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1 Introduction and scope of the paper

Since the in�uential paper by Nelson and Plosser (1982), a considerable amount of

research has focused on developing both unit-root and stationarity tests, capable

of distinguishing between integrated and stationary-around-a-trend/level stochastic

processes. The importance of this topic in economics stems from the fact that a num-

ber of statistical and practical policy implications are associated with this distinction,

which becomes crucial in applied time series forecasting, where it is well known that

di¤erence stationary and trend stationary processes often imply very di¤erent fore-

casts (e.g., Diebold and Killian, 2000). Other application �elds include analysis of

economic/�nancial time series, health economics (studies on health expenditure and

gross domestic product, e.g. Jewell et al., 2003), hydrology (where testing for station-

arity is an important topic, e.g., Wang, 2006, Gelder et al., 2007), or climate change

studies (air pollutant emissions �e.g. Dore and Johnston, 2000�, temperatures �

e.g. Gay-Garcia et al., 2009�). Furthermore, both unit root and stationarity tests

are also regularly applied for model selection.

Most research has focused on unit root testing (a recent overview can be consulted

in Harvey et al., 2009). The pioneering contribution by Perron (1989) provided

evidence that the standard Dickey-Fuller test can be quite misleading when structural

breaks that a¤ect the time series are ignored. Since this evidence, a fruitful research

line has produced modi�ed tests that incorporate dummy variables in order to cope

with the potential presence of one or more breaks in the series (see Perron, 2006 for

a review). Besides, a number of research e¤orts have focused on smooth transition

models. This relates to the widespread recognition that changes which a¤ect many

series (e.g., the e¤ects of economic policy, the broadcasting of a news, or the difussion

of an epidemy) indeed do not happen instantaneously, but rather produce more or

less rapid gradual variations in the series. So, several authors (e.g., Leybourne et

al., 1998; Kapetanios et al., 2003; Enders and Granger, 1998; Caner and Hansen,

2001; Sollis, 2004) have proposed tests for the null hypothesis of unit root against
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the alternative of stationarity around a deterministic trend which experiences gradual

adjustment between di¤erent regimes.

A complementary approach for distinguishing unit root from stationary series is

stationarity testing. Derivation of the latter kind of test is important, as in many

cases (e.g., cointegration analysis) it is more interesting to test the null of stationarity.

Furthermore, as unit root tests are known to have low power under stationary but

highly persistent processes, stationarity tests provide a useful means to con�rm results

from unit root tests. Stationarity tests have been developed for a number of trend

speci�cations: these include linear models (e.g., Kwiatkowski et al., 1992; Leybourne

and McCabe, 1994), polynomials (e.g., Nabeya and Tanaka, 1988), linear trends

with breaks (e.g., Lee and Strazicich, 2001; Busetti and Harvey, 2001; Kurozumi,

2002), logistic transition functions (Harvey and Mills, 2004), a generic �piecewise

continuous� exogenous trend (Presno and Landajo, 2010) or a non-linear time series

model including smooth trend components with unknown parameters (Landajo and

Presno, 2010).

A potential drawback of mainstream unit root and stationarity tests stems from

their lack of robustness to misspeci�cation of the trend function. When the researcher

chooses an incorrect speci�cation for the deterministic trend function, the tests gen-

erally produce incorrect results. For instance, under misspeci�cation of the trend

component, standard stationarity tests typically diverge in probability as sample size

goes to in�nity, so a spurious unit root is detected with probability approaching one.

This problem may have serious implications for empirical research, as it is widely

recognized that trend speci�cation is di¢cult in practice, and it is fairly optimistic

to assume that the researcher always makes the correct guess.

This recognition has lead some authors to device �exible tests, that do not depend

critically on trend speci�cation. To our knowledge, the earliest proposal was due to

Bierens (1997), who developed a unit root test that considers as alternative a random

process that is stationary around a trend which belongs to a very general class of
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functions of time. Bierens�s approach relies on approximating the trend function

by Chebyshev polynomials, and the test becomes more �exible as more complex

Chebyshev polynomials are used. The limiting null distribution of the test statistic,

which depends on the complexity of the chosen approximant, is computed by Monte

Carlo simulations. Other proposals are due to Enders and Lee (2004), who consider

a Fourier approximation using a single frequency component, and to Rodrigues and

Taylor (2009), who apply this strategy to generalise the local GLS de-trending unit

root test.

In the �eld of stationarity testing, Becker et al. (2006) proposed two �exible

tests. The �rst test relies on approximating the unknown trend function by a model

including an intercept, a linear trend and two trigonometric components, namely a

sine and cosine function, whose frequency is chosen to maximize goodness of �t. The

limiting null distribution of the test, which is nonstandard, is derived in the same pa-

per. The test performs quite well in simulations, providing robustness against breaks

of unknown form and number, as the chosen speci�cation is capable of mimicking a

great many di¤erent trend forms. A potential limitation stems from the fact that

most smooth functions have Fourier expansions with an in�nite number of frequen-

cies, so the approximation capabilities of the chosen speci�cation are limited, at least

in theory. The same paper also proposes the cumulative frequency test, which pro-

vides further �exibility as it relies on (�nite) trigonometric polynomials. The null

distribution of the test, which as in Bierens�s approach, depends on the order of the

trigonometric polynomial, is computed in the same paper by Monte Carlo simula-

tions. The cumulative frequency test relies on a �xed (though possibly high order)

trigonometric polynomial, that may be enough for many applications; however, as the

test relies on a single �xed parametric structure, its representation capabilities are

limited to functions with a �nite number of nonnull terms in their Fourier expansion,

so in this implementation the test is �exible, but not nonparametric.2 This draw-

2A forceful limitation of the allowed model complexities may be helpful in order to enhance the
power of the test in small samples, although it may also induce oversize in large samples, as the
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back is well known in nonparametric statistics. A classical remedy is provided by the

method of sieves (Grenander, 1981): by using an increasing sequence of parametric

models, whose complexity grows with sample size at appropriately limited rates, the

method delivers consistent nonparametric estimation and hypothesis testing in very

general settings (e.g., Hong and White, 1995).

The sieve principle can also be exploited in stationarity testing. Brie�y stated,

a �exible parametric stationarity test may be rendered properly nonparametric by a

suitable modi�cation, namely, by nesting stationarity testing into an appropriately

sieved structure. This is the main goal of the paper: a nonparametric stationarity

test is proposed, and its asymptotics and empirical behavior is studied. The conclu-

sions of the analysis are fairly general. At �rst glance, the outcome of the analysis is

simple, as it closely resembles its parametric counterparts, including derivation of the

limiting null distribution of the test and asymptotic power analyses. The di¤erences

with respect to conventional stationarity testing are of technical nature, as relevant

statistical inferences are now carried out upon the basis of an increasing sequence of

approximate models for the trend function, whose complexity is indexed by sample

size, instead of relying on a single �xed structure, as was the case in standard sta-

tionarity tests. From the standpoint of empirical research, the proposed test appeals

as its implementation is simple, and the test has a standard limiting null distribu-

tion, unlike most stationarity and unit root tests. As to the scope of applications,

the nonparametric test is, in our view, most suitable for long series sampled at high

frequency as available, e.g., in �nancial econometrics.

The proposed test relies on nonparametric least squares estimation of the trend

component, which is carried out through trigonometric series regression. Our ap-

proach has the following features: (a) we focus on smooth trends which can be ap-

proximated with arbitrary accuracy, in mean-squared sense, by linear combinations

e¤ects of speci�cation bias asymptotically are nonvanishing. It is the researcher�s choice which of
these e¤ects he/she wishes to control best in a speci�c application.

5



of the elements of a cosine basis (in principle, any squared integrable function on

[0; 1] has this property). (b) The stochastic part of the null model is generated by

a linear �lter process (the performance of the test under several nonlinear time se-

ries models is also studied in simulations). (c) The behavior of the test when the

long-run variance of the process is estimated upon the residuals of the nonparametric

regression is studied. Finally, (d) the proposed test asymptotically has the correct

size, and is consistent under unit root alternatives, with its limiting null distribution

being standard normal, which enables a fairly simple implementation in practice.

As compared with previous stationarity tests, this proposal provides a number

of interesting features: (i) the proposed test is fully nonparametric. It relies on

a sieve mechanism which ensures both consistent estimation of the trend function

and asymptotically correct behavior of the stationarity test. (ii) The limiting null

distribution of the (suitably rescaled) test is standard, unlike those of most unit

root and stationarity tests, whose distributions are nonstandard as well as model-

dependent, in the sense that they range with each trend speci�cation. The expedient

of rescaling the test statistic avoids the burden of computing (usually, by Monte Carlo

simulations) a di¤erent set of critical values for each choice of model complexity.

(iii) The analytical results in this paper are valid for the case when the data are

driven by linear processes, so our analyses are not limited to the i.i.d. context.

(iv) The complicated issue of estimating the long-run variance of the process in the

nonparametric environment is addressed analytically. A considerable amount of �both

theoretical and empirical� research has been devoted to this topic both in the unit root

and stationarity testing literature (see references in Sections 3 and 5 below). It seems

natural to rely on these e¤orts as the starting point in the nonparametric context.

