ,S are drawn from the current proposal distribution. Several iterations of the method are

made. New Kt , Lt and Mt give a proposal distribution, from which new hs
t are taken. New hs

t

are used as the data in the EIS regressions leading to new Kt , Lt and Mt and so on. Finally, the

approximate log-likelihood for given θ is obtained from (21). As we noted earlier, the problem

of finding a good approximation to f (h|y,θ) should be solved anew for each value of parameters

vector θ.

Actually the method described is largely a heuristics. It is linked only indirectly to the problem

of minimizing the variance. Nevertheless, below we call it “efficient importance sampling” follow-

ing Liesenfeld & Richard (2003). The method based on the normal distribution was first proposed

in Danielsson & Richard (1993) as the “accelerated Gaussian importance sampling”.

Example 2 and Example 3 (continued). Table 5 is an analogue of Table 3 for EIS. In the EIS

algorithm we used S = 100 simulations and 3 iterations starting from the Laplace’s approximation

estimates. The estimates are very similar. ESS is about 79 for the exchange rates and 75 for the

data of Example 3, which shows that EIS provides better proposal distributions than the Laplace’s

approximation (ESS/S of 79% (75%) versus 30% (21%) for LA) and would need less simulations

than SML-LA to attain the same accuracy.

Although EIS needs less simulations than SML-LA to attain the same accuracy, it includes an

additional computation of regressions coefficients. Which algorithm is faster depends on a com-

puter, programming implementations, data and other circumstances. A Monte Carlo comparison

favoring SML-LA as a method of parameter estimation of SV model can be found in Lee & Koop-

man (2004). In any case, a better proposal distribution provided by EIS is an important advantage

for tasks other than the SML estimation (see below).
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Table 6: The method of moments estimates for Example 3, simulation

MM GMM

true values mean RMSE mean RMSE

δ 0.9800 0.6790 0.4021 0.9556 0.0441

ση 0.2000 0.5827 0.4731 0.2473 0.1024

σξ 1.000 1.0175 0.2279 1.0268 0.2324

6 Method of moments estimation

It is not hard to derive analytical expressions for various moments of a process yt described by the

basic SV model (1) (see Appendix C). In particular, for n >−1

E

∣

∣yt

∣

∣

n =
σn
ξ

2n/2
Γ((n +1)/2)
p
π

exp

(

n2σ2
η

8(1−δ2)

)

and for m >−1, n >−1 and lag k > 0

E
[∣

∣yt

∣

∣

m ∣

∣yt−k

∣

∣

n]

=
1

π
σm+n
ξ 2(m+n)/2

Γ((m +1)/2)Γ((n +1)/2)exp

(

(m2 +n2 +2mnδk )σ2
η

8(1−δ2)

)

.

Moments of ln(y2
t ) can also be employed:

E ln(y2
t ) = lnσ2

ξ+C , Var[ln(y2
t )] =σ2

η/(1−δ2)+π2/2

and for k > 1

Cov(ln(y2
t ), ln(y2

t−k )) =σ2
ηδ

k /(1−δ2).

To apply the method of moments one calculates theoretical moments of yt from the SV model

as functions of the parameters θ and then equates these theoretical moments to their sample ana-

logues. If the number of the moments is the same as the number of the unknown parameters this

gives a system of nonlinear equations from which parameter estimates can be obtained. Examples

of using this technique for estimating the SV model are Scott (1987), Dufour & Valéry (2006).

For example, if m is the sample mean of ln(y2
t ), s2 is the sample variance and ck is the k-th

sample autocovariance then a method of moments estimator of the parameters of the basic SV

model is given by

δ̂= c2/c1, σ̂η =
√

(s2 −π2/2)(1− δ̂2), σ̂ξ = exp((m −C )/2). (25)

The vanilla MM estimates behave poorly, but for long enough series they can be used as reasonable

starting values for more complicated algorithms.

Example 3 (continued). We use (25) to estimate the basic SV model for 10000 realizations of

the SV process with δ = 0.98, ση = 0.2, σξ = 1 and T = 500. Very often (in 51% of all realizations)

valid estimates cannot be computed at all, because either s2 < π2/2 or c2
2 > c2

1 . The RMSEs for the

valid estimates are reported in Table 6. The simulations results show that the MM estimator given

by (25) is almost useless for these settings.

There are infinitely many moments and one can propose infinitely many MM estimators most

of which would have inferior statistical properties. The generalized method of moments (GMM)31

is an extension of the ordinary method of moments which allows to use more moments than there

are parameters. See Melino & Turnbull (1990), Andersen (1994), Jacquier et al. (1994), Hall (2005)

31See Hansen (1982), Hall (2005).
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for applications of GMM to the SV model. Andersen & Sørensen (1996) is an extensive simulation

study of the properties of GMM. We do not discuss the use of GMM in the case of the SV model.

It is more or less straightforward application of the standard GMM toolkit. The weighting matrix

of GMM can be selected optimally and obtained in a closed form for moments based on various

powers of
∣

∣yt

∣

∣ and ln y2
t ; see Dhaene & Vergote (2003). Popular improvements of the basic GMM

can be readily used (the continuously updating GMM, the iterated GMM, the empirical likelihood

method).

Example 3 (continued). We employ a modification of the method proposed in Taylor (1986) to

estimate the basic SV model for δ = 0.98, ση = 0.2, σξ = 1 and T = 500. The parameters δ and ση

are estimated by minimizing
K
∑

k=1

(

ck −σ2
ηδ

k /(1−δ2)
)2

.

This is a simple nonlinear regression. Here K is some chosen number of autocovariances; it should

be much smaller than T . As K is much smaller than T , nonlinear regression estimation is much

faster than QML estimation. For σξ the estimator is σ̂ξ = exp((m −C )/2) as above. We used 10000

realizations of the SV process and K = 50. The realizations with |δ̂| ≥ 1 were rejected. This was

observed only for 0.5% of all realizations. RMSEs for remaining estimates are reported in Table 6.

This simple GMM estimator can provide good starting values for other algorithms.

If the moments of a model cannot be obtained analytically one can estimate them using Monte

Carlo integration provided the model allows direct simulation (which is the case with the SV model).

This leads to the simulated method of moments of Duffie & Singleton (1993). It can be useful for

some extended SV models.

It is well-known from the GMM literature that the best choice of the moments should be based

on the score vector (the gradient of the log-likelihood function). Then GMM estimation is equiva-

lent to ML estimation and is asymptotically efficient. The generalized method of moments is then

called the efficient method of moments (EMM). Gallant & Tauchen (1996), Gallant et al. (1997)

propose a Monte Carlo approximation to full EMM based on the score vector of an auxiliary model

with the known likelihood function which fits the data sufficiently well (called a score generator).

They use the SNP (semi-nonparametric) model as a score generator for the SV model. Andersen

et al. (1999) consider several alternative score generators and conduct an extensive simulation

study of their performance.

Monfardini (1998), Calzolari et al. (2004) use the indirect inference to estimate SV model. The

idea of this method (see Gourieroux et al. (1993)) is to estimate a simple auxiliary model and then

find by means of Monte Carlo simulation the parameters of the underlying model which provide

the parameters of the auxiliary model as close as possible to those obtained from the original data.

It should be noted that the use of Monte Carlo simulations in a moment-based estimation

makes these methods not very competitive compared to the simulated maximum likelihood meth-

ods considered in the other sections of this essay. To give a summary, the moment-based methods

either provide estimates which are not very accurate or use Monte Carlo simulations which make

them almost as computationally expensive as simulated maximum likelihood methods. However,

for SV-type models, which are not fully parametrically specified, the moment-based estimation

can be preferred as it requires less assumptions to be valid.

Moment-based methods have yet another limitation. They usually do not provide directly in-

formation which can be used for smoothing, filtering and forecasting.

