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Abstract

The orientation and progress of spatial agglomeration for Krug-
man’s core–periphery model are investigated in this paper. Possible
agglomeration patterns for a system of cities spread uniformly on a
circle are set forth theoretically. For example, a possible and most
likely course predicted for eight cities is a gradual and successive one—
concentration into four cities and then into two cities en route to a
single city. The existence of this course is ensured by numerical sim-
ulation for the model. Such gradual and successive agglomeration,
which is called spatial-period doubling, presents a sharp contrast with
the agglomeration of two cities, for which spontaneous concentration
to a single city is observed in models of various kinds. It exercises cau-
tion about the adequacy of the two cities as a platform of the spatial
agglomerations and demonstrates the need of the study on a system
of cities.
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1 Introduction

Emergence of the spatial economic agglomeration attributable to market in-

teractions has attracted much attention of spatial economists and geogra-

phers. Among the many descriptions available in the literature, the core–

periphery model of Krugman (1991) [18] is touted as the first and the most

successful attempt to clarify the microeconomic underpinning of the spatial

economic agglomeration in a full-fledged general equilibrium approach1. The

core–periphery model introduced the Dixit–Stiglitz (1977) [6] model of mo-

nopolistic competition into spatial economics and provided a new framework

to explain interactions that occur among increasing returns at the level of

firms, transportation costs, and factor mobility. Such a framework paved

the way for development of the New Economic Geography2 as a mainstream

field of economics. Furthermore, in recent years, the framework has been

applied to various policy issues in areas such as trade policy, taxation, and

macroeconomic growth analysis (Baldwin et al., 2003 [1]).

Yet most reports of the literature in New Economic Geography have re-

mained confined to two-city models in which spatial economic concentration

to a single city is triggered by bifurcation3. The two-city model is the most

pertinent starting point by virtue of its analytical tractability, but it has a

limited capability to express spatial effects. In reality, economic agglomera-

tions can take place in more than two locations, as evidenced by results of

several empirical studies. For example, Behrens and Thisse (2007) [2] stated

that “Among a system of cities, indirect spatial effects emerge and compli-

cate the analysis. Dealing with these spatial indeterminacies constitutes a

1This is based on an appraisal by Fujita and Thisse (2009) [12] in honor of Krugman’s
2008 Nobel Memorial Prize in Economic Sciences.

2Comprehensive reviews of the NEG models are available in a survey by Ottaviano and
Puga (1998) [24], in a review by Fujita and Thisse (2009) [12], and in several books as
follows: Fujita et al. (1999) [10], Brakman et al., 2001 [3], Fujita and Thisse (2002) [11],
Baldwin et al. (2003) [1], Henderson and Thisse (2004) [15], Combes et al. (2008) [4], and
Glaeser (2008) [13].

3The two identical symmetric cities are in a stable state with high transport costs.
When the costs are reduced to a certain level, tomahawk bifurcation triggers a spontaneous
concentration to a single city by breaking the symmetry (e.g., Krugman, 1991 [18], Fujita
et al., 1999 [10], Forslid and Ottaviano, 2003 [9]).
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main theoretical and empirical challenge NEG and regional economics must

surely confront in the future4.” We must analyze a system of cities thoroughly

in careful comparison with the two-city model to answer the question, “To

what degree can we extrapolate the predictions and implications derived from

two-city analysis to a system of cities?”

Several reports in the literature have described attempts to transcend

the two-city special case with a local analysis (linearized eigenproblem) of

the racetrack economy5. Krugman (1993 [19], 1996 [20]) identified the emer-

gence of several spatial frequencies. Yet, currently, it is difficult analytically

to extract agglomeration properties from the nonlinear equations of core–

periphery models with an arbitrary discrete number of cities.

Numerical simulations might be effective for identifying agglomeration

patterns for a system of cities. A numerical simulation on 12 symmetric cities

of equal size is conducted to observe that the symmetric equilibrium often

becomes unstable (cf., Krugman, 1991 [18]). Fujita et al. (1999) [10] obtained

post-bifurcation equilibria for three cities. Nevertheless, it seems premature

to infer a global view of agglomeration based on currently available numerical

information. A naive numerical simulation for an increased number of cities

must address a rapidly increasing numerical information and might therefore

not be very promising.

The objective of this paper is to investigate the orientation and progress of

agglomerations of a system of cities and, in turn, to test the adequacy of the

two-city model as a spatial platform. Possible agglomeration patterns and

courses of the pattern change of a racetrack economy for the multi-regional

core–periphery model6 are obtained using group-theoretic bifurcation the-

4The difficulty encountered in solving the dimensionality problem is reminiscent of the
n-body problem in mechanics, which is solved for n = 2 but not for an arbitrary number
of bodies.

5The racetrack economy uses a system of identical cities that spread uniformly around
the circumference of a circle. See, e.g., Krugman (1993) [19], 1996 [20], Fujita et al. (1999)
[10], Picard and Tabuchi (2009) [26].

6The core–periphery model with n cities is presented in §2 as a recapitulation and a
reorganization of Krugman (1991) [18] and Fujita et al. (1999, Chapter 5) [10]. This
model uses a spatial version of the Dixit–Stiglitz model, considers an economy with two
sectors—agriculture and manufacturing— and assumes an upper-tier utility function of
the Cobb–Douglas type with CES sub-preferences over manufacturing varieties.
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Figure 1: Spatial period-doubling cascade for the eight cities (area of ⃝
denotes the size of the associated city: the arrow denotes the occurrence of
a bifurcation)

ory7. A possible and the most likely course of agglomeration predicted is

spatial period-doubling cascade (cf. Proposition 5 in §5.4). An example of

this cascade is shown for eight cities in Fig. 1, in which the area of the circle

represents the population of the associated city and the arrow indicates the

occurrence of a bifurcation8. A system of 23 = 8 identical cities (for some

positive integer k) concentrates into 22 = 4 identical larger cities, en route to

the concentration to the single megalopolis. Consequently, the concentration

progresses successively in association with the doubling of the spatial period.

The validity of the theoretical prediction is assessed using numerical sim-

ulation. Basic equations of the core-periphery model are rewritten to be

compatible with computational bifurcation theory9 (cf. §3). A combination10

of the group-theoretic bifurcation theory and the computational bifurcation

theory is vital in the numerical simulation of the agglomerations of a race-

track economy with many cities.

Although Krugman’s (1993 [19], 1996 [20]) analysis of the racetrack econ-

omy gives the orientation of the breaking of uniformity, we study the progress

of agglomerations thereafter, as well as the orientation. The possible equi-

librium and associated agglomeration patterns of 4, 6, 8, and 16 cities are

studied theoretically (cf. §5) and are obtained numerically (cf. §6) in an ex-

haustive manner, while only a few were found and studied in the previous

numerical simulations. Results show that the racetrack economy among a

7The major framework of this theory has already been developed in physical fields (see,
e.g., Golubitsky et al., 1988 [14]; Ikeda and Murota, 2002 [16]), and is introduced into §4.
This theory is reorganized to be applicable to the core–periphery model in §5.

8See §5.4 for the precise meaning of this figure.
9See, e.g., Crisfield (1977) [5] for an explanation of this theory.

10The group-theoretic bifurcation theory represents a map and the computational bi-
furcation theory represents a car in the tracing of complex equilibria. See, e.g., Ikeda and
Murota, 2002 [16] for successful combinatory use of these two theories.
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system of cities, for the same value of transport cost, has increasing numbers

of stable equilibria when the number of cities increases. Such an increase

of stable equilibria is a fundamental difficulty that might instill pessimism

about the usefulness of the bifurcation analysis of the racetrack economy.

Nonetheless, as the most likely course of agglomerations of a system of cities,

the spatial period doubling cascade for 4, 8, and 16 cities is actually found

through numerical simulation, and thereby supports that pessimistic view.

