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Abstract

This chapter investigates the connection between grade repetition and school dropout. Household
data is matched against a panel of academic test scores and the school career of each child inferred from
the combined dataset. This chapter uses two original identification strategies to identify the effect of
grade repetition on school dropout. The first instrumental strategy uses the differences among teacher
attitude to repetition as an instrument for grade repetition. The second strategy uses the discontinuity
in the probability of grade repetition between pupils whose test score is just lower and just higher
than the target achievement. Both results show a negative effect of the grade repetition decision on
the probability of being enrolled at school the next year.
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1 Introduction

Primary education in many (principally French-speaking) Subsaharan African countries is charac-
terized by particularly high repetition rates: some 12% of the pupils enrolled in Senegalese primary
schools in 2004 were repeating their grades in 2005,1 whereas the African average is 15%, and the
maximum is Gabon with 35% (both in 20022). Manacorda (2008) remarks that this practice is more
widespread in the countries where gross enrolment rates in secondary school is low, raising the question
of the causality behind this correlation.

Grade repetition is very expensive for the state and households alike since both private and public
costs of schooling increase with the duration of schooling. Whether the costs of grade repetition are
compatible with universal primary education in developing countries is seriously debated in multilateral
institutions. The World Bank’s publication Bruns, Mingat, and Rakotomalala (2003) observes that
the developing countries with high primary completion rates face relatively low repetition rates. On
the basis of cross county OLS, the authors conclude that average repetition rate has a strong negative
effect on primary completion rate, suspecting it is due to the state’s budget constraint. The average
repetition rate is included in the “Education For All indicative framework”, which is the benchmark
for getting EFA Fast Track Initiative fincancing for primary education.

However, the cost of grade repetition has to be compared with its potential consequences: positive if
it improves learning achievement, negative if it causes dropout. This paper inquires whether frequent
early school dropout is in part a consequence of high repetition rates. School dropout is a very
prevalent phenomenon in many developing countries: some 32% of the African children enrolled in
the first grade of primary school (and 40% of Senegalese pupils) do not achieve the last one.1,2 The
returns to education have been extensively studied by economists (see Duflo (2001), for the most
cited study in developing countries), which emphasize the potential economic loss from early school
dropout. Manski (1993b) has pushed the idea that enrollment decisions depend on the expectations
on the returns to schooling, and these expectations may be different from the actual returns. Manski
and Dominitz (1996) have shown that the expectations on the returns to schooling are not uniform
among American high school students. Two recent controlled experiments in developping countries
(Nguyen, 2008 and Jensen, 2007) have shown that further information on the returns to schooling
affect the school investment decisions. All this literature emphasize the fact that endogenous school
dropouts may be inefficient. In addition to its economic returns, education provides the individuals
with basic capabilities, and this is the reason why the Millenium Develoment Goals include universal
completion of primary school. In the end, both political commitment and economic efficiency make it
necessary to fight against primary school dropout.

Grade repetition affects schooling decisions through a variety of mechanisms. On the one hand,
it has an effect on the acquisition of knowledge. If grade repetition is pedagogically effective, it may
prevent dropout. On the other hand, grade repetition may be discouraging.

Grade repetition modifies the learning achievement at a given date. When children repeat grades
they may consolidate the skills expected at those grades. However, it is unclear whether this offsets
their failure to acquire the skills taught at the next grade. The net effect of grade repetition on
the acquisition of knowledge is ambiguous, then. The psychologists and the pedagogical profession
share a widespread view that grade repetition does not improve learning achievement. However,
some empirical evaluations of the net effect of grade repetition on learning achievement have serious
shortcomings. Most studies try to control for test scores as a proxy for school ability and initial
learning achievement (see Holmes (1989) for a meta analysis of many of those studies, and McCoy and
Reynolds (1999) for a more recent study). However, teachers probably use their private information
on pupils to decide whether they will repeat. If low motivation at school causes grade repetition, these

1Ministry of Education, Senegal (2005)
22004, www.poledakar.org
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studies probably suffer from an endogeneity bias: low motivation at school deters future acquisition
of knowledge. Jacob and Lefgren (2004) control for this potential bias using a discontinuity in school
policy in Chicago. Pupils there took standardized tests at the end of grades 3, 6 and 8. They were
promoted if their test score was higher than a minimum score. Regression-discontinuity analysis
revealed a small and positive effect of grade repetition on academic achievement at a given date.
Doing the same with a similar retention policy in Florida, Greene and Winters (2007) find a positive
effect of grade repetition in third grade on reading ability after two years.

Some psychologists as Jimerson, Carlson, Rotert, Egeland, and Sourie (1997) consider that early
grade repetition has a negative effect on socio-emotional adjustment. Hence, one can expect grade
repetition to be discouraging and cause dropout. Grade repetition may be discouraging for a least
two reasons. First, it extends the time needed to achieve a given final grade and get the benefits from
education. So grade repetition may increase the cost of schooling: for a given last grade attended, the
opportunity costs increase by one year when a child has to repeat once, and the job market benefits
of schooling are postponed by one year. Second, grade repetition may be a negative signal about a
child’s ability. If the parents observe their children’s ability noisily, then grade repetition diminishes
parents’ belief in their children’s ability. Grade repetition possibly causes school dropout for these
two reasons.

Overall, the sign of the effect of these mechanisms is ambiguous.

Very few studies have tried to estimate this effect in developing countries. King, Orazem, and
Paterno (2008) report that grade repetition causes school dropout in Pakistan. Yet, their identification
strategy does not include any control either for the acquisition of knowledge or for parental preferences
for schooling. The two are certainly correlated and low parental preferences for schooling possibly cause
grade repetition. Consequently, the effect of grade repetition on school dropout certainly suffers from
an endogeneity bias. Manacorda (2008) uses a change in the retention policy in Uruguayan primary
schools to estimate the effect of grade repetition on dropout. Grade repetition was automatic when
a pupil had missed more than 25 days for school years 1996 and 1997, but not for school year 1998.
This change seems to have been unanticipated by the pupils and parents, since the distribution of the
number of school days missed is the broadly the same in 1998 than in 1996 - 1997. Using a diff in diff
strategy, he finds that grade repetition decreases school achievement by 0.6 grades on average.

PASEC (2004) uses a unique panel of test scores in Senegal and finds that grade repetition in
the early years of the panel is correlated with attrition at the end of the panel. Many covariates
are controlled for and test scores used as a proxy for the acquisition of knowledge and for ability.
However, it is not certain that the remaining unobservable variables causing grade repetition are
uncorrelated with future school dropout. Furthermore, attrition in the last years of the panel may
be a poor proxy for school dropout. Children may still be enrolled but not have taken the tests
because of illness or because they changed schools. Glick and Sahn (2009) combines PASEC3 data
with retrospective information on school enrolment.4 They use a control strategy to estimate the
effect of grade repetition in second grade on the probability to attend to grade 5. However, control
strategies may be systematically biased when measuring the effect of grade repetition on dropout.
In fact, some variables like the motivation at school may cause both repetition and dropout and are
hardly observable.5 In addition, their observation of grade repetition suffers from selection, since
they infer grade repetition from the school trajectory. In fact, if the grade repetition decision causes
immediate dropout, actual grade repetition is censored.6

3Programme d’analyse des systèmes éducatifs set up by CONFEMEN Conférence des ministres de l’éducation des

pays ayant le français en partage.
4This information is from EBMS survey, described in section 2
5Motivation at school is not observed at all in PASEC data
6An additional regression would show that running the same regression than Glick and Sahn (2009) with the same

instrumental strategy than this paper does not lead to any interesting information on the effect of grade repetition on
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This paper estimates the effect of grade repetition decision on immediate school dropout, i.e. on
the probability to be enrolled at school the next school year. It controls for the potential correlation
between the children’s unobservable characteristics and grade repetition with two original instrumental
variables strategies, and controls for the selection of the information on grade repetition decisions.

The first instrumental strategy is based on teacher attitude to repetition: grade repetition is based
on the teacher’s decision, and those decisions are partly based on teacher’s idiosyncrasies. These
indiosyncrasies are unobservable, so for each child, grade repetition by peers is used to proxy for
teacher attitude.

The second instrumental strategy is based on the widespread idea that a child needs to reach
a certain learning achievement to pass to the next grade. The grade repetition probability may be
discontinuous between pupils whose learning achievement are just above and just below this “target
achievement”. This paper tries to exploit this discontinuity to identify the effect of grade repetition
on school dropout.

Both results reveal a negative effect of grade repetition on the probability of enrolment at school the
next year. The estimated effect is fairly high: the estimations show that grade repetition increases the
probability of school dropout by approximately 5 percentage points on average, whereas the average
dropout rate in the sample is 2%.

Section 2 presents the dataset used to identify the causal effect of grade repetition on school
dropout. Sections 3 and 4 presents the strategies used here for identifying this effect while brief
remarks are made by way of conclusion.

2 The data

PASEC and EBMS datasets both contain detailed information about schooling and are combined
here to estimate the effect of grade repetition.

2.1 The PASEC panel

The PASEC conducted a panel survey among primary school pupils of 98 Senegalese schools
between 1995 and 2001. Twenty second grade students were chosen at random in randomly chosen
second grade classes in each school at the beginning of the 1995-1996 school year. They passed
learning achievement tests at the end of each school year,7 and were monitored throughout their school
careers (including grade repetitions) until the first of them finished primary school (sixth grade) in
2000. Although children were randomly selected among the second grade pupils of the schools in
1995, attrition and grade repetition meant that the children in the same grade-year were increasingly
selected as time elapsed.

There were two causes for attrition in this panel. First, dropouts did not take the PASEC tests.
Second, the PASEC team organized the tests and collected the data in each of the schools on a given
day in each school year. Children missing school that day or no longer attending the surveyed school
were not tested.