For a review of various moment-related techniques for stochastic volatility models see Renault

(2009).
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7 Extending the basic model

7.1 An extended stochastic volatility model

In this section we will explore a more general SV model

yt = Xtβ+κr (ht )+σξξt exp(ht /2),

ht = δht−1 +αξt−1 +σηηt .
(26)

Compared to the basic SV model (7) this formulation includes several additional effects: exoge-

nous variables in the mean, an in-mean effect, asymmetry and fat tails.

The term with κr (ht ) corresponds to an in-mean effect similar to that in the GARCH-M model

(cf. Engle et al. (1987)). The idea of this extension is that returns on assets can be related to the

degree of riskiness of the assets as risk-averse investors need a compensation for additional risk.

The SVM model was proposed in Koopman & Uspensky (2002). Possible choices of the in-mean

function r (·) are r (ht ) = exp(ht /2), r (ht ) = exp(ht ) and r (ht ) = ht .

We assume that ηt ∼ N (0,1) and ξt are independent white noise processes. For ξt one can

choose a more fat-tailed distribution than ξt ∼ N (0,1). Popular choice of the distribution is ξt ∼
tν (the Student’s distribution with ν degrees of freedom). Conditional variance of SV series with

Student’s t errors is

σ2
ξ exp(ht )Varξt =σ2

ξ exp(ht )
ν

ν−2
.

The time-varying variance in the SV model allows to capture to some great extent the fat tails

observed in financial time series. However, as shown by the extensive experience with GARCH-

type models using a time-varying variance could be insufficient to fully capture the kurtosis of the

observed financial time series. Bollerslev (1987) introduces GARCH-t model, which is the GARCH

model with Student’s t innovations. Assuming that ξt ∼ tν in (1) produces a similar generalization

for the basic SV model. SV models with fat tails are studied in Harvey et al. (1994), Sandmann &

Koopman (1998), Liesenfeld & Jung (2000), Chib et al. (2002), Liesenfeld & Richard (2003), Jacquier

et al. (2004) and Durham (2006) among others. An important fact is that, as discussed in Carnero

et al. (2004), the SV model with Gaussian errors can be more adequate empirically than the GARCH

model with Gaussian errors. Therefore, one would expect to find a relatively large degrees of free-

dom parameter ν in the SV model with Student’s t errors.32

Model (26) with α= 0, κ= 0 and β= 0 is similar to (7) in many aspects and shares with it most

of the methods described earlier. We will call it the basic SV-t model.

The αξt−1 item in the volatility equation of (26) captures an asymmetric effect of innovations

on volatility. It is assumed that a negative shock to ξt−1 can lead to a higher level of future volatility.

One explanation is that if a stock price is lowered by some shock then the financial leverage (which

can be measured by the debt-to-equity ratio) is increased, which tend to raise the volatility in the

future. This phenomenon is called the leverage effect.33 Various aspects of models with asymme-

32Another way of introducing fat tails into the SV model is by including an additional latent factor (see Durham

(2006)). The second factor could be a white noise or weakly autocorrelated series. In particular, one can use

yt = Xtβ+κr (ht )+σξξt

√

λt exp(ht /2),

where λt is the second factor which is i.i.d. with ν/λt ∼ χ2
ν (see Jacquier et al. (1999), Jacquier et al. (2004)). This

imitates (26) with the Student’s distribution since ξt

√

λt ∼ tν.
33Without the fat-tailness of ξt we could model asymmetric effect by introducing a correlation between ξt−1 and ηt

to the basic SV model (1), that is, by assuming that

(

ξt−1

ηt

)

∼N

((

0

0

)

,

(

1 ρ

ρ 1

))

.

There is a question of timing of the asymmetric effect. In Jacquier et al. (2004) it is assumed that ξt and ηt are
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try and leverage are studied in Jacquier et al. (1994), Harvey & Shephard (1996), Yu (2005), Asai &

McAleer (2005), Durham (2006), Omori et al. (2007).

The term Xtβ allows yt to depend on a set of explanatory variables Xt . These can include an in-

tercept term, seasonal dummies. Sandmann & Koopman (1998) mention option implied volatility,

trade volume data. Inclusion of the lags of yt can help to capture autocorrelation.

The presence of a mean component Xtβ in (26) does not lead to much difficulty. The coeffi-

cients β can be estimated consistently before the other parameters by the ordinary least squares

when κ= 0. See Harvey & Shephard (1993) for a further discussion and application of GLS. Alter-

natively in the maximum likelihood context one can work with the residuals yt −Xtβ instead of yt

and maximize the (approximate) likelihood function with respect to all the parameters jointly.

Below we suppress the dependence on θ in our notation for the densities.

The distribution of yt conditional on ht is based on distribution of ξt with a scale σξ exp(ht /2)

and a shift Xtβ+κr (ht ). Thus, the log-density for yt |ht is given by

ln f (yt |ht ) = lnρ(ξt (yt ,ht ))− lnσξ−ht /2,

where ρ(·) is the density function of ξt which can depend on the distribution parameters (like ν

for the Student’s distribution) and

ξt (yt ,ht ) =
yt −Xtβ−κr (ht )

σξ exp(ht /2)
. (27)

The mean equation disturbance ξt is fixed conditional on yt and ht and is given by ξt = ξt (yt ,ht ).

Consequently, the distribution of ht conditional on yt−1 and ht−1 is normal with the mean δht−1+
αξt−1(yt−1,ht−1) and the variance σ2

η. The log-density for ht |yt−1,ht−1 is given by

ln f (ht |yt−1,ht−1) =−
1

2
ln(2πσ2

η)−
1

2σ2
η

(ht −δht−1 −αξt−1(yt−1,ht−1))2.

About the distribution of h1 one can assume that h1 ∼ N (0,σ2
η1) where σ2

η1 is a known variance,

so that

ln f (h1) =−
1

2
ln(2πσ2

η1)−
1

2σ2
η1

h2
1.

Asymmetry in the volatility equation creates the most serious problems for the estimation

of the extended model (26) compared to the basic SV model. The main reason for this is that

ln f (ht |yt−1,ht−1) is no more quadratic in ht , ht−1.

7.2 QML estimation for the extended model

QML as described above is easily modified for the case of the basic SV-t model (see Ruiz (1994)).

QML is based on the assumption that εt = ln(ξ2
t ) is approximately distributed as N (µε,σ2

ε) with

correlated:
(

ξt

ηt

)

∼N

((

0

0

)

,

(

1 ρ

ρ 1

))

.

This alternative specification can be also written as

yt = Xtβ+κr (ht )+σξ(ξt +α(ht −δht−1))exp(ht /2),

ht = δht−1 +σηηt .

See a discussion of timing issues and the corresponding empirical evidence in Yu (2005), Durham (2006). Overall, the

difference between the two specifications is not very considerable.
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µε =Eεt and σ2
ε =Varεt . For ξt ∼ tν we can rewrite εt as εt = ln(ξ2

t ) = ln x1 − ln(x2/ν) where x1 and

x2 are independent, x1 ∼χ2
1 and x2 ∼χ2

ν. This allows to calculate mean and variance of εt :

µε =C −ψ(ν/2)+ ln(ν/2)

and

σ2
ε =π2/2+ψ′(ν/2),

where C = ψ(1/2)− ln(1/2) ≈ −1.27036, ψ(·) is the digamma function and ψ′(·) is the trigamma

function.

Harvey & Shephard (1996) demonstrate how to take into account asymmetry when estimating

the SV model by QML. Kirby (2006) propose a method which allows to account for asymmetric

effects in several SV-type models. Using this logic model (26) with κ= 0 can be transformed into a

linear state-space form as follows:

yt −Xtβ=σξξt exp(ht /2),

ln((yt −Xtβ)2) = 2lnσξ+ht + ln(ξ2
t ),

ht+1 = δht +αξt +σηηt+1.