This paper is organized as follows. The core–periphery model is intro-

duced into §2. Governing equations are presented with a study of stability

in §3. A brief explanation of group-theoretic bifurcation theory is offered in

§4. Bifurcation theory of the racetrack economy is described in §5. Agglom-

erations of the racetrack economy with a system of cities are investigated in

§6. The Appendix offers theoretical details and proofs.
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2 Core–periphery model

A core–periphery model with an arbitrary discrete number of cities is pre-

sented as a recapitulation and a reorganization of Krugman (1991) [18] and

Fujita et al. (1999, Chapter 5) [10]. The economy comprises n possible

locations (labeled i = 1, . . . , n) around a circumference of a racetrack, two

industrial sectors (agriculture and manufacture), and two factors of produc-

tion (agricultural labor and manufacturing labor). The agricultural sector is

perfectly competitive and produces a homogeneous good, whereas the manu-

facturing sector is imperfectly competitive with increasing returns, producing

various and differentiated goods. Manufacturing laborers are mobile across

locations, but agricultural laborers are immobile. Laborers of each type

consume two goods and supply one unit of labor inelastically. The utility

functions are identical for agricultural labor and manufacturing labor. The

equilibrium of the model is determined through two stages: the short-run

equilibrium and the long-run equilibrium. The short-run equilibrium is de-

termined according to the spatial allocation of manufacturing workers. In

the long-run equilibrium, manufacturing workers can migrate to a city with

a higher real wage. As a result of such manufacturing workers’ migration,

the spatial allocation of manufacturing workers is determined.

2.1 Short-run equilibrium

The short-run equilibrium determines the income of each city, the price index

of manufactures in that city, the wage rate of workers in that city, and the real

wage rate in that city given the spatial allocation of manufacturing laborers

determined by the long-run equilibrium.

The nominal wage rate wi for the manufacturing labor force of the ith

city is given as

wi = [
n∑

j=1

Yjt
1−σ
ij Gσ−1

j ]1/σ, (i = 1, . . . , n); (1)

the manufactured price index for the ith city is given as

Gi = [
n∑

j=1

λj(wjtij)
1−σ]1/(1−σ), (i = 1, . . . , n). (2)
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Here Yi signifies the total income for the ith city, tij denotes the transport

cost in terms of the amount of the manufactured good dispatched per unit

received, σ stands for the elasticity of substitution between differentiated

goods, Gi denotes the manufactured price index, and λi (i = 1, . . . , n) stands

for the ratio of the manufacturing labor force for the ith city to the whole

manufacturing force, which is called the population of the ith city for short.

The total income for the ith city is expressed as

Yi = µλiwi + (1 − µ)/n, (i = 1, . . . , n), (3)

assuming that the agricultural wage has unity as a numéraire, where µ is the

ratio of the manufacturing labor force, the first term µλiwi in the right-hand-

side of (3) is the income of the manufacturing labor force, and the second

term (1 − µ)/n is that of the agricultural one.

2.2 Long-run equilibrium

In the long-run equilibrium, the manufacturing workers are assumed to mi-

grate to a city with a higher real wage. We express the real wage ωi of the

ith city as

ωi = wiG
−µ
i , (i = 1, . . . , n), (4)

and consider the highest equilibrium real wage ω̄.

The long-run equilibrium employs the complementarity condition

{
ωi − ω̄ = 0, (λi > 0),
ωi − ω̄ ≤ 0, (λi = 0),

(5)

(i = 1, . . . , n) and the conservation law of population

n∑

i=1

λi = 1. (6)

2.3 Iceberg transport costs

We employ the iceberg form of transport costs and define them as follows.
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Assumption 1 (Iceberg transport costs). For the racetrack economy on

a circle with the unit radius, which is studied in this paper, we define the

transport cost tij between the two cities i and j by

tij = exp(τDij), (i, j = 1, . . . , n), (7)

where τ is the transport parameter and

Dij =
2π

n
min(|i − j|, n − |i − j|), (i, j = 1, . . . , n)

represents the shortest distance between cities i and j; min(·, ·) denotes the

smaller value of the variables in parentheses.
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3 Governing equations and stability

We have presented a set of equations for the core–periphery model in §2.

From these equations, we derive a system of nonlinear governing equations

of the model and derive the stability condition of the solutions of the model in

a manner suitable for the theoretical analysis of the racetrack economy in §5
and the numerical analysis in §6. In the derivation of the governing equations,

the condensation is conducted on the set of equations to suppress auxiliary

equations and variables in §3.1. The stability condition is formulated in terms

of the eigenanalysis of a Jacobian matrix of the governing equations in §3.2.

3.1 Governing equations

Among many variables and parameters of these equations, we regard λ =

(λ1, . . . , λn)⊤ as an independent variable vector and τ as a bifurcation pa-

rameter11, and condense12 other variables as below.

The real wage in (4) can be expressed from (1)–(3) and (7) as a function

of (λ, τ) as

ωi = ωi(λ, τ), (i = 1, . . . , n). (8)

The highest equilibrium real wage among the cities can be expressed from

(5), (6), and (8) as a function of (λ, τ) as

ω̄ = ω̄(λ, τ). (9)

We express a system of governing equations for the model as

F (λ, τ) =




{ω1(λ, τ) − ω̄(λ, τ)}λ1

...
{ωn(λ, τ) − ω̄(λ, τ)}λn



 = 0, (10)

11µ and σ are regarded as auxiliary parameters that are pre-specified for each problem.
12A numerical counterpart of the condensation of the variables that is used in the nu-

merical bifurcation analysis in §6 is presented in Appendix A.
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G(λ, τ) =





−{ω1(λ, τ) − ω̄(λ, τ)}
...

−{ωn(λ, τ) − ω̄(λ, τ)}
λ1
...

λn





≥ 0 (11)

from (5) with (8) and (9).

Assumption 2 (Smoothness). F and G are sufficiently smooth functions.

Remark 1 The equality (10) is formulated as a special form in that λi is

multiplied to the ith component ωi(λ, τ) − ω̄(λ, τ) of (5). This special form

is pertinent to the discussion of asymptotic stability in §3.2 and of the study

of bifurcation in Appendix D.

Although there are variety of strategies13 to solve the equality (10) and

inequality (11) simultaneously, in favor of the consistency with bifurcation

theory, we use the following two-step strategy.

• Step 1: Obtain a family of solutions (equilibrium points) (λ, τ) of (10)

that forms smooth equilibrium path(s). A nonlinear system under-

going bifurcation involves several sets of equilibrium paths, including

bifurcated paths.

• Step 2: Among the equilibrium paths, we extract only those satisfying

the inequality (11), i.e., sustainable solutions (ωi(λ, τ) − ω̄(λ, τ) ≤ 0)

with non-negative populations (λi ≥ 0) (i = 1, . . . , n).

13The variational inequality approach, for example, is known as a strategy to tackle
such problems (e.g. Nagurney, 1993 [23]; Facchinei and Pang, 2003 [7]).
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3.2 Stability and economical feasibility of solutions

We introduce a local stability condition14 based on the dynamics15

dλ

dt
= F (λ, τ). (12)

If all eigenvalues ei (i = 1, · · · , n) of the Jacobian matrix of F ,

J(λ, τ) =
∂F

∂λ
,

have negative real parts at a solution (λ, τ), then the solution is linearly

stable, and is asymptotically stable as t → ∞. If at least one eigenvalue has a

positive real part, then the solution is linearly unstable, and is asymptotically

unstable as t → ∞.

In practice, we are interested in solutions that are stable and satisfy

the inequality (11) and call such solutions (economically) feasible solutions.

Solutions which are not feasible are called (economically) infeasible solutions,

which include:

• unstable solutions for which ei for some i has a positive real part,

• solutions with negative population λi < 0 for some i, and/or

• unsustainable solutions with ωi − ω̄ > 0 (λi = 0) for some i.

Proposition 1 below is pertinent in the check of feasibility.

Proposition 1 The feasibility of a solution (λ, τ) that satisfies the equal-

ity condition (10) with non-negative populations λi ≥ 0 (i = 1, . . . , n) is

classifiable as follows:

i) The solution is feasible if all eigenvalues ei (i = 1, . . . , n) of J(λ, τ)

have negative real parts.

ii) The solution is infeasible if an eigenvalue(s) has a positive real part(s).

Proof. See Appendix C. ¤

14The present stability condition is based on the asymptotic stability (e.g., Lorenz,
1997 [21]; Ikeda and Murota, 2002 [16]).

15The dynamics in (12) corresponds to the replicator dynamics (cf. Fujita et al. 1999,
[10]).
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4 Group-theoretic bifurcation theory

The break bifurcation16 is explained in light of group-theoretic bifurcation

theory. This theory, a standard means to describe the bifurcation of symmet-

ric systems, has been developed to obtain the rules of pattern formation—

emergence of solutions with reduced symmetries via so-called symmetry-

breaking bifurcations (cf. Golubitsky et al., 1988 [14]). This theory will

be employed to investigate possible bifurcations of the racetrack economy in

§5.

We are interested in a symmetric system that satisfies the symmetry

condition, called the equivariance17

T (g)F (λ, τ) = F (T (g)λ, τ), g ∈ G (13)

of F (λ, τ) to a symmetry group G in terms of an n × n orthogonal matrix

representation T (g) of G that expresses the geometrical transformation for

an element g of G.