Unfortunately, validity of the available results on long-run variance estimation does

not follow automatically in the nonparametric context. This is a consequence of the

fact that the nonparametric estimators for the trend function generally converge at

slower rates than their parametric counterparts. This a¤ects the properties of usual
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estimators for the long-run variance, which have stochastic orders that may di¤er

from those appearing in the parametric unit root/stationarity testing literature. In

practice, this means that some strategies which are valid in the parametric context

may perform poorly in the nonparametric setting, or even induce inconsistency of

the tests. A proposal (namely, a class of kernel estimators for the long-run variance

of the process) is provided in the paper, and its theoretical behavior is analysed,

including derivation of appropriate rates for bandwidth increase in the nonparametric

setting. The estimator for the long-run variance of the process is computed upon the

residuals of nonparametric regression. We provide further �exibility by the expedient

of allowing possibly di¤erent model complexities for the numerator and denominator

of the test statistic. To our knowledge, the possibility of this separate treatment

of both components in the test statistic has not been exploited in the literature,

although our simulations indicate that this (slightly unconventional) strategy may

be useful in certain cases, where a more complex model may be advisable in the

numerator of the statistic �e.g., this may induce undersmoothing, so reducing the

bias of the nonparametric trend estimator, and allowing better control of the test�s

size� than in the denominator, where stronger complexity control may be useful

to better estimate the long-run variance of the process. In practice it is di¢cult to

provide "optimal" rules for such a general testing problem, as performance depends

on features such as the oscillatory behavior of the trend function and the stochastic

properties of the error processes involved. In Section 3 below some empirical rules of

thumb are proposed which conform with the allowed theoretical rates, and appear to

provide sensible performance in a number of time series processes.

The rest of the paper is structured as follows: in Section 2 the nonparametric test

is introduced, and its limiting behavior is analysed. In Section 3 the �nite sample

properties of the test are investigated and, in Section 4, some empirical applications

are presented. The paper closes with a summary of conclusions. All the mathematical

derivations are collected in the Appendix.
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2 A nonparametric stationarity test

The model

The following error-components model may be used as a general framework:

yt;T = �t + �
� (t=T ) + "t;

�t = �t�1 + ut ; t = 1; :::; T ; T = 1; 2; ::: (1)

with �� : [0; 1] ! R being a smooth function (i.e., a trend). We consider approxi-

mants to �� of the form �m(u) =
Pm

j=0 �j;m'j(u); with �m = (�0;m; :::; �m;m)
0 2 Rm+1,

'0(u) � 1; 'j(u) =
p
2 cos(j�u), j � 1, u 2 [0; 1]. (The basis f'j; j = 0; 1; :::g is a

complete and orthonormal in L2[0; 1].) We let m = mT grow to in�nity with sample

size T at an appropriate rate and assume that �� is the limit of f�mT
g under the

metric dT (�mT
; ��) �

q
T�1

PT
t=1 [�mT

(t=T )� ��(t=T )]2. This holds for any function
in L2[0; 1], although further smoothness conditions on �� will be imposed below.

In addition, f"tg and futg are independent zero-mean error processes with charac-
teristics to be detailed below and respective (�nite) variances E ("2t ) = �2" > 0 and

E (u2t ) = �
2
u � 0; f�tg starts with �0, which is assumed to be zero.

Under the assumption that the parameters entering the model nonlinearly are

known, Lagrange Multiplier (LM) stationarity testing relies on the following setting:

H0 : q �
�2u
�2"
= 0; H1 : q > 0 (2)

In standard stationarity testing, a parametric model for the trend function, such

as �� (u) = �0 + �1u, is speci�ed in advance, and the LM statistic to test (2) has the

well-known expression:
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ST = b��2T�2b"0AT b" = b��2T�2
TX

t=1

E2t ; (3)

where b" is the T � 1 vector of OLS residuals (we suppress double indexing for
notational simplicity), AT = [ajk], with ajk = min(j; k); j; k = 1; : : : ; T . Below we

apply the standard decomposition AT = CTC
0
T , with CT being a T � T lower tri-

angular matrix of ones. Et =
tP
i=1

b"i denotes the forward partial sum of the residuals,

and b�2 is a suitable estimator for the long-run variance of f"tg, to be denoted as �2

and assumed non-null.

We will analyze the behavior of the above stationarity test when the trend func-

tion �� is estimated nonparametrically and the test is carried out upon the resid-

uals of this regression. We consider the estimator b�mT
(u) =

PmT

j=0
b�j'j(u), with

b�mT
= (b�0; :::; b�mT

)0, which (given mT ) is computed by OLS regression, i.e., b�mT
=

(�0�)�1�0y, with � = ['t;j], 't;j = 'j (t=T ), t = 1; :::; T ; j = 0; :::;mT ; we may write

� = ['1; :::; 'm], with 'j = ['j (1=T ) ; :::'j (T=T )]
0.

The pseudo-LM test statistic has the usual form:

bST = b��2T�2e0ATe (4)

with e = (e1; : : : ; eT )0 being the vector of OLS residuals from the above nonparametric

regression.

We shall follow the usual conventions: the symbol \
L�! " indicates convergence

in distribution, \
p�! " denotes convergence in probability, and symbols Op and op

are used with their usual probability order meanings, as T !1 with respect to the

probability measure P .
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Asumptions

We consider model (1) under the following assumptions:

Assumption 1. (i) The underlying probability space (
;F; P ) is complete, and the

unobservable error process f"tg is generated as "t =
P1

j=0 �jvt�j, with
P1

j=1 j�jj <1
and � � P1

j=0 �j 6= 0. (ii) The process fvt j t = 1; 2; :::g is independent identically
distributed (i.i.d.), with E(vt) = 0, var (vt) = �2v > 0 and E jvtjr <1 for some r > 2.

(iii) The process futg is independent of fvtg, has E(ut) = 0, V ar (ut) = �2u � 0,

E jutj2+� <1 for some � > 0, and
PT

t=1 ut = Op(T
1=2).

Assumption 2. As T ! 1, (i) m3=2
T T dT (�mT

; ��) ! 0, with (ii) mT ! 1 and

m
9=2
T T�1 ! 0.

Assumption 3. b�2 � 0 and, as T !1, (i) m1=2
T (b�2 � �2) p�! 0 under H0, and (ii)

under H1, b�2 = Op
�
T �
�
, 0 � � < 2. �

Results

First we derive the limiting behavior of the (standardized) test when the long-run

variance is known.

Proposition 1. Under Assumptions 1 to 2, let ZT = s�1mT
(��2ST � �mT

), where

ST = T�2e0C0TCTe, e =
�
IT �� (�0�)�1�0�

y, � = ['t;j], 't;j = 'j (t=T ), t =

1; :::; T , j = 0; :::;mT , �mT
=
P1

j=mT+1
(j�)�2 and s2mT

= 2
P1

j=mT+1
(j�)�4. Then as

T !1:
(a) under H0, ZT

L�! N(0; 1), and

(b) underH1, P (ZT > �T )! 1 for any nonstochastic sequence f�Tg with �Tm�3=2
T T�2

! 0. �

An analogous result follows when �2 is estimated from data.
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Proposition 2. Under Assumptions 1 to 3, let bZT = s�1mT
(b��2ST � �mT

). Then

as T !1:
(a) under H0, bZT L�! N (0; 1), and

(b) under H1, P
�
bZT > �T

�
! 1 if �Tm

�3=2
T T�(2��) ! 0. �

Assumption 3 requires a suitable estimator for �2. We follow Pötscher and Prucha

(1991), and results are stated for nonparametric estimators with kernel W belonging

to the class W�, of functions W : R ! [�1; 1] satisfying W (0) = 1, W (�x) = W (x)
for all x, W (x) = 0 for jxj > 1 and limx!0 jW (x)� 1j =x� <1 for some � > 0.

The following result states that Proposition 2 holds if �2 is replaced by a non-

parametric estimator with kernel W belonging to the class W�.

(The truncation estimator is embedded into the scheme of Proposition 2 by using

jb�2j instead of b�2.)

Proposition 3. Under Assumptions 1 to 3, let b�2 =
P`T

i=�`T
wi;Tb�i � 0, with

b�i = T�1
PT

t=1+jij e
(d)
t e

(d)
t�jij, e

(d)=
�
e
(d)
1 ; :::; e

(d)
T

�0
=
�
IT ��d (�

0
d�d)

�1
�0d
�
y, �d =

['t;j], 't;j = 'j (t=T ), t = 1; :::; T , j = 0; :::;m
(d)
T , and wi;T = W (i= (1 + `T )), with

kernel W 2 W�. If the following conditions hold: (i) either (i.1 ) Ejvtj4 < 1 or

(i.2 ) Ejvtjr < 1, with 2 < r < 4 and �j = O
�
j�(1+qv+�)

�
, where � > 0 and �qv �

minf�2(r � 1)=(r � 2);�(� + 1)g, (ii)
�
m
(d)
T

�9=2
T�1 ! 0, (iii) mT `

2
Tm

(d)
T T

�1 ! 0,

(iv) mT `
3
TT

�1 ! 0, mT `
�2�
T ! 0, (v) md

T !1, `T !1, then as T !1:
(a) under H0, m

1=2
T (b�2 � �2) p�! 0, and

(b) under H1, b�2 = Op (`TT ) and P
�
bZT > �T

�
! 1 if �T `tm

�3=2
T T�1 ! 0. �
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3 Monte Carlo study

In this section we �rst provide computer simulation results for the performance of the

test under i.i.d. errors, and afterwards the research is extended to time series.

3.1 Simulations in i.i.d. environment

We analyse the following trend speci�cations:

(A) �� (u) � 0:
(B) �� (u) � 1 + 2u+ 3u2:
(C) �� (u) � 1 + 2u+ 3 [1 + exp f�50 (u� 0:3)g]�1 � 4 [1 + exp f�40 (u� 0:6)g]�1 :
(D) �� (u) � 1 + 2u+ 2 [1 + exp f�
 (u� 0:3)g]�1 ; with 
 = 20; 50; 100.
(E) �� (u) � 1 + 2u+ 2 [1 + exp f�
 (u� 0:3) (u� 0:6)g]�1 ; for 
 = 20; 50; 100.
(F) �� (u) � 1 + 2u+ 2 [1� exp f�
(u� 0:3)2g] ; where 
 = 20; 50; 100.
(G) �� (u) � 1 + 2u+ 2 (u)�1(u > 0:3):
(H) �� (u) � 1 + 2u� 1 (u)�1(u > 0:3):
(I) �� (u) � 1+2u�3 (u� 0:3)�1(u > 0:3)+4 (u� 0:6)�1(u > 0:6)�5 (u� 0:8)�1(u >
0:8):

with u 2 [0; 1] and 1(�) denoting the indicator function.
Speci�cation (A) corresponds to a level plus noise model under the null hypothesis,

and a random walk with noise model under the alternative, while (B) allows us to

analyze an explosive deterministic trend. Speci�cation (C) represents an arti�cial

neural network trend, or equivalently, a linear trend a¤ected by two smooth transitions

of large magnitude which are modelled by logistic sigmoids.