Whenever a child took a PASEC test in a given school year, the information includes his current
grade. The information for grade repetition is inferred from this longitudinal information on the
school careers. The pupil questionnaire also included some information about living conditions. In
particular, the household wealth index used in this paper is based from the PASEC information.

dropout (coefficients are not significantly different from 0 with large standard errors).
7The tests were marked by the PASEC team. Consequently, test scores could not be influenced by teachers.
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Table 1: Number of children attending the tests during the panel, by grade and school year

214
Sixth grade
(CM2)

357 236
Fifth grade
(CM1)

412 204 86
Fourth grade
(CE2)

594 154 53 15
Third grade
(CE1)

789 817 102 no test
Second grade
(CP)

789 817 696 566 614 551
Total atten-
dance

Initial tests
(1995)

school year
1995 - 1996

school year
1996 - 1997

school year
1997 - 1998

school year
1998 - 1999

school year
1999 - 2000

Note: This table reports the attendance among the 921 children of PASEC sample resurveyed by EBMS

2.2 EBMS Survey8

The EBMS survey provides additional information about certain PASEC pupils in 2003. It includes
some of the pupils from 59 of the schools surveyed between 1995 and 2000. The objective was to
resurvey households in each community (village or urban districts) with children who had been in the
PASEC panel. Of the 1177 pupils attending the 59 schools surveyed by PASEC, 921 are in EBMS
data after deletion of questionable matches. Information was collected about the living conditions
and educational levels of the household members. Retrospective data about the school careers of the
children surveyed by PASEC meant dropout could be differentiated from other causes of attrition.
Consequently, school-leaving dates are known for almost every child re-surveyed (if they had left
in 2003). However, the school information from EBMS does not give much information on grade
repetitions.9 In addition, the EBMS data include the parent’s education of the PASEC pupils and
retrospective information about living conditions includes self-reported shocks on harvests.

2.3 Aggregate dataset

Both datasets provide reliable retrospective information about enrollment. Together they give
enough information to reconstruct most instances of grade repetition. This information is necessary
for evaluating the impact of repetition on drop out. Another advantage of the aggregate dataset is
that it evaluates the individual learning achievement (test scores), which is a crucial determinant of
grade repetition. Table 1 shows the number of children attending each test in the sample and reveals
children often missed a test even though still enrolled. All 921 children were enrolled in school year
1995-1996 although only 817 attended the test. Definition of all the variables used in this paper can
be found in appendix A.

8Education et Bien-être des Ménages au Sénégal. This survey was designed by a team composed of Peter Glick, David
Sahn, and Léopold Sarr (Cornell University, USA), and Christelle Dumas and Sylvie Lambert (LEA-INRA, France), and
implemented in association with the Centre de Recherche en Economie Appliquée (Dakar, Senegal).

9It includes the number of grade repetitions in primary school and the number of grade repetitions in the last grade
of primary school for each child living in a household surveyed by EBMS. This paper requires longitudinal information
not included in the EBMS data.
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Figure 1: Sequence of the main events during the PASEC panel
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Table 2: Observation of grade repetition decision
date t date t+ 1

Enrolled

Enrolled } Grade repetition decision
is observed

Enrolled } Grade repetition decision
is not observedDrops out

2.4 Selection on grade repetition observation

Not all grade repetition decisions can be observed in the EBMS-PASEC data. The information
for grade repetition is mostly inferred from this longitudinal information on the school careers. The
Figure 1 summarizes the timing of the PASEC panel survey. Information on grade repetition decision
at the end of school year t is known if a child took the tests in school year t and school year t+ 1.10

Grade repetition decisions are not known for the children who dropped out immediately after this
decision: if a child dropped out before the tests of school year t+ 1, there is no way of knowing what
the repetition decision was at the end of school year t, as grade repetition is inferred from the school
career. The structure of the data is therefore summarized in Table 2.

This selection problem makes questionable the identification of the effect of grade repetition deci-
sions on school dropout: if grade repetition causes dropout, then it causes its own selection. However,
this paper claims it is possible to control for the selection and hence to identify the determinants of
grade repetition and the effect of grade repetition on school dropout in model (1):11





Eik,t+1 = 1l[βe1Sik +βe2Zs +Xikβe3 +γRik +uik > 0]

Rik = 1l[Sik +αZR +Xikβr +ǫik < 0]
selection = 1l[βs1Sik +βs2Zs +Xikβs3 +γsRik +vik > 0]

(1)

10The details and other cases are explained in appendix A
11The grade repetition of a child is denoted Rik for child i in class k. His enrolment during the next school year is

denoted Eik,t+1 (at date t + 1). selection takes value 1 if Rik is known, and 0 otherwise. Sik denotes the test score of
child i in class k. Zs is an instrument for the selection, which is discussed in section 3.5. ZR is an instrument for grade
repetition which is discussed through all the sections 3 and 4. The other determinants in each equation are a vector of
covariates Xik and unobservables uik, ǫik and vik.
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Appendix C.1 proves that in model (1):

• If (ǫik, uik, vik) is independent of (Sik, ZR, Zs, Xik)

• If λ2 6= 0 and βs3 6= 0

• Under certain technical assumptions12

all the coefficients of model (1) are identified without any parametric assumption about the distribution
of (ǫik, uik, vik). This is based on a simple intuition: there is an instrument for grade repetition and
an instrument for selection. In this case the system of all the probability function derivatives has a
single solution. γ and γs are not identified by this system, since Rik is binary. However, a simple
adaptation of Vytlacil and Yildiz (2007) show the coefficient for the endogenous variable is identified.

Appendix C.2 even shows that under much simplier hypotheses and without Zs, the sign of the
effect of grade repetition on dropout is still identified. The intuition for that is rather simple. Indeed,
the derivative of the probability of grade repetition towards ZR gives the sign of α regardless of
selection. Therefore the effect of grade repetition on enrollment is positive if the derivatives of the
probability of grade repetition and of the probability of enrolment towards ZR have the same sign,
and negative if they have opposite signs.

This paper does not intend to identify model (1) semiparametrically. All the models in this paper
are estimated using a maximum likelihood method. However, this result shows that there is enough
information to identify the effect grade repetition on dropout in the EBMS-PASEC data without
parametric assumption. Hence the results in this paper do probably not only rely on the parametric
structure of the models but also on the information from the data.

3 Identification of the effect of grade repetition on dropout using
teacher attitude to repetition as an instrument for grade repeti-
tion

This paper seeks to identify the effect of grade repetition, denoted Rik, on school dropout (enrol-
ment during the next school year is denoted Eik,t+1 for child i of group k13, at date t + 1), which is
the coefficient γ in the equation (2) below. The other determinants of dropout are test score Sik, and
a vector of covariates Xik.

14

Eik,t+1 = 1l [βe1Sik +Xikβe2 + γRik + uik > 0] (2)

The main difficulty in identifying γ is to control for the potential endogeneity of grade repetition.
Indeed, there is endogeneity of grade repetition if the unobservable term causing dropout uik is corre-
lated with Rik conditionnal on the other covariates. The unobservable term causing dropout includes
all the causes of dropout non included in the model, and all the imprecisions of the model. In partic-
ular, parental (or pupil’s) preferences for schooling are included in this term. In Senegal, the grade
repetition decisions are taken by the teachers. The teachers probably use their private information
about their pupils to do so. In particular, they may take into account motivation at school, and moti-
vation at school is possibly correlated with future dropouts. So grade repetition may be endogenous.

12Hypotheses about points where the distribution of (ǫik, uik, vik) should be positive and finite, and about the support
of the distribution of the observables.

13A group is composed of all the observations from the same school, the same year and the same grade. This is an
approximation of a class, since in some schools, there are several classes per grade.

14This vector includes grade-year dummies, household wealth parents’ education, and group mean test score when not
included in the model.
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In this case, for a given learning achievement at the end of the current school year, children with a
higher dropout probability are more likely to repeat their grades.

The measurement error is another concern: we do not observe the teacher’s evaluation of the
children in our data. Instead, we have our own evaluation based on centrally corrected tests. We
denote S∗ik = Sik+µ(Sik) the test scores we observe. µ(Sik) is the difference between the measurement
error of the test scores and the measurement error of a teacher. Hence one could expect that if a child
“looks smart”, µ(Sik) is on average negative. We can easily rewrite (2):

Eik,t+1 = 1l [βe1S
∗
ik +Xikβe2 + γRik + u∗ik > 0] (3)

u∗ik includes the measurement error of Sik : u∗ik = uik − βe1µ(Sik).

In this paper, two original instrumental variables strategies are used to control for the potential
correlation between the children’s unobservable characteristics (and the measurement error) and grade
repetition, and this section presents the first one.

3.1 Identification strategy

Equation (4) below models the determinants of grade repetition. Learning achievement is com-
pared to tk, which is the learning achievement required to pass in group k called hereafter “target
achievement”.

Rik = 1l [Sik − tk +Xikβr + ǫik < 0] (4)

However, grade repetition in the model is not determined solely by whether or not Sik is greater
than tk. Equation (4) takes this into account by including other factors (Xik), such as household
wealth or parents’ education, which may affect grade repetition. The error term ǫik include all the
causes all factors causing dropout that are not in the equation. In particular, pupil’s motivation at
school may affect grade repetition. In addition, it includes the imprecisions of the model, notably in
the measure of learning achievement.

In the model, the teacher attitude to repetition (νk) affects grade repetition through tk. However,
we have to keep in mind that tk may also be determined by the group average learning achievement
(Sk):

tk = λSk + νk (5)

Teacher attitude to repetition is a characteristic of the teachers, not of the pupils. Accordingly,
using νk as an instrument for grade repetition controls for the main potential source of endogeneity:
the correlation between the children’s unobservables and grade repetition decisions.15 Of course, νk is
not observable, so it is necessary to proxy for it. This paper uses the peer’s repetition rate to proxy
for teacher attitude to repetition,16 and uses this proxy as an instrument for grade repetition. The
peers are the other pupils than the child himself in his group k, so that the repetition rate of the peers
is:

15Section 3.4 assesses in details the exogeneity of νk.
16Other proxies for teacher attitude (LPik and FRik, description in section 4) were used in previous versions of this

paper, giving the same results. The results are available upon request.
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Repetition rate of the peers The repetition rate of the peers is written as:17

R̃ik =
1

nk − 1
Σj 6=iRjk (6)

Rearranging (4) and (5) gives :

Rik = 1l
[
Sik − λSk − νk +Xikβr + ǫik < 0

]
(7)

In equation (7), grade repetition probability depends on Sik − λSk. If λ = 1, the probability of
a child repeating his current grade depends on the difference between his test scores and the group’s
average test score, but not on absolute learning achievement. Grade repetition is relative, then: for a
given νk, children do not repeat grades because their learning achievements are low but because their
learning achievements are lower than those of their peers. In the Senegalese case, λ is probably close to
1.18 However, if λ 6= 1, the group repetition rate to appropriately proxies for νk once controlled for Sk
only. All the regressions in this paper control for Sk. We use R̃ik as a proxy for νk : R̃ik = νk+µ(νk).
We rewrite (7)

Rik = 1l
[
S∗ik − λSk + αR̃ik +Xikβr + ǫ∗ik < 0

]
(8)

The error term in this equation is: ǫ∗ik = ǫik − µ(Sik)− αµ(νk)
19

In the first specification of this paper, (2) is estimated jointly with (8). The instrument R̃ik is
used to control for the potential endogeneity of grade repetition. Because of the potential relationship
between R̃ik and Sk in (7), Sk is controlled for in equation (2).