The Jacobian matrix J(λ, τ) is endowed with the symmetry condition

T (g)J(λ, τ) = J(λ, τ)T (g), g ∈ G (14)

if λ is G-symmetric in the sense that T (g)λ = λ (g ∈ G). By virtue of (14),

it is possible to construct a transformation matrix H, the column vectors

of which are made up of discrete Fourier series (cf. Murota and Ikeda, 1991

[22]), such that the Jacobian matrix J is transformed into a block-diagonal

form:

J̃ = H⊤JH =




J̃0 O

J̃1

O
. . .



 (15)

with diagonal block matrices J̃k (k = 0, 1, . . .). A diagonal block, say J̃0,

has G-symmetric eigenvectors, while eigenvectors of other blocks J̃k (k =

1, 2, . . .) have reduced symmetries labeled by subgroups Gk (k = 1, 2, . . .)

16See Appendix B.4 for the explanation of break bifurcation.
17The equivariance (13) is not an artificial condition for mathematical convenience, but

a natural consequence of the objectivity of the equation: the observer-independence of the
mathematical description.
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of G. This is a mechanism to engender symmetry breaking via bifurcation.

This block-diagonal form is suitable for an analytical eigenanalysis of the

Jacobian matrix (cf. §5.3).

The bifurcation of a symmetric system with the equivariance (13) has

been studied in group-theoretic bifurcation theory and has properties (cf. Ikeda

and Murota, 2002 [16]):

• Property 1: The symmetry of the equilibrium points is preserved until

branching into a bifurcated path.

• Property 2: In association with repeated bifurcations, one can find a

hierarchy of subgroups

G −→ G1 −→ G2 −→ · · · (16)

that characterizes the hierarchical change of symmetries. Here −→
denotes the occurrence of break bifurcation.

• Property 3: A bifurcated path sometimes regains symmetry on a bifur-

cation point on another equilibrium path with a higher symmetry.

In this section, the bifurcation rule is described in such a sequence that the

symmetry is reduced successively via bifurcations. However, when we observe

some economic system by decreasing the transport cost monotonously from

∞ to 0, a bifurcated path sometimes regains symmetry at a bifurcation point

as explained in Property 3 presented above.
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5 Bifurcation of a racetrack economy

The tomahawk bifurcation of Krugman’s core–periphery model with two

cities is well known to produce spontaneous concentration to a single city.

In contrast, it will be demonstrated in §6 that the racetrack economy of a

system of cities displays more complex bifurcation. The objective of this sec-

tion is to investigate such bifurcation by group-theoretic bifurcation theory

presented in §4. We present several theoretical developments that will be

employed in the analysis of the racetrack economy in §6:

• Symmetry of the racetrack economy and its governing equation are

illustrated in §5.1.

• Trivial solutions18 of the racetrack economy are determined in view of

the symmetry in §5.2.

• Possible bifurcated solutions and possible courses of bifurcations from

the uniform population solution are investigated in §5.3.

• Among many possible equilibria predicted by the group-theoretic bi-

furcation theory, a spatial period-doubling cascade is advanced as the

most likely course en route to concentration in one city in §5.4.

• A systematic procedure to obtain equilibrium paths of the core–periphery

model is presented in §5.5.

5.1 Symmetry of racetrack economy and governing equa-

tion

We consider the racetrack economy with n cities that are equally spread

around the circumference of a circle as shown in Fig. 2, and describe the

symmetry of these cities and of the governing equation.

Assumption 3 (Parity). We set n to be even as the number of cities treated

in the numerical analysis is n = 4, 6, 8, and 16 (cf. §6).

18The trivial solutions denote solutions for which the population λ of the cities remains
unchanged in association with the change of the transport parameter τ (cf. Appendix B.2).
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Figure 3: Actions of elements of D4

5.1.1 Groups for expressing symmetries

The symmetry of these cities can be described as the invariance under geo-

metrical transformations by the dihedral group G = Dn of degree n express-

ing regular n-gonal symmetry. This group is defined as

Dn = {c(2πi/n), σc(2πi/n) | i = 0, 1, . . . , n − 1},

where {·} denotes a group consisting of the geometrical transformations in the

parentheses, c(2πi/n) denotes a counterclockwise rotation about the center

of the circle at an angle of 2πi/n (i = 0, 1, . . . , n − 1), and σc(2πi/n) is

the combined action of the rotation c(2πi/n) followed by the upside-down

reflection σ (cf. Fig. 3 for n = 4).

Bifurcated solutions from the Dn-symmetric racetrack economy have re-
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D4 D2

D1

D2,4
1 D3,4

1 D4,4
1 C1

Figure 4: Symmetries of solutions for the four cities (n = 4; dashed line, axis
of reflection symmetry; the area of ⃝ denotes the size of population)

duced symmetries that are labeled by subgroups19 of Dn. These subgroups

are dihedral and cyclic groups that are given respectively as

Dk,n
m = {c(2πi/m), σc(2π[(k − 1)/n + i/m]) | i = 0, 1, . . . ,m − 1},
Cm = {c(2πi/m) | i = 0, 1, . . . ,m − 1}.

Therein, the subscript m (= 1, . . . , n/2) is an integer that divides n; the

superscript k (= 1, . . . , n/m) expresses the directions of the reflection axes.

Cm denotes cyclic symmetry at an angle of 2π/m; Dk,n
m denotes reflection

symmetry with respect to m-axes together with this cyclic symmetry.

In general, spatial distribution of populations with a higher symmetry

with a larger m represents a more uniform state, while that with a lower

symmetry with a smaller m represents a more concentrated state.

Example 1 The symmetries of solutions, for example, for the four cities

(n = 4) are classified by these groups in Fig. 4. The patterns associated with

the groups D2,4
1 and D4,4

1 have the same economic meaning; such is also the

case for the groups D1 and D3,4
1 . ¤

19D2,n
n/2

-, Cn-, and Cn/2-symmetric modes are absent for this specific racetrack problem.
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5.1.2 Spatial periods

In the interpretation of agglomeration patterns, we consider the spatial pe-

riod T along the unit circle of the racetrack economy. When the cities are

invariant under the transformation c(2πi/m), i.e., Dm- or Dk,n
m -invariant, we

define the spatial period as

T = Tm = 2π/m.

Likewise we define the spatial period for the Dn-invariant cities as

T = Tn = 2π/n.

In general, a higher spatial period with a larger m represents a more dis-

tributed spatial distribution of populations, a lower spatial period with a

smaller m represents a more concentrated distribution.

5.1.3 Equivariance

In the description of the bifurcation of the racetrack economy, the following

lemma for the equivariance of this economy is important as it paves the way

for application of the group-theoretic bifurcation theory in §4 for a particular

case of G = Dn. The rule of hierarchical bifurcations in (16) for G = Dn

varies according to the value of the integer n (cf. Appendix D.1).

Lemma 1 The nonlinear equality equation F (λ, τ) = 0 in (10) of the race-

track economy is endowed with equivariance with respect to Dn:

T (g)F (λ, τ) = F (T (g)λ, τ), g ∈ Dn. (17)

Therein T (g) simultaneously permutes the order of equations via T (g)F and

the order of independent variables via T (g)λ.

Proof. See Appendix C. ¤
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5.2 Determination of trivial solutions

The symmetry of the racetrack economy engenders trivial solutions (cf. Ap-

pendix B.2), which satisfy, for any values of τ , the nonlinear equality equation

F (λ, τ) = 0 in (10). It is readily apparent that the racetrack economy has

the uniform-population trivial solution

λ = (1/n, . . . , 1/n)⊤ (18)

with Dn-symmetry and the spatial period of Tn = 2π/n.

In addition to the uniform population solution in (18), several trivial

solutions exist as expounded in Proposition 2.

Proposition 2 (Period multiplying trivial solutions). There are n/m trivial

solutions with

λi =

{
1/m, (i = k, k + n/m, . . . , k + (m − 1)n/m),
0, otherwise

(19)

(m divides n; k = 1, . . . , n/m), which, for example, for k = 1 is Dm-

symmetric. The spatial period Tm = 2π/m of these solutions along the circle

becomes (n/m)-times as long as the period Tn = 2π/n of the uniform popu-

lation solution in (18).

Proof. See Appendix C. ¤

Among the trivial solutions in Proposition 2, we are particularly inter-

ested in the following trivial solutions:

• Period-doubling trivial solutions

λ = (2/n, 0, . . . , 2/n, 0)⊤ and (0, 2/n, . . . , 0, 2/n)⊤ (20)

express Dn/2-symmetric solutions, for which a concentrating city and

an extinguishing city alternate along the circle. The spatial period

Tn/2 = π/n of these solutions along the circle is doubled in comparison

with the period Tn = 2π/n of the uniform population solution in (18).

