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Abstract

The impact that informed and uninformed agents have on market prices is crucial for
informational issues in financial markets. Informed trades are associated with institutional
operators while uninformed trades are executed on behalf of retail investors. Using high-
frequency data from Euronext Paris, I estimate a model where I take into account traders’
identities at transaction level. The results show that when the identities of the traders are
different on the two sides of the market, stock prices follow the direction indicated by insti-
tutional agents. This means that when the buyer is an informed operator and the seller is
a retail one, the former transmits a positive pressure to the market. Conversely, when the
seller is an institutional agent and the buyer is an uninformed one market prices depress.
There is no significant effect when the agent types are the same on both market sides.

Since traders’ identities are concealed in Euronext Paris, the last part of the paper
discusses the informational content implicitly provided by observed market variables. Insti-
tutional trading is found to increase throughout the day, whereas no evidence of informed
trading is found during specific time periods of the continuous auction, except for the first
thirty minutes of the day where there are more uninformed trades. Institutional trading
is more common during periods of low price changes and high-frequency of transactions.
Price variations show that informed agents are usually able to trade at better price condi-
tions. Finally, the tick-test algorithm strongly confirms that informed traders always act as
initiators of market transactions.

1 Introduction

The last years have seen an increasing attention on market microstructure as evidenced by the

significant amount of contributions to the theoretical and empirical literature. Several factors

contributed to it, among of which are the availability of high quality datasets with transaction-

level information, the development of new trading systems, the necessity of market regulation

and the interest towards market participants’ trading strategies. These elements are of primary

interest especially for the empirical research devoted to informational concerns in financial mar-

kets.

∗Dipartimento di Scienze Economiche, Università di Bologna, Piazza Scaravilli, 2, 40126 Bologna, Italy. Email:
fabrizio.ferriani@unibo.it.
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The empirical features of financial markets have been examined along multiple directions.

Hasbrouck (1991) applies VAR models in empirical microstructure to simultaneously model mar-

ket prices and trade direction. This method proved to be very flexible and has been stretched

to take into account the decomposition of informative signals in Hasbrouck (1991), the relation-

ship among integrated markets in Hasbrouck (1995) and the presence of daily time patterns in

Dufour and Engle (2000), as well as to test theoretical models in De Jong, Nijman and Roell

(1996). ? introduce autoregressive conditional duration models (ACD) to describe the time

patterns between consecutive transactions. ACD models received particular interest and have

been generalized following the GARCH literature. In Manganelli (2005) it is possible to find a

recent contribution that extends ACD models to transaction volumes.

There exists a large portion of empirical microstructure literature that is also devoted to

the examination of the presence of informed and uninformed agents in financial markets.Kyle

(1985) derives a model where a risk-neutral market maker trades with insiders and liquidity

traders. He defines a measure, the Kyle’s lambda, that assesses the level of market liquidity as

a function of the trading strategies of the two types of market agents. Glostem and Milgrom

(1985) propose a sequential model where asymmetric information is directly incorporated into

the bid-ask spread: a larger presence of informed agents forces the market operator to widen

the interval between the bid and the ask quote. This model is then extended by Easley and

O’Hara (1987) to also take into account the order size. Easley et al. (1996) and Easley,

Kiefer and O’Hara (1997) introduce in the literature the concept of PIN, a measure of the

probability that an informed agent is actually trading in the market. Their model has been

widely tested in different markets and it is founded on the idea that a bayesian market maker

updates his quotes according to the observed behaviour of market participants. Although I will

not take advantage of PIN to evaluate the presence of informed agents in the market, I will

exploit the idea that some observed variables can be used to infer the identity of a trader. With

reference to the impact that informed traders have on market transactions, Barclay and Warner

(1993), Chakravarty (2001) and Alexander and Peterson (2007) investigate the occurrence of

stealth trading, i.e. the propensity of informed agents to use medium-sized orders to best ex-

ploit their information advantage. The reason of this preference completely stands in volume

as information signal. This is because large volumes are easily interpreted by the market as the

2



attempt of an informed agent to maximize his profits. Meanwhile transactions of small volume

are inconvenient because informational advantages expire as long as time passes or because of

transaction costs. Foucault, Moinas and Theissen (2007) focus on information asymmetries

in a limit order market and analyze the relationship between volatility and bid-ask spread and

how the informativeness of the limit order book is affected by the proportion of informed agents

in the market. Their study is particularly appealing because they also test the effect of a switch

from a fully disclosed market to a regime with hidden identities.

In this paper I extend the ordered probit analysis detailed in Hausman, Lo and Mackin-

lay (1992), hereafter HLM (1992), to empirically investigate the impact of different market

operators on the transactions executed in the Paris Stock Exchange. The aim of this research

is twofold: the first is to measure the influence of institutional trading at transaction level by

considering the type of agent responsible for eache trade. As it will be discussed, this approach

represents a more direct way to measure information asymmetries in the market. The second

aim is to study the link between market variables and investors, and to provide a description

of the main trading patterns followed by institutional agents.

The paper is organized as follows. Section 2 reviews the model employed by HLM (1992)

while Section 3 describes the data used for the empirical analysis. Section 4 details the vari-

ables included in the ordered probit specification and how the trader effect is incorporated in the

model. Section 5 exhibits the parameter estimates, discusses the marginal effects and shows the

robustness tests. Section 6 discusses the information content involved in the observed variables

and how this could represent the basis to infer trader identities. Lastly, Section 7 concludes.

2 The Model

This section presents the model used for the empirical analysis, postponing a comprehensive

description of regressor specification to Section 4. As anticipated in the Introduction, I consider

a generalization of HLM (1992) that takes into account how different kinds of operators affect

market transactions. For this reason I will strictly follow the presentation provided in HLM

(1992), and I refer for a more exhaustive exposition to the said article. I consider a sequence

of transaction prices Pt0 , Pt1 , Pt2 , ..., Ptn , observed at time t0, t1, t2, ..., tn, where the generic

observation time tk corresponds to transaction time, i.e. the time between two consecutive
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transactions without reference to a fixed sampling frequency. Since the minimum variation in

stock prices in Euronext Paris for the selected period is 0.01 euro, the variable tick Dtk is defined

as the difference between two consecutive prices multiplied by 100, i.e. Dtk = (Ptk−Ptk−1
)∗1001.

Hence, Dk represents the multiple of the minimum variation allowed and it provides the price

change expressed in euro cents for each couple of transactions. This definition could also be

easily extended to other measures of the minimum price variation, such as eighths of dollars for

data without decimalization. In the context of the ordered probit model, Dk can be thought as

the observed realization of a latent continuous random variable,

D∗

k = X′

kβ + ǫk (1)

where Xk includes the variables that characterize the mean of D∗

k, and ǫk is a Gaussian noise

with zero mean and variance equal to σ2
k = W′

kθ, where Wk includes all the variables that affect

the variance. In the following I will refer to the variance using the shortcut σ2
k postponing the

issues relative to variance specification and identification to Section 4. The relationship that

links the observed and the latent variable stands in the subsequent interval classification:

Dk =




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


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




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d1, if D∗

k ∈ A1 = ]−∞; α1],

d2, if D∗

k ∈ A2 = ]α1; α2],

...
...

dm, if D∗

k ∈ Am = ]αm−1;∞[

(2)

where α1 < α2 < ... < αm−1 represent non-overlapping cutpoints that divide the whole data

range of D∗

k into m distinct intervals Aj , j = 1...m, while dj defines the outcomes of the

observed price change Dk. The issue relative to the choice of the number of intervals m to

classify Dk is addressed in Section 4; however, as HLM (1992) emphasized, the choice of m

will take into account the trade-off between a decreasing price resolution as long as m increases

and the challenges associated with estimating thresholds in extreme intervals collecting only

few observations. The assumption of conditional independence and Gaussianity of the error

distribution allow to characterize the conditional distribution of Dk in the following way:

1In the following, to simplify the notation, I will use only k instead of tk.
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P (Dk = dj |Xk,Wk) =
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where Φ is the standard normal cumulative distribution function. As HLM (1992) stressed, the

assumption of normality for the conditional distribution of D∗

k is not mandatory and in principle

also other choices are feasible.

I define γ′ = [β′, θ′, α1, ..., αm−1] as the vector of all the parameters included in the model

together with D∗

k thresholds; the estimate of γ′ is performed with maximum likelihood (ML),

given the assumptions on the error distribution. The ML function to be maximized is

n
∑

k=1

{

Y1k · log Φ

(

α1 − X′

kβ
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kβ
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+Ymk · log

[
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(
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kβ

σk

)]}

(5)

where Yik is an indicator variable equal to one if Dk belongs to the i − th interval, and equal

zero if otherwise.