Sigmoid functions are very �exible and allow the analysis of series with gradual

changes, which are very common in �elds such as economics and climatology. So, sev-

eral classes of sigmoid curves are considered in speci�cations (D)-(F). In particular,

we used a transition function of the form �k(u) =

�
1 + exp

�
�


kQ
i=1

(u� �i)
���1

; 
 >

0; k = 1; 2, where 
 controls the speed of change, and the �is determine the location of
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the transition. When k = 1 this curve allows us to characterize asymmetric behavior

of two regimes, with the transition between them being more rapid as 
 increases. For

k = 2 the behavior of the function is roughly similar both for large and small values

of u, and di¤erent around the midpoint (�1 + �2) =2; displaying a symmetric change

about it. We also considered the transition function [1� exp f�
(u� �)2g] ; 
 > 0,
which approximates �k(u) when k = 2 and �1 = �2. All these structures have been

widely used in smooth transition regression models, especially in economics, where

they have been applied to research the validity of the purchasing power parity hypoth-

esis, and to model issues such as nonlinear behavior of in�ation, money demand or

asymmetric behavior of macroeconomic variables (such as industrial production and

unemployment rates). Smooth transition models have also been applied to analyse

the usefulness of the interest rate spread in predicting output growth (for a review of

smooth transition models and their application in economics see Teräsvirta, 2005).

Finally, speci�cations (G)-(I) correspond to trends with breaks.

Figure 1 below displays all the above trend speci�cations.

�INSERT FIGURE 1 ABOUT HERE�

In simulations we considered sample sizes T = 100; 300; 500; 1000; 1500; 2000, and

signal-to-noise ratio values q = 0; 0:01; 0:1. In the i.i.d. analysis, simulations were

based on 5,000 replications, with the processes ut and "t being N(0; 1). We applied

the deterministic rule mT = m
d
T =

�
5T 1=5

�
. This rate of increase is somewhat slower

than others which appear in related (mainly cross-sectional) nonparametric regression

contexts, although the combined requirements of Assumptions 2 and 3 advised us

against being too liberal in this respect. The variance of the process was estimated

by using the "unbiased" estimator b�2 =
�
T �md

T � 1
��1

e(d)0e(d), as our simulations

indicated that, in small samples, this estimator outperformed the (asymptotically

equivalent) plug-in estimator b�2 = T�1e(d)0e(d) when included in the nonparametric

stationarity test. (It can be readily checked that the asymptotic results in Proposition
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3 remains valid if these "unbiased" estimators for the autocovariances are used; we

omit derivations for brevity.)

Table 1 displays the rejection rates at 5% signi�cance level, with the critical value

provided by the N(0; 1) limiting distribution.

�INSERT TABLE 1 ABOUT HERE�

Results indicate that size is close to the nominal signi�cance level (excepting case D

with 
 = 100; where a slight oversize is observed) and power �gures are very similar for

all the trend speci�cations considered. So, the test seems to perform suitably under

a wide spectrum of smooth trend speci�cations, as well as some structural break

models, thus being free from the overrejection problems caused by misspeci�cation of

the trend function.

Next we compared the performance of the nonparametric test with that of the

two �exible stationarity tests (hereafter BEL1 and BEL2) proposed by Becker et al.

(2006). As commented above, BEL1 approximates the unknown trend function (the

paper focuses mainly on smooth breaks of unknown form and number) by a single

selected frequency component from its classical Fourier expansion. The recommen-

dation is to select the frequency (with a maximum of 5) which minimizes the sum of

squared residuals. The BEL2 (or cumulative frequency) test also relies on classical

Fourier series: the trend function is estimated by least squares regression on a basis of

sines and cosines, and in order to avoid power loss, Becker et al. (2006) recommend

that at most the �rst two frequencies be included. We checked the performance of

the BEL tests �including a linear trend component, �� test� for trend speci�cations

(A)-(I) and sample sizes: T = 100; 500; 1000; 2000. Results are reported in Table 2

below.

�INSERT TABLE 2 ABOUT HERE�

The BEL2 test displays better control of the test size than BEL1, but less power.

These results agree with Becker et al. (2006) conclusions. However, for the trend
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speci�cations considered in this paper, even the BEL2 strategy su¤ers size distortions

in some of the studied cases. The magnitude of oversize is reasonable in small sample

sizes, but becomes large as sample size increases (indeed, size approaches 1). On

the other hand, the BEL tests shows more power than the nonparametric test for

T � 1000, but for larger sample sizes the power of both tests becomes very similar.
This could be expected, as the nonparametric test includes more frequencies terms in

order to more tightly control test size.

3.2 Simulation analysis in time series

Then we investigated the �nite sample properties of the test under more general error

processes. In particular, "t was generated according to the following DGPs:

1. AR(1) model: "t = �"t�1 + �t;with � = 0:5; 0:2; 0;�0:2.

2. MA(1) model: "t = �t + ��t�1, for � = 0:5; 0:2;�0:2:

We also investigated four nonlinear processes analyzed by Hong and Lee (2003)

and Escanciano (2006), namely:

3. AR(1) model with heteroskedasticity (ARHET): "t = �1"t�1 + ht�t;h2t = 0:1 +

0:1"2t�1 + �2"
2
t�2.

4. AR(1) model plus a bilinear term (AR-BIL): "t = �1"t�1 + �2"t�1�t + �t .

5. Bilinear model (BIL ): "t = �1"t�1 + �2"t�2�t�1 + �t.

6. Nonlinear moving average model (NLMA): "t = �1"t�1 + �2�t�1�t�2 + �t.

For these last models we considered �1 = 0:5 and �2 = 0:1. Again, the basis

processes futg and fvtg were i.i.d. N(0; 1).
For time series only (A)-(C) trend speci�cations were analysed and 2,000 repli-

cations were carried out. Also, the slightly more conservative rule mT =
�
4T 1=5

�
,
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m
(d)
T =

�
0:85� 4T 1=5

�
was applied. The choice md

T � mT was not mandatory in light

of the theoretical results above, although in our simulations it enabled easier control

of size.

In this case it is necessary to treat autocorrelation. A number of papers have

proposed several methods for long-run variance estimation, and analysed the �nite

sample behavior of the stationarity test under these proposals (e.g., Kwitkowski et

al., 1992; Kurozumi, 2002; Hobijn et al., 2004; Sul et al., 2005). In our simulations

these methods did not provide satisfactory results. This is not surprising consider-

ing Propositions 1 to 3 above, as the probability orders of most magnitudes di¤er

somewhat from their analogues in parametric stationarity testing, this mainly being

a consequence of the slower convergence rates of the nonparametric estimators for

the trend function, as compared with their parametric counterparts. This directly af-

fects the probability orders which are relevant in long-run variance estimation, which

implies that standard corrections for autocorrelation may be generally invalid in the

nonparametric setting. Theoretical analyses are required to establish the validity

of (and the required modi�cations in) these standard approaches in nonparametric

stationarity testing.

The poor performance of mainstream autocorrelation treatments in our nonpara-

metric setting led us to devise a new strategy. We combined (in a somewhat ad hoc

fashion) the technical apparatus of Proposition 3 above with methods adapted from

previous approaches. Our proposal is oriented to ensure a suitable performance of the

nonparametric test in most common applications, although it should only be seen as

a reasonable starting point, and further re�nements (both in asymptotic theory and

empirical research) should be pursued in future research. As estimator for �2 we used

the following truncation estimator (i.e., a kernel estimator with rectangular kernel):

b�2 =
P`T

i=�`T

�
T � jij �md

T � 1
��1PT

t=1+jij e
(d)
t e

(d)
t�jij. In order to select the bandwidth

parameter `T , a data-driven rule was applied. We considered values in the interval

`
(�)
T � `T � `(+)T , with `(�)T and `(+)T being deterministic limits �xed in advance. By
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imposing `(�)T ! 1 and (e.g.) `(+)T = [cT 1=5] (c > 0), the rate `T = Op
�
T 1=5

�
is

achieved and consistency of the test is ensured in many common applications. The

following scheme, adequate for AR(1) or MA(1) error processes, is then applied to

obtain `T (as Kurozumi�s (2002) rule, the scheme uses a tuning parameter, k; in

our simulations we set k = 0:5; higher values are recommended in case of stronger

autocorrelation):

1. Set `(�)T and `(+)T . (Here, `(�)T = 0; `
(+)
T =

�
2T 1=5k

�
were �xed.). Set KT , the

maximum lag order permitted in AR �tting (here, KT =
�
2T 1=5k

�
was used).

2. Fit AR(p) models to the residual vector e(d), with p = 0; :::; KT , and select the

order p� that minimizes Schwarz�s information criterion (SIC). Go to step 3.

3.a. If p� = 0, set `T = `
(�)
T .

3.b. If p� = 1, set `T = min
�
[20 jbT j k] ; `(+)T

�
, with bT being the regression coe¢cient

of the �tted AR(1) model.

3.c. If p� > 1, compute sample autocorrelations (ri) of e(d), with i = 1; :::; `
(+)
T , and

select i� such that jri� j = maxi=1;:::;`(+)
T

fri�g. Set `T = min
�
max(i�; p�); `

(+)
T

�
:

The above procedure performed well under a wide range of circumstances (several

speci�cations of the trend, stochastic characteristics of the process, autocorrelation

levels). Further re�nements would be available in speci�c cases where more detailed

knowledge of the nature of the error process is available a priori. Results are reported

in Tables 3 and 4 below.