Controlling for school fixed effects in non-linear equations like (2) or (8) leads to non-convergent
estimates. Chamberlain (1980) proposes a solution to overcome this problem: controlling for the
school average of the explanatory variables. The coefficients of the explanatory variables are then
identified by the difference between the individual explanatory variable and the school average, like
in linear fixed effects. This specification includes a control for the school average of repetition rates
among peers. This controls for the potential endogeneity of school average repetition rates: the effect
of grade repetition on school dropout is identified on the difference between the repetition rates among
peers and the school average of repetition rates.20

3.2 The results

{
Eik,t+1 = 1l[βe1S

∗
ik +βe2Sk +Xikβe3 +γRik +u∗ik > 0]

Rik = 1l[S∗ik −λSk +αR̃ik +Xikβr +ǫ∗ik < 0]
(9)

Model (9) addresses the endogeneity of grade repetition. It is estimated by the maximum likeli-
hood method in Table 3. The specification is very close to the bivariate probit model, unless some
observations on grade repetition are missing.21 If the information about repetition is missing, the like-
lihood is IP(Rik = 1, Eik,t+1|Sik, Sk, R̃ik, Xik;β, δ, γ, λ)+IP(Rik = 0, Eik,t+1|Sik, Sk, R̃ik, Xik;β, δ, γ, λ).
Hence this model neglects the selection on grade repetition observation (see section 2.4). Section 3.5
nevertheless controls for this selection and shows the subsequent bias is moderate.

The two columns of Table 3 correspond to the model’s two equations. The data are pooled for the
various grades and years. Each specification includes grade-year dummies in each equation and the
χ2 statistics for their joint significance is reported.

17nk is the number of observations per group
18The regressions showing it are available upon request
19It assumes there is no measurement error in Sk. This is not expected to be costly, as the models in section 3.3
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Table 3: Joint estimation of the determinants of grade repetition and school dropout (model (9))
repetition enrolledt+1

(1) (2)

School mean of grade repetition rates among peers 1.456 .701
(.487)∗∗∗ (.751)

Repetition rate of the peers 1.854
(.302)∗∗∗

Grade repetition -.908
(.331)∗∗∗

(Average marginal effect of grade repetition) -.045
(.023)∗∗

Test score and other covariates Yes Yes
Obs. 1823
log-likelihood -675.133
χ2 grade year dummies 8.752 16.639
corresponding p value .068 .002
χ2 instruments 37.819
corresponding p value 7.76e-10

Additional covariates in each equation: test score, group mean test score, previous year’s test score, household

wealth, parents’ education, grade-year dummies.

Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%

level. The standard errors of the estimators are corrected for the correlation of the residuals between different

observations of the same child.

The determinants of grade repetition Grade repetition is correlated with the peer’s grade
repetition. This correlation is positive, which is expected. In fact, in our model, the correlation
between a child’s repetition and his peer’s repetition is uniquely due to teacher attitude to repetition,
so it should be positive. This correlation is significant, and the χ2 test for its significance has a value
of 37. The reasons why I believe this correlation is uniquely due to teacher attitude to repetition are
explained in sections 3.3 and 3.4.

The effect of grade repetition on dropout In this specification of model (9), the estimated
effect of grade repetition on school dropout is negative and significant. The coefficient is different
from 0 at the 1% level. It corresponds to an average marginal effect of 4.5 percentage points. The
mean dropout rate being 2% in the sample, the magnitude of the estimated effect is fairly high: grade
repetition apparently increases the probability of dropout approximately threefold.

Suppose that repeaters are 12% of the pupils, that the dropout rate of repeaters is 7% (5% due
to grade repetition, 2% due to other reasons), and that the dropout rate of other pupils is 2%. Then
repeaters make up 30% of dropouts and grade repetition accounts for 21% of all dropouts.

This back-of-the-envelope calculation suggests grade repetition is an important determinant of
dropout. Although dropout is obviously caused by other factors, it can be estimated that the propor-
tion (partly) due to grade repetition is not negligible.

The IV coefficient for the effect of grade repetition on dropout cannot be compared with the
coefficient for a simple probit model. In fact, there is no information on grade repetition for the pupils
who drop out, so that model (2) cannot be estimated using probit regression.

include another source of correlation between the unobservables of different pupils from the same class.
20Again, the school average of repetition rates includes the schoolmates of a given pupil, and not individual repetitions.
21Section 3.5 shows a specification controlling for this selection
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3.3 Is the peer’s repetition rate a reliable proxy for teacher attitude to repetition
?

This section examines whether the connexion between a child’s repetition and the peer’s repetition
rate can be ascribed exclusively to teacher attitude to repetition. If the peer’s repetitions are related
to the child’s unobservables, then the proxies may be endogenous because of measurement error. In
equations, R̃ik = νk+µ(νk) could be correlated with uik, the error term of equation predicting dropout
(2) because of µ(νk). So as to clarify the problem, it is useful to linearize (7):

IP(Rik) = −Sik + λSk + νk −Xjkβ − IE(ǫik|k) (10)

Hence we can compute the expectation of R̃ik:
22

IE(R̃ik) =
1

nk − 1
Σj 6=i

[
−Sik + λSk + νk −Xjkβ − IE(ǫik|k)

]

= −S̃ik + λSk + νk − X̃ikβ − IE(ǫik|k)

=

(
λ−

nk
nk − 1

)
Sk +

1

nk − 1
Sik + νk − X̃ikβ − IE(ǫik|k)

This expression includes measurement errors:

IE(R̃ik) =

(
λ−

nk
nk − 1

)
Sk +

1

nk − 1
(S∗ik − µ(Sik)) + νk − X̃ikβ − IE(ǫik|k) (11)

The potential correlation between R̃ik and ǫik needs to be eliminated once the observables have been
controlled for. Most of the terms in equation (11) are observable, so let us focus on the unobservables.

IE(ǫik|k) refers to the “correlation in unobservables”, à la Manski (1993a). It means that the ǫik
could be correlated between different observations of the same group. Such correlation is theoretically
plausible, either because the unobservables of children are expected to be correlated within each
school or because they are expected to be correlated between different classes within a school. For
example, lack of motivation at school might cause grade repetition. Lack of motivation at school
causes dropout. If motivation differs among schools and if motivation causes grade repetition then ǫjk
is probably correlated with ǫik, in which case ǫjk is correlated with child i’s dropout. Hence R̃ik would
be correlated with uik, the error term in the enrollment equation (equation (2)), and there would be
endogeneity.

Concerning the endogenous placement in schools, the biprobit model in Table 3 includes a control
for the school mean of grade repetition rates among peers. This term is supposed to rule out any
endogenous placement of children in schools causing differences in grade repetition rates between
schools, as suggested by Chamberlain (1980). The school mean of grade repetition rates in Table 3 is
uncorrelated with dropout, and using this covariate does not change the effect of grade repetition on
school dropout. In addition, regressions (available upon request) of repetition rate on community-level
characteristics do not indicate any correlation between the community-level observable characteristics
and the repetition rate. It seems therefore unplausible that endogenous placement in schools biases
the effect of grade repetition on dropout in Table 3.

Concerning the endogenous placement within schools, an additionnal regression (available upon
request) indicates grade repetition rate is not significantly correlated with household wealth or par-
ents’ education, once controlled for school fixed effects, grade-year fixed effects and test scores. This

22In this paper, ˜ denotes the mean of a variable among the peers. So S̃ik is the mean of the test scores among the

peers, X̃ik is the mean of the covariates.
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(partly) rules out an endogenous placement of pupils correlated with teacher attitude to repetition
within schools. Indeed, endogenous placement within schools may be based on unobservables that are
uncorrelated with parental wealth or education.

Another concern is Manski (1993a)’s “reflexion problem”. This means that if a child’s grade
repetition is affected by his peers, the peer’s grade repetitions are affected by him. In equation (11),
this term is S∗ik−µ(Sik). It means that when a child’s learning achievement is high, his peers are more
likely to repeat. It is partly observed, as we observe S∗ik, and partly unobserved. The crucial part is
the unobservable part µ(Sik), as S∗ik is controlled for in all the estimations of this paper. µ(Sik) is
included in u∗ik, the error term in the enrollment equation, so that the “reflexion problem” may biase
the estimates in Table 3. The sign for this bias is known, as µ(Sik) is negative in both equations. It
should biase upwards (to 0) the effect of grade repetition on enrolment in Table 3.

The importance of this bias may be overestimated by readers having in mind the debate on the
peer effects in education economics (see Hoxby and Building (2000) or Angrist and Lang (2004) for
examples). This literature shows that the acquisition of knowledge of a child may be affected by
his peers. This is presumably not a problem here. First, all the regressions in this paper control
for individual test scores and group mean test score, taking into account most of this problem. In
addition, the literature usually shows that a pupil leans more when the learning achievement of his
peers is high (if something). In the EBMS data, the group mean test score affects negatively grade
repetition. Hence a child is more likely to repeat when the learning achievement of the peers is high.
The intuition behind the reflection problem is therefore probably the following: when a child has
“good” unobservable characteristics, his peers may repeat because they are compared to him. I tend
to believe this effect is probably small.

3.4 Is teacher attitude to repetition exogenous?

This session assesses the exogeneity of νk. It is exogenous if it is uncorrelated with ǫik, the error
term of equation predicting grade repetition (2). There are two reasons why νk could be correlated
with the error term. First, teacher placement could be endogenous. Second, teacher attitude to
repetition may be random, but correlated with another characteristic causing dropout.