The theoretical framework detailed above has an analogous specification for interval regres-

sion model and can be easily extended to the specified setting with only minor modifications;

for a thorough reference, see Cameron and Trivedi (2005) or Wooldridge (2002). However,

there are some substantial differences between the two approaches. First, the dependent vari-

able in ordered probit models does not have a quantitative connotation and the interpretation of

marginal effects is completely different in the two cases. The estimated coefficients in an interval
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regression model directly express the marginal contribution of each variable under the ceteris

paribus condition, while the marginal effect in the ordered probit is non-linearly related to the

whole set of regressors. This aspect is also reflected in the statistics of interest between the two

models, since the interval regression provides a more attractive approach to study the effect

that explicative variables have on the conditional mean; conversely, the ordered probit gives a

more worthwile emphasis on how regressors influence the conditional probability distribution

of D∗

k. A further relevant distinction between these two approaches is the reduced dimension

of the γ′ vector. In the interval regression, the cutpoints do not enter in the set of parameters

to be estimated and are pre-determined by the researcher or by the sampling procedure. While

this aspect seems to attribute an advantage for interval regression in terms of immediacy with

respect to ordered probit, the last point discussed is far from being a minor issue. Excluding

the cutpoints from γ′ is a feasible choice only if it is possible to define the range of variation of

D∗

k without ambiguity. Moreover, as HLM (1992) emphasized, the estimation of the cutpoints

together with the other model parameters allows to fully describe the relationship between the

observed realizations and the latent variable. This is also the motivation for the rejection of

interval regression as main estimation tool and it is only employed in Section 5 to verify the

robustness of the results.

3 The Data

Section 3 describes the data used for the empirical analysis and the variables included in the

original dataset, while details relative to variable transformation will be discussed in Section 4.

The data have been provided by Eurofidai and they consist of all the transactions registered in

the Paris Bourse (Euronext Paris) from 3 February 2008 to 31 March 2008, for stocks belonging

to CAC 40, the index that collects the most liquid and traded stocks listed in the Paris Bourse

( see Foucault, Moinas and Theissen (2007) for a comprehensive and recent description of the

Paris Bourse). All the analyses are focused on the transactions executed during the continuous

trading session from 9.00 a.m. to 5.30 p.m.; hence, records relative to the opening and closing

auctions have been removed. Even though the opening and closing auctions for some stocks

stand for a significative number of observations and for a consistent portion of the daily volume,

these two trading sessions are neverthless useless for this research because the said transactions
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are executed at the same price. For each stock included in the sample, the variables provided in

the dataset refer to actual transactions that have occurred between buyers and sellers during the

continuous trading session 2. The CAC40 stocks have been classified into five groups according

to increasing market capitalization on 3 February 2008, the first day of trades included in the

dataset. Table 4 displays how stocks have been split into the five categories according to market

capitalization quintiles3. The first column of table 4 displays the market capitalization in Euro

millions for the first day of the sample. The other four columns exhibit some descripitive

statistics for the stock sample: the total amount of transactions, the average number of daily

transactions, the average transaction volume, and the average price. From the table, it is

apparent that there exists quite a variation among the different stocks. This variability is

driven by multiple factors, such as the weight of each stock in the CAC40 index, the time

period analyzed and company-related events, the interest of operators for a specific stock, and

so on.

For each transaction, the dataset displays a code that identifies the operator that takes part

in the exchange:

❼ ‘1’ is the code that refers to transactions executed on behalf of retail investors;

❼ ‘2’ is the code that refers to transactions executed by operators authorized to trade in the

Paris Bourse. They are usually banks or other financial intermediaries, called ‘Sociétés de

Bourse’;

❼ ‘6’ is the code that refers to transactions executed by the market maker;

❼ ‘7’ is the code that refers to transactions executed by another kind of financial interme-

diaries called ‘Filiales de la Société de Bourse’. They are financial institutions similar to

traders coded with ‘2’.

It is important to stress that all the transactions are executed by authorized operators, i.e.

stock members, but only trades coded with ‘1’ are executed on behalf of retail investors. Trades

2The dataset actually registers all the executed transactions. If an order volume on the bid exceeds the
available quantity of a corresponding order on the ask, it is recorded only for the executed part. The potential
remainder is kept in the order book, without ‘walking the book’ and can be matched with another order posted
by a different agent. In the literature, there is no homogeneity in dealing with order fragmentation and different
approaches are proposed (e.g. Chakravarty (2001) or Hasbrouck (1991)). However for the aim of this analysis,
orders that are even only partially executed do not represent an obstacle.

3Dexia is not included in the sample because of a significant number of transactions coded as executed by the
market maker.
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classified with ‘2’ or ‘7’ refer to transactions executed by financial intermediaries in their own

interest. The sample includes a code for the trader on the two sides of the market, such that

the buyer and the seller can represent the same kind of operator or can be different. Since this

sample involves highly liquid stocks, there is usually no need for the liquidity provider; hence

the number of transactions registered with code ‘6’ is generally absent or extremely limited. All

the transactions registered with ‘1’ are attributed to retail or uninformed traders, while all the

transactions registered with ‘2’ and ‘7’ are placed in the category of institutional or informed

traders. This is a plausible distinction similar to the one proposed by Chakravarty (2001) in

his analysis of stealth trading. An important remark is that starting from 23 April 2001, the

limit order book has been completely anonymous and traders could no longer view the operator

that is actually trading or the category he belongs to. For an empirical analysis of the effects

of this anonymous regime, see Foucault, Moinas and Theissen (2007); Section 6 also discusses

this issue.

Similar to HLM (1992), I exclude from the final sample all the records where Dk is larger

than 35 in absolute value. This procedure, together with the exclusion of transactions classified

as executed by the market maker, corresponds to eliminate a very small amount of observations,

sometimes even zero. This should not be considered as an arbitrary choice because it does not

affect the results but, in turn, reduces the probability of including outliers or mistakes in the

reporting data. Stocks with the highest percentage of dropped observations (the maximum is

0.0043% for Alstom) are the ones that also exhibit the highest average price; however this is

not surprising because stocks with largest prices are easily subject to a highest average value of

Dk with respect to low price stocks. The reason is that if an investor desires to affect the price

of a stock by a variation of 0.1%, for instance, the corresponding value of Dk would be larger

for high price stocks to produce the same price impact.

Figure 1 shows two frequency plots for one representative stock, Bouygues. There is no

particular reason to choose this specific company because in principle all the stocks exhibit

quite similar patterns. The choice of focusing on a single stock is only made to save space.

The left panel of Figure 1 displays the frequency distribution of the price variation Dk, while

the right panel shows the frequency distribution of transaction durations expressed in seconds.

With respect to the first graph, there is a noticeable concentration of values for the variable
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tick in correspondance of Dk = 0. This issue is related to the specificity of the data analyzed.

High-frequency financial data report transactions that occur within very short time intervals,

which excludes the possibility of large and frequent jumps in prices. Moreover, this aspect is

emphasized by the fact that this paper employs highly liquid stocks, where the depth of the

limit order book assures execution with limited price skips. As such, the left plot of Figure

1 actually displays a focus of the frequency distribution with a reduced scale; the relative

frequency for Dk = 0 is explicitly indicated at the top. The data also exhibit features that

are quite common in these research topics; similar graphical analyses can be found in HML

(1992) or Liesenfeld, Nolte and Pohlmeier (2006). Some stocks exhibit certain peculiarities,

wherein the distribution is slightly skewed towards the negative or the positive values. Stocks

with higher average prices are characterized by thicker tails and more dispersion, coherent with

the previous discussion. Concerning time of transactions, for each trade the data set reports

the time at which a transaction occur, expressed as ‘hh:mm:ss’. High-frequency data usally

display very short durations between consecutive transactions, and this aspect is even more

emphasized by the high level of liquidity of CAC40 stocks. Even with synchronous observations

at the second level, there is no ambiguity involved as trades are listed in a chronological order.

The right plot of Figure 1 shows that most of the trades are executed at the same time or however

within very limited time intervals. The graph exhibits a skewness to the left with a noticeable

concentration of transactions occurring within zero seconds of time interval. Also in this case

the graph provides a focus of the frequency distribution with bold digits for the frequency of

zero-second durations. The last interesting aspect to be analyzed involves the examination of

the autocorrelogram of Dk, in order to assess the presence of serial correlation in price variation.

Figure 2 displays the 30-lag correlogram of Dk , always for Bouygues. From the right graph it is

apparent that at least for the first lags the series displays a negative autocorrelation. This is a

standard feature that occurs in the whole sample. A possible explanation for this pattern, also

observed in other empirical studies, is the one implied by the presence of a bid-ask bounce, with

reference to the seminal paper of Roll (1984). However, it is difficult to detect any significant

negative autocorrelation for Dk after the fifth lag.
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4 The Empirical Specification

This section details the empirical model specification and provides a discussion of the method-

ology used to include and estimate the trader effect. First, it is necessary to stress that all the

stocks exhibit specific peculiarities in terms of concentration of Dk around zero, thickness of

tails, number of relevant lags for explicative variables, and so on. However, in the estimation

procedure I will try to employ a homogeneous specification for the whole sample as far as pos-

sible.

The first empirical issue is related to the number of intervals m, where the simplest solution

would be to set the number of intervals equal to the number of all the possible outcomes of Dk.

In such a case, for some stocks, e.g. Alcatel, this procedure would generate a limited number

of intervals, while for most stocks this choice would produce an excessive number of thresholds

to be estimated. Moreover, as it was discussed in Section 2, this brings up some ML estimation

concerns about threshold estimates in extreme classes that collect only few observations. Taking

this trade-off into account, a feasible strategy to single out the optimal m, consists in being

driven by graphical and descriptive analisys. Data aggregation is performed according to the

frequency plot discussed in Section 3, and the intervals are set up to replicate data concentration

around central values. For the whole stock sample, the number of intervals m is set equal to 5

or 7 or 9, according to the distribution of price variations. Stocks with a higher average price

also exhibit a larger frequency of observations in the tails. In the whole sample, a distinct class

is reserved to Dk = 0 that always includes most of observations. Even if the grouping procedure

employed to aggregate data can be thought of as arbitrary, it is worth noticing that, as long

as data distribution features are preserved, different interval classifications for Dk involve only

slight variations in parameter estimates.