�INSERT TABLES 3 AND 4 ABOUT HERE�

As compared with the i.i.d. case, some impairment of the �nite sample perfomance

of the test is observed, with slight distortions in size and loss of power. As expected,

the behavior of the test improves as sample size increases (it starts to be reasonable

for series with T � 500). Regarding the error processes considered, we observed that
the test works better in series with nonnegative autocorrelations.
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4 Empirical applications

To illustrate the application of the test, we investigated three economic time series:

the daily series of the Japanese yen/US dollar exchange rate, the FTSE Eurotop

100 index, and the labor force participation rate. For all of them large samples are

avalaible, which is desirable in order to attain good properties in terms of power,

as seen in the previous Section. In addition, some of these series are known to dis-

play nonlinear features which distort the behavior of standard unit root/stationarity

tests. These series have been analysed in previous works, which allows us to make

comparisons.

The daily Japanese yen/US dollar exchange rate series

The data range from July 7, 2002 to July 7, 2007 (1,827 observations) and were

analyzed, together with other exchange rate series, by Brooks (2008) in the context of

vector autoregressive estimation. These �nancial series �or their �rst di¤erences�

appear to exhibit nonlinear patterns (e.g., Mills and Markellos, 2008) of the kind

analyzed in the above Section.

First we outline the details of stationarity testing for this exchange rate series.

The deterministic rule mT =
�
4T 1=5

�
was applied, according to results from Section

3. As sample size is T = 1; 827, this gave mT = 17: Figure 2 below displays the

series and its �tted trend, under this model complexity. The numerator of the test

statistic is straightforwardly computed upon the residuals of the OLS regression yt =
P17

j=0
b�j
p
2 cos(j�t=T ) + et. This gives ST = 0:377 for the raw "KPSS" statistic.

�INSERT FIGURE 2 ABOUT HERE�

For estimation of �2 we used the rule outlined in previous Section. In order to

have better control over the size of the test, the residuals used to compute b�2 were
obtained from a slightly simpler cosine regression with m(d)

T =
�
0:85� 4T 1=5

�
, and
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the (rectangular-kernel) estimator was applied, i.e.,

b�2 =
P`T

i=�`T

�
T � jij �md

T � 1
��1PT

t=1+jij e
(d)
t e

(d)
t�jij, with `T = 3 obtained by apply-

ing the rule outlined in Section 3 above. This gives b�2 = 17:9819.
In order to facilitate the application of the test, Table 5 below displays the rescaling

factors �mT
and smT

for a representative range of values of mT . In our case, as

mT = 17; the table gives �mT
= 0:00579 and smT

= 0:00113. Therefore, the value

of the rescaled statistic is bZT = s�1mT
(b��2ST � �mT

) = 13:446 which, by checking

the N(0; 1) distribution, indicates that the null of stationarity around a deterministic

trend is rejected at the critical level p = 0:000.

�INSERT TABLE 5 ABOUT HERE�

In a second stage the analysis was extended to the �rst di¤erence of the series, for

which the �tted trend was computed again under mT = 17. In this case bZT = 0:122
(critical level p = 0:451), with `T = 0 selected by the data-driven device. So, the null

of stationarity cannot be rejected.

In empirical applications it is strongly advisable to carry out a sensitivity analysis

in order to assess the robustness of the test�s results under moderate variations of mT

and `T . Table 6 displays this analysis for the daily Japanese yen/US dollar exchange

rate series, which indicates that conclusions remain una¤ected.

�INSERT TABLE 6 ABOUT HERE�

These results, together with the output from mainstream unit root tests, coincide

to suggest that the daily Japanese yen/US dollar exchange rate series has a single unit

root. This conclusion is also in accordance with predictions from �nancial theory.

The daily series of the FTSE Eurotop 100 index

Then we analysed the close prices of the daily series of the FTSE Eurotop 100 index

spanning the period from 17 December 2002 to 30 October 2009 (1,739 observations)
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(avalaible at http://www.�n-rus.com/analysis/export_eng_/default.asp). This in-

dex represents the performance of the 100 most highly capitalised blue chip companies

on european stock markets.

Figure 3 plots the logs of the series and the �tted trend, which was computed for

mT = 17. For estimation of the long-run variance the data driven device selected

`T = 5, and the observed value of the test statistic was bZT = 5:449 (critical level

p = 0:000). On the contrary, the extension of the analysis to the �rst di¤erence

of the series (i.e., the return series) indicated that the null of stationarity around a

deterministic trend cannot be rejected for returns: the value of the test statistic is

bZT = �0:257 �critical level p = 0:601�, with `T = 5 selected by above procedure
to estimate �2. The robustness of these conclusions under moderate changes of mT

and `T can be checked in Table 6 above.

�INSERT FIGURE 3 ABOUT HERE�

These results are in accordance with both �nancial theories and a large amount

of empirical research, all of them indicating that logarithms of asset prices contain

a unit root, while asset return series do not. More precisely, it is commonly argued

that return series are long memory processes.

The labor force participation rate

Finally, we completed our illustration of the application of the test with a study on the

monthly data of labor force participation rate (LFPR) in the United States between

January 1948 and August 2007 (716 observations) (the data come from the Federal Re-

serve Bank of Saint-Louis database, avalaible at http://research.stlouisfed.org/fred2,

and have been analysed by Gustavsson and Österholm, 2010). The LFPR is mea-

sured each month by the Bureau of Labor Statitistics as the fraction of the civilian,

non-institutional population 16 years or older who are either working or actively seek-

ing work. It provides a useful complement to other indicators, such as employment
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and the unemployment rate, in assessing labor market conditions. Recently, Gustavs-

son and Österholm (2006, 2010) and Madsen et al. (2008) examined the time-series

properties of the LFPR, as they are more revealing about potential hysteresis in un-

employment than the unemployment rate. In addition, the presence of a unit root in

the LFPR would have implications for the degree of uncertainty about future pension

and social security payments.

The most noticeable feature of the LFPR is its increase over the post-World War

II period (mostly between the early 1960s and 2000) due to women entering the labor

force, the increase in the racial and ethnic diversity of the U.S. populations and to the

aging of the baby boomers (DiCecio et al., 2008). However, in recent years the LFPR

has su¤ered a modest drop, which has sparked some debate, as some economists

argue that this fall re�ects a change in the trend whereas others view it as a cyclical

deviation of the trend. Also, some studies (e.g. Madsen et al., 2008) emphasize

the non-linear behavior of the LFPR, which exhibits an asymmetric response as it

responds di¤erently when employment prosprects weaken than when they improve .

In Figure 4 below the plot of the series and the �tted trend (computed for mT =

14) suggest both the presence of multiple changes and non-linear behavior in the

series. The observed value of the test statistic is bZT = 0:406 (critical level p = 0:342;
the long run variance was estimated using `T = 6). The sensitivity analysis in Table

6 above would con�rm non-rejection of the hypothesis of stationarity around a non-

linear trend, with this conclusion remaining una¤ected for several mT values, though

the conclusions are somewhat sensitive to small `T values.

This conclusion di¤ers from Gustavsson and Österholm (2006, 2010), who applied

univariate and panel unit root tests to the aggregate and disaggregated (by combi-

nations of gender, race and age) LFPR in the U.S, and concluded that the series is

non-stationary; however, the non-inclusion of structural breaks in their study may

bias the results of the unit root and stationarity tests towards non-stationarity. Mad-

sen et al. (2008) extend the analysis applying the Caner and Hansen (2001) unit root
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test in the presence of a non-linear threshold and a LM unit root test with one and

two structural breaks (Lee and Strazicich, 2003), and obtain results that are more in

accordance with ours.

�INSERT FIGURE 4 ABOUT HERE�

5 Concluding remarks and further research

We have proposed a nonparametric stationarity test which allows stationarity testing

to be carried out without relying on a priori speci�cation of the trend component, that

tends to be problematic in practice. The test is consistent under unit root alternatives

and its limiting null distribution is standard normal. Simulation analyses indicate that

the test performs suitably in a wide range of circumstances (trend shapes, stochastic

dependence structures), providing a safeguard against misspeci�cation of the trend

function, particularly in large series, as those typically available in �nance.

The issue of long-run variance estimation has also been addressed. The theo-

retical results allow nonparametric stationarity testing under nonparametric (kernel)

estimation of the long-run variance, with a deterministic rule for bandwidth selection.

In practice, data-driven bandwidth selection often tends to outperform deterministic

rules in estimating long-run variances. A data-driven procedure to treat autocorre-

lation �with deterministic brackets that ensure the appropriate stochastic order for

the estimator� has been outlined. Simulations indicate that this procedure performs

suitably in common applications of the nonparametric stationarity test.

The above results suggest a number of interesting research avenues. First, more

extensive analyses on autocorrelation treatment in nonparametric stationarity testing

is clearly indicated. The asymptotic validity of a number of procedures proposed

in the literature, including the most recent ones (e.g., Kiefer and Vogelsang, 2005;

Phillips, 2005; Sun et al., 2008; Hashimzade and Vogelsang, 2008; Amsler et al., 2009),

still has to be established in the nonparametric case. Simulation studies are required
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in order to assess the empirical performance of the various methods of treating for

autocorrelation in this new setting.

Finally, the proposed nonparametric approach relies on trigonometric series esti-

mation of the trend function. This allowed a relatively simple mathematical analysis.