If teacher placement is endogenous and reasons for their placement (teacher qualification, expe-
rience...) are correlated with νk, then νk may be correlated with the unobservables causing dropout
uik. Teacher placement is centralized in Senegal. Hence the characteristics of the schools (and the
grade) are potentially crucial determinants of teacher placement. However, due to the centralization,
it appears unlikely that the placement is correlated with the characteristics of a given grade in a given
school. As a result, school fixed effects à la Chamberlain (1980) (and grade-year dummies) control for
most of the potential endogeneity bias linked with teacher placement.

If teacher attitude to repetition is correlated with some other characteristic causing dropout, then
the proxies fail to control for the endogeneity of grade repetition. For example, if elder teachers
favor grade repetition, and have higher pedagogic ability, then there may be a correlation between the
dropout rate and teacher attitude regardless of grade repetition. Besides, teacher attitude to repetition
may change the incentives in the class, so it may affect the acquisition of knowledge during the school
year. Jacob (2005) studies the test-based grade repetition policy in Chicago and the simultaneous
accountability policy, which made teacher and schools accountable for student achievement. Using a
diff in diff strategy, he shows that the policy increased learning achievement in classes where a lot of
pupils where likely to repeat ex-ante, and increases learning achievement for at-risk students. This is
consistent with the fact that the grade repetition policy changes the incentives in the class, though it
is impossible in this case to disentangle the effect of incentives caused by grade repetition from the
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effect of the incentives caused by the accountability policy. If grade repetition changes the incentives
in the class and hence the learning achivement of the pupils, it may affect directly dropout.

If either or both of these two arguments are true, then the first identification strategy fails to
identify the effect of grade repetition on school dropout. This is the reason why a second identification
is proposed in section 4 of this paper.

3.5 Selection on grade repetition

As stated in section 2.4, not all grade repetition decisions are observed. However, section 2.4 shows
that all the coefficients of model (1) can be identified without any parametric assumption about the
distribution of (ǫik, uik, vik).

In Table B.9, model (1) is estimated using a maximum likelihood method. Accordingly, this
estimation controls for the selection on Rik. The error terms are assumed to follow a trivariate normal
distribution, approximated with a GHK simulator. The data are pooled for the various grades and
years. The standard errors of the estimators are corrected for the correlation of residuals between
different observations of the same child. Each specification includes grade-year dummies in each
equation. The χ2 statistics for their joint significance is reported.

Table B.9 is not the main specification in this section for convergence reasons, and because the
correction for selection does not change the results very much in practice. However, it is reassuring
that the results of Tables 3 and B.9 are very similar: the effect of grade repetition on school dropout
is quantitatively similar (−4.9 percentage points) and significant.

The determinants of selection The estimation of selection in model (1) is intended to control
for selection bias in the estimation of Rik. The determinants of selection may be the determinants of
moving or missing school the day of the tests in addition to the determinants of dropout. Accordingly
there is no particular interpretation of these coefficients.

Nevertheless, it is necessary to focus on the effect of the negative shocks on harvests, since this
variable is the exclusion restriction in the equation for Rik. These shocks are not expected to be
a determinant of grade repetition because the rainfall season in Senegal is from July to September,
during the school vacations (see Figure 1). Accordingly, grade repetition is known when the rainfall
season begins. Theoretically, then, it can be ruled out that teachers might use this information for
grade repetitions.

These shocks positively affect selection: when there is a negative shock, the child is more likely to
take the test the next year. Negative shocks on harvests may decrease opportunity costs, so children
may be more likely to take the tests when there is a shock. The F-test for the significance of this
instrument is 6.6.

4 Identification of the effect of grade repetition on dropout using
the discontinuity of the grade repetition probability

This section presents the second indentification strategy of this paper. This stragy is based on
the widespread idea that a certain learning achievement is required to pass to the next grade. This
“target achievement” is denoted tk in equation (4). This identification strategy is based on the fact
that the grade repetition probability may be discontinuous when Sk = tk. In that case, equation (4)
can be rewritten:

Rik = 1l [Sik − tk + δ1l(Sik > tk) +Xikβr + ǫik < 0] (12)

However, the “target achievement” is not observed, so this paper tries to proxy for it. It uses two
proxies for tk: the test score of the last passer and the test score of the first repeater. “Passers” are
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those peers of a given pupil in a given year who are admitted to the next grade. Among the passers,
the pupil with the lowest test score is called the last passer. His test score, LPik, is used as a proxy
for tk:

LPik = min{j 6=i|Rjk=0}(Sjk) (13)

Similarly, the “repeaters” are those peers of a given pupil who are not admitted to the next grade.
Among the repeaters, the pupil with the highest test score is the first repeater. His test score is
another proxy for tk:

FRik = max{j 6=i|Rjk=1}(Sjk) (14)

So as to proxy for the fact that a pupil’s learning achievement is higher than the “target achieve-
ment”, this paper compares his test score with LPik and FRik. The “Rank relative to first repeater
and last passer” is the sum of the two corresponding dummies. It is used as a proxy for 1l(Sik > tk):

RRik = 1l(S∗ik > LPik) + 1l(S∗ik > FRik) = 1l(S∗ik > t
∗
k1) + 1l(S∗ik > t

∗
k2) (15)

The “Rank relative to first repeater and last passer” takes value 0 if the test score of a child is
lower than LPik and FRik, 1 if it is higher than either of the two, and 2 if it is higher than both.23 It
is a proxy for 1l(Sik > tk), so it is used as an instrument in model (16):





Eik,t+1 = 1l[ βe1S
∗
ik +βe3aLPik +βe3bR̃ik +γRik +Xikβe4 + u∗∗ik > 0]

Rik = 1l[ S∗ik −λLPik +αR̃ik +δRRik +Xikβr + ǫ∗∗ik < 0]

selection = 1l[ βs1S
∗
ik +βs2LPik +βs3R̃ik +βs4Zs +γsRik +Xikβs5 + v∗∗ik > 0]

(16)

Model (16) is the model estimated in the main regression of this section. The error term in the
enrollment equation writes u∗∗ik = uik−βe1µ(Sik)−βe3bµ(tk). Section 4.1 gives the corresponding first
stage and reduced form estimates, and section 4.2 gives the results of its identification.

4.1 First stage and reduced form estimates

This section presents some semiparametric fist stage and reduced form estimates corresponding to
the model (16). For simplicity, it focuses on one of the proxies for tk: the last passer’s test score. In
equation (15), it focuses on 1l(S∗ik > LPik) and hence neglects 1l(S∗ik > FRik). In Table 4, columns
1 and 2 present the correlation between grade repetition probability and the difference between own
test score and the test score of the last passer, S∗ik − LPik. The first column presents the coefficient
of the OLS regression of grade repetition probability on a set of dummy variables dichotomizing
S∗ik−LPik. It shows that the grade repetition is not perfectly determined by the sign of this difference
(#1l(S∗ik > LPik)). Indeed, grade repetition probability seems to be a continuously decreasing function
of S∗ik − LPik. The function is strongly decreasing, as the estimated grade repetition probability is
68% when S∗ik − LPik < −1, and only 2% when 1.5 < S∗ik − LPik.

Column 2 presents the coefficients of the probit regression of grade repetition probability on the
same dummy variables and covariates. The coefficient for the dummies is still decreasing. The esti-
mates are however rather imprecise, and rarely significantly different from 0. Once controlled for the
test scores (among other covariates), the grade repetition probability seems approximately contstant
when S∗ik − LPik is negative and when S∗ik − LPik is positive. There is a fairly big jump in the grade
repetition probability at S∗ik − LPik = 0. Because of the imprecision of this first stage, these results

23When there is no repeater among the peers, 1l(Sik > FRik) takes arbitrarily value 1.



15

Table 4: Grade repetition and school dropouts as a function of a difference between own test score
and the test score of the last passer (S∗ik − LPik)

repetition enrolledt+1

OLS Probit Probit
(1) (2) (3)

Repetition rate of the peers 1.91** 0.48
(0.33) (0.47)

Last passer’s test score -0.06 0.21
(0.27) (0.26)

Test score -0.52+ -0.04
(0.30) (0.22)

S∗ik − LPik < −1 0.68** 0.16 0.02
(0.06) (0.43) (0.51)

−1 < S∗ik − LPik < −0.5 0.65** 0.28 -0.61*
(0.06) (0.25) (0.29)

−0.5 < S∗ik − LPik < 0 0.38** Ref. Ref.
(0.04)

0 < S∗ik − LPik < 0.5 0.19** -0.40* 0.01
(0.02) (0.20) (0.25)

0.5 < S∗ik − LPik < 1 0.09** -0.68* 0.05
(0.02) (0.31) (0.31)

1 < S∗ik − LPik < 1.5 0.06** -0.52 0.85
(0.01) (0.44) (0.52)

1.5 < S∗ik − LPik 0.02** -0.71 0.53
(0.01) (0.60) (0.49)

Covariates No Yes Yes
Observations 1580 1465 1678

Notes: S∗
ik
− LPik stands for “Difference between own test score and last passer’s test score”.

Covariates in column 2 and 3: group mean test score, previous year’s test score, household wealth, parents’

education, grade-year dummies, and the constant.

***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10% level.

The standard deviations of the estimators are corrected for the correlation of the residuals between different

observations of the same child.
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have nevertheless to be interpreted with caution. This justifies that it is necessary to aggregate in-
formation as in equation (15) to build a relevant first stage in the estimation of the effect of grade
repetition on dropout. It also raises the question of the estimation of the discontinuity regressions
when there is measurement error on the threshold (on tk in the model) and on the switching variable
(on Sik in the model). This issue is discussed in section 4.3.

In Table 4, column 3 presents the correlation between grade repetition and the difference S∗ik−LPik.
Given the precision of the first stage in column 2 (and given that the reduced form estimates in non-
linear settings are not necessarily convergent to any simple function of the structural parameters),
one should not expect too much precision for these estimates. There is actually no such thing as a
discontinuity of grade repetition probability at S∗ik −LPik = 0. The estimates are sometimes negative
when S∗ik − LPik < 0, sometimes positive when S∗ik − LPik > 0, and rarely significantly different from
0.