Note that the two solutions in (20) have the same economical meaning.
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Table 1: Examples of trivial and non-trivial solutions (dashed line, axis of
reflection symmetry)

(a) Two cities (n = 2)

D2 D1

Trivial

Non-trivial

(b) Four cities (n = 2)

D4 D2 D1 D2,4
1 C1

Trivial Non-existent

Non-trivial Non-existent

• Concentrated trivial solutions

λ =
( i

0, . . . , 0, 1, 0, . . . , 0
)
⊤, (i = 1, . . . , n)

express the concentration of the population to a single city. The solu-

tion for i = 1, for example, is D1-symmetric.

The variety of trivial solutions becomes diverse as the number n of cities

increases; see examples below.

Example 2 Two cities (n = 2) have only two trivial solutions20 as shown in

Table 1(a):

20These trivial solutions were observed by Krugman (1991) [18].
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• the uniform population solution λ = (1/2, 1/2)⊤ (D2-symmetry), and

• the two concentrated solution λ = (1, 0)⊤ and λ = (0, 1)⊤ (D1-symmetry),

which are also the period-doubling trivial solutions.

Example 3 Four cities (n = 4) have more trivial solutions (cf. Table 1(b)),

such as

• the uniform population solution λ = (1/4, 1/4, 1/4, 1/4)⊤ (D4-symmetry),

• the period-doubling trivial solution λ = (1/2, 0, 1/2, 0)⊤ (D2-symmetry),

• the concentrated trivial solution λ = (1, 0, 0, 0)⊤ (D1-symmetry), and

• D2,4
1 -symmetric trivial solution λ = (0, 1/2, 1/2, 0)⊤, and so on. ¤

5.3 Bifurcation from the uniform population solution

Bifurcation from the Dn-symmetric uniform population solution in (18) is

investigated. Recall that n is assumed to be even.

According to the symmetry conditions (14), the Jacobian matrix J is a

symmetric circulant matrix with entries

Jij = kl, (l = min{|i − j|, n − |i − j|})

for some kl (l = 1, 2, . . .).

The transformation matrix H for block-diagonalization in (15) is obtain-

able using the formula in Murota and Ikeda (1991) [22] as

H =

{
(η(+),η(−)), for n = 2,
(η(+),η(−),η(1),1,η(1),2, . . . , η(n/2−1),1,η(n/2−1),2), for n ≥ 4.

(21)

The column vectors of this matrix H, which will turn out to be the eigen-

vectors of J , are expressed as the discrete Fourier series

η(+) =
1√
n




1
...
1



 , η(−) =
1√
n




cos π · 0

...
cos(π(n − 1))



 =
1√
n





1
−1
...
1

−1




, (22)
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η(j),1 =

√
2

n




cos(2πj · 0/n)

...
cos(2πj(n − 1)/n)



 , η(j),2 =

√
2

n




sin(2πj · 0/n)

...
sin(2πj(n − 1)/n)



 ,

(j = 1, . . . , n/2 − 1). (23)

These eigenvectors η(+), η(−), η(j),1, and η(j),2 are Dn-, Dn/2-, D1,n
n/bn-, and

D
1+bn/2,n
n/bn -symmetric, respectively, and have the spatial periods of Tn = 2π/n,

Tn/2 = π/n, Tn/bn = n̂π/n, and Tn/bn = n̂π/n, respectively. Here

n̂ = n/gcd (j, n) ≥ 3, (24)

and gcd (j, n) is the greatest common divisor of j and n.

The block-diagonal form in (15) reduces to a diagonal matrix as

J̃ = H⊤JH = diag(e(+), e(−), e(1), e(1), . . . , e(n/2−1), e(n/2−1)),

where diag(·) denotes a diagonal matrix with the diagonal entries therein.

The diagonal entries, which correspond to the eigenvalues of J , are

e(+) = k0 + kn/2 + 2

n/2−1∑

l=1

kl, (25)

e(−) = k0 + (−1)n/2kn/2 + 2

n/2−1∑

l=1

(−1)lkl, (26)

e(j) = k0 + cos(πj) kn/2 + 2

n/2−1∑

l=1

cos(2πjl/n) kl, (j = 1, . . . , n/2 − 1). (27)

It is noteworthy that e(+) and e(−) are simple eigenvalues, and that e(j) (j =

1, . . . , n/2 − 1) are double eigenvalues that are repeated twice.

We can classify critical points on the uniform population solution as





e(+) = 0 : limit point of τ (M = 1),
e(−) = 0 : simple bifurcation point (M = 1),
e(j) = 0 : double bifurcation point (M = 2).

These simple and double bifurcation points are break bifurcation points.

The simple bifurcation point with e(−) = 0 corresponds to the spa-

tial period-doubling bifurcation, which engenders an alternating equilibrium

(cf. Proposition 3).
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Proposition 3 (Simple bifurcation). At the simple bifurcation point, which

is either a pitchfork or tomahawk, we encounter a symmetry-breaking bi-

furcation Dn −→ Dn/2. Its critical eigenvector is given uniquely as a Dn/2-

symmetric vector η(−) of (22) with components of alternating signs expressing

the bifurcation mode of spatial period doubling from T = 2π/n to π/n.

The double bifurcation point e(j) = 0 for some j corresponds to the spatial

period n̂-times bifurcation (cf. (24) for the definition of n̂), which engenders a

more rapid concentration than the period doubling bifurcation of the simple

bifurcation point (cf. Proposition 4). Double bifurcation points with e(j) = 0

are absent for the two cities with n = 2 (cf. (21)). It exercises caution

that the bifurcation of the two cities is a special case, while four or more

cities in general have double bifurcation points and have different bifurcation

properties.

Proposition 4 (Double bifurcation). At the double bifurcation point with

e(j) = 0 for some j, we encounter a symmetry-breaking bifurcation Dn −→
Dn/bn, at which the spatial period becomes n̂-times ( n̂ ≥ 3 by (24)).

Proof. See Appendix C. ¤

Example 4 The change of symmetry at bifurcation points is illustrated in

Fig. 5 for the four cities (n = 4). At the simple bifurcation point in Fig. 5(a),

the bifurcation doubles the spatial period and triggers concentration of the

population to two cities located at opposite sides of the circle, while the

populations of the other two cities decline. At the double bifurcation point

in Fig. 5(b) associated with e(j) = 0 (n = 4, j = 1, n̂ = 4), the spatial period

becomes four times. ¤

5.4 Spatial period-doubling cascade

In addition to break bifurcations from the uniform-population trivial solu-

tion with Dn-symmetry that were studied in §5.3, several possible sources

of symmetry-breaking exist. Namely, further break bifurcations may be en-

countered on (a) bifurcated paths of this Dn-symmetric solution and (b)

Dm-symmetric trivial solutions (m divides n) presented in §5.2.
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(a) Simple bifurcation

D
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(b) Double bifurcation

Figure 5: Direct bifurcations from the four uniform cities (n = 4; the arrow
denotes the occurrence of a bifurcation)

D4 D1D2D8

Figure 6: Spatial period-doubling cascade for the eight cities (n = 8; the
arrow denotes the occurrence of a bifurcation)

All these break bifurcations can be described by group-theoretic bifurca-

tion theory (cf. Ikeda and Murota, 2002 [16]). The rule of bifurcation depends

on the integer number n, to be precise, the divisors of the number n. The

bifurcation becomes increasingly hierarchical and complex for n with more

divisors (cf. Appendix D).

Among possible courses of hierarchical bifurcations, we pay special atten-

tion to the spatial period-doubling bifurcation for Dn-symmetric cities with

n = 2k (k is some positive integer) that is expounded in Proposition 5 below.

Figure 6 depicts this bifurcation for n = 8 = 23 cities.

Proposition 5 (Spatial period-doubling cascade). Dn-symmetric cities with
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n = 2k for some integer k have a possible course:

D2k −→ D2k−1 −→ D2k−2 −→ · · · −→ D1 (28)

that is called “spatial period-doubling cascade21,” in which the spatial period

is doubled successively by repeated simple bifurcations.

Remark 2 Proposition 5 serves as a generalization of the study of Tabuchi

and Thisse (2009) [27] who conducted a local analysis (linearized eigenprob-

lem) for the flat distribution of the racetrack economy to predict of the

occurrence of the period doubling cascade. In comparison with the study

by Tabuchi and Thisse (2009) [27], the implementation of the income effect

for good consumption of the core–periphery model, i.e., an increase in goods

consumption in association with an increase in the income, is a possible im-

provement of this paper from an economics standpoint.