The second issue to be discussed is related to the number of transactions that should be

included in the estimation, which depends on the frequency that is used for sampling the data.

The possible options are the clock-time convention, where data are selected according to a

fixed sampling frequency (such as 5-minute intervals) or the event-time convention where all

the transactions are included in the sample after applying the filters discussed above. In their

fundamental work relative to the role of time in high-frequency finance, Easley and O’Hara

(1992) emphasize how market transactions could be viewed as an optional sampling from the
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unobservable continuous process of market price. This aspect complicates the inference as it is

impossible to let transaction times be independent and identically distributed. Subsequently,

Easley, Kiefer and O’Hara (1997) point out that-clock time stationarity in studies that aim to

examine information-based issues could seriously affect the results; a fixed sampling approach

implies the loss of the information content included in the time pattern between market transac-

tions. Hasbrouck (2007) emphasizes that the preference for one methodology should be driven

by the aim of the research. The main objective of this paper is to highlight the different impacts

that informed and uninformed agents have on market trades; hence, the transaction-time ap-

proach seem the natural choice as long as transaction time stationarity is assured. This would

be consistent with HLM (1992), which use transaction-time events but allow for clock-time ef-

fects by including trade durations.

The third and probably more important issue to be examined is the one related to the

explanatory variables that will be used in the estimation procedure. This is a crucial point

because it implies data manipulation to create regressors that explain the impact of different

agents on market transactions. For each observation, I create four new variables that display

both the volume of the transaction and the type of operator:

❼ I generate two dummy variables, ‘I’ and ‘U’, that are equal to one if the exchange was

executed by an informed or insititutional trader (coded by ‘2’ or ‘7’) or an uniformed or

retail trader (coded by ‘1’), respectively. These variables are defined for both sides of the

market in order to specify the type of agent who acts as a buyer and as a seller.

❼ I multiply the trading volume, and the trader indicators for the two sides of the market

for each transaction, in order to obtain four new variables by the matching of the two

dummies. In this way it is possible to express together the transaction volume and the

types of agents who trade in the market.

As an example, consider the following tables that are obtained from Bnp, where I list the trading

volume expressed as the number of stocks exchanged and the two dummy variables that identify

the type of trader4:

4In the empirical analysis, in order to moderate the scale effect implicit in big orders and to avoid excessively
small coefficients, the quantity exchanged has been normalized by the average transaction volume computed over
the whole sample period. This procedure does not affect the results obtained.
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Volume Buyer Seller

U I U I

#1 38 1 0 0 1
#2 62 1 0 1 0
#3 113 0 1 1 0
#4 2950 0 1 0 1

Table 1: The table provides four sample consecutive trades for Bnp and the corresponding indicators
for the types of agents who executed the transaction.

The first row of Table 1 displays a transaction volume equal to 38, where the buyer is

uninformed (U=1) and the seller is informed (I=1). The second one shows an exchanged

volume of 62, with the agents uninformed (U=1) on both market sides, and so on. Notice that,

as stated before, it is possible to have the same types of operators on both sides of the market.

With the matching of all the possible trader combinations according to the procedure outlined

above, it is straightforward to obtain the following table:

Volume BUSUVol BUSIVol BISUVol BISIVol

#1 38 0.000 38 0.000 0.000
#2 62 62 0.000 0.000 0.000
#3 113 0.000 0.000 113 0.000
#4 2,950 0.000 0.000 0.000 2,950

Table 2: This table indicates the trading volume corresponding to possible trader combinations
for each transaction.

where BUSUVol refers to transactions where both the buyer and the seller are uninformed,

BUSIVol is for transactions where the buyer is uninformed and the seller is informed, BISUVol

is for transactions where the buyer is informed and the seller uninformed, and BISIVol for

exchanges where both agents are informed traders. With respect to the first transaction where

the buyer is uninformed and the seller is informed, only BUSIVol is different from zero and it

is set equal to the exchanged volume registered for that transaction. An analogous conclusion

can be easily drawn for the other three scenarios. This procedure is intended to create four new

variables that represent four different types of fictitious traders, which explain the trader effect

on market transactions. Following this scheme, it is possible to link the information content

of the exchanged volume with trader identity for each transaction. It is worth noticing that
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for each exchange, there is only one possible combination of buyer and seller that is active, i.e.

there is only one possible trader combination that is responsible for the execution of the order,

while other types of operators are marked as inactive, with zero volume.

The list of regressors that are included in the mean specification of the ordered probit also

involves:

❼ Time difference between two consecutive transactions (∆tk) expressed in seconds. All

executed transactions are included in the sample, so the aim of this variable is to account

for clock-time effects on the conditional mean of D∗

k; relative to this point, a comprehensive

explanation could be found in HLM (1992).

❼ Seasonality. The presence of a seasonal pattern in trades is modelled by a Fourier series

with daily periodicity according to this sum:

p
∑

i=1

cos(2πiδk) + sin(2πiδk).

where δk expresses the daily periodicity by the ratio between time elapsed from 9.00 A.M.

(i.e the starting point of the continuous auction) and the total duration of each trading

day. Daily seasonality is observed especially for volume or volatility patterns, and its

presence have been intensely analyzed in the previous research ( e.g. Easley and O’Hara

(1997)).

❼ The sign of trade: ‘Init’. In the empirical microstructure literature, there are several

measures employed to determine the direction of the trade, i.e. to define if a transaction

was initiated by a buyer or a seller. For this pourpose the algorithm of reference is the one

proposed by Lee and Ready (1991) that classifies transactions according to the so-called

‘tick-test’; in this paper I will coherently adopt this procedure as well. 5

Before exploring ML estimates, there are two more issues that should be examined, i.e. how to

exactly specifiy the mean and the variance of the model and the constraints required to achieve a

full identification of the vector of parameters γ′. According to the descriptive analysis detailed in

5Notice that the data used for the estimation do not include bid-ask quotes and this precludes the possibility of
a comparison of the classification obtained using only orders with the one obtained using trade prices. Alternative
to tick-test, it is possible to use a simpler classification scheme and to define a variable ‘Sign’ that is equal +1
if Dk > 0, -1 if Dk < 0, and 0 if there is no price change. This option does not affect the main outcome of this
research.
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Section 3, each stock exhibits some peculiarities especially in terms of the distribution of Dk and

the magnitude of the exchanged volume. This specificity implies a direct effect on the regressor

significance, number of intervals used to classify price variations, optimal number of lagged

variables, seasonality, and so on, and is managed according to model parsimony, significance

of the parameters, and information criteria. To answer these issues, I have included for each

stock four lags of Dk, two lags of ‘Init’, a p = 2 for the seasonal component, and two lags of the

four variables created to capture the trader effect on market transactions. Information criteria

have been used to choose the best lag specification for the trader effect variables in terms of

lags to be included, with possible alternatives between lags 1-2 or lags 2-36. Using a number of

lags that is greater than three is difficult to accept even in a high-frequency context; moreover,

lags greater than three are often not significant anyway. It is worth stressing that the choice

between the two couples of lags is mainly dictated by the better fit of the model indicated by

the information criteria. The coefficient estimates are generally similar in terms of direction

and significance, even when considering the discarded option.

The last point to be examined in this section is related to identification constraints and is

strictly linked to the variance specification adopted. The basic model used as reference employs

the mean specification introduced above and a variance normalization. This option corresponds

to the absence of an explicit design for the variance σk. Without imposing any kind of restriction

on the parameters of the model, it is impossible to achieve identification, provided that there

exist infinite possible combinations of the parameters β and thresholds α1, ...αm−1 that leave

the likelihood unchanged. If an explicit form of heteroschedasticity is not taken into account,

identification is achieved by excluding the constant from the list of the regressors, or by fixing a

known threshold, αj . In line with the discussion on interval regression, I have choosen to exclude

the constant. Identification constraints slightly complicates whenever one decides to define a

set of variables that can affect the variance of the model. The inclusion of a further dimension

represented by the scale increases the number of parameter vectors that could generate the

same value for the objective function. In this case, identication concerns could be solved by

excluding the constant both from the mean and the variance of the error term or by fixing two

thresholds. I will return on this topic in Section 5.3 when alternative model specifications are

6Contemporaneous values have been excluded because of the endogeneity of the traded volume with the
transaction price. A complete discussion on the reasons of this exclusion and a more general treatment of
endogenity concerns can be found in HLM (1992).
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considered to strenghten the empirical results.

5 The Estimates

5.1 The General Ordered Probit Model

This section examines the ML estimates of the ordered probit model. The ordered probit is

employed as the reference model for three main reasons. First it can be easily estimated using

any computational or statistical software. Second, it delivers parameter estimates that turn

out to be robust with respect to the alternative specifications detailed in Section 5.3. Finally,

the maximization procedure and the computation of marginal effects are less time-consuming.