4.2 Main results

Table 5 shows the estimation of model (16). The model is estimated with a maximum likelihood
method, as a “trivariate probit” specification. The distribution of the error terms follow a trivariate
normal distribution, simulated with a GHK simulator. The three columns of Table 5 correspond to
the model’s three equations. The data are pooled for the various grades and years. Each specification
includes grade-year dummies in each equation and the χ2 statistics for their joint significance is
reported.

This model controls for a potential correlation between teacher attitude to repetition and school
dropout. However, this correction relies on the assumption that the coefficient of teacher attitude to
repetition in the dropout equation is the same for all children. This estimation is highly parametric,
since it relies strongly on the non-linearity of the effect of tk on grade repetition.

Determinants of selection Table 5 includes a correction for selection. This correction appears
necessary, as the coefficient of the instrument for grade repetition in model (16) is affected by the
correction for selection.24

In Table 5, the negative shocks on harvests are used as an exclusion restriction in the repetition
equation. Like in Table B.9, this coefficient is positive and significant in the selection equation.

Determinants of grade repetition This specification includes two proxies for teacher attitude
to grade repetition: the repetition rate of the peers and the test score of the last passer. The test
score of the last passer is a proxy for tk, but once controlled for Sk, a proxy for tk proxies for νk as
well according to equation (5). The coefficient for these proxies are both positive and significant, as
expected.

The coefficient for “Rank relative to first repeater and last passer” is negative and significant. This
is expected: if the learning achievement is higher than the “target achievement”, grade repetition is
less likely. This coefficient is significant, the χ2 test for is significance is 8.9.

The effect of grade repetition on school dropout The repetition rate of the peers is positively
correlated with the probability of being enrolled at school the next year. Several explanations can be
given for this coefficient. First teacher attitude to repetition may be correlated with some other edu-
cational method causing less dropouts. Second, teacher attitude to repetition has other repercussions
than repetitions, and those repercussions affect the school dropouts of passers. This effect is credible:
it may increase motivation for pupils willing to avoid grade repetition, or may decrease the standard
deviation of test scores in the class. In both cases, grade repetition may encourage the acquisition of

24The specification without control for selection is available upon request.
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Table 5: Joint estimation of the determinants of grade repetition, selection and school dropouts
corresponding to the model (16)

repetition selection enrolledt+1

(1) (2) (3)

Repetition rate of the peers .837 1.094 .950
(.502)∗ (.622)∗ (.501)∗

Last passer’s test score .279 -.115 .073
(.092)∗∗∗ (.160) (.149)

Negative shock on harvests this calendar year or next .492 .161
(.192)∗∗ (.268)

Rank relative to first passer and last repeater -.551
(.185)∗∗∗

Grade repetition -1.627 -1.607
(1.670) (.820)∗∗

(Average marginal effect of grade repetition) -.062
(.029)∗∗

Test score and other covariates Yes Yes Yes
Obs. 1818 1818 1818
χ2 grade year dummies 3.829 7.985 19.843
corresponding p value .430 .092 .0005
χ2 instruments 8.884 6.526
corresponding p value .003 .011

Additional covariates in each equation: test score, group mean test score, previous year’s test score, household

wealth, parents’ education, grade-year dummies.

Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and

10% level. The standard deviations of the estimators are corrected for the correlation of the residuals between

different observations of the same child.
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knowledge so it may discourage dropout. Further, it is also credible that teacher attitude to repetition
is perceived by the parents as a signal for the school quality. In that case teachers favoring grade
repetition face lower dropout rates because their pupils are selected and have a higher demand for
schooling, not because the grade repetition of their peers has any positive impact on their acquisition
of knowledge. Finally, a grade repetition may be less discouraging when grade repetition rates are
low; and passing the grade may be a signal for high learning ability only when grade repetition rates
are high.

Whatever the reason why the repetition of the peers is correlated with dropouts in Table 5, the
effect of grade repetition on school dropouts in Table 3 potentially underestimates the number of
dropouts caused by grade repetition. However, the coefficient for grade repetition is still negative and
significant in this specification. The estimated marginal effect (6.2%) is significantly different from
0 and close to the corresponding coefficient in Table 3. Overall, the results in Table 5 confirm that
grade repetition has a negative effect on schooling, this result being robust to the potential causal link
between teacher attitude to repetition and dropout.

4.3 Sensibility to the Measurement error

RRik is a proxy for 1l(Sik > tk). One could therefore be concerned that the measurement error
in RRik may biase the estimates in Table 5. Indeed, the measurement errors µ(Sik) and µ(tk) are
included in u∗∗ik , the error term in the enrollment equation of model (16).

To make it clear, RRik = 1l(S∗ik > t
∗
k1) + 1l(S∗ik > t

∗
k2). For j = 1, 2, this equation introduces

the measurement errors and real values of Sik and tk: 1l(S∗ik > t
∗
kj) = 1l (Sik − tk > µ(Sik)− µ(tkj)).

Hence RRik is on a theoretical basis very likely to be correlated with the error term in the enrollment
equation u∗∗ik = uik − βe1µ(Sik)− βe3bµ(tk), because both include µ(Sik) and µ(tk).

This is of course undesirable, and Table 6 tries to assess to what extent the estimates in Table 5
are likely to be biased by measurement error. Indeed, this Table tries to estimate model (16) with
flawed controls for Sik and tk, and assesses whether the effect of grade repetition on dropout changes.
If the effect of grade repetition on school dropout is the same when the control for test score is flawed,
it probably means that it is not crucial to control very carefully for the child’s learning achievement.
Then the endogeneity due to the measurement error in test scores is probably negligible. This seems
to be actually the case in Table 6. In this Table, column 1 recalls the effect of grade repetition
on enrollment from Table 5. Column 2 presents the same specification without control for the test
scores in any equation. Column 3 presents a specification when test scores have been replaced by a
noisier variable, which is the sum of test scores and a random noise.25 The estimates of the effect of
grade repetition on dropout are very similar in each equation, and it seems therefore unlikely that the
measurement error in test scores biases seriously the effect of grade repetition on enrollment in Table
5.

Columns 4, 5 and 6 in Table 6 assess the sensibility of the effect of grade repetition on the
measurement error of tk. Table 5 and column 1 include two controls for tk: the last passer’s test score
and the peer’s repetition rate. Column 4 gives the results of a specification with a single control for
tk: the last passer’s test score. Column 5 gives the results without any control for tk. Column 6 gives
the results when the last passer’s test score has been repaced by a noisier variable which is the sum of
this variable and a random noise.26 Overall, the results seem much more sensible to the measurement
in tk than in the measurement in test scores. The probit coefficients are indeed very affected by the
absence of control for tk. However, the corresponding marginal effects are approximately the same in
columns 1, 4, 5 and 6.

25This noise has a normal distribution with standard deviation 1. The standard deviation of the test scores is 1.
26This noise has a normal distribution with standard deviation 1. The standard deviation of the last passer’s test score

is 0.84.
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Table 6: Effect of grade repetition on school enrollment corresponding to the model (16), sensibility
to measurement error

Tab. 5
No test
score

Noisy
test
score

No repe-
tition
rate of
peers

No last
passer’s

test
score

Noisy
last

passer’s
test
score

(1) (2) (3) (4) (5) (6)

Repetition rate of the peers .950 1.134 1.148
(.501)∗ (.470)∗∗ (.488)∗∗

Last passer’s test score .073 .057 .052 .207 .095(1)

(.149) (.150) (.153) (.128) (.066)

Test score .138 -.018(1) .189 .193 .232
(.163) (.073) (.155) (.151) (.153)

Grade repetition -1.607 -1.837 -1.786 -1.724 -2.665 -2.128
(.820)∗∗ (.597)∗∗∗ (.616)∗∗∗ (.557)∗∗∗ (1.425)∗ (1.042)∗∗

Average marginal effect -.062 -.073 -.074 -.055 -.055 -.047
of grade repetition (.029)∗∗ (.033)∗∗ (.036)∗∗ (.021)∗∗∗ (.17)∗∗∗ (.13)∗∗∗

Obs. 1818 1818 1818 1818 1823 1818
χ2 first stage 8.884 99.15 71.18 22.12 78.63 60.23
corresponding p value .003 .000 .000 .000 .000 .000

Notes: The Table only reports the coefficients of the enrollment equation.

Additional covariates in each equation of model (16): group mean test score, previous year’s test score, household

wealth, parents’ education, grade-year dummies.

(1): A noise has been added to the variable. This noise follows a normal distribution and has a standard

deviation of 1. The standard deviation of the initial variable is 1 for test scores and 0.84 for last passer’s test

score.

***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10% level.

The standard deviations of the estimators are corrected for the correlation of the residuals between different

observations of the same child.

The measurement error of tk supposedly affects the effect of grade repetition on dropout only if tk
affects dropout. Indeed, the error term in the enrollment equation is u∗∗ik = uik−βe1µ(Sik)−βe3bµ(tk),
hence if βe3b = 0 there is no bias, as µ(tk) is not in the error term of the enrolment equation. So it is
worth noting that in Table 5, the repetition rate of the peers is the only proxy for tk affecting dropout.
Dropping this variable from the sample should probably take into account most of the bias due to
the measurement error in tk. One could argue that dropping the last passer’s score only increases
the standard error of the estimators and that the estimates are less precise in columns 5 and 6. The
correlation between last passer’s score and the repetition rate of the peers is only 0.4. Hence it is
difficult to argue that the last passer’s score replaces the control for the repetition rate of the peers in
column 4 of Table 6. It is therefore possible to believe that the estimates in Table 5 are not affected
by the measurement error of tk.

5 Conclusion

This chapter uses two different identification strategies to estimate the effect of grade repetition on
school dropout. In the first one, a proxy for the differences between teachers attitude to repetition is
used a an instrument for identifying the effect of grade repetition on dropout. With this instrument,
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a negative effect of grade repetition on school dropout is estimated. The specification includes school
fixed effects, ruling out potential endogeneity from teacher or pupil placement. However, in this
specification a causal effect of teacher attitude to repetition on school dropout is a potential source of
bias. To control for this, the second specification uses the fact that the grade repetition probability may
be discontinuous with respect to learning achievement, if a certain learning achievement is required
to pass. So the second specification uses this discontinuity to identify the effect of grade repetition
on dropout. In this second specification, the causal effect of grade repetition on school dropout is
negative as well and quantatively similar to the benchmark specification.