The regression coefficients β can be estimated before the other parameters. Then the Kalman filter

can be used to calculate the quasi likelihood of the model. Note that the error term of the transition

equation αξt +σηηt+1 is correlated with the error terms of the two measurement equations (which

are σξξt exp(ht /2) and ln(ξ2
t )−E ln(ξ2

t )). This requires a variant of the Kalman filter with correlated

errors.

7.3 Laplace’s approximation

The log-density of the complete data for the extended model can be written as

ln f (y,h) =
T
∑

t=1

lnφt (yt , yt−1,ht ,ht−1),

where

lnφt (yt , yt−1,ht ,ht−1) = ln f (yt ,ht |yt−1,ht−1) = ln f (yt |ht )+ ln f (ht |yt−1,ht−1).

Each term lnφt here depends only on ht and ht−1. This suggests that similar to the basic SV model

the approximate log-density of complete data would be of the form (8). The corresponding mul-

tivariate Gaussian density g (h|y) can also be represented as a product of univariate conditional

densities g (ht |ht−1,y) each of them being univariate normal N (Kt +Lt ht−1, Mt ) for some Kt , Lt ,

Mt .

The idea is to approximate ln f (y,h) by its quadratic expansion around some point h∗:

lnφat = Ft +F 0
t (ht −h∗

t )+F 1
t (ht−1 −h∗

t−1)

+
1

2
F 00

t (ht −h∗
t )2 +F 01

t (ht −h∗
t )(ht−1 −h∗

t−1)+
1

2
F 11

t (ht−1 −h∗
t−1)2,

where we denote

Ft = lnφt

∣

∣

h=h∗ , F i
t =

d lnφt

dht−i

∣

∣

∣

∣

h=h∗
, F

i j
t =

d 2 lnφt

dht−i ht− j

∣

∣

∣

∣

h=h∗
.
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Table 7: Laplace’s approximation estimates of extended SV models, Example 1

Model I Model II Model III Model IV

estimates std. err. estimates std. err. estimates std. err. estimates std. err.

δ 0.9711 0.0061 0.9708 0.0061 0.9672 0.0065 0.9743 0.0058

ση 0.2516 0.0226 0.2554 0.0227 0.2559 0.0230 0.2190 0.0233

σξ 2.1205 0.1575 2.1107 0.1574 2.1101 0.1428 2.0034 0.1528

α — — — — −0.0376 0.0137 −0.0328 0.0120

κ — — 0.1763 0.0389 0.1619 0.0371 0.1718 0.0369

ν — — — — — — 16.901 6.0354

log-lik. −7847.62 0.0012 −7836.20 0.0012 −7832.09 0.0072 −7828.81 0.0002

The analytical expressions for Ft , F i
t and F

i j
t are given in Appendix D. Alternatively one can use

numerical methods to evaluate the derivatives matrices F i
t and F

i j
t if taking derivatives analyti-

cally turns out to be cumbersome.34 From h∗ we can get next a approximation h∗∗ using (19). By

iterating the procedure we get approximately the mode ĥ of ln f (y,h).

Appendix D provides formulas for obtaining coefficients B , B 0
t , B 00

t and B 01
t of approximation

(8) from Ft , F i
t and F

i j
t . Parameters Kt , Lt , Mt are obtained from B , B 0

t , B 00
t and B 01

t in the same

way as for the basic SV model (see Appendix A).

Example 1 (continued). We estimated the basic model and several extended SV models for the

RTSI series using the Laplace’s approximation method. The in-mean effect is modeled as r (ht ) =
exp(ht /2). Table 7 shows the results. Both the in-mean and the leverage effects are significant at

1% level. There is also some evidence of fat-tailed innovations. (The log-likelihood estimates are

discussed below). In the extended model with leverage effect the coefficient of correlation between

αξt +σηηt+1 and ξt is α/
√

α2 +σ2
η. From the estimates of Model IV in Table 7 we get an estimate

of −0.148 for this correlation coefficient.

7.4 Efficient importance sampling for the extended SV model

Richard & Zhang (2007) propose a piecemeal approach to fitting of a proposal distribution in high-

dimensional models. Here we describe their approach in a somewhat more general form.

Suppose that we need to evaluate I =
∫

φ(x)dx where x is T -dimensional. We assume that

φ(x) can be factorized as φ(x) =
∏T

t=1φt (x≤t ). (Here and below we use the following shortcut no-

tation: x≤t = (x1, . . . , xt ) and x<t = (x1, . . . , xt−1)). The functions φt (x≤t ) should be non-trivial as

functions of xt . (We use subscript t in φt to indicate that it is not assumed to be a legitimate

probability density function). Conformably, the proposal distribution µ(x) can be factored as

µ(x) =
∏T

t=1µ(xt |x<t ).

The piecemeal method runs backwards from T to 1, and for each observation t an elementary

distribution µ(xt |x<t ) is estimated. Suppose that we want to fit lnµ(xT |x<T ) to lnφT (x≤T ). To do

so it is important to add some function which would capture additional dependence on x<T . We

will call this addition a stopgap function and denote ln µ̃T (x<T ). Because ln µ̃T (x<T ) is added to

lnµ(xT |x<T ), it should be added to lnφT−1(x≤T−1). Therefore, for observation T − 1 log-density

lnµ(xT−1 |x<T−1) plus the stopgap function ln µ̃T−1(x<T−1) should be fitted to lnφT−1(x≤T−1) +
ln µ̃T (x<T ). In general a regression for t = T, . . . ,1 is given by

lnφt (x≤t )+ ln µ̃t+1(x≤t ;ψ̂t+1) = lnµ(xt |x<t ;ψt )+ ln µ̃t (x<t ;ψt )+Rt , (28)

34See Nocedal & Wright (2006) on methods of numerical differentiation. Durham (2006) use the Maple computer

algebra system to analytically find derivatives for a more complicated SV-type model. Skaug & Yu (2007) propose to

use automatic differentiation.
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where ψ̂t+1 are the estimates of the parameters which are already obtained for t +1. (At the start,

for t = T , we set ln µ̃T+1(x≤T ) = 0). The parameters estimates ψ̂t are found using this nonlinear

regression.

In order to obtain an “efficient” Gaussian proposal distribution g (h|y) for the SV model we

assume that g (ht |y,h<t ) for t = 1, . . . ,T are normal, that the mean depends linearly on ht−1 so that

ht |y,h<t ∼N (Kt +Lt ht−1, Mt )

and that the logarithm of stopgap, ln µ̃t , is a quadratic function of ht−1.

Then the regression (28) can be rewritten for t = 2, . . . ,T as

lnφt + ln µ̃t+1 = D t +D0
t ht +D1

t ht−1 +D00
t h2

t +D01
t ht ht−1 +D11

t h2
t−1 +Rt . (29)

For t = 1 the regression is simply

lnφ1 + ln µ̃2 = D1 +D0
1h1 +D00

1 h2
1 +R1. (30)

The parameters Kt , Lt and Mt can be recovered from the coefficients of the EIS regressions by

equating the coefficients of h2
t , ht and ht ht−1 to that in (9). It follows that

Mt =−
1

2D00
t

, Kt = D0
t Mt , Lt = D01

t Mt .

The value of stopgap function is obtained after estimation of period t regression as

ln µ̃t = lnφt + ln µ̃t+1 − ln g (ht |y,h<t )−Rt ,

where Rt are the residuals from the regression.

The EIS method is started from some proposal distribution described by Kt , Lt and Mt . Gen-

erated trajectories hs provide data points for EIS regressions. The regressions produce new Kt , Lt

and Mt . Several iterations are made to achieve convergence.