Before proceeding to the assessment of the results, it is worth recalling the dimension of the

dataset used in this research: Table 4 emphasizes a standard issue in high-frequency datasets,

i.e. the number of observations for each stock is extremely large. This point should be carefully

considered when analyzing the results, because it becomes easier to obtain significant estimates

or, more generally, it is more likely to reject any null hypothesis when the dimension of the

dataset increases. This concern has been pointed out by HLM (1992), among others. In line

with this, a significance level of 1% (or lower) represents a reasonable choice for hypothesis

testing.

The analysis in this subsection is only limited to the model of reference, and Table 5 displays

the estimates for two representative stocks, Bouygues and Bnp. There is no particular reason

to select these two stocks, except to illustrate the two possible lag alternatives. The complete

results for the whole sample are not reported for the sake of brevity, but are available upon

request. The findings obtained for Bouygues and Bnp can anyway be generally extended to the

full sample. To provide a more complete overview of estimation results, Table 3 summarizes

the findings for the variables of interest for all the 39 stocks. Meanwhile, the following outlines

the estimation outcomes with respect to each variable:

❼ At least three of the four lags of Dk included in the mean are negative and statistically

significant at 1%. This appears to be a general result that can be extended to the whole

sample. These findings are not unexpected; they reflect the pattern displayed by the

correlogram of Dk. As it has been highlighted in several studies, this negative pattern is
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consistent with the occurrence of reversals in transaction prices.

❼ The interpretation of the coefficient of ∆tk is not immediate as there is no a homogeneous

outcome in the whole sample. This is apparent in Table 5, where Bouygues exhibits a

negative coefficient for ∆tk while for Bnp it becomes positive but not statistically sig-

nificant at 1%. These findings can be extended to the full set of estimates, which also

display positive and significant coefficients and seem to perfectly match the ones provided

in HLM (1992), where the authors found an ambiguous behaviour for clock-time effects,

as well. However, as they pointed out, the absence of a uniform outcome for ∆tk excludes

the presence of clock-time effects on the conditional mean of D∗

k, but it does not preclude

∆tk to affect the conditional mean of the observed price changes.

❼ Table 5 shows that the seasonalilty component does not affect the conditional mean, since

the coefficients of the Fourier series are almost never significant at 1%. Using a likelihood

ratio test in the whole sample to fully exclude the seasonal component from the conditional

mean rejects the null hypothesis only in a limited number of cases (e.g. Bouygues, Vinci,

or Crédit Agricole). As anticipated in Section 4, trading seasonality is usually observed for

time or volume, since it is largely recognized that these two variables display some clusters

during the trading session. In the context of this research, the seasonal component has

been included to obtain a more complete model specification.

❼ The Init variable displays uniformly a negative coefficient for the first lag and either a

positive or insignificant coefficient for the second lag. The inclusion of Init in the list of

mean regressors should entail the effect of the bid-ask bounce, i.e. it should measure the

swinging behaviour of prices between bid and ask quotes. The presence of a second lag

for Init that becomes positive or not significant could be due to a decline or a reversal

of the autocorrelation pattern already from the second lag. An alternative or perhaps

complementary explanation is that the negative pattern entailed in Init is also mainly

captured by the lags of Dk. This means that once the effect of past price variations is

taken into account, the presence of reversals in buys and sells considerably decreases from

the second lag.

❼ The main focus of the estimation results is on the four variables that describe the trader
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impacts on market transactions. From Table 5, a homogeneous outcome for the two

stocks is evident, which can be generalized to the whole sample. From the matching

of the two different types of traders we obtain the four variables introduced in Section

4. These variables can be categorized as ‘cross trading’ (BUSIVol and BISUVol), where

the operators on the two market sides are different and ‘parallel trading’ (BUSUVol and

BISIVol) where the traders on both market sides are the same. According to results

displayed in Table 5, the cross trading is significant at the reference confidence level of

1%, while parallel trading exhibits no significant estimates for both lags 7. However, the

most intriguing findings are in the signs of BUSIVol and BISUVol, which are negative

and positive, respectively. The estimates suggest that when an informed agent sells to an

uninformed one, he depresses market prices; conversely, an informed agent buying from an

uninformed agent transfers a positive pressure to prices. It seems that the market follows

the institutional traders’ behaviour, but only when the operator type is different on the

two market sides. It is worth emphasizing that only cross trading has a significant impact

on market transactions, while parallel trading is almost always insignificant, even for

BISIVol. If institutional traders are more likely to possess an informational advantage, this

asymmetry has an effective gain only when exploited against retail investors. In fact, when

there are institutional traders on both market sides, their opposing impacts on market

direction are compensated by each other and no significant outcome is produced. Since

trader identity is concealed to all market operators, these findings may appear puzzling,

at first sight, as they do not provide an immediate way to explain how institutional

traders can transfer information to the market. Section 6 discusses how some observed

variables could be used to infer traders’ identities; any explanation about the transmission

of trading pressures to the market is postponed until then. The results relative to cross

and parallel trading should also be evaluated in the more general context of information

efficiency of financial markets. These findings can be thought of as an ex-post evidence

of market efficiency, because the informational advantage of institutional traders is fully

incorporated in price changes. Table 3 summarizes how cross and parallel trading effect

extend to the whole sample.

7It is interesting that cross trading is often still significant even at lower confidence levels.
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0 1 2

BUSUVol 97.44 2.56 0
BUSIVol 2.56 10.26 87.18
BISUVol 7.69 7.69 84.62
BISIVol 89.74 10.26 0

Table 3: This table summarizes the results for the four variables expressing the trader effect. The first column
indicates the percentage of stocks where both lags are not significant at 1%, the second column the percentage
where at least one lag is significant and finally the third column provides the percentage of stocks where both
lags are significant. When significantly different from zero, BUSIVol and BISUVol always display a negative and
a positive coefficient, respectively.

Table 3 displays in the first column the percentage of stocks where both lags of the

trader effect variable are not significant, the second column provides the percentage where

only one lag is significant and the last column indicates the percentage of stocks with

both lags that are significant. Obviously, the table is built by considering the case of a

negative coefficient for BUSIVol and a positive one for BUSIVol. From the table it is

immediate to extend the results discussed in this Section about trader effect to the whole

dataset. As for the parallel trading, BUSUVol is never significant at 1% in 97.44% of

the sample, while BISIVol is not significant for both lags in 89.74% of the cases; BISIVol

exhibits one significant coefficient only for a small fraction of the dataset. Conversely,

cross trading displays a strong significance. In fact, more than 80% of the sample exhibits

a significant coefficient for BISUVol, and this percentage almost reaches the 90% in the

case of BUSIVol8.

5.2 Diagnostics and Marginal Effects

This section examines some diagnostics about the residuals of the ordered probit, and analyses

the marginal effects for the variables that measure the traders’ impact on transaction prices:

i.e. BUSUVol, BUSIVol, BISUVol and BISIVol. Particular attention is given to the dynamic

specification of the model. I will follow the procedure described in HLM (1992), based on the

generalized residuals defined in Gourieroux et al. (1985). In a time series context, we expect the

model to be correctly specified if residuals do not display serial correlation. Such diagnostics are

complicated in the case of latent variable models, because it is impossible to compute residuals,

8EdF is the only stock with both lags of BUSIVol not significant (2.5%), Alcatel, Ppr and STM are the three
stocks with both lags of BISUVol insignificant (7.69%).
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as long as D∗

k is not observed. As such, in the case of ordered probit models, generalized residuals

are constructed by exploiting the properties of the normal distribution. More specifically, given

that we observe Dk = dj , the generalized residuals ǫ̂k can be computed as:

ǫ̂k = E[ǫk|Dk = dj , Xk, Wk; γ̂]

= σ̂k

φ(c1) − φ(c2)

Φ(c2) − Φ(c1)

c1 =
1

σ̂k

(

α̂j−1 − X′

k
β̂
)

c2 =
1

σ̂k

(

α̂j − X′

k
β̂
)

(6)

where γ̂ is the ML estimation of the parameters, and φ and Φ represent the standard normal

probability density function and the standard normal cumulative distribution function, respec-

tively. Notice that the previous formula represents a general definition that entails models with

an explicit form of heteroschedasticity, although this paper assumes a normalized unit variance

for the estimation of the ordered probit model. From this expression, it is straightforward to

compute a test that verifies the presence of autocorrelation in the residuals. A full description

about how to obtain the score statistics of interest can be found in HLM (1992). The basic idea

stands on the fact that under the null hypothesis of no serial correlation, the following score

statistics has a χ2
1 distribution:

ξ̂j =

(

∑n
k=j+1

D̂k−j ǫ̂k

)2

∑n
k=j+1

D̂2
k−j ǫ̂

2
k

(7)

D̂k = X ′

kβ̂ + ǫ̂k. (8)

The score statistics can be used to test any order j of serial correlation in the residuals, but

it always maintains the same number of degree of freedom, regardless of the value of j. Table

6 displays the values of ξj , j = 1, ..., 8 for the two stocks Bouygues and Bnp. From the table
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it is apparent that all the first four lags of ξj are less than 6.6349, the critical value at 1% for

a χ2
1 distribution. After the fourth lag, the behaviour of the score statistics is not as uniform,

but the results seem to generally reject the null hypothesis of no serial correlation. This result

is not surprising and it completely agrees with the presence of four lags of Dk in the mean

specification, as was similarly pointed out in HLM (1992). In considering the whole sample, the

absence of autocorrelation cannot be rejected at least for the first four lags for approximately

half of the stocks. In some cases it happens to find at least one lag wherein the null hypothesis

of no serial correlation is rejected. A similar finding is provided in HLM (1992), even though

this research uses a number of observations that is considerably larger. This could be a first

explanation for the failure to reject the null hypothesis for some stocks, suggesting that a smaller

significance level could be more appropriate. An alternative explanation could be appointed to

an excessively limited dynamics for the estimated model. Section 5.3 checks for this possibility:

the score statistics is computed in the case of the extended probit model, considering a larger

number of lags for all the mean regressors and also non-linear effect for the trader effect variables.