This chapter focuses on the effect of grade repetition on short-term dropout but grade repetition
may have other consequences. First, it has a direct effect on the acquisition of knowledge. However,
as long as grade repetition causes school dropout, evaluation of this effect raises a serious selection
problem. In addition, schooling decisions and knowledge acquisition are closely interlinked, and it is
doubtful any conceptually acceptable instrument can be found for this selection.

Second, grade repetition may have long-term consequences. It is possible a priori to evaluate the
long term effect from the same data, but this is not addressed here. In fact, this evaluation suffers
from empirical pitfalls due to small sample sizes: the panel dimension of these data cannot be fully
exploited to analyse long-term effects of grade repetition, as the panel only lasted five years.

Finally, teacher attitude to grade repetition is likely to have a direct effect on school dropout,
as shown in the last specification of this chapter. To my knowledge, this effect has never been fully
identified in the literature, and this may strongly limit the conclusions drawn from the literature on
grade repetition. Overall, despite endogeneity concerns in many papers, the literature on the effects
of grade repetition have drawn a pretty pessimistic view on the consequences of grade repetition for
repeaters. The analysis of the way grade repetition rules affect the other pupils may both mitigate
these results and explain why the teaching staffs are sometimes reluctant to decrease repetition rates.
This analysis raises nevertheless some identification issues, which may only be fully adressed with
experimental or quasi-experimental data.
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Table A.7: Descriptive statistics for the variables of this paper

N mean standard deviation min. max.

Grade repetition 2176 0.173 0.379 0 1
Enrolled next year 2820 0.976 0.152 0 1
Test score 2380 -0.066 0.983 -3.20 3.34
Previous year’s test score 2286 0.009 1.00 -2.34 3.81
Group mean test score 2513 -0.065 0.590 -1.63 1.91
Negative shocks on harvests 2818 0.101 0.328 0 2
Repetition rate in the group 2503 0.172 0.180 0 1
Last passer’s test score 2466 -0.754 0.901 -3.20 4.69
Test score higher than last passer’s score 2393 0.730 0.444 0 1
Test score higher than first repeater’s score 2393 0.717 0.451 0 1

Parent’s education 839 1.93 1.42 1 8
Household wealth 823 -0.88 2.01 -3.12 4.38

Notes: The last school year of the panel is dropped because repetition is not observed. Once attrition is taken into

account, 2825 observations for time-variant variables remain, and 921 individuals for time-constant variables

Table A.8: Grade attended during the PASEC panel for six imaginary cases
case 1 case 2 case 3 case 4 case 5 case 6

2 2 2 2 2 2
school year
1995 - 1996

2 2,3 drop. 3 3 3
school year
1996 - 1997

3 3 3,4 4 3
school year
1997 - 1998

4 4 3,4,5 5 3
school year
1998 - 1999

5 5 3,4,5,6 6 4
school year
1999 - 2000

(When the child did not take the tests, the possible grades are in grey)

A Variables

Repetition is a dummy taking value 1 if the child repeated the grade, and 0 otherwise. Information
is from the PASEC panel. In each case, I tried to infer each year whether the child passed at the end
of the school year. Table A.8 sums up the various possible cases in the PASEC data and specifies
whether anything can be learned about the child’s progression. Case 1 is the basic case: the child took
all the tests. He repeated after school year 1995 - 1996, and has passed all the subsequent grades. In
case 2, the child did not take the tests in 1996 - 1997. The reason why he did not take the test is
not reported. Consequently, whether he repeated the second or the third grade is unknown. In case
3, the child dropped out in 1996. Consequently whether he was admitted to third grade after school
year 1995 - 1996 is unknown. In case 4, the child is not in the sample after 1997 - 1998, so whether
he repeated during the subsequent grades remains unknown. In cases 5 and 6, grade repetitions are
not ambiguous: we know the child repeated twice (case 6) or passed twice (case 5) when he was not
observed.

Enrolled is the fact that the child is still enrolled at school in a given year. The information is
inferred from the EBMS dataset so as to distinguish attrition in the panel from school dropout.
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Test scores are a proxy for learning achievement at the end of the current school year. In fact the
PASEC panel contains school tests at the end of each academic year until the end of the survey.27 The
tests were marked by the PASEC team. Consequently, test scores could not be influenced by teachers.
Table 1 reports the number of children taking each test.

The tests were designed to ensure easy comparisons within grade-years. They nevertheless differed
between different grades and years of the panel. The test scores have a mean of 0 and a standard
deviation of 1 within each grade-year.

Previous year’s test scores are a proxy for learning achievement prior to the current school year.
During the panel, the children took tests at the end of each school year. In each grade-year of the
panel, most of the children had been in the preceding grade the year before. The others had been
in the same grade the year before, and were currently repeating their grade. The tests for currently
repeating children and others had been different. Yet, some items had been common to both, and
those items are used to compare the knowledge of the pupils prior to the current school year. Again,
this variable has a mean of 0 and a standard deviation of 1 within each grade-year. This comparison
relies exclusively on skills acquired in the preceding grade, since the tests never included items about
the skills supposed to be acquired in the following grades.

Parents’ education is the mean of both parents’ education. The education of an individual is 1 if
the individual never went to school, 2 if the person began but did not finish primary school, 3 if he
finished primary school but did not begin secondary school, etc. It takes the highest value, 8, if the
individual attended to higher education. If information about the father’s education or the mother’s
education was missing, it is replaced by the mean education of the other adults (aged more than 25
in 1995) in the household.

Household wealth is a composite indicator for possession of durable goods, obtained by a principal
component analysis. It is based on children’s declarations in 1995, and so avoids reverse causality due
to the children’s education.

Negative shocks on harvests is a dummy taking value 1 if the head of the household reports a
negative shock on harvests during the current calendar year or the next. These shocks are taken into
account if the child or his parents were still in the household visited by EBMS in 2003. Otherwise this
dummy equals 0, because the child was not really affected by these shocks. (140 cases out of 1823)
However, for all the specifications presented, including a dummy for those cases did not change the
effect of grade repetition on school dropouts.

Repetition rate of the peers is a proxy for teacher attitude to repetition. A group is defined
by all the children being in the same school and the same grade in a given school year.28 The peers
of a child are the other pupils of his group than himself. Among the peers of a given child a given
year, “passers” are those admitted to the next grade. Others must repeat their grade if they do not
drop out and are called “repeaters”. The repetition rate in the group is the proportion of “repeaters”
among the peers. It is calculated among the peers that are unambiguously passers or repeaters.

Among the passers, the “last passer” is the passer with the lowest test score.

27The second grade classes were not surveyed from 1997 - 1998, so pupils still in this grade at that time were not
surveyed until they passed the third grade.

28A group is an approximation of a class: there may be several classes per group in some cases. In fact, there may be
several classes per grade in some schools. In that case, although all the pupils are in the same class in the first year of
the panel, in the following years they may be in the same grade and in different classes.
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Last passer’s test score is another proxy for the teacher specific attitude to repetition. In fact, if
the last passer’s score is high, a given child is expected to repeat more frequently.

Test score higher than last passer’s score is a dummy taking value 1 if the child’s test score is
higher than the last passer’s score, and 0 otherwise. The idea that a child has to repeat if his learning
achievement is below a certain threshold level is widespread. If there are differences among teachers
in their attitudes to repetition, this level of learning achievement may change among teachers. That
is why the test score of the last passer is used as a proxy for it. Accordingly, the dummy is a proxy
for the fact that the child’s achievement is above the threshold.

Among those not admitted to the next grade, the one with the highest test score is the “first repeater”.

Test score higher than first repeater’s score is a dummy taking value 1 if the child’s test score
is higher than the last passer’s score, and 0 otherwise. If there is no repeater in the group, the dummy
for the “test score higher than first repeater’s score” equals 1 for every child.

Rank relative to first passer and last repeater compares a child’s test score with the last
passer’s score and the first repeater’s score. It takes value 2 if the child’s score is higher than both
comparison scores (i.e. the last passer’s score or the first repeater’s score). It takes value 1 if the
child’s score is higher than one of the two comparison scores. It is 0 otherwise.

B Results with model(1)

In table B.9, model (1) is estimated parametrically. This is not the benchmark specification for
convergence reasons. The error terms (ǫik, uik, vik) follow a trivariate normal distribution, approxi-
mated with a GHK simulator, with 25 iterations in Table B.9. The maximum likelihood does not
converge with more iterations in the simulator.

When maximization fails, the coefficient vector generates P̂ (selection = 1) > P̂ (Eik,t+1 = 1) for
many observations. It would consequently be expected that for some of these observations, selection =
1 and Eik,t+1 = 0. The data are constrained to selection = 0 if Eik,t+1 = 0, and I suspect that this
incoherence between the data and the predictions of the model causes the failure of the maximization
process.
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Table B.9: Joint estimation of the determinants of grade repetition, selection, and school dropout
with Chamberlain (1980) fixed effects

repetition selection enrolledt+1

(1) (2) (3)

School mean of grade repetition rates among peers .866 1.267 .974
(.453)∗ (.572)∗∗ (.713)

Negative shock on harvests this calendar year or next .465 .193
(.181)∗∗ (.265)

Repetition rate of the peers 1.646
(.291)∗∗∗

Grade repetition -.978 -1.425
(.556)∗ (.599)∗∗

(Average marginal effect of grade repetition) -.049
(-.016)∗∗∗

Test score and other covariates Yes Yes Yes
Obs. 1823 1823 1823
χ2 grade year dummies 9.585 10.999 19.887
corresponding p value .048 .027 .0005
χ2 instruments 32.046 6.598
corresponding p value < 10−5 .010

Additional covariates in each equation: test score, group mean test score previous year’s test score, household

wealth, parents’ education, grade-year dummies.

Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and

10% level. The standard deviations of the estimators are corrected for the correlation of the residuals between

different observations of the same child.



26

C Proofs for the semiparametric identification of model (1)

C.1 model (1)

This section proves that model (1) can be semiparametrically identified.