Example 1 (continued). We apply the Monte Carlo method with S = 10000 simulations to es-

timate the log-likelihood for the estimates in Table 7. The proposal distribution is obtained by

the EIS method with S = 1000 simulations and 10 iterations. The estimates with corresponding

standard errors due to simulation are given in the last row of the table. These results confirm that

in-mean and leverage effects are significant. The likelihood ratio statistics are

LR(model I against model II) = 22.84 [< 10−5],

LR(model II against model III) = 8.22 [0.0041],

LR(model III against model IV) = 6.56 [0.0104].

P-values from χ2
1 distribution are in square brackets. The last p-value is not reliable as ν for the

normal distribution is +∞, which is the right boundary of admissible values for SV model with the

Student’s t distribution. In any case the use of the Student’s t distribution is helpful as it improves

the quality of the proposal distribution. For model IV ESS is 2894.8 while for model III it is as low

as 137.2.

8 Smoothing, filtering and forecasting

8.1 Introduction

An important task in SV modeling is inferring information on h from y. In other words, one can

be interested in the distribution of the latent state h conditional on the observable data y. The
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calculation of various characteristics of h|y is generically called smoothing. We already discussed

finding the mode of h|y. However, other characteristics like E(h|y) or quantiles of h|y can be also

of interest. Monte Carlo simulations can be used for the task of smoothing the latent state of SV

model.

Filtering refers to exploring characteristics of a sequence of conditional distributions h≤t |y≤t ,

where t = 1,2, . . . Filtering imitates inference in the situation of sequential flow of information. If

we know the observable variable up to time t , y≤t , we can explore h≤t |y≤t . With the arrival of the

next observation yt+1 we can explore h≤t+1 |y≤t+1, and so on.

Filtering can be useful for on-line inference in the SV model (for example, for monitoring of the

current latent state). The results of on-line filtering can be used for on-line forecasting and hence

for financial decision-making. (Of course, this rises the problems of updating parameters esti-

mates and obtaining approximating functions g (h≤t |y≤t ) in a sequential manner). Some applica-

tions could require imitation of on-line forecasting (for example, in order to estimate the behavior

of the implied forecast uncertainty).

Forecasting in the SV model is closely related to smoothing and filtering and can be imple-

mented by means of Monte Carlo simulation.

An important use of filtering is for obtaining residuals from one-step-ahead forecasts for the

purpose of model diagnostic checking. This is by far the most popular approach to SV model

diagnostics (and also to diagnostics of time series models in general). Multistep forecasts can also

be used for diagnostics, but there is a problem of serial dependence.

We discuss the tasks of smoothing, filtering and forecasting under the assumption that the

vector of parameters θ is known. In practice one would substitute some suitable estimate (for

example, an estimate obtained from simulated maximum likelihood method). Of course, the con-

sequences of this substitution can be not very innocuous for short series. The methods of taking

into account parameters uncertainty are yet to be developed.35

A discussion of smoothing, filtering and forecasting in the non-linear non-Gaussian state-

space models by means of importance sampling can be found, for example, in Tanizaki (2003),

Creal (2009).

8.2 Smoothing

The posterior distribution h|y is not known in a closed form. We only know f (y,h) which (as a

function of h) is proportional to f (h|y). The knowledge of f (y,h) allows to apply the importance

sampling to the task of smoothing.

If τ(h) is some function of h then its expected value is

E
(

τ(h)|y
)

=
∫

τ(h) f (h|y)dh =
1

f (y)

∫

τ(h) f (y,h)dh =
∫

τ(h) f (y,h)dh
∫

f (y,h)dh
. (31)

After estimation of a SV model we have a density function g (h|y) which is an approximation to

f (h|y). Rewrite the expectation in terms of g (h|y) as

E
(

τ(h)|y
)

=
∫

τ(h)v(h;y)g (h|y)dh
∫

v(h;y)g (h|y)dh
=
Eg [τ(h)v(h;y)]

Eg [v(h;y)]
,

where

v(h;y) =
f (y,h)

g (h|y)
.

This expectation can be estimated by means of Monte Carlo as a weighted average

E
(

τ(h)|y
)

≈ τ̄=
∑S

s=1τ(hs)v(hs ;y)
∑S

s=1 v(hs ;y)

35One possibility is to use Bayesian approach with “uninformative” prior.
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Figure 8: Smoothed value of the conditional variance from Monte Carlo simulations (solid) and the

Laplace’s approximation (dotted), Example 2.

with hs
 g (h|y). In terms of normalized weights

w s = w(hs ;y) =
v(hs ;y)

∑S
k=1

v(hk ;y)

the estimate can be rewritten as

E
(

τ(h)|y
)

≈ τ̄=
S
∑

s=1

τ(hs)w s . (32)

The method of importance sampling essentially approximates the posterior distribution h|y by a

discrete distribution which associates probability w s with trajectory hs from a finite set of trajec-

tories {h1, . . . ,hS}.36 Theoretical moments are estimated by weighted sample moments (which are

theoretical moments for an approximating discrete distribution).

Example 2 (continued). We use the exchange rates example to estimate the expected condi-

tional variance from the smoothing distribution, σ2
ξE

[exp(ht )|y]. We take the SML-LA estimates of

the basic SV model from Table 3 and use the corresponding proposal distribution to make 10000

Monte Carlo simulations for smoothing purposes. Figure 8 plots the estimate and compares it with

a similar estimate from the parent Laplace’s approximation without Monte Carlo defined as (15).

The two series are fairly close.

Quantiles of the posterior distribution ht |y can be estimated from a sorted37 Monte Carlo sam-

ple h(1)
t < h(2)

t < ·· · < h(S)
t with associated weights w (s)

t . A possible estimate of p-quantile is h(k)
t for

which
k−1
∑

s=1

w (k)
t < p <

k
∑

s=1

w (k)
t .

Example 3 (continued). We take the EIS estimates of the basic SV model from Table 5 and

the corresponding proposal distribution to find the 0.05 and 0.95 quantiles with S = 10000 simu-

lations. The results are shown in Figure 9 together with the actual realization of the conditional

variance from Figure 3(a). This is analogous to Figure 6(b) for QML.

36A Markov chain Monte Carlo (MCMC) algorithm can also be used to generate from the posterior distribution

h|y. (See Tierney (1994), Chib & Greenberg (1996), Gentle (2003), Rubinstein & Kroese (2008) for a discussion of

MCMC.) For some proposal p.d.f. g (h|y) approximating the unknown posterior p.d.f. f (h|y) one can use so called

independence chain algorithm which is a simple variant of Metropolis–Hastings algorithm. MCMC can produce a set

of trajectories h1, . . . ,hS which are almost independent of each other and are distributed approximately according to

f (h|y). Then one can approximate the posterior distribution by a discrete distribution which associates probability

1/S with trajectory hs . Similarly to the importance sampling theoretical moments are estimated by sample moments.

See Liesenfeld & Richard (2006) for a discussion of parallels between the importance sampling and the Metropo-

lis–Hastings algorithm. Liesenfeld & Richard (2006) following Tierney (1994) propose to enhance the independence

chain by an accept/reject step.
37Sorting requires O(S lnS) operations which can be large for large S. There are faster methods of finding weighted

sample quantiles, but we do not consider them in this essay.
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Figure 9: Confidence band from Monte Carlo smoothing estimates based on EIS method and actual condi-

tional variance, Example 3.

To reduce the number of simulations S one needs to reduce the variance of τ̄. Some improve-

ment can be obtained by choosing g (h|y) to be an accurate approximation to f (h|y). For example,

one can use EIS at this step even if it was not used during estimation of SV parameters. However,

in general the variance of τ̄ is not zero here even when g (h|y) = f (h|y) exactly (that is, when all w s

are equal to 1/S).