Almost half of the sample also continue to fail to reject the null hypothesis for at least one in the

first four lags. Moreover, in terms of less autocorrelated residuals, the small benefit that could

be observed in some cases, is generally overwhelmed by the loss in terms of model parsimony.

Indeed, the extended probit is usually rejected by a LR test with respect to the reference

specification. It is worthwhile to mention, for completeness of the exposition, that the rejection

of the null hypothesis is particularly evident for Alstom, Lafarge, Unibail and Vallourec. These

four stocks have data that were classified into nine intervals, and in this case the probit model

delivers generalised residuals that continue to display strong serial correlation.

As far as it concerns marginal effects, for a discrete model like the ordered probit, the

quantity of interest for marginal effects is represented by the change in the response probabilities

rather than in the expected conditional value (Wooldridge (2002)). This is a direct consequence

of using a non-quantitative classification criterion to order the data. The marginal response

probabilities can be computed as9:

9Notice that in the following formula, the regressors do not display the subscript since marginal response
probabilities are computed ‘at the mean’. The formula refers to the standard probit model, but it can be easily
extended to the other specifications.
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∂p(D = dj |X̄, β̂)

∂Xs

=































−β̂sφ(αj − X̄′β̂) if j = 1,

β̂sφ(αj − X̄′β̂) if j = m,

β̂s[φ(αj−1 − X̄′β̂) − φ(αj − X̄′β̂)] if 1 < j < m

(9)

where X̄ stands for the vector of means for the explicatives of the model, Xs represents a

generical regressor, and β̂s serves as the ML estimate of the corresponding parameter. The

marginal response probabilities measure the changes in the probability of observing a specific

outcome dj , for a marginal variation in one of the regressors. In nonlinear models, marginal

effects do not correspond to maximum likelihood estimated coefficients, so the interpretation of

the impact of each variable is not immediate. This concern is even more consistent in the case

of the ordered probit model where the signs of response probabilities for intermediate classes

cannot be inferred a priori by the sign of the related coefficient. Only the extreme classes present

a direction for the marginal effect that can be directly deduced from ML estimates. Table 8

shows the marginal effects only for Bouygues, but the results can be extended in a similar way

to the whole sample and are available upon request. Table 8 consists of seven columns, one for

each interval used to classify the values of Dk. The number of marginal response probabilities

to be computed clearly depends on the intervals used to partition the distribution frequency

of tick. Marginal effects are displayed only with respect to the variables of interest, i.e. the

ones that measure the trader effect. The first column shows how the trader effect variables

affect the marginal probability for a transaction that belongs to the first interval; analogously,

the other columns display the same quantity for the other six intervals. The marginal response

probability is not significant for parallel trading across all the seven intervals: this is a direct

consequence of the estimation results provided in Table 5, and corresponds to a zero power

predictability of BUSUVol and BISIVol on the direction of the trading process. Conversely,

the marginal effect for cross trading is significant, but with opposite patterns for BUSIVol and

BISUVol. Notice that the outcome relative to the marginal response probability of the central

class, including Dk = 0, is not unambiguous in the whole sample. In the case of Bouygues, the

estimates preserve a significant sign but the magnitude of the effect is considerably reduced. On
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the contrary, other stocks exhibit no significant marginal effects for BUSIVol and BISUVol at

the central interval. This should not be considered as a shortcoming, but as a decrease of trader

capacity to transmit a trend to the market when there is no price change. This is a reasonable

finding and it implies an explicit role for price as an informative variable; Section 6 discusses

this in more detail. From the inspection of the estimates provided in Table 8, it appears more

intriguing to discuss marginal response probabilities of BUSIVol and BISUVol in non-central

intervals. To interpret the results, it is essential to remember that the central class always

includes zero price variations and it splits the distribution of Dk in negative values on the left

and positive values on the right of the central class, respectivley. We see that BUSIVol exhibits

a positive sign in the first three classes that collect negative price variations, while the marginal

effect becomes positive for intervals that include positive price variations. The opposite pattern

is observed in the case of BISUVol, i.e. the marginal response probability is negative when

Dk < 0, and positive when Dk > 0. The appeal of these findings stands in the implication they

have with respect to the market direction. When an informed agent has acted as a buyer in the

immediate previous transactions, the probability of observing a reduction in current prices is

negative, while the probability of observing an increase in prices is positive. Conversely, when

the seller is informed, the probability that the current price variation is negative increases,

while the probability that Dk > 0 reduces. This confirms the analysis discussed in Section 5

and it assigns a positive price pressure to informed traders when they act as buyers, and a

negative effect when they trade as sellers. This profile is even more apparent and could be

more intuitively realized by looking at Figures 3 and 4. The former plots the marginal response

probabilities with respect to BUSUVol and BISIVol for both lags of Bouygues, for all the seven

intervals that classify Dk. The blue straight line depicts the marginal response probability, while

the two red dashed lines represent confidence intervals at 95%. The latter provides the same

graphs for BUSIVol and BISUVol. A graph examination of the four panels in Figure 3 shows

how the marginal response probability is never significant, and is fluctuating between quite wide

confidence intervals. On the other hand, Figure 4 depicts the behaviour of marginal response

probabilities in the case of cross trading, with the opposite swinging path in correspondence of

Dk = 0 for the two variables. Figure 4 also shows that the marginal effect computed for the

class Dk = 0 is very close to zero, even if still significant as far as it concerns Bouygues.
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With respect to marginal response probabilities it should be recalled that the four variables

of interest are expressed with mean-normalized transaction volumes. One could argue that the

size of these estimates are noticeably limited. However, this observation should be taken into

account along with the fact that these marginal effects could not be extremely large as long as

they represent changes in a probability. Moreover, these results are obtained by considering the

impact of a marginal variation of only two lags on market prices . Looking at the average number

of transaction for each trading day in Table 4, it would be unreasonable to find sizeable effects

from the order of some thousands of trades, by contemplating only two lags. Indeed, such a

noticeable result should be expected only by time cumulation of a specific trading pattern, like a

long occurrence of BUSIVol. However, such would questioneed the constancy of these marginal

effects and is out of the scope of this research. Finally, it is worth spending a brief comment

on the marginal effect on the conditional mean that are not reported for sake of brevity. In

this case, the marginal effect has a unique sign that corresponds to the one of the estimated

coefficient. Again, cross-trading has an asymmetric and significant effect on the conditional

mean, while parallel trading does not display any significant impact. However, it has to be

emphasized that these marginal effects are computed only as a further validation of the results

since they do not have a meaningful interpretation in the case of qualitative data.

5.3 Robustness Tests

This section is dedicated to the examination of three alternative model specifications employed

to confirm the robustness of the findings described above. The model is re-estimate using an

interval regression, an ordered probit with an extended set of regressors and an ordered probit

with an explicit form for heteroschedasticity. OLS has been excluded from the set of alternatives

used to check the robustness of the results even though it provides an immediate benefit in terms

of interpretation of the results and ease of postestimation diagnostics. This choice is driven by

two relevant caveats highlighted, among the others, in HLM (1992). First, using a continuous

linear model neglects the presence of price discreteness and it forces the dependent variable

to assume a continuous attribute. Second, and perhaps more relevant, OLS does not capture

nonlinearities implicit in the data, unlike the ordered probit. The interval regression, on the

other hand, actually corresponds to an ordered probit model, where the thresholds of data
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partition are not estimated (Wooldridge (2002)). With respect to the model of reference, the

‘extended’ ordered probit includes seven lags for Dk, two lags for ∆tk , an additional lag for each

of the variable that measures the trader effect, and the corresponding squared variables for all

the lags considered. This corresponds to the following structure for the mean of a representative

stock, where an additional third lag is considered in addition to the standard first two10:

Xkβ =

7
∑

i=1

βiDk−i + β8∆tk + β9∆tk−1
+ β10Initk−1 + β11Initk−2 + β12cos(2πδ) + β13cos(4πδ)

+β14sin(2πδ) + β15sin(4πδ) +

2
∑

i=0

β16+iBUSUV olk−i−1 +

2
∑

i=0

β19+iBUSIV olk−i−1

+
2

∑

i=0

β22+iBISUV olk−i−1 +
2

∑

i=0

β25+iBISIV olk−i−1 +
2

∑

i=0

β28+iBUSUV ol2k−i−1

+
2

∑

i=0

β31+iBUSIV ol2k−i−1 +
2

∑

i=0

β34+iBISUV ol2k−i−1 +
2

∑

i=0

β37+iBISIV ol2k−i−1

(10)