5.5 Systematic procedure to obtain equilibrium paths

We present a systematic procedure to obtain equilibrium paths of the core–

periphery model. First, we conduct the exhaustive search by obtaining all

the equilibrium paths using the following steps:

Step 1: Obtain all trivial solutions by the method presented in §5.2.

Step 2: Carry out the eigenanalysis of the Jacobian matrix J , on these trivial

solutions to obtain the bifurcation points and to classify feasible and

infeasible solutions. On the uniform population solution, the formulas

(25)–(27), which give the eigenvalues analytically, are to be employed,

while the numerical eigenanalysis is to be conducted for other trivial

solutions.

Step 3: Obtain the bifurcated paths branching from all these trivial solutions

by the computational bifurcation theory in Appendix E. The numerical

21A repeated doubling of time period by bifurcations takes place in many physical sys-
tems (Feigenbaum, 1978 [8]) and is called period doubling cascade.
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eigenanalysis is to be conducted to find critical points and testify the

feasibility of these solutions.

Step 4: Repeat the Steps 3 and 4 to exhaust all equilibrium paths.

Next, among all these equilibrium paths we select feasible ones that are

to be encountered when the transport cost τ is decreased from ∞ to 0.

Existence and multiplicity of possible feasible ones for a particular value of τ

depend on the umber n of cities, the values of the parameters σ and µ, and

so on, and must be investigated individually.
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6 Bifurcation analysis of racetrack economy

Agglomerations of the racetrack economy are investigated for n = 4, 6, 8, and

16 cities. The solutions of a system of governing equations (10) and (11) of

the core–periphery model are obtained by the systematic procedure to obtain

equilibrium paths in §5.5. The progress of agglomeration is expressed as

successive breaking of symmetries associated with successive elongation of the

spatial period with reference to the theoretical rule of bifurcation presented in

§5. Successive and gradual progress of agglomerations by the spatial period-

doubling cascade in Proposition 5 is highlighted as a key phenomenon for

n = 4, 8, and 16 cities in §6.1. The period-doubling and period-tripling are

observed for n = 6 cities in §6.2.

We set the elasticity of substitution as σ = 10.0 and the ratio of the

manufacturing labor force as µ = 0.4. The transport parameter τ , which is

proportional to the transport cost tij via (7) and stays in the range [0,∞], is

scaled as

τ ′ = 1 − exp(−τπ); (29)

τ ′ = 0 (τ = 0) corresponds to the state of no transport cost, and τ ′ = 1

(τ = +∞) corresponds to the state of infinite transport cost.

6.1 Period Doubling Cascade

We demonstrate the occurrence of period doubling cascade for n = 4, 8, and

16 cities.

6.1.1 Four cities

For the four cities (n = 4), equilibrium paths were obtained by the by the

systematic procedure to obtain equilibrium paths in §5.5. Figure 7(a) shows

τ ′ versus λ1 curves obtained in this manner, where the ordinate τ ′ = 1 −
exp(−τπ) is a scaled transport parameter in (29). Economically feasible

solutions (shown as solid curves) and infeasible ones (as dotted curves) are

classified using Proposition 1 in §3.2. Trivial paths (solutions) with Dm-

symmetries (m = 1, 2, 4) exist at the horizontal lines at λ1 = 0, 1/4, 1/2,
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Figure 7: Equilibrium paths of the four cities (n = 4) and a predicted shift
of feasible solutions in association with the decrease of transport cost (τ ′ =
1− exp(−τπ); solid curve, feasible; dashed curve, infeasible; ◦, simple break
point; △, limit point; •, sustain point)
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and 1 (cf. Table 1(b) in §5.2), and several bifurcated paths connecting these

trivial paths exist. These paths are apparently quite complex.

To assist the economical interpretation, among such complex paths, we

have chosen feasible trivial paths and associated paths shown in Fig. 7(b)

as those most likely to occur; distributions of populations are portrayed at

several equilibrium points. Economically feasible parts (shown as solid lines)

of the trivial solutions are

• OA: uniform population solution λ = (1/4, 1/4, 1/4, 1/4)⊤ (D4-symmetry),

• BC: period-doubling solution λ = (1/2, 0, 1/2, 0)⊤ (D2-symmetry),

• EF: concentrated solution λ = (1, 0, 0, 0)⊤ (D1-symmetry), and

• E′F′: another concentrated solution λ = (0, 0, 1, 0)⊤ (D1-symmetry).

Note that EF and E′F′ are symmetric counterparts with the same economical

meaning.

Bifurcation points on these trivial solutions are classifiable as break and

sustain points (cf. Appendix B.4). Symmetries of the system are reduced at

period-doubling breaking bifurcation points A and C denoted as ◦ (cf. Ap-

pendix D.1):

• At A, we encounter a symmetry breaking D4 −→ D2 associated with

λ = (1/4, 1/4, 1/4, 1/4)⊤ → (1/4 + α, 1/4 − α, 1/4 + α, 1/4 − α)⊤,

(|α| < 1/4).

• At C, we encounter a symmetry breaking D2 −→ D1 associated with

λ = (1/2, 0, 1/2, 0)⊤ → (1/2 + α, 0, 1/2 − α, 0)⊤, (|α| < 1/2).

Symmetries are preserved at the sustain points denoted as •, at which a

trivial solution and a non-trivial one intersect (Appendix D). Sustain point

B has D2-symmetry; E and E′, D1-symmetry.

Among the bifurcated paths, we found the path CD and its symmetric

counterpart CD′ feasible. The feasible path CD became infeasible at the
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limit (maximum) point τ at D denoted by △ (cf. the left of Fig. 11(a) in

Appendix B.3).

In view of the whole set of feasible paths obtained herein, in association

with the decrease of τ ′, we predict a possible course of the accumulation of

population following four feasible stages: OA, BC, CD, and EF, as presented

in Fig. 7(c). Dynamical shifts are assumed between OA and BC and between

CD and EF. Starting from the uniform state λ = (1/4, 1/4, 1/4, 1/4)⊤, via

bifurcations and dynamical shifts, we arrive at the complete concentration

λ = (1, 0, 0, 0)⊤, in agreement with the rule of bifurcations in Fig. 13(a)

in Appendix D.1. We can see the occurrence of a spatial period-doubling

cascade

D4 −→ D2 −→ D1,

en route to the concentration to a single city, in agreement with Proposition 5

in §5.4.

Recall that the feasible solutions of the simple tomahawk bifurcation22 of

the two cities consisted only of two trivial solutions: the uniform population

solution and the completely concentrated solution (cf. Table 1(a)). Differ-

ent from the two cities, the four cities have a feasible non-trivial solution23

CD, for which migration from one city to another occurs in an economically

feasible manner without undergoing bifurcation. Moreover, the progress of

agglomeration of the four cities is much more complex than that of the spon-

taneous concentration of the two cities triggered by the simple tomahawk

bifurcation. It demands caution that the experience of the two cities is not

universal, thereby underscoring the importance of bifurcation analysis for

many cities examined in the remainder of this section.

6.1.2 Eight cities

For the eight cities bifurcated paths branching from several trivial solutions

are obtained in an exhaustive manner as shown in τ ′ versus λ1 relationship

22The tomahawk bifurcation was observed, e.g., in Krugman (1991) [18] and Fujita
et al. (1999) [10] for the present model, and in Forslid and Ottaviano (2003) [9] for an
analytically solvable model.

23A feasible non-trivial solution was observed also by Pflüger (2004) [25] for a simple,
analytically-solvable model for the two cities.
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of Fig. 8(a). The horizontal lines at λ1 = 0, 1/8, 1/4, 1/2, and 1 are trivial

solutions with Dm-symmetries (m = 1, 2, 4, 8); these bifurcated paths that

connect these trivial solutions have grown more complex than those for the

six cities in Fig. 10(a).

Among all the equilibrium paths for the eight cities shown in Fig. 8(a),

feasible equilibrium paths that are expected to be followed in association

with the decrease of τ ′ are depicted in Fig. 8(b). The spatial period-doubling

cascade

D8 −→ D4 −→ D2 −→ D1 (30)

engenders concentration into four cities and then into two cities, en route to

concentration to a single city.