One can use various other variance reduction techniques (like control variates) to reduce the

number of simulations. However, such techniques are less fruitful than fitting g (h|y) to f (h|y).

8.3 Filtering

The basic formula for filtering is the same as for smoothing (see (31))

E
(

τt (h≤t )|y≤t

)

=
∫

τt (h≤t ) f (y≤t ,h≤t )dh≤t
∫

f (y≤t ,h≤t )dh≤t
.

A expectation is approximated as a weighted average

τ̄w t =
S
∑

s=1

τt (hs
≤t )w s

t (33)

with hs
≤t  g (h≤t |y≤t ) and weights given by

v s
t = v(hs

≤t ;y≤t ) = f (y≤t ,hs
≤t )/g (hs

≤t |y≤t )

and

w s
t =

v s
t

∑S
k=1

vk
t

. (34)

Note that for filtering we have to use a family of proposal distributions g (h≤t |y≤t ) indexed

by t . For (33) to be a good enough approximation for moments of the filtering distribution it is

desirable to use a proposal density g (h≤t |y≤t ) which is approximately proportional to the filtering

density f (h≤t |y≤t ) (in other words, to the density f (y≤t ,h≤t ) viewed as a function of h≤t ). Thus, a

full filtering procedure consists of choosing each g (h≤t |y≤t ) to approximate f (h≤t |y≤t ) and then

using (33) for t = 1, . . . ,T . This amounts to applying smoothing as described above to a sequence of

time series (y≤t ), t = 1, . . . ,T . Of course, the full procedure can be very time-consuming. Since each

smoothing step requires O(tS) operations, the full filtering procedure requires O(T 2S) operations

for a series of length T .

A less time-consuming procedure can be based on a single distribution g (h|y) = g (h≤T |y≤T ).

The distribution can be presented recursively:

g (h≤t |y) = g (ht |y,h<t )g (h<t |y).
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We assume that it is possible to directly generate ht from g (ht |y,h<t ). The proposal distribution

for time t is just g (h≤t |y≤t ) = g (h≤t |y). (In what follows we simplify our notation by omitting the

dependence of the proposal distribution on the full length of observed data y = y≤T ). If trajectories

hs
<t , s = 1, . . . ,S are already generated from g (h<t ) then it is possible to append these trajectories:

hs
≤t = (hs

<t ,hs
t ), where hs

t  g (ht |hs
<t ). Noting that f (y≤t ,h≤t ) can be represented recursively as

f (y≤t ,h≤t ) = f (yt ,ht |y<t ,h<t ) f (y<t ,h<t ),

we see that it is possible to evaluate the unnormalized weights of the trajectories recursively:

v s
t =

f (y≤t ,hs
≤t )

g (hs
≤t )

=
f (yt ,hs

t |y<t ,hs
<t ) f (y<t ,hs

<t )

g (hs
t |hs

<t )g (hs
<t )

=
f (yt ,hs

t |y<t ,hs
<t )

g (hs
t |hs

<t )
v s

t−1

or simply

v s
t = us

t v s
t−1,

where us
t = f (yt ,hs

t |y<t ,hs
<t )/g (hs

t |hs
<t ) are called the incremental weights. The recursion for the

weights is started with v s
1 = us

1 = f (y1,hs
1)/g (hs

1).

The approach can be described as follows: initially a set of trajectories hs
 g (h) is generated

and then only the weights are updated recursively.

The problem with a single proposal distribution is that it would be adapted to the series of

length T . For arbitrary t the quality of approximation could be inferior with a very non-uniform

distribution of weights. This can be measured by the effective sample size

ESSt =
1

∑S
s=1(w s

t )2
.

A partial remedy for the problem of inadequacy of a single proposal distribution can be pro-

posed. The proposal distribution can be adapted to current t by tuning the conditional distribu-

tions corresponding to several last observations, t −K +1, . . . , t , and using these modified proposal

distributions to replace the K last observations in the simulated trajectories. We only consider

K = 1 case. We take g (h≤t |y≤t ) = g (ht |y≤t ,h<t )g (h<t |y) where g (ht |y≤t ,h<t ) is tuned in such a

way, that g (h≤t |y≤t ) is a better proposal distribution for the task of filtering at time t . For the

methods we considered earlier (of which EIS is the most useful for the task of obtaining a good

proposal distribution) this does not lead to O(tS) computation complexity for time t . Only O(S)

operations are required for one t (and O(K S) if lag K is used). Then importance weights for time t

are

v̌ s
t =

f (y≤t , ȟs
≤t )

g (ȟs
≤t |y≤t )

=
f (yt , ȟs

t |y<t ,hs
<t ) f (y<t ,hs

<t )

g (ȟs
t |y≤t ,hs

<t )g (hs
<t )

=
f (yt , ȟs

t |y<t ,hs
<t )

g (ȟs
t |y≤t ,hs

<t )
v s

t−1,

where ȟs
t  g (ht |y≤t ,hs

<t ), hs
<t  g (h<t ) and ȟs

≤t = (ȟs
t ,hs

<t ) or

v̌ s
t = ǔs

t v s
t−1,

where ǔs
t = f (yt , ȟs

t |y<t ,hs
<t )/g (ȟs

t |y≤t ,hs
<t ). This approach is fruitful, because the filtering pro-

posal distributions g (h≤t |y≤t ) usually differ appreciably from the smoothing proposal distribution

g (h≤t |y) only for a few last observations.38

38Liesenfeld & Richard (2003) note similar proximity of g (h<t |y<t ) and g (h≤t |y≤t ) proposal distributions obtained

by EIS.
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8.4 Forecasting

Assume that the distributions of yt |yt−1,hT and ht |ht−1, yt−1 are determined by the model and

there is an algorithm to generate random variables from these distributions. Then given y and

hT one can generate future values y s
T+1, hs

T+1, y s
T+2, hs

T+2, . . . sequentially, where s is an index of

a trajectory. This produces a Monte Carlo sample of forecasting trajectories (ys
>T ,hs

>T ) generated

according to f (y>T ,h>T |y,hs
T−1,hs

T ).

Of course, one should start the recursion from some hs
T . This can be the last element of vector

hs generated according to g (h|y). Because we draw hs from an approximation g (h|y) instead of

true f (h|y), the generated forecasting trajectories (ys
>T ,hs

>T ) have associated unequal importance

weights w s . When estimating an expectation of some function of (y>T ,h>T ) by sample mean (that

is, when using the importance sampling), one should use the weighted sample mean with weights

w s .

For a sample of future trajectories (ys
>T ,hs

>T ), s = 1, . . . ,S with importance weights {w s} one can

estimate various forecast statistics like point forecasts, interval forecasts and so on. For example, to

get an interval forecast for YH =
∑H

i=1 yt+i one simulates a sample of Y s
H and calculates the relevant

sample quantiles.

If τ(y>T ,h>T ) is some function of a future trajectory then its expected value can be written as

E
(

τ(y>T ,h>T )|y
)

=
∫

τ(y>T ,h>T ) f (h|y) f (y>T ,h>T |h)d(h,y>T ,h>T ).

Similarly to smoothing and filtering this expectation can be estimated by means of Monte Carlo as

a weighted average

E
(

τ(y>T ,h>T )|y
)

≈ τ̄=
S
∑

s=1

τ(ys
>T ,hs

>T )w s ,

where hs
 g (h|y), (ys

>T ,hs
>T )  f (y>T ,h>T |hs) and {w s} are corresponding normalized impor-

tance weights.

One can also produce interval forecasts from weighted sample quantiles (see a description of

possible algorithm above, in subsection 8.2 on smoothing).