Even if the previous equation implies a considerable number of parameters to be estimated,

the crucial point is to validate the results by adding further lags and powers of the variables

of interest. If trader effect persists, its impact is expected to still be present even with the

inclusion of more regressors. The last alternative employed to assess the empirical findings is

the one that entails the following specification for the variance of the error distribution:

Wkθ = Dk−1θ1 + Dk−2θ2 + ∆tkθ3 + cos(2πδk)θ4+

cos(4πδk)θ5 + sin(2πδk)θ6 + sin(4πδk)θ7

(11)

With respect to the model of reference discussed in Section 4, Equation 11 defines an explicit

form of heteroschedasticity that introduces a scale factor in the probit estimates11. The crucial

point relative to this option is to verify that the inclusion of a scale factor should only affect the

magnitude of the estimates, keeping the direction of the coefficient constant. To recover em-

pirical features of high-frequency finance, the variance accounts for a seasonal component that

evolves through the trading session, which is defined simmetrically to the Fourier series specified

10The following formula refers to the case of lags [1,2]. It is immediate to extend it to the case of lags [2,3].
11A STATA OGLM routine developed by Richard Williams is employed to achieve maximum likelihood esti-

mates in this last case. The corresponding estimates are labelled as OGLM.
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for the mean. The presence of ∆tk should account for clock-time effect in the variance, while

lagged price variations control for the magnitude effect related to price changes. The inclusion

of the trader effect in the variance has not been considered as preliminary estimates show the

absence of clear and unanmbiguous outcome; moreover the estimates are often not significant.

Actually, it seems that the asymmetric effect related to trader identity only influences the con-

ditional mean. If the ordered probit model is estimated without imposing a normalization for

the variance, identification constraints slightly complicate and require a double restriction on

the parameters. As anticipated in Section 4 full model identification is achieved by dropping the

constant from both the mean and the variance. Recall that these three alternative specifications

are only employed for robustness checks and not as model of reference to assess the presence of a

trader effect. This choice is motivated by two main reasons. First, all LR tests and information

criteria generally attributes a preference to the ordered probit described in Section 4 beacause

of model parsimony. Second, the very high number of observations of sample stocks increases

the computation time needed to estimate parameter values and especially the marginal effects,

when an explicit form of heteroschedasticity is considered. The findings are however generally

left unchanged.

Table 7 shows the estimates for the three specifications depicted in this section, and only

for the relevant variables that describe the trader effect. To save space the results refer only

to Bouygues and Bnp, but their validity can be extended to the whole sample, and they are

available upon request. For both Bouygues and Bnp, the three columns display the parameter

estimates for OGLM and for interval regression, and the marginal effect on the conditional

mean for the extended probit, respectively. The last point deserves a further explanation be-

cause it seems to contradict Section 5.2 about the meaninglessness of marginal effect on the

mean. The extended probit model also includes squared variables for trader effect; displaying

only the coefficients of first order variables is meaningless, without taking into account the

squares. However, the impact of nonlinearities implicit in the squares is considerably smaller,

so concavity entails changes in the direction of the marginal effects only for implausible and

extremely large values of the exchanged volume. This means that to obtain a minimum level of

comparability among the estimates, the use of marginal effect on the conditional mean appears

to be a reasonable choice. Even if the estimates cannot be compared in terms of magnitude,
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it is apparent from Table 7 that there is uniformity with the results displayed in Table 5 for

the standard model. For all the three cases, only cross tarding is significant, with negative sign

for BUSIVol and positive sign for BISUVol. Conversely, parallel trading is never significant.

Table 7 reinforces the findings discussed in Section 5.1 and it confirms the conclusions drawn

from the simpler specification entailed in the standard ordered probit. In the extended probit

case, the results about the significance of the parameters generally extends to the further lag

included (not displayed in the table). The third or the fourth lag is significant in the case of

cross trading, but the rejection of the null hypothesis is not as strong as for the first two lags.

This result is in line with the analysis of lag relevance provided in Section 4. Parallel trading

appears to be even more insignificant at higher lags, which confirms the hypothesis that there

is generally no impact on market prices, when the type of trader is the same on the two market

sides. The estimates from OGLM also corroborate the findings obtained in the ordered probit

for the mean regressors. As far as it concerns the explicatives included in the variance, the two

lags of Dk do not exhibit a homogeneous pattern in the whole sample, and general conclusions

about the significance or sign of these variables cannot be drawn. Actually, most of the stocks

do not display significant estimates, or have ambiguous direction when they are significant.

Conversely, and more interestingly, the time and the seasonality components are generally sig-

nificant in the whole sample. Time always has a positive sign, similarly to the results discussed

in HLM (1992). This implies a positive clock-time effect for the conditional variance of D∗

k, so

time elapsing seems to be associated with an increasing variance of the error distribution. The

examination of the signs of the coefficients of the terms in the Fourier series is meaningless,

but the four terms are almost always significant for the whole sample. This is coherent with

the conjecture that daily variance possesses some form of periodicity. LR usually gives the

preference for the alternative OGLM model with non-normalized variance, with respect to the

original ordered probit. However, the time necessary to estimate the model or the marginal

effects using the alternative is considerably longer. Hence, it appears reasonable to prefer the

simpler ordered probit model, given that the results are the same, but the estimation time is

definitely reduced.
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6 Informative Content of Observed Market Variables

Section 5 examined the different impacts of informed and uninformed traders on market trans-

actions, and how this effect only manifests when the type of traders is different on the two

market sides. Since traders’ identities in Paris Euronext are not available to operators, such

that the offers in the limit order book cannot be posted by taking into account which agents are

actually filling the book, this section investigates how observed variables can act as signals for

the presence of informed operators. Notice that in the followings, I do not claim the detection

of the rules behind institutional trading algorithms; the point here is to find some evidence that

help to construct a first guess about traders’ identities. The list of variables for this analysis is

essentially limited, and can mainly be related to exchange durations, intradaily trading pattern,

and transaction volumes. Easley and O’Hara (1992), Easley, Kiefer and O’Hara (1997), Fou-

cault, Moinas and Theissen (2007), among others, have highlighted the role of volume, time,

price change patterns, bid-ask spread, volatility, and daily periodicity to detect trading by in-

formed investors. All these variables represent public information, as long as they are visible

or easily recoverable, by market members from the limit order book. Moreover, the recent dif-

fusion of automated trading algorithms like the volume-weighted average price (VWAP) or the

time-weighted average price (TWAP) spreads relevant importance to volume and time as the

driving elements for trading12. To emphasize how observed variables can convey information

on the identity of the traders, I employ the following bivariate probit model:

Pr(Dbk
= 1|Xk) = Φ(X′

kβb + ǫ1) (12)

Pr(Dsk
= 1|Xk) = Φ(X′

kβs + ǫ2) (13)

Cov(ǫ1, ǫ2) = ρ (14)

where Dbk
and Dsk

are two dummy variables that are equal to one when the trader is informed on

the buy side and on the sell side, respectively. With reference to traders’classification proposed

in Section 3, Dbk
= 1 when the buyer is coded with ‘2’ or ‘7’ and Dbk

= 0 when the buyer is

coded with ‘1’. This sorting immediately extends to the case of sellers, as well.

12See Bialkowski, Darolles and Le Föl (2008) or Brownlees, Cipollini and Gallo (2010), for example.
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The variables employed as regressors in the bivariate probit are summarized in the following:

❼ A set of time indicators that identify specific moments of a continuous trading session:

Dopen, Dlunch, DSP and Dclos. Dopen identifies a transaction that occurs between 9.00

A.M. and 9.30 A.M., Dlunch between 00.30 P.M. and 1.30 P.M., DSP between 3.30 P.M.

and 4.00 P.M. and finally Dclos between 5.00 P.M. and 5.30 P.M. . These dummy variables

identify possible critical periods of a usual trading session. The opening and the closing

30 minutes (Dopen, Dclos) are usually characterized by high volatility, while the lunch time

(Dlunch) usually features a decrease of trading frequency. Finally, DSP distinguishes the

trades occurring within the first 30 minutes from the opening of the NYSE, when trading

from institutional investors could be more frequent and sensible to the performance of

the U.S. stock market. A variable δk that goes from zero to one is also included as a

regressor and it is used to model the length of the continuous trading session, as discussed

in Section 4.

❼ The time between consecutive transactions is given by ∆tk. In their seminal work Easley

and O’Hara (1992) analyzed the informativeness of market durations and they conclude

that a lower trading frequency is usually associated with a lower presence of informed

investors in the market. This is due to the lower probability that informed agents trade

when an information event has not occurred. This issue has been widely tested, e.g.

Dufour and Engle (2000), hence it is reasonable to expect a negative sign for ∆tk. This

implies that as long as time elapses the probability of observing Dbk
= 1 or Dsk

= 1

decreases.

❼ The role of volume as information signal is given by: V olume and Dbig. It is commonly

accepted in the literature that institutional or informed traders post larger offers with

respect to retail investors. This happens because they want to profit from private infor-

mation or have constraints to achieve fund performances so they may enter the market

with larger orders. On the other hand, the stealth trading literature claims that informed

agents employ average-size transactions in order to disguise their presence in the market.