Complex bifurcated paths connecting these trivial solutions were found

in Fig. 8(a). Such complexity, notwithstanding, all these paths have been

traced successfully by the systematic procedure to obtain equilibrium paths

in §5.5; it demonstrates the prowess of this procedure. In addition, the rule

of break bifurcations in Fig. 13(b) in Appendix D.1 was of assistance in

the tracing of bifurcated paths. One might feel pessimistic when observing

the complexity of the bifurcation of the racetrack economy that will grow

rapidly with the increase of the number n of cities. Nonetheless, we can

resolve such pessimism by addressing only feasible solutions, as in the spatial

period-doubling cascade (30).

6.1.3 16 cities

Similarly to the four and eight cities, the 16 cities displayed the spatial-period

doubling cascade, as shown in Fig. 9,

D16 −→ D8 −→ D4 −→ D2 −→ D1.

6.1.4 Discussion

The presence of spatial-period doubling cascade, which was predicted in

Tabuchi and Thisse (2009) [27] and also by group-theoretic bifurcation the-

ory in Proposition 5, has thus been ensured. It is highlighted as a mechanism

to engender concentration out of uniformity, especially for n = 2k cities. It is
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to be remarked again that, unlike the two-city special case, there are feasible

non-trivial solutions.

6.2 Period doubling and tripling: six cities

Equilibrium paths of the six cities are shown in Fig. 10(a), from which we

chose feasible paths and some associated paths shown in Fig. 10(b).

There are trivial solutions with Dm-symmetries (m = 1, 2, 3, 6) (cf. §5.2)

at the horizontal lines at λ1 = 0, 1/6, 1/3, 1/4, 1/2, and 1:

• λ1 = 1/6: D6-symmetric uniform population solution,

• λ1 = 0, 1/3: D3-symmetric period-doubling trivial solutions,

• λ1 = 0, 1/4, 1/2: D2-symmetric trivial solutions, and

• λ1 = 0, 1: D1-symmetric concentrated trivial solutions.

We observed

• period doubling simple break bifurcations: D6 −→ D3 and D2 −→ D1;

• period tripling double break bifurcations: D6 −→ D2 and D3 −→ Dk,6
1 .

This is due to the fact that n = 6 has two divisors: 2 and 3. Thus the period

doubling is not that dominant as the four cities (cf. Fig. 7(b)), while the

period tripling via double break bifurcations plays an important role. The

period tripling, which is theoretically predicted in Proposition 2 with n̂ = 3,

does not take place for n = 2k cities, including the two cities.

A predicted shift of feasible solutions occurring in association with the

decrease of τ ′ is presented in Fig. 10(c). This shift is not unique:

• The D6-symmetric state might dynamically jump into either the D2-

or D3-symmetric state.

• The D3-symmetric state might dynamically jump into the D2- or D5,6
1 -

symmetric state.

By virtue of the mixed occurrence of the period doubling and tripling, the

predicted shift for the six cities with n = 6 = 2 × 3 is more complex than

that of the four cities portrayed in Fig. 7(b).
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7 Conclusions

To testify the adequacy of the two-city special case as a platform for spa-

tial agglomerations, we investigated the progress of agglomerations of the

racetrack economy of the core–periphery model with four, six, eight, and 16

cities. These cities displayed several features, including:

• feasible non-trivial solutions,

• period-doubling cascade,

• a plethora of bifurcated paths, and

• period tripling via double break bifurcations.

These features were not observed and can be overlooked in Kruhgman’s two-

city special case, in which the tomahawk bifurcation engenders spontaneous

concentration to a single city. It demands caution that the experience of the

two-city special case with a simple tomahawk bifurcation is not universal. It

is preferable to employ a system of cities as a platform for the investigation

of spatial agglomerations.

Symmetry-breaking bifurcation predicted by group-theoretic bifurcation

theory proposed a broader view on the bifurcation of the racetrack economy.

In fact, the bifurcation phenomena become progressively complex in associa-

tion with the increase of the number of cities. Such complexity might instill

pessimism about the usefulness of the bifurcation analysis of the racetrack

economy. Yet, when we specifically examine economically feasible solutions

that are expected to occur in association with the decrease of the transport

cost, the spatial period-doubling cascade can be highlighted as the most likely

mechanism to engender concentration out of uniformly distributed popula-

tion. This suffices to clarify the pessimism.

Such complex phenomena can be traced in an exhaustive and systematic

manner owing to the insight of group-theoretic bifurcation theory. The pro-

posed procedure is applicable to any new economic geography models other

than Krugman’s core–periphery model, and also to city distributions other

than the racetrack economy. Accordingly, it will be a topic of future studies
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to carry out bifurcation analysis of other updated new economic geography

models with a system of cities scattered on a two-dimensional domain.
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[25] Pflüger, M., 2004. A simple, analytically solvable, Chamberlinian ag-

glomeration model. Regional Science and Urban Economics 34(5) 565–

573.

[26] Picard, P. M. Tabuchi, T., 2009. Self-organized agglomerations and

transport costs. Economic Theory DOI 10.1007/s00199-008-0410-4.

[27] Tabuchi, T., Thisse, J. F., 2009. Self-organizing urban hierarchy.

Preprint.

37



A Derivation of incremental equation

To derive the incremental equation for the equality (10), we rewrite the

complementary condition (5) as

P (λ, w, ω̄, τ) =




(ω1(w, τ) − ω̄)λ1

...
(ωn(w, τ) − ω̄)λn



 = 0, (A.1)

ωi(w, τ) − ω̄ ≤ 0, λi ≥ 0, (i = 1, . . . , n). (A.2)

Here w = (w1, . . . , wn)⊤ and ωi = ωi(w, τ) (i = 1, . . . , n) by (4).

Equation (1) is expressed as

M (λ, w, τ) =





[ n∑
s=1

Ys(t1s)
1−σGσ−1

s

]
−

(
w1

)σ

...
[ n∑

s=1

Ys(tns)
1−σGσ−1

s

]
−

(
wn

)σ




= 0, (A.3)

and the conservation law (6) is (1 = (1, . . . , 1)⊤)

F (λ) = 1⊤λ − 1 = 0. (A.4)

An assembly of the relations (A.1), (A.3), and (A.4) gives the set of 2n+1

nonlinear equations



P (λ, w, ω̄, τ)
M(λ,w, τ)

F (λ)



 = 0 (A.5)

with a bifurcation parameter τ and 2n + 1 independent variables λ, w, and

ω̄.

We rewrite (A.5) into an incremental form:

∂P

∂λ
δλ +

∂P

∂w
δw +

∂P

∂ω̄
δω̄ +

∂P

∂τ
δτ = 0, (A.6)

∂M

∂λ
δλ +

∂M

∂w
δw +

∂M

∂τ
δτ = 0, (A.7)

∂F

∂λ
δλ = 0 (A.8)
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(cf. Ikeda and Murota, 2002, Chapter 7 [16]), in which ∂F/∂λ = 1 by (A.4).

Under Assumption 4, it is possible to eliminate independent variables δw

and δω̄ from (A.6)∼(A.8) as shown below:

δw =

(
∂M

∂w

)−1(∂M

∂λ
J−1∂F

∂τ
− ∂M

∂τ

)
δτ,

δω̄ = −Tδτ,

and, in turn, to arrive at an incremental equilibrium equation

F̃ (δλ, δτ) = Jδλ +
∂F

∂τ
δτ + h.o.t. = 0, (A.9)

where h.o.t. dentoes higher order terms and

J =
∂F

∂λ
=

∂P

∂λ
− ∂P

∂w

(
∂M

∂w

)−1
∂M

∂λ
,

∂F

∂τ
= S − T

∂P

∂ω̄
,

S =
∂P

∂τ
− ∂P

∂w

(
∂M

∂w

)−1
∂M

∂τ
, T =

∂F

∂λ
J−1S

∂F

∂λ
J−1

∂P

∂ω̄

.

Assumption 4 (Regularity conditions.) The incremental governing equa-

tion (A.9) was derived under the assumptions that the matrices J and ∂M/∂w

are nonsingular, and that the scalar ∂F/∂λJ−1∂P /∂ω̄ is nonzero.

B Classifications and definition of equilibrium

points

In the study of the agglomeration of the core–periphery model, it is useful

to resort to various kinds of classifications of equilibrium points.

B.1 Interior and corner solutions

Solutions of this model are classifiable into two types:
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• an interior solution for which all cities have positive population λi > 0

(i = 1, . . . , n), and

• a corner solution for which some cities have zero population.

The existence of the corner solution is a special feature of the core–periphery

model that demands reorganization in the application of bifurcation theory

(cf. Appendix D).

B.2 Trivial and non-trivial solutions

The core–periphery model has characteristic solutions, for which the popula-

tion λ of the cities remains unchanged in association with the change of the

transport parameter τ . We accordingly have classification:

{
Trivial solution: λ is constant with respect to τ .
Non-trivial solution: λ is not constant with respect to τ .