Example 1 (continued). We illustrate dynamic forecasting in the context of the SV model using

the RTSI data. We forecast dynamically for horizons H = 1, . . . ,200 at two different dates, January

30, 2007 and January 30, 2009. The estimates are obtained by the Laplace’s approximation method

for the shortened series. The proposal distribution is obtained by EIS. What we want to forecast is

not the return yT+H , but the level stock index itself. For a sample of initial Monte Carlo trajectories

we can obtain Monte Carlo trajectories of RTSI as

RTSIs
T+H = RTSIT exp

( H
∑

i=1

y s
T+i /100

)

.

The interval forecasts are the 10% and 90% weighted sample quantiles of RTSIs
T+H . Figure 10 shows

the results.

8.5 SV model diagnostics

Denote the c.d.f. of forecast distribution yt |y1, . . . , yt−H by F (yt |y1, . . . , yt−H ). If the model is correct

then vt ,H = F (yt |y1, . . . , yt−H ) is uniformly distributed U [0,1]. This is called the probability integral

transform (PIT). For H = 1 the series vt = vt ,1 = F (yt |y1, . . . , yt−1) should be independent. For H > 1

one can use vt ,H , but the series in general would be dependent. It can be useful to convert vt ,H to

the standard normal form zt ,H = Φ
−1(vt ,H ) were Φ(·) is the standard normal c.d.f. as many diag-

nostic tests have more power under normality. Also useful is the “folded” PIT v ′
t ,H =

∣

∣2vt ,H −1
∣

∣ and

corresponding z ′
t ,H = Φ

−1(v ′
t ,H ) which should be distributed as U [0,1] and N (0,1) respectively.
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Figure 10: Interval forecasts of RTSI, January 30, 2007 and January 30, 2009.

See Diebold et al. (1998) for a general discussion. PIT-based tests are used in Kim et al. (1998),

Liesenfeld & Richard (2003), Durham (2006) for the purpose of SV model diagnostics.

In Monte Carlo forecasting described above the forecast distribution is approximated by a dis-

crete distribution produced from Monte Carlo sample (with associated weights). If a forecast of yt

is made at time t −H then we denote an element of Monte Carlo forecast sample by y s
t |t−H and its

normalized weight by w s
t−H . A simple estimate of vt ,H is given by

S
∑

s=1

w s
t−H I (y s

t |t−H < yt ),

where I (A) is a 0/1 indicator of condition A. A better estimate can be obtained by averaging the

theoretical probabilities Pr(y s
t |t−H < yt |hs

t |t−H ) instead of 0/1 indicator. These probabilities are

determined by the model (26):

Pr(y s
t |t−H < yt |hs

t |t−H ) = Pr(ξt < ξt (yt ,hs
t |t−H )) = F (ξt (yt ,hs

t |t−H )),

where function ξt (yt ,ht ) is defined in (27) and F (ξt ) is cumulative distribution function of ξt (stan-

dard normal or Student’s t ). The estimate of vt ,H is given by

v̂t ,H =
S
∑

s=1

w s
t−H F (ξt (yt ,hs

t |t−H )).

For diagnostic purposes we need to obtain a series of v̂t ,H for t = H + 1, . . . ,T . This is done by

applying the filtering procedure discussed earlier.

One can use the PIT series for various diagnostic tests. The most important uses are detect-

ing autocorrelation, autoregressive conditional heteroskedasticity and violation of distributional

assumptions. Also PIT-based diagnostics can help to check “calibration” of density forecasts in

general; see Gneiting et al. (2007). Folded PIT corresponds to even moments and can help to re-

veal fat tails, autoregressive conditional heteroskedasticity and lack of forecast calibration.

Example 1 (continued). We apply PIT-based diagnostics to the estimates obtained by the LA

method for the basic SV model and the RTSI data. The proposal distribution is obtained by EIS with

S = 100. Approximations to the forecast distributions are obtained from S = 10000 simulations.

Figure 11 shows some graphical results. The histogram of vt series shows inadequate calibration:

the distribution is somewhat biased to the right. The correlogram of zt ,1 series reveals significant

first-order autocorrelation. This agrees with Figure 2(a) as the basic SV model cannot capture

autocorrelation. The correlogram of z ′
t ,1 series does not reveal autocorrelation. This correlogram

can be confronted with the correlogram of
∣

∣yt

∣

∣ in Figure 2(b) (which reveals volatility clustering).

The comparison suggests that the basic SV model adequately captures volatility dynamics.

We also apply several more formal PIT-based diagnostic tests. The following notation is used:

mk is k-th central moment of zt = zt ,1, z̄ is sample mean of zt and T̃ is the number of observations.
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Figure 11: PIT-based diagnostics for the basic SV model, Example 1: (a) histogram of PIT vt series; (b) cor-

relogram of PIT zt ,1 series; (c) correlogram of PIT z ′
t ,1 series.

1. Statistic z̄/
p

m2 ·
√

T̃ is approximately distributed as N (0,1) and can help to detect bias in

one-step-ahead forecasts. For the current example it is 3.97 with p-value less than 0.1%.

Hence, there is an upward bias in the forecast distribution of the model.

2. A similar statistic for z ′
t = z ′

t ,1 can help to detect whether the forecast distribution is too sharp

or too fuzzy. For the current example it is −1.13 which is not significant at 20% level. Hence,

there are no signs of inadequacy in this aspect of forecasts calibration.

3. Statistic m3/m3/2
2 ·

√

T̃ /6 (based on the skewness coefficient m3/m3/2
2 ) is approximately dis-

tributed as N (0,1) and can help to detect unmodeled asymmetry in the distribution of

model innovations. For the current example it is −4.35 with p-value less than 0.1%. The

distribution is visibly asymmetric.

4. Statistic (m4/m2
2 − 3) ·

√

T̃ /24 (based on kurtosis coefficient m4/m2
2) is approximately dis-

tributed as N (0,1) and can help to detect unmodeled kurtosis in the distribution of model

innovations. For the current example it is 3.16 with p-value less than 1%. There are signs of

fat-tailness.

5. Ljung–Box statistic Q = T̃
(

T̃ +2
)
∑k

i=1 r 2
i

/(T̃ − i ) based on a.c.f. ri for zt is approximately dis-

tributed asχ2(k) and can help to detect unmodeled autocorrelation. For the current example

Q for k = 10 autocorrelation coefficients is 120.9 with p-value less than 0.1%. The autocorre-

lation is rather significant.

6. Ljung–Box statistic based on a.c.f. for z ′
t can help to detect unmodeled autoregressive condi-

tional heteroskedasticity. For the current example Q for k = 10 autocorrelation coefficients

is 16.2 which is not significant at 10% level.

A word of caution should be said about the use of PIT-based test statistics. Actually little is known

about their asymptotic distribution. The distributions and p-values mentioned here are only rough

approximations.

We can conclude that the basic SV model is not quite adequate for the RTSI data. We need to

model the conditional mean, not only the conditional variance. Diagnostic tests suggest that the

distribution for innovations should be skewed and with somewhat fatter tails.

9 Other extensions of SV model

One can find numerous extensions of the basic SV model in the literature. We would not attempt

to provide a representative survey in this essay. We just mention some interesting directions.

An SV model with multiple factors instead of a single latent factor ht in (1) can be used as an al-

ternative to the SV-t model and as a way to approximate long-range dependence. For example, see

Liesenfeld & Richard (2003), Durham (2006), Jungbacker & Koopman (2009). Usually two factors

are used, one of which is highly persistent.
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Continuous time models with jumps are popular in the mathematical finance literature. Dis-

crete time stochastic volatility models with jumps can be obtained by discretization of these con-

tinuous time models; for example, see Chernov et al. (1999), Eraker et al. (2003). Chib et al. (2002)

deal with a discrete time formulation from the start. Jumps can be added to the innovations of the

mean equation and can capture fat tails. Jumps in the innovations of the volatility equation can

also be important.