The model (1) is :





r = 1l(Xβr + γrZ1 +εr > 0)
s = 1l(Xβs + γsZ2 +αsr +εs > 0)
e = 1l(Xβe + γeZ2 +αer +εe > 0)

(17)

(For simplicity r is repetition, s is selection, and e is enrolledt+1. For the same reason, the
equations have been written in a simple form Xβ + γZ + ε.)

Let us recall r is observed if and only if s = 1. f(εr, εs, εe) is the distribution function of (εr, εs, εe).
Manski (1988) shows that in the one-dimensional binary model case, the parameters are identified by
the derivatives of the distribution function. This idea is used to show that all the parameters of model
(1) are identified without any parametric assumption on f(εr, εs, εe).

Θ is the support of (X,Z1, Z2). Let us make the following assumptions:

1. The distribution of (εr, εs, εe) is independent of (X,Z1, Z2).

2. γr 6= 0 and γs 6= 0

3. ∀j ∈ {r, s, e}, βj1 = 1

4. ∃(X0, Z10, Z20) ∈ Θ verifying :

(a) In the neighborhood of (X0, Z10, Z20), (X,Z1, Z2) ∈ Θ

(b)

(
dIP(r=1,s=1)

dZ1
(X0, Z10, Z20) dIP(r=1,s=1)

dZ2
(X0, Z10, Z20)

dIP(r=0,s=1)
dZ1

(X0, Z10, Z20) dIP(r=0,s=1)
dZ2

(X0, Z10, Z20)

)
has full rank

(c) ∀(X,Z1, Z2) in the neighborhood of (X0, Z10, Z20), 0 < f(−Xβr−γrZ1,−Xβs−γsZ2,−Xβe−
γeZ2) <∞

5. ∃(a = (Xa, Z1a, Z2a), b = (Xb, Z1b, Z2b)) ∈ Θ2

(a)





Xaβr + γrZ1a = Xbβr + γrZ1b

Xaβs + γsZ2a + αs = Xbβs + γsZ2b

Xaβe + γeZ2a + αe = Xbβe + γeZ2b

(b) In the neighborhood of a and b, (X,Z1, Z2) ∈ Θ and 0 < f(−Xβr − γrZ1,−Xβs −
γsZ2,−Xβe − γeZ2) <∞

Assumption 1 is necessary in Manski (1988) and is still necessary here. It ensures that the
derivatives of the probability functions with respect to X, Z1 or Z2 are not caused by variations
of f(εr, εs, εe).

Assumption 2 ensures the instruments have a real causal effect on the endogenous variables.

In model (1), only the signs of the latent variables (Xβr + γrZ1 + εr, Xβs + γsZ2 + αsr + εs and
Xβe+ γeZ2 +αer+ εe) are observed. Accordingly, the parameters are identified up to the scale of the
parameter vector. Assumption 3 easily fixes that scale.

Assumption 4a ensures it is possible to compute the derivatives of the probability functions with
the data since the points in the neighborhood of (X0, Z0) are in the support of (X,Z). It is certainly
possible to extend the identification result when X contains some binary variables.
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Assumption 4b ensures some of the derivatives of the probability functions are not all zero and
that they are not collinear, so that the systems are fully identified in (X0, Z10, Z20).

Assumption 4c ensures the other derivatives of the probability functions with respect to the co-
variates are not null in (X0, Z10, Z20).

Assumption 5 ensures the support Θ is large enough to contain a pair of points with similar
characteristics for s and e when the former has r = 1 and the latter has r = 0.

This proof has three steps: first, it is shown that the coefficients β and γ of the first two equations
of model (1) are identified, second, it is shown that the coefficients β and γ of the last equation are
identified, and finally, it is shown that the α are identified.

• Identification of the first two equations of the model

Let us compute the derivatives of IP(r = 1, s = 1|X,Z1, Z2). This probability and its derivatives
can be estimated with the data in (X0, Z10, Z20) if assumption 4a is true:

P (11) = IP(r = 1, s = 1|X,Z1, Z2)

=

∫ ∞

−Xβr−γrZ1

∫ ∞

−Xβs−γsZ2−αs

∫

IR
f(εr, εs, εe)dεrdεsdεe

= F (11)(−Xβr − γrZ1,−Xβs − γsZ2 − αs)

We note F
′(11)
1 and F

′(11)
2 the derivatives of F (11) with respect to its two arguments. The

derivatives are:

dP (11)

dX1
= F

′(11)
1 + F

′(11)
2 (18)

dP (11)

dXi
= βriF

′(11)
1 + βsiF

′(11)
2 (∀i ∈ {1..K}) (19)

dP (11)

dZ1
= γrF

′(11)
1 (20)

dP (11)

dZ2
= γsF

′(11)
2 (21)

This is clearly not sufficient to identify β and γ. In fact, these four equations contain six unknown

parameters, since F
′(11)
1 and F

′(11)
2 are unknown. So the derivatives of IP(r = 0, o = 1|X,Z1, Z2)

are necessary to identify γ and β.

P (01) = IP(r = 0, s = 1|X,Z1, Z2)

=

∫ Xβr−γrZ1

−∞

∫ ∞

−Xβs−γsZ2

∫

IR
f(εr, εs, εe)dεrdεsdεe

= F (01)(−Xβr − γrZ1,−Xβs − γsZ2)

We note F
′(01)
1 and F

′(01)
2 the derivatives of F (01) towards its two arguments.
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dP (01)

dX1
= F

′(01)
1 + F

′(01)
2 (22)

dP (01)

dXi
= βriF

′(01)
1 + βsiF

′(01)
2 (23)

dP (01)

dZ1
= γrF

′(01)
1 (24)

dP (01)

dZ2
= γsF

′(01)
2 (25)

From equation (18) rearranged with (20) and (21), and (22) rearranged with (24) and (25), we
get the two equations system:




dP (11)

dX1
= 1

γr
dP (11)

dZ1
+ 1
γs
dP (11)

dZ2

dP (01)

dX1
= 1

γr
dP (01)

dZ1
+ 1
γs
dP (01)

dZ2

Under assumptions 4b and 2, this identifies γs and γr. We can then easily compute F
′(11)
1 , F

′(11)
2 ,

F
′(01)
1 and F

′(01)
2 with (20), (21), (24) and (25). The system:




dP (11)

dXi
= βriF

′(11)
1 + βsiF

′(11)
2

dP (01)

dXi
= βriF

′(01)
1 + βsiF

′(01)
2

identifies βri and βsi. In fact, assumption 2 ensures that

(
γrF

′(11)
1 γrF

′(01)
1

γsF
′(11)
2 γsF

′(01)
2

)
has full rank,

that

(
F
′(11)
1 F

′(01)
1

F
′(11)
2 F

′(01)
2

)
has full rank.

• Identification of the third equation

We compute the derivatives of IP(e = 1|X,Z1, Z2):

P (1) = IP(e = 1|X,Z1, Z2)

=

∫ ∞

−Xβr−γrZ1

∫

IR

∫ ∞

−Xβe−γeZ2−αe
f(εr, εs, εe)dεrdεsdεe

+

∫ Xβr−γrZ1

−∞

∫

IR

∫ ∞

−Xβe−γeZ2

f(εr, εs, εe)dεrdεsdεe

= F (1)(−Xβr − γrZ1,−Xβe − γeZ2,−αe)

We call F
′(1)
1 , F

′(1)
2 and F

′(1)
3 the derivatives of F (1) with respect to its arguments. We compute

the derivatives of P (1):
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dP (1)

dX1
= F

′(1)
1 + F

′(1)
2 (26)

dP (1)

dXi
= βriF

′(1)
1 + βsiF

′(1)
2 (27)

dP (1)

dZ1
= γrF

′(1)
1 (28)

dP (1)

dZ2
= γeF

′(1)
2 (29)

γr is known, so that F
′(1)
1 can be easily computed with (28). It is then possible to compute F

′(1)
2

with (26). Under assumption 4c, F
′(1)
2 is not null in (X,Z1, Z2) ∈ Θ. That is why γe is identified

by (29). Knowledge of βri, F
′(1)
1 and F

′(1)
2 identifies βsi in (27).

• Identification of αs.

Adapting Vytlacil and Yildiz (2007), it is easy to show that:

If ∃ ((Xa, Z1a, Z2a), (Xb, Z1b, Z2b), (Xc, Z1c, Z2c), (Xd, Z1d, Z2d)) ∈ Θ4 so that29





Xaβr + γrZ1a = Xbβr + γrZ1b = κr1
Xcβr + γrZ1c = Xdβr + γrZ1d = κr2
Xaβs + γsZ2c = Xcβs + γsZ2c = κs1
Xbβs + γsZ2b = Xdβs + γsZ2d = κs2

⇔





IP(r|a) = IP(r|b)
IP(r|c) = IP(r|d)

ÎP(s|a) = ÎP(s|c)

ÎP(s|b) = ÎP(s|d)

(30)

0 < f(εr, εs, εe) <∞ in the neighborhood of a and of b and κr1 6= κr2.

Then

(
IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c)

= − [IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

)
⇒ κs1 + αs = κs2 (31)

It is obvious that the converse is true. In fact, if κs1 + αs = κs2, then:

IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) = ÎP(s = 1|b)

IP(r = 1, s = 1|c) + IP(r = 0, s = 1|d) = ÎP(s = 1|d)

because

29 ÎP means that the probability is net of the effect of r on o.
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IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) =

∫ κr1
−∞

∫ ∞

−κs1−αs

∫

IR
f(εr, εs, εe)dεrdεsdεe

+

∫ ∞

−κr1

∫ ∞

−κs2

∫

IR
f(εr, εs, εe)dεrdεsdεe

=

∫

IR

∫ ∞

−κs2

∫

IR
f(εr, εs, εe)dεrdεsdεe

= ÎP(s = 1|b)

(30) ensures that ÎP(s = 1|b) = ÎP(s = 1|d). Finally:

IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) = IP(r = 1, s = 1|c) + IP(r = 0, s = 1|d)

⇔ IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

Proof of equation (31):

We write the probabilities:

IP(r = 1, s = 1|κr, κs) =

∫ ∞

−κr

∫ ∞

−κs−αs

∫

IR
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1|κr, κs) =

∫ −κr
−∞

∫ ∞

−κs

∫

IR
f(εr, εs, εe)dεrdεsdεe

Then we can easily compute the differences of (31):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) =

∫ −κr2
−κr1

∫ ∞

−κs1−αs

∫

IR
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d) =

∫ −κr1
−κr2

∫ ∞

−κs2

∫

IR
f(εr, εs, εe)dεrdεsdεe

We can now rewrite the first term of (31):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

⇔

∫ −κr2
−κr1

(∫ ∞

−κs1−αs

∫

IR
f(εr, εs, εe)dεsdεe −

∫ ∞

−κs2

∫

IR
f(εr, εs, εe)dεsdεe

)
dεr = 0

⇔

∫ −κr2
−κr1

∫

IR

(∫ −κs2
−κs1−αs

f(εr, εs, εe)dεs

)
dεrdεe = 0

f(εr, εs, εe) > 0 in the neighborhood of a and b. As a consequence, it is strictly positive in a
subset of the integration interval with a strictly positive Lebesgue measure if κs1 +αs 6= κs2. So
κs1 + αs = κs2, QED.
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Assumption 5 ensures that some points verifying (30) and (31) exist in Θ. In fact, points a and b
in assumption 5 verify (30) and the second term of (31). c can be found in the neighborhood of a
and d in the neighborhood of b: the hyperplanes ÎP(s|(X,Z1, Z2) = ÎP(s|a) and ÎP(s|(X,Z1, Z2) =
ÎP(s|b) necessarily contain pairs of points that have the same P (r), since P (r|a) = P (r|b).