B.3 Ordinary, limit, and bifurcation points

With reference to the eigenvalues ei (i = 1, . . . , n) of the Jacobian matrix J ,

equilibrium points are classified as

{
ei ̸= 0 for all i, ordinary point,

ei = 0 for some i, critical (singular) point.

Critical points are classifiable as






limit point of τ (M = 1),

bifurcation point






simple (M = 1),
double (M = 2),

...

where M is the multiplicity of a critical point that is defined as the number

of zero eigenvalues of J .

At a limit point of τ , as portrayed in Fig. 11(a), the value of τ is max-

imized or minimized. A feasible path is shown by the solid curve, and an

infeasible one by the dashed curve. Two half branches are connected at the
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τ
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τ
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(b) Bifurcation point

Figure 11: Critical points (solid curve, feasible; dashed curve, infeasible)

limit point; a part of the path beyond the limit point is called a half branch

and so is another part. With regard to economical feasibility, there are two

cases:

• A half branch is feasible, but another half branch is not.

• Both half branches are infeasible.

At a bifurcation point, two or more equilibrium paths intersect: Fig. 11(b)

presents a simple bifurcation point at which two paths (four half branches)

intersect. With regard to economical feasibility, there are four cases: Three,

two, one, or zero half branches are feasible, and the remaining half branches

are infeasible. If we focus only on feasible half branches, they look like a

two-pronged weapon, a curve with a kink, a branch, and so on.

B.4 Break and sustain points

Recall the block-diagonal form (15) in §4:

J̃ = H⊤JH =




J̃0 O

J̃1

O
. . .



 .
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(a) Crossing point of two (b) Crossing point of trivial
non-trivial solutions and non-trivial solutions

Figure 12: Sustain points (solid curve, feasible; dashed curve, infeasible)

At a bifurcation point, a block J̃k for some k becomes singular. Depending

on the type of block that becomes singular, bifurcation points are classified

into two types:

• A break bifurcation point, or a break point, is symmetry-breaking one,

at which J̃k becomes singular for some k(≥ 1). The symmetry of the

system is reduced on a bifurcated path branching at a break point (cf.

§5).

• A sustain bifurcation point, or a sustain point is a symmetry-preserving

one, at which J̃0 becomes singular. The symmetry of the system is

preserved on a bifurcated path branching at a sustain point.

The sustain bifurcation point is an inherent feature of the present core–

periphery model that permits the extinction of city population of manu-

facturing labor. This point is necessarily a bifurcation point because the

factorized form (ωi − ω̄)λi of (10) (cf. Remark 1) produces two independent

solutions. The point, as shown in Fig. 12, is classified into two types24: (a)

the crossing point of two non-trivial solutions and (b) the crossing point of

a trivial solution and a non-trivial solution.

24The sustain point for the two cities in Fujita et al. (1999) [10] corresponds to the
crossing point of a trivial solution and a non-trivial solution in Fig. 12(b).
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Since λi and ωi− ω̄ vanish simultaneously at this point, the sign of ωi− ω̄

along a (trivial) solution path changes, as does the sign of λi along another

path. At the point, a sustainable solution (ωi−ω̄ < 0, λi = 0) changes into an

unsustainable one (ωi− ω̄ > 0, λi = 0) along a path, while a feasible solution

with positive population (λi > 0, ωi − ω̄ = 0) changes into an infeasible one

with negative population (λi < 0, ωi − ω̄ = 0).

Remark 3 Fujita et al. (1999) [10] considered only feasible solutions, and

regarded the sustain point as a kink that connect two half branches. Yet this

point is considered as a bifurcation point in this paper to be consistent with

the computational bifurcation theory in Appendix E.

C Proofs

Proof of Proposition 1. The Jacobian matrix of the equality condition

(10) reads

J =
∂F

∂λ

=





ω1 − ω̄ 0 · · · 0

0 ω2 − ω̄
. . .

...
...

. . . . . . 0
0 · · · 0 ωn − ω̄




+





Ω11λ1 Ω12λ1 · · · Ω1nλ1

Ω21λ2 Ω22λ2
. . .

...
...

. . . . . .
...

Ωn1λn · · · · · · Ωnnλn





= diag(ω1 − ω̄, . . . , ωn − ω̄) + diag(λ1, . . . , λn)Ω, (C.1)

where diag(· · · ) denotes a diagonal matrix with diagonal entries therein and

Ωij =
∂(ωi − ω̄)

∂λj

, (i, j = 1, . . . , n), (C.2)

Ω = (Ωij | i, j = 1, . . . , n). (C.3)

For an interior solution with ωi − ω̄ = 0 and λi > 0 (i = 1, . . . , n) (cf. (5)

and Appendix B.1), the Jacobian matrix in (C.1) reduces to

J = diag(λ1, . . . , λn)Ω. (C.4)
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An interior solution is stable if all the eigenvalues of the matrix Ω in (C.3)

have negative real parts (cf. §3.2) because the matrix diag(λ1, . . . , λn) in

(C.4) is positive definite.

A corner solution (cf. Appendix B.1) can be expressed without loss of

generality25 as

λi > 0, ωi − ω̄ = 0, (i = 1, . . . ,m), (C.5)

λi = 0, (i = m + 1, . . . , n). (C.6)

With the use of (C.5), the Jacobian matrix in (C.1) becomes

J =





Φ1 Φ2

ωm+1 − ω̄ 0

O
. . .

0 ωn − ω̄





, (C.7)

where

Φi = diag(λ1, . . . , λm)Ωi, (i = 1, 2),

Ω1 =




Ω11 · · · Ω1m
...

. . .
...

Ωm1 · · · Ωmm



 , Ω2 =




Ω1(1+m) · · · Ω1n

...
. . .

...
Ωm(1+m) · · · Ωmn



 .

From (C.7), it is apparent that ei = ωi−ω̄ (i = m+1, . . . , n) are eigenvalues of

J , whereas the other m eigenvalues ei (i = 1, . . . ,m) are given as eigenvalues

of Φ1.

For a stable corner solution, we have ei = ωi − ω̄ < 0 (i = m + 1, . . . , n),

whereas ωi−ω̄ = 0 (i = 1, . . . ,m) by (C.6). Therefore, the sustainability ωi−
ω̄ ≤ 0 (i = 1, . . . , n) in (5) is satisfied for the stable solution. Consequently,

the check of the sustainability is to be replaced with the investigation of

stability. ¤

25The consideration of this form does not lose generality because all corner solutions can
be reduced to the form by appropriately rearranging the order of independent variables λ.
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Proof of Lemma 1. With the use of the representation matrices for

c(2π/n) and σ:

T (c(2π/n)) =





1
1

. . .

1




, T (σ) =





1
1

···
1



 ,

the representation matrices T (g) (g ∈ Dn) can be generated as

T (c(2πi/n)) = {T (c(2π/n))}i, T (σc(2πi/n)) = T (σ){T (c(2π/n))}i,

(i = 0, 1, . . . , n − 1).

In the proof of the equivariance (17), we note that

ω̄(T (g)λ, τ) = ω̄, ω(T (g)λ, τ) = T (g)ω(λ, τ),

where the former denotes the objectivity of ω̄ with respect to the numbering

of cities, and the latter denotes that the rearrangement of λ leads to the

rearrangement of ω in the same order. Then, for example, for g = σ

F (T (σ)λ, τ) =





{ω1(T (σ)λ, τ) − ω̄(T (σ)λ, τ)}λ1

{ω2(T (σ)λ, τ) − ω̄(T (σ)λ, τ)}λn

{ω3(T (σ)λ, τ) − ω̄(T (σ)λ, τ)}λn−1
...

{ωn(T (σ)λ, τ) − ω̄(T (σ)λ, τ)}λ2





=





{ω1(λ, τ) − ω̄(λ, τ)}λ1

{ωn(λ, τ) − ω̄(λ, τ)}λn

{ωn−1(λ, τ) − ω̄(λ, τ)}λn−1
...

{ω2(λ, τ) − ω̄(λ, τ)}λ2





= T (σ)F (λ, τ).

This shows the equivariance (17) for g = σ. The equivariance for other

elements of g ∈ Dn can be shown similarly. ¤
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Proof of Proposition 2. We consider Dm-symmetric state, for which

the equivariance (13) with G = Dm for the explicit form of F in (10) entails

ω1 = ω1+n/m = · · · = ω1+(m−1)n/m,
ω2 = ω2+n/m = · · · = ω2+(m−1)n/m,

...
ωn/m = ω2n/m = · · · = ωn.