For some (long enough) financial series a slow decay in sample autocorrelation function of ab-

solute returns is observed. This can be captured by a long memory process for ht such as ARFIMA.

See Breidt et al. (1998), Harvey (2007), Brockwell (2007), Hurvich & Soulier (2009) among others.

These models are analogues of GARCH-type long memory models (for a discussion of such models

see Davidson (2004)). Harvey et al. (1994), Ruiz (1994) consider a random walk specification for ht

which can be likened to IGARCH.

In this essay we discussed only univariate SV models. Yet in the context of financial time series

joint analysis of several series can provide some benefits. This is documented by the huge litera-

ture on multivariate GARCH-type modeling. Behavior of financial time series can exhibit a large

degree of mutual correlation. First, these correlations can be important for various financial appli-

cations like portfolio management. Second, joint modeling increases statistical efficiency. Third,

one can explore whether the joint behavior of multiple series is driven by a much smaller number

of underlying factors and try to uncover those factors. Multivariate SV models were studied and/or

surveyed in Harvey et al. (1994), Danielsson (1998), Liesenfeld & Richard (2003), Asai et al. (2006),

Yu & Meyer (2006), Chib et al. (2009) among others.

SV model is similar to other models which contain an unobservable factor described by the

first-order autoregression. Some of the methods for such models are also similar. These include

stochastic conditional duration (Bauwens & Veredas (2004)) and “parameter-driven” dynamic count

data models (for example, see Zeger (1988) and Jung et al. (2006)).
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A Some formulas for Gaussian approximation

By replacing ln f (yt |ht ,θ) in (5) with

ln fa(yt |ht ,θ) = At + A0
t ht + A00

t h2
t .

(see (7)) we get a quadratic approximation for ln f (y,h|θ):

ln fa(y,h|θ) =
T
∑

t=1

(

At + A0
t ht + A00

t h2
t

)

−
T

2
ln(2πσ2

η)+
1

2
ln(1−δ2)−

1

2σ2
η

[

(1−δ2)h2
1 +

T
∑

t=2

(ht −δht−1)2

]

.

This can be rearranged as

ln fa(y,h) = B +
T
∑

t=1

B 0
t ht +

T
∑

t=1

B 00
t h2

t +
T
∑

t=2

B 01
t ht ht−1.

where

B =
T
∑

t=1

At −
T

2
ln(2πσ2

η)+
1

2
ln(1−δ2),

B 0
t = A0

t , t = 1, . . . ,T,

B 00
t = A00

t −
1+δ2

2σ2
η

, t = 2, . . . ,T −1,

B 00
1 = A00

1 −
1

2σ2
η

, B 00
T = A00

T −
1

2σ2
η

,

B 01
t =

δ

σ2
η

, t = 2, . . . ,T.

Now, according to (10) approximate Gaussian log-density is (ignoring the terms which do not

depend on h1, . . . ,hT )

ln g (h|y,θ) =−
1

2

T
∑

t=2

1

Mt
(h2

t +L2
t h2

t−1 −2Lt ht ht−1 −2Kt ht +2Kt Lt ht−1)+ const

=
T−1
∑

t=1

(

Kt

Mt
−

Kt+1Lt+1

Mt+1

)

ht +
KT

MT
hT

−
T−1
∑

t=1

(

1

2Mt
+

L2
t+1

2Mt+1

)

h2
t −

1

2MT
h2

T +
T
∑

t=2

Lt

Mt
ht ht−1 + const .

This has the form

ln g (h|y,θ) =
T
∑

t=1

(B 0
t ht +B 00

t h2
t +B 01

t ht ht−1)+ const .

By equating the coefficients we write a system of equations for parameters Kt , Lt , Mt :

Kt

Mt
−

Kt+1Lt+1

Mt+1
= B 0

t , t = 1, . . . ,T −1,
KT

MT
= B 0

T ,

−
1

2Mt
−

L2
t+1

2Mt+1
= B 00

t , t = 1, . . . ,T −1, −
1

2MT
= B 00

T ,
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Lt

Mt
= B 01

t , t = 2, . . . ,T.

This system can be readily solved for Kt , Lt , Mt by means of backward recursion:

Mt =−
1

2B 00
t +B 01

t+1Lt+1

, Kt = (B 0
t +B 01

t+1Kt+1)Mt , Lt = B 01
t Mt , t = T, . . . ,1

assuming that B 01
T+1 = 0 (and B 01

1 = 0 to get L1 = 0).

Now we have both ln fa(y,h|θ) and ln g (h|y,θ). Approximate log-likelihood is the difference

between them. The difference does not depend on h, because all terms with h must cancel out by

construction. So we simply use h = 0 to get ln fa(y,h|θ)|h=0 = B and

ln g (h|y,θ)|h=0 =−
T

2
ln(2π)−

1

2

T
∑

t=1

ln(Mt )−
1

2

T
∑

t=1

K 2
t

Mt

Finally, the approximate log-likelihood is

ℓa(θ;y) = ln fa(y|θ) = ln fa(y,h|θ)|h=0 − ln g (h|y,θ)|h=0

=B +
T

2
ln(2π)+

1

2

T
∑

t=1

ln(Mt )+
1

2

T
∑

t=1

K 2
t

Mt

=
T
∑

t=1

At −T lnση+
1

2
ln(1−δ2)+

1

2

T
∑

t=1

ln(Mt )+
1

2

T
∑

t=1

K 2
t

Mt
.

B ”Spectral” approximation for covariance matrix of QML esti-

mates

The covariance matrix of QML estimates θ̂Q is estimated as H̃
−1(θ̂Q )Ĩ (θ̂Q )H̃ −1(θ̂Q ). We assume

that the first element of θ is σξ.

Denote

µi =− ln

(

σ2
ω+σ2

η

(

1+δ2 −2δcos
( πi

T +1

))−1
)

, mr
i = eµi

∂µi

∂θr
,

ϕ=
2

T +1

⌊(T+1)/2⌋
∑

i=1

eµ2i−1

tan2
(

π(2i−1)
2(T+1)

) , γ3 =Eω
3
t /σ3

ω, γ4 =Eω
4
t /σ4

ω.

Then (for r 6= 1, s 6= 1)

Ĩ11 =−H̃11 =
4ϕ

σ2
ξ

, H̃1r = 0, Ĩ1r =
γ3σ

3
ωϕ

σξ
·

T
∑

i=1

mr
i ,

H̃r s =−
1

2

T
∑

i=1

∂µi

∂θr

∂µi

∂θs
,

Ĩr s =−H̃r s +
σ4
ω(γ4 −3)

4(T +1)

( T
∑

i=1

mr
i

T
∑

i=1

ms
i +

1

2

T
∑

i=1

mr
i ms

i +
1

2

T
∑

i=1

mr
i ms

T+1−i

)

.

Derivatives
∂µi

∂θr
can be evaluated numerically.

For the basic SV model E ln(ξ2
t ) = C = ψ(1/2)− ln(1/2), σ2

ω = Eω2
t = π2/2, Eω3

t = −14ζ(3) ≈
−16.829, where ζ(z) is the Riemann zeta function, Eω4

t =
7
4
π4 (see Dhaene & Vergote (2003)). Thus,

γ3 =−28
p

2ζ(3)/π3 ≈−1.5351, γ4 = 7.

The sums can be further approximated by integrals to obtain analytical expressions for the

asymptotic matrices I
∞

Q (θ) and H
∞
Q (θ).
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C Moments of the basic SV model

Assuming stationarity of the log-volatility process ht = δht−1 +σηηt we can write

ht ∼N

(

0,
σ2
η

1−δ2

)

.

From yt =σξξt exp(ht /2) and the assumption that ξt and ht are independent it follows that

E

∣

∣yt

∣

∣

n =σn
ξ E |ξt |n Eexp(nht /2).