These points can be recognized because the validity of (30) and

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|b) = −[IP(r = 0, s = 1|c)− IP(r = 0, s = 1|d)]

can be evaluated with the data and previous results.

• Identification of αe.

If ∃ ((Xa, Z1a, Z2a), (Xb, Z1b, Z2b), (Xc, Z1c, Z2c), (Xd, Z1d, Z2d)) ∈ Θ4 so that





Xaβr + γrZ1a = Xbβr + γrZ1b = κr1
Xcβr + γrZ1c = Xdβr + γrZ1d = κr2
Xaβs + γsZ1a = Xcβs + γsZ1c = κs1
Xbβs + γsZ1b = Xdβs + γsZ1d = κs2
Xaβe + γeZ2a = Xcβe + γeZ2c = κe1
Xbβe + γeZ2b = Xdβe + γeZ2d = κe2

⇔





IP(r|a) = IP(r|b)
IP(r|c) = IP(r|d)

ÎP(s|a) = ÎP(s|c)

ÎP(s|b) = ÎP(s|d)

ÎP(e|a) = ÎP(e|c)

ÎP(e|b) = ÎP(e|d)

(32)

and

{
κr1 6= κr2
κs1 + αs = κr2

and 0 < f(εr, εs, εe) <∞ in the neighborhood of a and of b.

Then

(
IP(r = 1, s = 1, e = 1|a)− IP(r = 1, s = 1, e = 1|c)

= − [IP(r = 0, s = 1, e = 1|b)− IP(r = 0, s = 1, e = 1|d)]

)
⇒ κe1 + αe = κe2 (33)

For the same reason as for the identification of αs, the converse of 33 is true. In fact, if κe1 +αe =
κe2, then:

IP(r = 1, s = 1, e = 1|a) + IP(r = 0, s = 1, e = 1|b) = ÎP(s = 1, c = 1|b)

IP(r = 1, s = 1, e = 1|c) + IP(r = 0, s = 1, e = 1|d) = ÎP(s = 1, c = 1|d)

Proof of equation (33):

We write the probabilities:

IP(r = 1, s = 1, e = 1|a) =

∫ ∞

−κr1

∫ ∞

−κs1−αs

∫ ∞

−κe1−αe
f(εr, εs, εe)dεrdεsdεe

IP(r = 1, s = 1, e = 1|c) =

∫ ∞

−κr2

∫ ∞

−κs1−αs

∫ ∞

−κe1−αe
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|b) =

∫ −κr1
−∞

∫ ∞

−κs2

∫ ∞

−κe2
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|d) =

∫ −κr2
−∞

∫ ∞

−κs2

∫ ∞

−κe2
f(εr, εs, εe)dεrdεsdεe



32

Then we can easily compute the differences of (33):

IP(r = 1, s = 1, e = 1|a)− IP(r = 1, s = 1, e = 1|c)

=

∫ −κr2
−κr1

∫ ∞

−κs1−αs

∫ ∞

−κe1−αe
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|b)− IP(r = 0, s = 1, e = 1|d)

=

∫ −κr1
−κr2

∫ ∞

−κs2

∫ ∞

−κe2
f(εr, εs, εe)dεrdεsdεe

We can now rewrite the first term of (31):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

⇔

∫ −κr2
−κr1

∫ ∞

−κs2

∫ −κe2
−κe1−αe

f(εr, εs, εe)dεrdεsdεe = 0

f(εr, εs, εe) > 0 in the neighborhood of any point of Θ (assumption 4c). As a consequence, it is
strictly positive in a subset of the integration interval with a strictly positive Lebesgue measure
if κe1 + αe 6= κe2. That is why κe1 + αs = κe2. Assumption 5 ensures that those points exist, so
αe can be identified.

C.2 Model (1) without Z2

This appendix proves that Z2 is unnecessary for identifying the sign of αe. Accordingly, it is
theoretically not necessary to control for selection to identify the sign of αe semiparametrically.
The corresponding model is:





r = 1l(Xβr + γrZ +εr > 0)
s = 1l(Xβs +αsr +εs > 0)
e = 1l(Xβe +αer +εe > 0)

(34)

(For simplicity r is repetition, s is selection, and e is enrolledt+1. For the same reason, the
equations have been written in a simple form Xβ + γZ + ε)

Let us recall that r is observed if and only if s = 1. f(εr, εs, εe) is the distribution function of
(εr, εs, εe). Manski (1988) shows that in the one-dimensional binary model case, the parameters
are identified by the derivatives of the probability function of the dependent variable. This idea
is used to show that the sign of αe is identified in model (34) without any parametric assumption
on f(εr, εs, εe). Θ is the support of (X,Z). We make the following assumptions:

1. The distribution of (εr, εs, εe) is independent of (X,Z).

2. γr 6= 0

3. ∃(X0, Z0) ∈ Θ verifying :

(a) In the neighborhood of (X0, Z0), (X,Z) ∈ Θ

(b)
∫

IR

∫
IR f(−X0βr − γrZ0, εs, εe)dεsdεe <∞
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(c) f(εr, εs, εe) > 0 in the neighborhood of (−X0βr − γrZ0,−X0βs − αs,−X0βs − αe),
called Γ

Assumption 1 is necessary in Manski (1988) and is still necessary in this case. It ensures that
the derivatives of the probability functions with respect to X or Z are not caused by variations
of f(εr, εs, εe).

Assumption 2 ensures that the instrument has a causal effect on r.

Assumption 3a ensures that it is possible to compute the derivatives of the probability functions
with the data since the points in the neighborhood of (X0, Z0) are in the support of (X,Z). It is
certainly possible to extend the identification result in the case where X contains some binary
variables.

Assumption 3b ensures that the density of εr in −X0βr − γrZ0 is finite, so that the derivatives
of the probabilities with respect to Z are finite.

Assumption 3c ensures that the derivatives of the probability functions with respect to Z are
not null.

– Proof that the sign of γr is identified

We write IP(r = 1, s = 1, e = 1|X,Z), which is identified by the data in (X0, Z0) because
of assumption 3a:

IP(r = 1, s = 1, e = 1|X,Z) =

∫ ∞

−Xβr−γrZ

∫ ∞

−Xβs−αs

∫ ∞

−Xβe−αe
f(εr, εs, εe)dεrdεsdεe

⇒ dIP(r = 1, s = 1, s = 1|X,Z)/dZ = γr

∫ ∞

−Xβs−αs

∫ ∞

−Xβe−αe
f(−Xβr − γrZ, εs, εe)dεsdεe

0 ≤

∫ ∞

−Xβs−αs

∫ ∞

−Xβe−αe
f(−Xβr − γrZ, εs, εe)dεsdεe

Assumption 3b ensures that:

∫ ∞

−X0βs−αs

∫ ∞

−X0βe−αe
f(−X0βr−γrZ0, εs, εe)dεsdεe ≤

∫

IR

∫

IR
f(−X0βr−γrZ0, εs, εe)dεsdεe <∞

And assumption 3c ensures that:

∫

[−X0βs−αs,∞]×[−X0βe−αe,∞]
f(−X0βr − γrZ0, εs, εe)dεsdεe

≥

∫

([−X0βs−αs,∞]×[−X0βe−αe,∞])∩Γ
f(−X0βr − γrZ0, εs, εe)dεsdεe > 0

That is why

0 <

∫ ∞

−X0βs−αs

∫ ∞

−X0βe−αe
f(−X0βr − γrZ0, εs, εe)dεsdεe <∞

so that dIP(r=1,s=1,e=1|X,Z)
dZ

(X0, Z0) has the same sign as γr.
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– Proof that the sign of αe is identified

Now, let us focus on IP(e = 1|X,Z):

IP(e = 1|X,Z) = IP(e = 1, r = 1|X,Z) + IP(e = 1, r = 0|X,Z)

=

∫ ∞

−Xβr−γrZ

∫

IR

∫ ∞

−Xβe−αe
f(εr, εs, εe)dεrdεsdεe

+

∫ −Xβr−γrZ

−∞

∫

IR

∫ ∞

−Xβe
f(εr, εs, εe)dεrdεsdεe

=

∫

IR

∫

IR

∫ ∞

−Xβe
f(εr, εs, εe)dεrdεsdεe

+

∫ ∞

−Xβr−γrZ

∫

IR

∫ −Xβe
−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

⇒ dIP(e = 1|X,Z)/dZ = γr

∫

IR

∫ −Xβe
−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

Again, if αe > 0, then 0 <
∫

IR

∫−X0βe
−X0βe−αe

f(−X0βr − γrZ0, εs, εe)dεsdεe < ∞, because of

hypotheses 3b and 3c. For the same reasons, if αe < 0, then −∞ <
∫

IR

∫−X0βe
−X0βe−αe

f(−X0βr−
γrZ0, εs, εe)dεsdεe < 0. This shows that dIP(e = 1|X,Z)/dZ and αeγr have the same sign.

The sign of γr is identified, so the sign of αe is identified.