Computer simulations suggest that analogue results may be obtained for other classes

of series estimators, particularly for algebraic polynomials. A con�rmation of this con-

jecture would be desirable (results in a classical paper by MacNeill, 1978, are crucial

for this extension), although the technical burden tends to increase dramatically when

the cosine basis is replaced by other classes of polynomials.
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Appendix. Mathematical Proofs

Notational issues and previous remarks

1. In the proof of limiting normality the following kernel is used: for any (positive

integer) m, let

Km(u; v) = min(u; v)� uv �
mX

j=1

2(j�)�2 sin(j�u) sin(j�v); u; v 2 [0; 1]

This kernel has the (uniformly convergent) Mercer expansion

Km(u; v) =
1X

j=m+1

2(j�)�2 sin(j�u) sin(j�v);

with (reciprocal) eigenvalues �j = (m + j)�2��2, j = 1; 2; :::, �m =
R 1
0
Km(u; u)du =

P1
j=m+1(j�)

�2 and s2m = 2
R 1
0

R 1
0
K2
m(u; v) du dv = 2

P1
j=m+1(j�)

�4 (for further de-

tails, see Tanaka, 1996, Chapter 5, page 153). It is readily checked that s2m �
2��4

R1
m+1

x�4dx = 2=3��4 (m+ 1)�3, so s�1mT
�
p
3=2�2 (m+ 1)3=2.

2. Let rmT
(u) = ��(u) � �mT

(u); u 2 [0; 1]. Given T , the OLS residuals have

the decomposition et = "t + rmT
(t=T ) + �mT

(t=T ) � b�mT
(t=T ). In matrix form,

e = (e1; :::; eT )
0 = �mT

"+�mT
rmT

+ �mT
�, with �mT

= (IT ��(�0�)�1�0),

� = ['t;j], t = 1; :::; T , j = 0; :::;mT ; " = ("1; :::; "T )
0, � = (�1; :::; �T )

0 and rmT
=

(rmT
(1=T ) ; :::; rmT

(T=T ))0.

3. In this Appendix the symbols for order (O(�)) and probability order (Op(�)) are
intended uniformly in m. The following previous lemmas are required.
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Lemma A.1. Let eBm =
h
eb(m)s;t

i
= T�1CT�mC

0
T , with m �xed. Let eST =

T�1
PT

s=1

PT
t=1
eb(m)s;t usut and ST = T�1

PT
s=1

PT
t=1Km (s=T; t=T ) usut, where u =

(u1; :::; uT )
0 is a sequence of i.i.d. random variables with E(ui) = 0 and var(ui) =

�2u <1. Then, for some c <1 not depending on m or T , as T !1:
(a) sups;t=1;:::;T

���ebs;t �Km (s=T; t=T )
��� � cm3T�1, (b) E

��� eST � ST
��� � cm3T�1. �

Proof. As to part (a), (if T � m + 1) we have eb(m)s;t = min(s=T; t=T ) � eg0s eH�1
m+1egt,

with eHm+1 =
h
ehj;k
i
= T�1�0�, j; k = 0; :::;m, and egt = [ego;t; :::; egm;t]0, with egj;t =

T�1
Pt

i=1 'j (i=T ). We also have Km(s=T; t=T ) = min(s=T; t=T )� gs0H�1
m+1gt, where

Hm+1 = [hj;k], with hj;k =
R 1
0
'j(u)'k(u)du, j; k = 0; :::;m, and gs = [go;t; :::; gm;t]

0,

with gj;t =
R t=T
0

'j(u)du. Orthonomality of the basis ensures Hm+1 = Im+1, so

Km(s=T; t=T ) = min(s=T; t=T )�g0sgt and eb
(m)
s;t �Km(s=T; t=T ) = g

0
sgt�eg0s eH�1

m+1egt =
A1 + A2, with A1 = g0sgt � eg0segt and A2 = eg0segt � eg0s eH�1

m+1egt. Discretization ar-
guments and standard inequalities for eigenvalues ensure jA1j � c(1 + m)2T�1 and

A2 = O (m3T�1). Part (b) directly follows from part (a) and Lemma 3 in Nabeya

and Tanaka (1988). �

Lemma A.2. Let S1T = T�1
PT

s=1

PT
t=1KmT

(s=T; t=T ) vsvt, where the components

of v = (v1; :::; vT )0 are i.i.d. random variables with E(vi) = 0; var(vi) = �2v > 0 and

E jvij2+� <1, � > 0. Let Z1T = s�1mT
(��2v S1T � �mT

), with �mT
=
R 1
0
KmT

(u; u) du =
P1

j=mT+1
(j�)�2, s2mT

= 2
R 1
0

R 1
0
K2
mT
(u; v) du dv = 2

P1
j=mT+1

(j�)�4. If mT ! 1
and m3

TT
�1 ! 0, then Z1T

L�! N(0; 1) as T !1. �
Proof. Without loss of generality we assume �2v = 1. It su¢ces to check that a

central limit theorem for quadratic forms (with nonvanishing diagonal) in i.i.d. ran-

dom variables holds. We apply Theorem 2.1.(iii) in Bhansali et al. (2007). We have

S1T = u
0Du =

PT
s=1

PT
t=1 ds;tvsvt, with D = [ds;t] and ds;t = T�1KmT

(s=T; t=T ). Let

kDk2;T =
qPT

s=1

PT
t=1 d

2
s;t and kDksp;T = e�1, with e�1 being the highest eigenvalue of

D. We start by deriving limiting normality for eZ1T =
�p
2 kDk2;T

��1
(S1T � E(S1T )).

This follows under the conditions (1) kDksp;T = kDk2;T ! 0 as T ! 1, and (2)
PT

t=1 d
2
t;t = o(kDk22;T ). These requirements can be readily checked upon the basis of
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the (Euclidean, spectral) norms of kernel KmT
(�; �), namely,

kKmT
k2 =

sZ 1

0

Z 1

0

K2
mT
(u; v) du dv =

vuut
1X

j=mT+1

(j�)�4

�this implies kKmT
k�12 = O

�
m
3=2
T

�
�, and kKmT

ksp = �1 = (mT + 1)
�2��2 =

O
�
m�2
T

�
. Discretization arguments and Aronszajn Theorem give kDksp;T = e�1 � �1+

je�1 � �1j = O(m�2
T ) and kDk2;T = O

�
m
�3=2
T

�
. Hence, we obtain kDksp;T = kDk2;T =

O
�
m
�1=2
T

�
. It is directly checked as

PT
t=1 d

2
t;t = O(m

�2
T T

�1) and kDk22;T = O
�
m�3
T

�
.

So, eZ1T L�! N(0; 1), and as Z1T = eZ1T +Op
�
m
5=2
T T�1

�
the conclusion follows. �

Lemma A.3. Let S1T = T�1
PT

s=1

PT
t=1KmT

(s=T; t=T ) "s"t, with "t =
P1

i=0 �ivt�i,

under Assumption 1 and �2 = �2�2v. Let ZT = s
�1
mT
(��2S1T � �mT

). If mT !1 and

m3
TT

�1 ! 0 then ZT
L�! N(0; 1) as T !1. �

Proof. Without loss of generality we assume �2v = 1, so �
2 =

P1
i=0

P1
k=0 �i�k > 0,

and proceed as in Tanaka (1990, Theorem 1, Appendix). First, we have

ZT = s
�1
mT
��2

 
T�1

TX

s=1

TX

t=1

KmT
(s=T; t=T ) "s"t � �mT

�2

!
= ��2

1X

i=0

1X

k=0

�i�kwT;i;k

with wT;i;k = s�1mT

h
T�1

PT
s=1

PT
t=1KmT

(s=T; t=T ) vs�ivt�k � �mT

i
. The following de-

composition is applicable: ZT = ZT;M+VT;M , where ZT;M = ��2
PM

i=0

PM
k=0 �i�kwT;i;k

and VT;M is the remainder term. It is readily checked that E jVT;M j � cM for all T

large, with cM � 3��2(1 + �)P1
i=0 j�ij �

P1
k=M+1 j�ij ! 0 as M !1.

As to ZT;M , �rst �x M and let T !1. We have ZT;M = eZT;M +RT;M , with eZT;M =

wT;0;0

�
��2

PM
i=0

PM
k=0 �i�k

�
and RT;M = ��2

PM
i=0

PM
k=0 �i�k (wT;i;k � wT;0;0) : As

wT;0;0
L�! N(0; 1) by Lemma A.2, we have (for any �xed M , as T ! 1) that

eZT;M L�! eZM , which is Gaussian with mean zero and variance
�
��2

PM
i=0

PM
k=0 �i�k

�2
.

As to the remainder RT;M , for �xed M as T ! 1, it holds E jwT;i;k � wT;0;0j �
c�M2m

5=2
T T�1, with c�depending neither on 0 � i; k � M , nor on M or T . Hence,

30



lim supT!1E jwT;i;k � wT;0;0j = 0 and the same applies, for any �xed M , to RT;M .
Hence, we have, for any M , eZT;M L�! eZM as T ! 1. It also holds eZM L�! N(0; 1)

as M ! 1, by the continuous mapping Theorem. Since ZT = ZT;M + VT;M =

eZT;M + RT;M + VT;M and E
���ZT � eZT;M

��� � E jRT;M j + E jVT;M j, Theorem 4.2 in

Billingsley (1968) and Tchebyshev�s inequality give ZT
L�! N(0; 1). �

Proof of Proposition 1. As to part (a), since e = �mT
"+�mT

r, the decomposi-

tion ST = S1T+A1+A2, with S1T = T�2"0�0
mT
C0
TCT�mT

", A1 = T�2r0�0
mT
C0TCT�mT

"+

T�2"0�0
mT
C0TCT�mT

r, and A2 = T�2r0�0
mT
C0
TCT�mT

r, is directly obtained. Hence,

ZT = eZ1T + s�1mT
��2A1 + s

�1
mT
��2A2, with eZ1T = s�1mT

(��2S1T � �mT
).

Limiting normality of eZ1T is readily checked. It su¢ces to derive limiting normality for
eZ2T = s�1mT

�
��2 eS2T � �mT

�
, with eS2T = T�1"0BT " and BT = [bs;t] = T�1CT�mT

C0
T .