I test this interesting hyptohesis in the model by including variables to control for different

percentiles of transaction volumes. The results are not displayed because the coefficient

of these variables are almost always never significant. This may be due to the absence of
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stealth trading in this sample, the presence of some confounding factors that make the

identification of stealth trading more difficult, or the absence of a sufficiently large cumu-

lative return required to empirically detect the occurrence of stealth trading. However,

the average transaction volumes for all the stocks included in the sample are larger for

trades executed by institutional investors; this means that trades with remarkably larger

volumes than the average transaction volume could be plausibly interpreted as executed

by institutional agents. The variable V olume tries to capture the role of volume by includ-

ing the number of exchanged stocks for each transaction. During the continuous trading

session, volumes usually follow a quite stable pattern even if it is possible to observe an

increase in the quantities exchanged at the end of the day. The dummy variable Dbig is

equal to one if a transaction displays a volume that is larger than the average volume of

the previous fifteen minutes. The role of Dbig is to signal if a specific order displays a

volume that is larger than the average volume of the immediately previous transactions.

❼ Squared variation: SV 13. To construct this variable I have partitioned the trading session

into intervals of fifteen minutes each, wherein SV is computed as the squared log difference

between transaction prices at the beginning and the end of the 15-minute interval. SV has

been included with one lag to avoid simultaneity bias. It is worth noticing that the sum of

this squared variation in a day is equal to one of the standard measures of volatility with

high-frequency data, i.e. the realized volatility. There exists extensive microstructure

literature that deals with high-frequency volatility issues, but a detailed discussion about

how to measure volatility overcomes the object of this research. The purpose of SV is far

from representing a measure of volatility; it has been included among the regressors to

investigate if periods of large price variations have a role in inferring trader identities.

❼ The price difference at transaction level is provided by Dk, and the indicator that deter-

mines which agent initiated the trade is given by Init. For each trade, Dk expresses the

price variation that has also been employed as the dependent variable in the previous anal-

ysis. Init is the variable used to determine the agent that has initiated the transaction,

according to the tick-test rule proposed by Lee and Ready (1991).

13The variable is multiplied by 100 to obtain coefficients that have, more or less, the same magnitude for all
the regressors.
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This list only accounts for the observed regressors and can be sorted as time- (Dopen, Dlunch,

DSP , Dclos, δk, and ∆tk), volume- (V olume and Dbig) or price-related (Init, Dk, and SV )

variables. To proceed in the examination, each stock is split into two subsamples to produce

in-sample and out-of-sample estimates. This is to check if in-sample estimates are helpful in

forecasting future trading patterns. More precisely and without loss of generality, the first 80%

of the observations are dedicated to achieve in-sample results, which are used to check the

performance of the bivariate probit for the other 20% of the observations. The evaluation of

forecasts is done according to the quadratic probability score (QPS) defined by Diebold and

Rudebusch (1989):

QPS = 1/T

T
∑

t=1

2(Pt − Dt)
2 (15)

where Pt represents the bivariate probit probability forecast, and Dt is the corresponding ob-

served realization. The QPS ranges from 0 to 2, with 0 stands as perfect model prediction. This

measure has been applied for bivariate probit model by Nyberg (2009). In this specific context,

what actually matters to investors is to detect the presence of institutional trading on at least

one of the two market sides. This can be done by computing the following two conditional

probabilities:

Pbt
= P11t

+ P10t

Pst
= P11t

+ P01t
(16)

Pbt
is the conditional probability that informed trading happens for purchases. It is the sum of

the two marginal probabilities, P11t
, where the agent is informed on the two market sides, and

P10t
where the buyer is informed and the seller is uninformed. It is straightforward to extend

this definition to Pst
. The two probability forecasts Pbt

and Pst
are employed in Equation 15

to assess the accuracy of the estimates of the bivariate probit.

Table 9 provides parameter estimates of the bivariate probit model for the two representative

stocks, Bouygues and Bnp. A discussion of the results limited to these two stocks would not

offer an exhaustive analysis, so the following examination is addressed on the basis of Table

10 where the results for the whole sample are summarized. Because of the dimension of the

dataset, this case also sees the appropriate significance threshold at 1%. Starting from the four
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dummy variables that individuate critical periods during the trading session, Table 9 shows that

it is quite difficult to draw a general conclusion on the role of these regressors in signalling the

presence of informed agents, except for Dopen. The variable Dopen is the only time indicator that

shows a quite homogeneous direction, with a negative and statistically significant coefficient for

the buy side for almost two-thirds of the sample, and a positive and significant coefficient for

5.13% of the stocks. Similarly, it has a negative sign for the sell side for almost half of the

sample, and a positive sign in just more than 20%; in both cases there is almost one-third

of the estimates are not significant. These results suggest a strong occurrence of transactions

executed on behalf of retail investors during the first 30 minutes of the continuous auctions.

This outcome has been found also in Biais, Hillion and Spatt (1995) and Gourieroux, Jasiak

and Le Fol (1999). More precisely, Biais, Hillion and Spatt (1995) showed that smaller trades

usually occur during the morning, while larger trades are more frequent in the late afternoon.

This aspect is attributed to the behaviour of informed agents. The authors suggest as possible

explanations the preference of financial intermediaries to trade retail orders at the beginning

of the trading day, the tendency to increase trading in the afternoon because of the discovery

of the daily fundamental value, or the evaluation of funds with respect to the closing price in

the late-afternoon. Conversely, the effect of Dclos is split almost equally between informed,

uninformed and not significant estimates on both market sides, and the likelihood of observing

an informed agent at the end of the day is unclear. If the estimates of Dlunch for the buy

side are consistent with a large fraction of institutional investors on the market, this effect is

less apparent for the sell side, but still reveals a higher presence of informed agents. In any

case, the fraction of non-significant estimates is quite high, close or larger than one-third of the

sample. The results for Dlunch gives the impression that the deduction of Easley and O’Hara

(1992) does not hold for transactions executed between 00.30 P.M. and 1.30 P.M. , since the

decreasing trading frequency observed at lunch time does not reconcile with a higher fraction

of institutional trades. However these findings are not as strong and unambiguous as the ones

related to transaction durations that will be examined next. Finally, the outcomes for DSP

are different for the two market sides. For Dsk
, trades observed immediately after the opening

of the US Exchange are coherent with the presence of institutional investors for one-third of

the sample, with a large partition of stocks exhibiting insignificant estimates. On the contrary,
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in the case of Dbk
, transactions executed from 3.30 P.M. and 4.00 P.M. are more likely to be

implemented by uninformed investors, even though the intensity is slightly lower.

The four time dummies prove difficult to give inference about trader identities, except for

Dopen. On the other hand, the result relative to δk is noticeable. In more than 90% of the

sample, the likelihood that a transaction has been executed by an informed investor increases

as time elapses during the continuous auction. This result holds for both Dbk
and Dsk

. The

estimate relative to δk is completely in line with the work of Biais, Hillion and Spatt (1995)

previously discussed, but it is not confirmed for the last 30 minutes of the continuous session, as

Dclos showed. In any case, this is not necessarily an unappealing outcome, because institutional

investors may just be willing to reduce their trading in periods of large price volatility such as

the one close to the end of the day.

The estimates concerning trade durations strongly support the thesis of Easley and O’Hara

(1992) on time and informed trading. The negative impact of low trading frequency on the

probability that a trader is informed is evident from Table 9. This result is extended to the

whole sample, where a negative sign is found for almost 75% of the stocks for the buy side and

more than the 80% for the sell side. The relationship between time frequency and informational

asymmetries has been widely examined starting from Easley and O’Hara (1992), and it is

considered one of the more robust ways to detect the presence of informed traders. The estimates

of the bivariate probit confirm this theory. These findings hold even with the addition of one

lag of this variable, but the strength of this effect becomes less evident.

Volume and Dbig are the two variables deputed to account for the information content of

volume in the bivariate probit. An inspection of Table 10 shows an equivocal result for the role

of volume as a signal variable. The estimates for current transaction volume do not exhibit

a good degree of predictability about the direction of the effect. Both cases exhibit a high

fraction of non-significant coefficients, larger than 30% of the cases. Moreover, it is not possible

to clearly state if the current volume has a positive or a negative effect, even if, it would seem

the case at least for the sell side. Conversely, the behaviour of Dbig is quite homogeneous in the

whole sample. For the 76.92% of the stocks on the buy side and 84.62% on the sell side, the

probability to observe an informed trader increases when the market presents transactions with

a larger-than-average volume. These findings may appear misleading at first glance, since they
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assign a positive effect to trading volume only when it is related to past volume. However they

do not seem so unreasonable, as long as they state that the dimension of the trades per se is

not very much informative; it is only when volumes are associated with a time-close reference

value, that they are able to unequivocally determine the effect of trader identity.

The two variables Init and Dk should explain any form of price informativeness observed in

the transactions. As far as Init is concerned Table 9 displays a positive coefficient for Dbk
and

a negative coeffcient for Dsk
. On the contrary, price variation measured by Dk has a positive

effect for purchases and a negative one for sales. These results are very appealing, first of all

for their robustness: it is evident from Table 10, that they extend to the whole sample without

any exclusion. The interest for this outcome stands, in the ease of its interpretation. Init is the

variable that measures which trader initiates the exchange according to the tick-test algorithm.

It is equal +1 when the transaction is buyer-initiated, and equal to -1 when it is seller-initiated.