Here exp(nht /2) is log-normal:

exp(nht /2) ∼L N

(

0,
n2σ2

η

4(1−δ2)

)

and thus

Eexp(nht /2) = exp

(

n2σ2
η

8(1−δ2)

)

.

As mentioned in Harvey (2007) if x ∼χ2
ν then (for α>−ν/2)

Exα =
2α

Γ(ν/2+α)

Γ(ν/2)
.

For the basic SV model ξ2
t ∼χ2

1. It follows that

E |ξt |n =E[(ξ2
t )n/2] =

2n/2
Γ((n +1)/2)

Γ(1/2)
=

2n/2
Γ((n +1)/2)
p
π

.

Combining these results we have (for n >−1)

E

∣

∣yt

∣

∣

n =
σn
ξ

2n/2
Γ((n +1)/2)
p
π

exp

(

n2σ2
η

8(1−δ2)

)

.

Specifically, for n = 1 and n = 2 (using Γ(1) = 1 and Γ(3/2) =
p
π/2 )

E

∣

∣yt

∣

∣=σξ

√

2

π
exp

(

σ2
η

8(1−δ2)

)

, E y2
t =σ2

ξ exp

(

σ2
η

2(1−δ2)

)

.

It is also possible to derive autocovariances of
∣

∣yt

∣

∣ and y2
t . In general

E
[∣

∣yt

∣

∣

m ∣

∣yt−k

∣

∣

n]

=σm+n
ξ E |ξt |m E |ξt−k |n Eexp((mht +nht−k )/2) (k > 0).

Here (mht +nht−k )/2 is normally distributed with zero mean and variance
(m2+n2+2mnδk )σ2

η

4(1−δ2)
. Its

exponent is log-normal:

exp((mht +nht−k )/2) ∼L N

(

0,
(m2 +n2 +2mnδk )σ2

η

4(1−δ2)

)

.

Hence

Eexp((mht +nht−k )/2) = exp

(

(m2 +n2 +2mnδk )σ2
η

8(1−δ2)

)
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and

E
[∣

∣yt

∣

∣

m ∣

∣yt−k

∣

∣

n]

=
1

π
σm+n
ξ 2(m+n)/2

Γ((m+1)/2)Γ((n+1)/2)exp

(

(m2 +n2 +2mnδk )σ2
η

8(1−δ2)

)

(k > 0).

In particular, for m = 1 and n = 1

E
[∣

∣yt

∣

∣

∣

∣yt−k

∣

∣

]

=
2σ2

ξ

π
exp

(

(1+δk )σ2
η

4(1−δ2)

)

(k > 0).

These are non-central autocovariances. Similar expressions can be derived for y2
t .

We write ln(y2
t ) as

ln(y2
t ) = lnσ2

ξ+C +ht +ωt ,

where ωt = ln(ξ2
t )−C , Eωt = 0, Varωt =π2/2. From Eht = 0 it follows that

E ln(y2
t ) = lnσ2

ξ+C .

Next, ht and ωt are two independent stationary processes. The process ht is AR(1) with the au-

toregression coefficient δ and the innovations variance σ2
η, while ωt is white noise. Consequently,

second moments of ln(y2
t ) can be easily obtained:

Var[ln(y2
t )] =Varht +Varωt =σ2

η/(1−δ2)+π2/2,

Cov(ln(y2
t ), ln(y2

t−k )) =Cov(ht ,ht−k ) =σ2
ηδ

k /(1−δ2), k > 0.

D Some formulas for extended SV model

For t = 2, . . . ,T

lnφt = lnρ(ξt )− lnσξ−ht /2−
1

2
ln(2πσ2

η)−
1

2
η2

t .

where ξt = ξt (yt ,ht ) defined by (27) and

ηt = ηt (ht , yt−1,ht−1) =
ht −δht−1 −αξt−1(yt−1,ht−1)

ση
.

The derivatives are given by

d lnφt

dht
= (lnρ(ξt ))′ξ′t −

1

2
−

1

ση
ηt ,

d lnφt

dht−1
=

1

ση
ηt (δ+αξ′t−1),

d 2 lnφt

dh2
t

= (lnρ(ξt ))′′(ξ′t )2 + (lnρ(ξt ))′ξ′′t −
1

σ2
η

,
d 2 lnφt

dht dht−1
=

1

σ2
η

(δ+αξ′t−1),

d 2 lnφt

dh2
t−1

=
1

ση
ηtαξ

′′
t−1 −

1

σ2
η

(δ+αξ′t−1)2.

The derivatives of

ξt (yt ,ht ) =
yt −µ−κr (ht )

σξ exp(ht /2)
.

with respect to ht are given by

ξ′t =−
1

2
ξt −

κ

σξ exp(ht /2)
r ′(ht ),

ξ′′t =
1

4
ξt +

κ

σξ exp(ht /2)

(

r ′(ht )− r ′′(ht )
)

.

The derivatives of in-mean function are
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• for r (ht ) = exp(ht /2): r ′(ht ) = r (ht )/2, r ′′(ht ) = r (ht )/4,

• for r (ht ) = exp(ht ): r ′(ht ) = r ′′(ht ) = r (ht ),

• for r (ht ) = ht : r ′(ht ) = 1, r ′′(ht ) = 0.

For the standard normal distribution with the density function lnρ(ξ) =−1
2

ln(2π)− 1
2
ξ2 the deriva-

tives obviously are

(lnρ)′ =−ξ, (lnρ)′′ =−1.

For the Student’s t distribution with the density function

lnρ(ξ) =− lnB(ν/2,1/2)−
1

2
ln(ν)−

ν+1

2
ln

(

1+
ξ2

ν

)

.

where

B(ν/2,1/2) =
Γ(ν/2)Γ(1/2)

Γ((ν+1)/2)
=

Γ(ν/2)
p
π

Γ((ν+1)/2)
,

the derivatives are

(lnρ)′ =−
ξ(ν+1)

ν+ξ2
, (lnρ)′′ =−

(ν−ξ2)(ν+1)

(ν+ξ2)2
.

The elementary quadratic approximation for the complete data log-density is

lnφat = Ft +F 0
t (ht −h∗

t )+F 1
t (ht−1 −h∗

t−1)

+
1

2
F 00

t (ht −h∗
t )2 +F 01

t (ht −h∗
t )(ht−1 −h∗

t−1)+
1

2
F 11

t (ht−1 −h∗
t−1)2.

It can be written as

lnφat =Ct +C 0
t ht +C 1

t ht−1 +C 00
t h2

t +C 01
t ht ht−1 +C 11

t h2
t−1,

where

Ct = Ft −F 0
t h∗

t −F 1
t h∗

t−1 +
1

2
F 00

t h∗2
t +F 01

t h∗
t h∗

t−1 +
1

2
F 11

t h∗
t−1,

C 0
t = F 0

t −F 00
t h∗

t −F 01
t h∗

t−1, C 1
t = F 1

t −F 01
t h∗

t −F 11
t h∗

t−1,

C 00
t =

1

2
F 00

t , C 01
t = F 01

t , C 11
t =

1

2
F 11

t

with obvious modifications for t = 1. Summing lnφat up, we obtain

ln fa(y,h) =
T
∑

t=1

lnφat =
T
∑

t=1

[

Ct +C 0
t ht +C 1

t ht−1 +C 00
t h2

t +C 01
t ht ht−1 +C 11

t h2
t−1

]

.

This sum can be rearranged to obtain (8). The coefficients of this representation are

B 0
t =C 0

t +C 1
t+1, t = 1, . . . ,T,

B 00
t =C 00

t +C 11
t+1, t = 1, . . . ,T, B 01

t =C 01
t , t = 2, . . . ,T

with C 1
T+1 = 0 and C 11

T+1 = 0) and

B =
T
∑

t=1

Ct .
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