First we approximate eS2T by S2T = T�1
PT

s=1

PT
t=1KmT

(s=T; t=T ) "s"t. Let RT =

eS2T � S2T = T�1
PT

s=1

PT
t=1 [bs;t �KmT

(s=T; t=T )] "s"t and �T �
sups;t=1;:::;T

���ebs;t �Km (s=T; t=T )
���. By Lemma A.1, �T = O(m3

TT
�1). A probabil-

ity inequality in Tanaka (1990, Appendix, Theorem 1) ensures, for any x > 0,

that P (jRT j > x) � (c=x)�T (
P1

i=0 j�ij)
2 for some constant c > 0 not depending

on T . Hence, RT = Op (�T ) = Op(m
3
TT

�1). Therefore, eZ2T = Z2T + s
�1
mT
��2RT ,

with Z2T = s�1mT
(��2S2T � �mT

). As s�1mT
= O

�
m
3=2
T

�
, we obtain s�1mT

��2RT =

Op

�
m
9=2
T T�1

�
, which is asymptotically negligible as m9=2

T T�1 ! 0. Lemma A.3 gives

Z2T
L�! N(0; 1). Therefore, eZ2T L�! N(0; 1), which amounts to eZ1T L�! N(0; 1).

It is readily checked that the bias terms have lower probability orders than eZT . In par-
ticular, the basic projection inequality of least squares regression ensures s�1mT

��2A1

= Op

�
Tm

3=2
T dT (�mT

; ��)
�
and s�1mT

��2A2 = O
�
Tm

3=2
T d2T (�mT

; ��)
�
. Both quantities

are asymptotically negligible under H 0 given Assumption 2. As to (b), under H 1

we have e = �mT
"+�mT

r+�mT
�, that combined with standard inequalities gives

ST = Op (T
2). Hence, ZT = s�1mT

��2ST � s�1mT
�mT

= Op

�
m
3=2
T T 2

�
� Op

�
m
1=2
T

�
=

Op

�
m
3=2
T T 2

�
, so P (ZT > �T )! 1 if �T = o

�
m
3=2
T T 2

�
. �

Proof of Proposition 2. As to (a), we have eZT�ZT = s�1mT
(��2ST � �mT

) b��2 (�2 � b�2)+
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b��2 (�2 � b�2) s�1mT
�mT

, and as s�1mT
(��2ST � �mT

) = Op(1) by Proposition 1 and

b�2��2 = op(1), it holds eZT�ZT = op(1) as Assumption 3 imposedm1=2
T (b�2 � �2) p�!

0 under H0. As to (b), as ST = Op (T
2) we have eZT = s�1mT

b��2ST � s�1mT
�mT

=

b��2Op
�
m
3=2
T T 2

�
�O

�
m
1=2
T

�
= Op

�
m
3=2
T T 2��

�
and the conclusion follows. �

Lemma A.4. Let f'j; j = 0; 1; :::g be an orthonormal set in L2 [0; 1] and let eH�1
mT+1

=

(T�1�0�)�1, with � = ['t;j], 't;j = 'j (t=T ), t = 1; :::; T ; j = 0; :::;mT . Let VT =

v0�(�0�)�1�0v, with v =(v1; :::; vT )
0, being a �nite sample of the i.i.d. process in As-

sumption 1. Under the conditions: (i) supj�0 k'jk1 � � <1, and each 'j satis�es
the Lipschitz condition j'j(u)� 'j(u0)j � cj ju� u0j ; u; u0 2 [0; 1]; with c < 1 not

depending on j, (ii) for any �xed m,



eHm+1 � Im+1





2;m+1

� cm2T�1 as T ! 1,

with c not depending on m or T , and (iii) m = mT ! 1 and m9=2
T T�1 ! 0, as

T !1. Then QT = (2(1 +mT ))
�1=2 (��2v VT � (1 +mT ))

L�! N(0; 1) as T !1. �
Proof. This case is analogous to Hong and White (1995, Appendix, Theorem

A.1). Without loss of generality we assume �2v = 1. Let VT = T�1v0BTv, with

BT = [bs;t] = �(T�1�0�)�1�0 = �eH�1
mT+1

�0. For any T , we shall use the kernel

K 0
mT
(u; v) =

PmT

j=0 'j (u)'j (v); u; v 2 [0; 1], which is degenerate, with reciprocal

eigenvalues �01 = ::: = �
0
mT+1

= 1, which implies


K 0

mT




sp
= 1 and



K 0
mT




2
= mT +1.

The analysis proceeds as in Lemma A.1. First, we approximate VT by eVT =
T�1

PT
s=1

PT
t=1K

0
mT
(s=T; t=T )vsvt and obtain, by Lemma 3 in Nabeya and Tanaka

(1988), VT = eVT +Op (m5
TT

�1). The rest of the proof is analogous to that of Lemma

A.2. �

Lemma A.5. Under the assumptions of Lemma A.4, let VT = "0�(�0�)�1�0", with

"=("1; :::; "T )
0 being a �nite sample from the linear �lter process in Assumption 1.

Then QT = (2(1 +mT ))
�1=2 (��2VT � (1 +mT ))

L�! N(0; 1) as T !1. �
Proof. It is analogous to the proof of Lemmas A.2 and A.4. Without loss of gen-

erality we assume �2v = 1, so �2 =
P1

i=0

P1
k=0 �i�k > 0. Let VT = T�1"0BT ",

with BT = [bs;t] = �(T�1�0�)�1�0 = �eH�1
mT+1

�0. First, we approximate VT

by eVT = T�1
PT

s=1

PT
t=1K

0
mT
(s=T; t=T )"s"t. Lemma A.4 and the same probabil-
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ity inequality used in Lemma A.2 (see Tanaka, 1990, Theorem 1, Appendix) give

VT � eVT = Op (m5
TT

�1). The rest of the proof is analogous to that of Lemma A.3. �

Proof of Proposition 3. We have the decomposition e(d) = e"(d) + er(d) + e�(d), with
e"(d) =

�
e"(d)t
�
= �

m
(d)
T

", er(d) = er
m
(d)
T

=
�
er(d)t
�
= �

m
(d)
T

r
m
(d)
T

, r
m
(d)
T

=
�
r
m
(d)
T

(1=T ); :::; r
m
(d)
T

(T=T )
�0
,

and e�(d) =
�
e�(d)t
�
= �

m
(d)
T

�. Hence, b�i = T�1
PT

t=1+jij e
(d)
t e

(d)
t�jij =

P6
k=1Ak;i, with

A1;i = T
�1
PT

t=1+jij e"
(d)
t e"(d)t�jij, A2;i = T�1

PT
t=1+jij er

(d)
t er(d)t�jij,

A3;i = T
�1
PT

t=1+jij e"
(d)
t er(d)t�jij+T�1

PT
t=1+jij er

(d)
t e"(d)t�jij, A4 = T�1

PT
t=1+jij e�

(d)
t e�(d)t�jij, A5 =

T�1
PT

t=1+jij e"
(d)
t e�(d)t�jij + T�1

PT
t=1+jij e�

(d)
t e"(d)t�jij, and A6 = T�1

PT
t=1+jij er

(d)
t e�(d)t�jij +

T�1
PT

t=1+jij e�
(d)
t er(d)t�jij. Cauchy-Schwarz inequality and the projection inequality of

least squares regression give: jA2;ij � d2T

�
�
m
(d)
T

; ��
�
, A3;i = Op

�
dT

�
�
m
(d)
T

; ��
��
,

jA4;ij � T�1
PT

t=1 �
2
t = Op (T ) and A5;i = Op

�
dT

�
�
m
(d)
T

; ��
�
T 1=2

�
. We may write

b�2 =
P`T

i=�`T
wi;Tb�i =

P`T
i=�`T

wi;TA1;i +RT , with

RT =
P`T

i=�`T
wi;T

P5
k=2Ak;i. As jwi;T j � 1, we obtain:

(1) under H 0: jRT j � (2`T + 1)
(
d2T

�
�
m
(d)
T

; ��
�
+ 2
q
T�1

PT
t=1 "

2
t dT

�
�
m
(d)
T

; ��
�)

=

Op (`TdT (�mT
; ��)),

(2) under H 1: jRT j �
P`T

i=�`T
jwi;T j

P5
k=2 jAk;ij = Op

�
`TT

�1
PT

t=1 �
2
t

�
= Op (`TT ) :

Now we analyze
P`T

i=�`T
wi;TA1;i. As A1;i = T�1

PT
t=1+jjj e"

(d)
t e"(d)t�jjj and e"

(d)
t = "

(d)
t �ht,

with h = (h1; :::; hT )
0 = �d(�

0
d�d)

�1�0
d", we obtain the decomposition

P`T
i=�`T

wi;TA1;i =

e�2 +
P`T

i=�`T
wi;T (B1;i +B2;i) with e�2 =

P`T
i=�`T

wi;TT
�1
PT

t=1+jij "t"t�jij, B1;i =

� T�1PT
t=1+jij "tht�jij � T�1

PT
t=1+jij ht"t�jij, and B2;i = T

�1
PT

t=1+jij htht�jij.

It is readily obtained
P`T

i=�`T
wi;T (B1;i +B2;i) = Op

�
`T

q
T�1

PT
t=1 h

2
t

�
. As

T�1
PT

t=1 h
2
t = T�1"0�d(�

0
d�d)

�1�0
d" = T�1VT , with VT as in Lemma A.5 above,

we have VT = �2
�
QT

q
2(1 +m

(d)
T ) + (1 +m

(d)
T )

�
= Op(m

(d)
T ), and Lemma A.5 gives

T�1
PT

t=1 h
2
t = T

�1VT = Op

�
m
(d)
T T

�1
�
.