(C.8)

As a candidate for a trivial solution, we consider a Dm-symmetric population

distribution
{

λi = 1/m, ωi − ω̄ = 0, (i = 1, 1 + n/m, . . . , 1 + (m − 1)n/m),
λi = 0, otherwise,

(C.9)

which is obtained by setting k = 1 in (19).

The substitution of (C.9) into (10) yields

F =




{ω1 − ω̄}λ1

...
{ωn − ω̄}λn



 =





0 × λ1

(ω2 − ω1) × 0
...

(ωn/m − ω1) × 0
...




= 0.

This proves that (C.9) is a trivial solution, while other trivial solutions are

treated similarly. ¤

Proof of Proposition 4. The critical eigenvector is given by the super-

position of the two vectors η(j),1 and η(j),2 in (23) as

η(θ) = cos θ · η(j),1 + sin θ · η(j),2

for general angle θ (0 ≤ θ < 2π). The bifurcated paths do not branch in the

general direction associated with arbitrary θ, but branch in finite directions

as expounded in Lemma 2. This is a novel aspect presented in this paper

that was not examined for the core–periphery model up to now.

Lemma 2 As made clear by group-theoretic analysis (cf. Ikeda et al., 1991 [17];

Ikeda and Murota, 2002 [16]), bifurcated paths branching at the double bifur-

cation point satisfy the following properties:
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(i) There exist n̂ bifurcated paths (2n̂ half branches) in the directions of

δλ = Cη(αk), Cη(αk+bn), (k = 1, . . . , n̂),

where C is a scaling constant and

αi = −π (i − 1)/n̂, (i = 1, . . . , 2n̂).

(ii) The solutions δλ = Cη(αk) and Cη(αk+bn) are Dk,n
n/bn-symmetric (k =

1, . . . , n̂). Therefore, the spatial period becomes n̂-times (n̂ ≥ 3) in

comparison with that of the Dn-symmetric uniform population solution.

(iii) The 2n̂ half branches are classifiable into two independent ones: δλ =

Cη(α2l−1), Cη(α2l) (l = 1, . . . , n̂). It suffices in numerical analysis to

find the two branches in two directions: δλ = Cη(α1), Cη(α2).

¤

Remark 4 Proposition 2 is extendible to double bifurcation points on bi-

furcated paths with Dm-symmetry (m divides n; m ≥ 3) by choosing η(j),1

and η(j),2 to be D1,m
m/ bm- and D

1+ bm/2,m
m/ bm -symmetric, respectively. Here m̂ =

m/gcd (j,m) and 1 ≤ j < m/2.

D Hierarchical bifurcations

We explain the mechanism of hierarchical bifurcations of the racetrack econ-

omy that consist of symmetry-breaking at break points and the extinction

of city population of manufacturing labor at sustain points, en route to the

concentration of population in a city. As mentioned in Appendix B.4, these

points are characterized by

{
break point: symmetry breaking,
sustain point: symmetry preserving.
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D.1 Break bifurcations

In addition to break bifurcations from the uniform-population trivial solu-

tion with Dn-symmetry that were studied in §5.3, there are several possible

sources of symmetry-breaking. Namely, further break bifurcations may be

encountered on (a) bifurcated paths of this Dn-symmetric solution and (b)

Dm-symmetric trivial solutions (m divides n) presented in §5.2.

All these break bifurcations can be described by group-theoretic bifur-

cation theory (cf. Ikeda and Murota, 2002 [16]). The rule of bifurcation

depends on the integer number n. To be precise, it depends on the divisors

of the number n, and the bifurcation becomes increasingly hierarchical and

complex for n with more divisors.

A few examples are:

• If n is a prime number, then it can undergo the one and only course of

hierarchical bifurcations: Dn −→ D1 −→ C1.

• For n = 4 = 22, a hierarchy of subgroups expressing the rule of hi-

erarchical break bifurcations is presented in Fig. 13(a). As might be

readily apparent, in addition to the direct bifurcations in Fig. 5, sev-

eral secondary and tertiary bifurcations exist: D2-symmetric solution

branches into Dk,4
1 -symmetric ones (k = 1, . . . , 4) and Dk,4

1 -symmetric

one branches into C1-symmetric one.

• The hierarchy of subgroups for n = 6 = 2× 3 shown in Fig. 13(b) por-

trays a more complex hierarchy than that of n = 4 = 22 in Fig. 13(a).

These rules are sufficient in the description for break bifurcations of the

model, while the model in general undergoes more complex bifurcation due

to the presence of sustain bifurcation points as explained in Appendix D.2.

D.2 Sustain bifurcations

As mentioned in Appendix B.4, the sustain bifurcation point is a special

feature of the core–periphery model that leads to the extinction of city pop-

ulation of manufacturing labor. If we follow only feasible solutions, we must

switch into another feasible path. A sustain point may possibly appear in
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Figure 13: Hierarchy of subgroups associated with hierarchical break bi-
furcations (dark solid arrow, double bifurcation; thin solid arrow, simple
bifurcation)
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Figure 14: Hierarchical, break and sustain bifurcations of the four cities
(n = 4; solid arrow, break bifurcation; dashed arrow, sustain bifurcation)

any solutions other than the uniform population solution. The presence of

sustain bifurcation points must be meshed into the rule of break bifurcations

presented in Appendix D.1.

A possible course of hierarchical bifurcations is presented in Fig. 14, for

example, for the four cities (n = 4). From the trivial solution with uniform

population (λ = (1/4, 1/4, 1/4, 1/4)⊤) shown in the left, population distri-

bution patterns of various kinds are engendered via hierarchical bifurcations.

In this figure, we encounter sustain bifurcation points shown by the dashed

arrows, in addition to the double bifurcation shown by the dark solid arrow

and the simple bifurcations shown by the thin solid arrows. Cases other than

n = 4 can be treated similarly.
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E Computational bifurcation theory

As we will see in §6, the solutions of the governing equation of the racetrack

economy involve several bifurcated paths that are quite complex. These

paths can be traced in a systematic and exhaustive manner by computational

bifurcation theory (cf. Crisfield, 1977 [5]). To be concrete, we employ the

following three numerical steps:

• Path tracing : In the path tracing of non-trivial solutions, we refer to

the incremental form of the equality equation (10), i.e.

F (u + δu, τ + δτ) − F (λ, τ)

= J(λ, τ)δλ +
∂F

∂τ
(λ, τ) δτ + h.o.t. = 0, (E.1)

where h.o.t. denotes higher order terms. At each equilibrium point

(λ, τ), another equilibrium point (λ+δλ, τ +δτ) can be found by solv-

ing26 (E.1) for (δλ, δτ) using a predictor–corrector (Newton–Raphson)

type method.

For the trivial solution(s), we need not carry out path tracing because

they are obtainable simply by symmetry consideration (cf. §5.2), al-

though singularity detection and branch switching must be conducted.

• Singularity detection: We carry out the eigenanalysis of the Jacobian

matrix J(λ, τ) at the solutions (λ, τ) to find the location of a critical

point, as a point at which one or more eigenvalues ei of J(λ, τ) become

zero.

For the uniform population solutions, the eigenanalysis can be con-

ducted using the explicit formulas in (22)∼(27). For the other solutions,

the numerical eigenanalysis of J , which is in general a non-symmetric

matrix, must be conducted.

• Branch switching : To obtain bifurcated paths branching from a bifur-

cation point, we use the so-called line search method.

26In the incremental equation (E.1), (λ, τ) is fixed, δλ is treated as an independent
variable, and δτ as a bifurcation parameter.
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At a simple bifurcation point with a single zero eigenvalue, say e1=0

(M=1), a bifurcated path is to be sought in the direction of the crit-

ical eigenvector η1 associated with this zero eigenvalue. We employ

δλ = Cη1 as the initial value for the iteration to find a solution on a

bifurcated path, where the scaling constant C is to be specified perti-

nently in view of the convergence of the iteration.

At a double bifurcation point with two zero eigenvalues, say e1 = e2 = 0

(M=2), two (independent) bifurcated paths are to be sought in the

directions δλ = Cη(α1) and Cη(α2) in Proposition 2(iii).

We carry out an exhaustive search of a whole set of equilibrium paths of

the racetrack economy by repeating the three steps described above for sec-

ondary, tertiary, . . . bifurcated paths, until exhaustion of possible bifurcated

paths.

For the racetrack economy, it is possible to trace trivial solutions inde-

pendently, other than the uniform population solution, and to find bifurcated

paths from these trivial solutions (cf. §5.5).
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