Then we apply the decomposition b�2 = (b�2 � e�2) + (e�2 � �2) + (�2 � �2) + �2, with
�2 =

P`T
i=�`T

wi;TT
�1
PT

t=1+jijE
�
"t"t�jij

�
. As to the �rst di¤erence, the above results

give, under H 0, b�2� e�2 =
P`T

i=�`T
wi;T (B1;i +B2;i) +RT = Op

�
`T

�
m
(d)
T

�1=2
T�1=2

�
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+ Op

�
`TdT

�
�
m
(d)
T

; ��
��

= Op

�
`T

�
m
(d)
T

�1=2
T�1=2

�
because of Assumption 2 and

`T = o(T ).

Corollary 6.3 in Pötscher and Prucha (1991) gives e�2 � �2 = Op

�
`
3=2
T T�1=2

�
and

�2 � �2 = Op
�
`��T
�
. Hence, under H 0, b�2 � �2 = Op

�
`T

�
m
(d)
T

�1=2
T�1=2

�
+

Op

�
`
3=2
T T�1=2

�
+ Op

�
`��T
�
. Under H 0 and the assumptions of this proposition all

these terms vanish in probability, even when multiplied by m1=2
T . These arguments

are valid under assumption (i.2 ), but remain true under (i.1 ), i.e., when E j"j4 and
P1

j=0 j�jj <1, as a consequence of Corollary 8.3.1 in Anderson (1971) and Corollary
6.3 in Pötscher and Prucha (1991).

Finally, under H 1 the dominant term in b�2 is RT , so b�2 = Op (`TT ), as well as non-
negative by construction, and the rate of divergence is derived as in Proposition 2.

�

Tables
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Table 1. Size and power of the nonparametric stationarity test. i.i.d. N(0; 1) errors; 5% signi�cance.
Trend A Trend B Trend C

qnT 100 300 500 1000 1500 2000 100 300 500 1000 1500 2000 100 300 500 1000 1500 2000

0 0.036 0.045 0.053 0.057 0.057 0.058 0.042 0.046 0.056 0.06 0.056 0.055 0.041 0.068 0.066 0.069 0.063 0.063

0:01 0.036 0.139 0.343 0.882 0.992 1 0.047 0.145 0.341 0.876 0.993 1 0.047 0.159 0.360 0.886 0.993 1

0:1 0.133 0.874 0.997 1 1 1 0.116 0.871 0.997 1 1 1 0.105 0.872 0.996 1 1 1

Trend D (
 = 20) Trend D (
 = 50) Trend D (
 = 100)

0 0.042 0.050 0.058 0.062 0.049 0.051 0.032 0.054 0.058 0.045 0.058 0.061 0.049 0.075 0.096 0.107 0.132 0.101

0:01 0.060 0.140 0.311 0.878 0.991 1 0.040 0.142 0.331 0.858 0.992 1 0.073 0.168 0.396 0.874 0.995 1

0:1 0.142 0.838 0.991 1 1 1 0.089 0.831 0.994 1 1 1 0.115 0.841 0.995 1 1 1

Trend E (
 = 20) Trend E (
 = 50) Trend E (
 = 100)

0 0.049 0.050 0.057 0.050 0.057 0.045 0.033 0.049 0.057 0.059 0.054 0.051 0.034 0.054 0.053 0.059 0.058 0.059

0:01 0.049 0.126 0.321 0.869 0.994 1 0.041 0.131 0.326 0.891 0.993 1 0.030 0.139 0.329 0.878 0.992 0.998

0:1 0.137 0.836 0.992 1 1 1 0.134 0.832 0.991 1 1 1 0.075 0.835 0.994 1 1 1

Trend F (
 = 20) Trend F (
 = 50) Trend F (
 = 100)

0 0.044 0.050 0.059 0.054 0.057 0.059 0.041 0.046 0.056 0.054 0.049 0.053 0.029 0.049 0.055 0.054 0.057 0.048

0:01 0.037 0.136 0.336 0.867 0.992 1 0.034 0.135 0.323 0.882 0.993 1 0.048 0.130 0.341 0.899 0.992 1

0:1 0.109 0.831 0.992 1 1 1 0.105 0.821 0.991 1 1 1 0.083 0.841 0.992 1 1 1

Trend G Trend H Trend I

0 0.024 0.057 0.068 0.090 0.105 0.096 0.053 0.052 0.059 0.060 0.054 0.068 0.027 0.049 0.063 0.058 0.060 0.054

0:01 0.038 0.150 0.357 0.871 0.994 1 0.030 0.140 0.324 0.871 0.993 1 0.050 0.143 0.331 0.878 0.993 1

0:1 0.091 0.834 0.994 1 1 1 0.112 0.843 0.990 1 1 1 0.135 0.822 0.993 1 1 1
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Table 2. Size and power of the Becker et al. (2006) test. i.i.d. N(0; 1) errors; 5% signi�cance.
BEL1 test BEL2 test

Trend A Trend B Trend C Trend A Trend B Trend C

qnT 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000

0 0.011 0.008 0.007 0.010 0.074 0.196 0.353 0.639 0.999 1 1 1 0.050 0.050 0.060 0.052 0.053 0.078 0.106 0.164 0.257 0.976 1 1

0:01 0.065 0.889 0.995 1 0.123 0.917 0.996 1 0.999 1 1 1 0.098 0.882 0.999 1 0.090 0.896 0.999 1 0.315 0.985 0.999 1

0:1 0.554 0.999 1 1 0.584 1 1 1 0.959 1 1 1 0.522 1 1 1 0.512 1 1 1 0.666 1 1 1

Trend D (
 = 20) Trend D (
 = 50) Trend D (
 = 100) Trend D (
 = 20) Trend D (
 = 50) Trend D (
 = 100)

0 0.162 0.634 0.928 0.998 0.426 0.996 1 1 0.501 0.999 1 1 0.060 0.117 0.180 1 0.180 0.687 0.954 1 0.228 0.892 0.998 1

0:01 0.236 0.940 0.995 1 0.469 0.955 1 1 0.527 0.978 1 1 0.112 0.901 1 1 0.202 0.946 1 1 0.294 0.968 1 1

0:1 0.605 0.999 1 1 0.672 0.999 1 1 0.699 0.999 1 1 0.521 1 1 1 0.592 1 1 1 0.620 1 1 1

Trend E (
 = 20) Trend E (
 = 50) Trend E (
 = 100) Trend E (
 = 20) Trend E (
 = 50) Trend E (
 = 100)

0 0.055 0.049 0.059 0.059 0.259 0.915 0.997 1 0.729 1 1 1 0.053 0.063 0.044 0.082 0.055 0.076 0.118 0.223 0.077 0.174 0.408 0.761

0:01 0.143 0.931 0.994 1 0.362 0.956 0.999 1 0.731 0.975 1 1 0.093 0.884 0.999 1 0.095 0.892 0.998 1 0.112 0.918 1 1

0:1 0.599 1 1 1 0.684 0.999 1 1 0.749 0.999 1 1 0.511 1 1 1 0.517 1 1 1 0.535 1 1 1

Trend F (
 = 20) Trend F (
 = 50) Trend F (
 = 100) Trend F (
 = 20) Trend F (
 = 50) Trend F (
 = 100)

0 0.239 0.919 1 1 0.596 1 1 1 0.523 1 1 1 0.048 0.058 0.062 0.069 0.151 0.600 0.906 0.996 0.429 0.994 1 1

0:01 0.334 0.950 0.999 1 0.600 0.973 0.997 1 0.571 0.979 0.999 1 0.103 0.890 0.999 1 0.210 0.925 0.999 1 0.493 0.978 1 1

0:1 0.648 0.999 1 1 0.708 0.999 1 1 0.735 1 1 1 0.519 1 1 1 0.566 1 1 1 0.699 1 1 1

Trend G Trend H Trend I Trend G Trend H Trend I

0 0.018 0.118 0.323 0.754 0.010 0.023 0.050 0.117 0.015 0.056 0.071 0.069 0.067 0.151 0.296 0.576 0.066 0.062 0.087 0.164 0.040 0.085 0.129 0.207

0:01 0.104 0.916 0.998 1 0.071 0.894 0.996 1 0.092 0.897 0.998 1 0.112 0.909 0.999 1 0.100 0.888 0.999 1 0.104 0.899 0.999 1

0:1 0.559 1 1 1 0.559 1 1 1 0.593 1 1 1 0.525 1 1 1 0.519 1 1 1 0.524 1 1 1

Note: BEL1 denotes the test where the frequency k is estimated by minimizing the SSR; kmax=5:BEL2 denotes the test

where the �rst two cumulative frequencies are included.
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Table 3. Size and power of the nonparametric stationarity test. Time Series; 5% signi�cance.
Trend A Trend B Trend C

� qnT 100 300 500 1000 1500 2000 100 300 500 1000 1500 2000 100 300 500 1000 1500 2000

AR(1) 0:5 0 0.256 0.056 0.06 0.079 0.076 0.104 0.213 0.059 0.063 0.074 0.090 0.075 0.185 0.047 0.055 0.088 0.084 0.081

0:01 0.231 0.072 0.09 0.262 0.487 0.735 0.216 0.069 0.09 0.256 0.486 0.726 0.223 0.057 0.102 0.259 0.487 0.729

0:1 0.186 0.101 0.247 0.692 0.943 0.999 0.196 0.105 0.256 0.693 0.935 0.996 0.223 0.100 0.260 0.709 0.949 0.996

0:2 0 0.223 0.156 0.105 0.084 0.092 0.097 0.230 0.175 0.090 0.088 0.098 0.108 0.208 0.155 0.112 0.135 0.123 0.103

0:01 0.236 0.154 0.244 0.705 0.914 0.983 0.238 0.166 0.258 0.717 0.908 0.985 0.184 0.137 0.249 0.738 0.905 0.983

0:1 0.202 0.184 0.544 0.961 0.980 0.997 0.214 0.190 0.527 0.971 0.979 0.999 0.143 0.160 0.505 0.973 0.971 0.994

0 0 0.151 0.075 0.063 0.058 0.061 0.071 0.157 0.068 0.067 0.059 0.063 0.068 0.138 0.087 0.105 0.147 0.094 0.069

0:01 0.135 0.200 0.485 0.927 0.960 0.984 0.145 0.211 0.495 0.930 0.962 0.993 0.139 0.228 0.493 0.928 0.952 0.979

0:1 0.185 0.471 0.700 0.974 0.980 0.994 0.213 0.433 0.713 0.975 0.977 0.997 0.188 0.444 0.683 0.968 0.975 0.998

�0:2 0 0.586 0.285 0.165 0.114 0.117 0.101 0.620 0.292 0.187 0.129 0.135 0.120 0.324 0.234 0.204 0.270 0.185 0.119

0:01 0.577 0.364 0.607 0.929 0.958 0.987 0.617 0.386 0.620 0.940 0.952 0.986 0.302 0.327 0.595 0.936 0.953 0.987

0:1 0.241 0.436 0.680 0.978 0.972 0.998 0.258 0.449 0.686 0.970 0.977 0.998 0.188 0.420 0.676 0.978 0.976 0.996

MA(1) 0:5 0 0.211 0.053 0.058 0.055 0.069 0.092 0.240 0.047 0.05 0.058 0.076 0.078 0.180 0.051 0.054 0.094 0.092 0.078

0:01 0.228 0.074 0.144 0.503 0.788 0.932 0.221 0.078 0.157 0.513 0.783 0.942 0.175 0.074 0.159 0.507 0.781 0.944

0:1 0.134 0.189 0.493 0.959 0.980 0.997 0.124 0.176 0.507 0.949 0.985 0.998 0.105 0.157 0.496 0.955 0.987 0.996

0:2 0 0.200 0.126 0.072 0.068 0.058 0.060 0.224 0.122 0.083 0.069 0.06 0.082 0.186 0.133 0.091 0.118 0.078 0.076

0:01 0.218 0.147 0.250 0.736 0.921 0.985 0.184 0.142 0.242 0.742 0.933 0.982 0.190 0.136 0.258 0.735 0.926 0.985

0:1 0.201 0.206 0.518 0.97 0.973 0.999 0.244 0.187 0.495 0.959 0.979 0.994 0.153 0.185 0.494 0.964 0.972 0.997

�0:2 0 0.631 0.343 0.218 0.120 0.107 0.104 0.607 0.350 0.229 0.123 0.135 0.104 0.342 0.242 0.191 0.293 0.179 0.110

0:01 0.618 0.402 0.632 0.955 0.954 0.991 0.659 0.390 0.629 0.959 0.960 0.993 0.313 0.349 0.592 0.950 0.955 0.99

0:1 0.270 0.493 0.699 0.978 0.985 0.997 0.238 0.458 0.682 0.977 0.975 0.998 0.170 0.428 0.687 0.979 0.977 0.997
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Table 4. Size and power of the nonparametric stationarity test. Time Series; 5% signi�cance level.
Trend A Trend B Trend C

�1 qnT 100 300 500 1000 1500 2000 100 300 500 1000 1500 2000 100 300 500 1000 1500 2000

ARHET 0:5 0 0.185 0.056 0.067 0.075 0.080 0.098 0.198 0.075 0.080 0.093 0.102 0.109 0.083 0.03 0.046 0.241 0.140 0.067

0:01 0.196 0.190 0.490 0.837 0.946 0.993 0.201 0.204 0.544 0.890 0.951 0.991 0.039 0.160 0.519 0.892 0.959 0.991

0:1 0.043 0.289 0.569 0.908 0.990 0.999 0.036 0.310 0.654 0.945 0.988 0.999 0.027 0.282 0.637 0.935 0.983 0.998

ARBIL 0:5 0 0.209 0.065 0.06 0.069 0.080 0.082 0.215 0.070 0.057 0.069 0.089 0.070 0.197 0.055 0.065 0.097 0.077 0.084

0:01 0.226 0.075 0.092 0.269 0.463 0.718 0.253 0.074 0.078 0.256 0.483 0.719 0.192 0.066 0.084 0.275 0.457 0.718

0:1 0.214 0.095 0.253 0.669 0.939 0.990 0.215 0.118 0.262 0.681 0.946 0.992 0.178 0.093 0.267 0.703 0.918 0.994

BIL 0:5 0 0.214 0.067 0.057 0.071 0.080 0.09 0.213 0.058 0.056 0.079 0.081 0.088 0.198 0.054 0.055 0.099 0.088 0.085

0:01 0.206 0.065 0.121 0.371 0.550 0.737 0.207 0.059 0.117 0.340 0.535 0.739 0.192 0.052 0.115 0.358 0.559 0.732

0:1 0.186 0.249 0.627 0.916 0.969 0.996 0.191 0.249 0.603 0.906 0.973 0.994 0.153 0.244 0.612 0.922 0.969 0.998

NLMA 0:5 0 0.213 0.057 0.051 0.067 0.06 0.084 0.211 0.053 0.054 0.071 0.082 0.081 0.185 0.047 0.054 0.091 0.085 0.087

0:01 0.210 0.077 0.113 0.356 0.569 0.747 0.211 0.067 0.112 0.346 0.597 0.769 0.159 0.065 0.108 0.384 0.588 0.783

0:1 0.215 0.239 0.618 0.913 0.973 0.997 0.177 0.247 0.618 0.931 0.979 0.994 0.153 0.234 0.626 0.913 0.977 0.996
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Table 5. Rescaling factors for the nonparametric stationarity test.

m
T

1 2 3 4 5 6 7 8 9 10

�
mT

0.06535 0.04002 0.02876 0.02242 0.01837 0.01556 0.01349 0.01191 0.01066 0.00964

s
mT

0.04111 0.02017 0.01239 0.00856 0.00636 0.00496 0.00401 0.00333 0.00282 0.00243

m
T

11 12 13 14 15 16 17 18 19 20

�
mT

0.00881 0.00810 0.00750 0.00698 0.00653 0.00614 0.00579 0.00548 0.00519 0.00494

s
mT

0.00212 0.00187 0.00167 0.00150 0.00135 0.00123 0.00113 0.00104 0.00096 0.00089

m
T

21 22 23 24 25 26 27 28 29 30

�
mT

0.00471 0.00450 0.00431 0.00413 0.00397 0.00382 0.00368 0.00355 0.00343 0.00332

s
mT

0.00083 0.00077 0.00073 0.00068 0.00064 0.00061 0.00057 0.00054 0.00052 0.00049

m
T

31 32 33 34 35 36 37 38 39 40

�
mT

0.00322 0.00312 0.00302 0.00294 0.00285 0.00278 0.00270 0.00263 0.00256 0.00250

s
mT

0.00047 0.00045 0.00043 0.00041 0.00039 0.00038 0.00036 0.00035 0.00033 0.00032
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Table 6. Sensitivity analysis. Values of the test statistic under moderate variations of mT and `T .

Japanese yen/US dollar exchange rate Japanese yen/US dollar exchange rate (di¤erences)

`
T
= 1 `

T
= 2 `

T
= 3 `

T
= 4 `

T
= 5 � � `

T
= 0 `

T
= 1 `

T
= 2

m
T
= 16 32.840 18.290 12.077 8.652 6.482 m

T
= 16 � � 0.125 -0.0004 -0.355

m
T
= 17 36.056 20.212 13.446 9.716 7.353 m

T
= 17 � � 0.122 -0.007 -0.372

m
T
= 18 38.279 21.524 14.369 10.425 7.926 m

T
= 18 � � 0.433 0.293 -0.103

FTSE Eurotop 100 index (logs) FTSE Eurotop 100 (returns)

`
T
= 3 `

T
= 4 `

T
= 5 `

T
= 6 `

T
= 7 `

T
= 3 `

T
= 4 `

T
= 5 `

T
= 6 `

T
= 7

m
T
= 16 12.934 9.408 7.199 5.672 4.558 m

T
= 16 -0.350 -1.440 -0.377 -0.185 0.943

m
T
= 17 10.430 7.368 5.449 4.123 3.155 m

T
= 17 -0.228 -1.382 -0.257 -0.054 1.140

m
T
= 18 11.534 8.226 6.154 4.721 3.676 m

T
= 18 0.030 -1.218 -0.001 0.219 1.512

Labor force participation rate

`
T
= 4 `

T
= 5 `

T
= 6 `

T
= 7 `

T
= 8 � � � � � �

m
T
= 13 1.364 0.630 0.101 -0.311 -0.590 � � � � � �

m
T
= 14 1.797 0.989 0.406 -0.048 -0.355 � � � � � �

m
T
= 15 2.304 1.412 0.769 0.269 -0.070 � � � � � �

Note: In bold type the value of the statistic for m
T
and `

T
values obtained according to the data-driven rules. Critical values of

the N(0,1) distribution: 1.282,1.645 and 2.326, at the 10%, 5% and 1% levels respectively.
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Figure 1. Trend speci�cations

Panel 1. Trend A Panel 2. Trend B Panel 3. Trend C

Panel 4. Trend D (
 = 20) Panel 5. Trend D (
 = 50) Panel 6. Trend D (
 = 100)

Panel 7. Trend E (
 = 20) Panel 8. Trend E (
 = 50) Panel 9. Trend E (
 = 100)

Panel 10. Trend F (
 = 20) Panel 11. Trend F (
 = 50) Panel 12. Trend F (
 = 100)

Panel 13. Trend G Panel 14. Trend H Panel 15. Trend I
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Figure 2. Daily Japanese yen/US dollar exchange rate series (broken line) vs. non-

parametric �tted trend (continuous line).

Figure 3. Daily FTSE Eurotop 100 index series, in logs (broken line) vs. nonparametric

�tted trend (continuous line).
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Figure 4. Monthly labor force participation rate series, (broken line) vs. nonparametric

�tted trend (continuous line).
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