The sign of the coefficient of Dbk
is positive: this means that when the transaction is buyer

initiated the probability that the buyer is an informed agent increases. Conversely, the sign

for Dsk
is negative: when the transaction is buyer-initiated, it is unlikely that the seller is

informed. These findings assign a strong market power to institutional operators and seem to

confirm the idea that retail investors act as liquidity traders and the exchanges are caused only

by the actions of institutional investors. The conclusion for price variation is specular: Dk

has a negative sign on the buy side and a positive sign for the sell side. When the price has

augmented with respect to the previous exchange, we expect that the seller is an institutional

trader, since it has been able to sell at a larger price. On the contrary, the probability that the

buyer is informed increases when the price falls: it corresponds to the case where institutional

traders manage to obtain a lower price when they buy. As in the case of lagged durations,

these findings are generally confirmed for both market sides also by including a lag of these two

variables.

The information content entailed in price movements is also explained by SV , that could be

thought of as an indicator for periods of high variability in price movements. It is immediate to

recover from Table 9 that this variable has a negative influence on the probability of observing

an informed agent which is also validated by Table 10 and holds for more than the 70% of the

sample. The negative sign of SV evidences that institutional investors are unlikely to trade
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during periods of large price variations, as the previous analysis about Dopen has indicated.

This is not to say that SV could be regarded as a direct measure of volatility, but the strength

of this negative effect suggests that informed agents prefer to reduce their trading activities

when there are large price movements14.

Finally, at the bottom of Table 9 it is provided the QPS value for in- and out-of-sample

estimates for both market sides. The two values are around 0.50 suggesting a quite appropriate

fit, even by using a very simple model like the bivariate probit. These results extend to the

whole sample, where I reasonably always find a better prediction for the in-sample than for the

out-of-sample case.

7 Conclusions

This paper presents an ex-post analysis of the role of informed and uninformed agents on the

market using high-frequency data from the Paris Bourse. Four variables were generated to take

into acount the kind of agent responsible for the execution of a trade at transaction level. The

results show that when institutional investors are matched with retail investors, they are able

to affect market prices. Conversely, there are no significant effects when the agent categories

are the same on the two market sides. In particular, an informed buyer is able to transmit a

positive pressure on stock prices, while an informed seller succeeds in depressing market prices.

These findings are robust to alternative model specifications, and can generally be extended to

the stocks that compose the CAC40 index. Because trader identities are concealed in the French

Bourse, the outcome may seem quite puzzling, because no one could know who is trading in

a specific moment. This also implies that it is not possible to coherently fill the limit order

book by inspecting the exact origin of transactions. The last part of the paper examines if

observed variables, that are available to market operators, could help to infer traders’ identities

and to justify the price impacts of insitutional trading. Using a simple bivariate probit, I

obtain estimates consistent with the previous literature. The estimates suggest that trading

by informed agents are more likely to occur as long as time elapses during the continuous

sessions and in periods of high-frequency of transactions. Conversely, they usually avoid the

14For sake of completeness it is worth mentioning that the bivariate probit results do not provide a clear and
unambiguous explanation of the marginal cases of insignificant estimates for cross trading, as detailed in Section
5.
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first half-hour of the continuous auction and more generally periods characterized by large price

variations. Informed agents’ orders likewise display larger than the average volumes and are

executed at better price conditions. Finally, the results emphasize the evident role that informed

traders have as the main initiators of market transactions.
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Table 4: This table classifies the stocks included in the CAC40 index in five groups according to
market capitalization quintiles on 3 February 2008. The first column displays market capital-
ization expressed in Euro millions; the data are obtained from Datastream. The second column
exhibits the total number of transactions occured from 3 February 2008 to 31 March 2008. The
third column displays the number of average daily transactions. The four and the fifth columns
provide average volume and average price, respectively.

Market Cap Num. of Trans. Avg. Trans. Avg. Vol. Avg. Pr.
Capgemini 5,245 258,998 6,475 306 35.89
Technip 5,289 181,423 4,536 206 51.02
AF-KLM 5,686 206,466 5,162 469 17.56
STM 6,135 121,228 3,031 2,130 7.66
Lagardere 6,352 122,307 3,058 211 49.53
Vallourec 8,155 330,792 8,270 91 139.81
Alcatel 8,387 205,301 5,133 3,524 3.90
Essilor 8,744 134,672 3,453 232 39.15
Michelin 9,521 296,959 7,424 218 63.38
Accor 10,635 236,324 5,908 265 48.00
Peugeot 11,505 278,311 6,958 308 49.41
Ppr 12,020 175,130 4,378 153 90.85
Eads 12,218 270,256 6,756 704 16.67
Unibail 13,329 189,694 4,742 106 162.10
Bouygues 13,983 274,566 6,864 269 45.72
Pernod 14,301 186,605 4,665 172 69.19
Lafarge 19,009 281,096 7,027 110 151.13
Saint Gobain 19,328 379,089 9,477 274 51.15
Alstom 19,367 324,377 8,109 101 138.57
Renault 19,974 404,396 10,110 241 69.50
Schneider 20,093 346,825 8,671 186 77.65
Veolia 20,786 383,532 9,588 289 51.30
Vinci 22,299 310,050 7,751 276 45.03
Air Liquide 22,795 261,579 6,539 134 93.25
Vivendi 28,827 389,910 9,748 660 25.82
Danone 29,047 355,751 8,894 317 53.67
Crédit Agricole 32,727 399,358 9,978 777 18.45
Carrefour 34,448 308,801 7,720 361 47.13
Lvmh 34,540 310,584 7,764 228 68.57
Société Generale 36,174 803,620 20,090 407 70.80
Gdf 37,623 219,327 5,483 269 37.44
Axa 47,376 537,978 13,449 1,035 21.80
L’Oréal 49,131 279,003 6,975 194 80.39
Suez 54,333 422,244 10,556 435 41.48
France Télécom 55,568 492,229 12,306 1,034 22.47
Bnp 57,864 690,621 17,266 353 60.57
Sanofi-Aventis 64,908 440,472 11,012 439 49.91
Arcelor 75,165 366,871 9,172 568 49.13
Edf 100,419 411,595 10,290 235 63.10
Total 112,685 591,689 14,792 545 48.79
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Figure 1: The figure displays the frequency distribution of Dk in the upper plot and the fre-
quency distribution of ∆tk in the lower plot. The graphs are referred to Bouygues. The two
bold numbers indicates the frequency of Dk = 0 and ∆tk = 0, respectively.
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Figure 2: This figure displays the 30-lag autocorrelogram of Dk for Bouygues. The straight lines represent confidence interval at 95%.
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Table 5: This table displays ML estimates for the ordered probit model for two representative
stocks, Bouygues and Bnp. The table shows coefficient estimates and P-value in parenthesis.
Lags used for the estimation are indicated in brackets.

Bouygues Bnp

Variable Lags[1,2] P-values Lags[2,3] P-values

Dt−1 -4.01e-02 (0.00) -4.41e-02 (0.00)
Dt−1 -3.48e-02 (0.00) -3.48e-02 (0.00)
Dt−3 -1.51e-02 (0.00) -1.24e-02 (0.00)
Dt−4 -4.43e-03 (0.00) -5.11e-03 (0.00)
Seconds -7.89e-04 (0.00) 5.78e-04 (0.03)
Initt−1 -6.70e-02 (0.00) -6.90e-02 (0.00)
Initt−1 6.79e-02 (0.00) 6.65e-02 (0.00)
Cos(2πδ) -5.44e-03 (0.08) 1.93e-03 (0.31)
Cos(4πδ) -4.23e-03 (0.16) -1.92e-03 (0.31)
Sin(2πδ) -4.36e-03 (0.15) 6.06e-04 (0.75)
Sin(4πδ) -7.29e-03 (0.00) -1.91e-03 (0.31)
BUSUVol(t-i) 3.16e-03 (0.11) 4.19e-04 (0.72)
BUSUVol(t-j) -1.94e-03 (0.35) -5.25e-04 (0.66)
BUSIVol(t-i) -1.30e-02 (0.00) -7.29e-03 (0.00)
BUSIVol(t-j) -1.64e-02 (0.00) -8.75e-03 (0.00)
BISUVol(t-i) 2.24e-02 (0.00) 1.20e-02 (0.00)
BISUVol(t-j) 1.72e-02 (0.00) 1.26e-02 (0.00)
BISIVol(t-i) 1.54e-03 (0.44) 1.00e-04 (0.93)
BISIVol(t-j) -1.71e-03 (0.39) -6.95e-04 (0.57)

Table 6: This table provides the values of the score statistics, for the null hypothesis of absence
of autocorrelation, up to eight lags for Bouygues and Bnp. The critical value for a χ2

1 at 1% is
6.6349.

Lags Bouygues Bnp

ξ1 0.245 0.925
ξ2 2.300 5.081
ξ3 6.105 3.687
ξ4 4.570 1.456
ξ5 6.405 19.842
ξ6 8.388 25.431
ξ7 17.533 24.996
ξ8 2.173 44.843
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Table 7: This table provides parameter estimates for trader effect variables in the three alternative model specifications. The first column
shows the results for an ordered probit model with an explicit form of heteroschedasticity (OGLM). The second column displays the results
for interval regression and the third column shows the results for the extended probit model. The table exhibits estimates only for the relevant
lags of the trader effect. For the extended probit model marginal effects on the conditional mean are reported. P-values are in parenthesis.

Bouygues Bnp

OGLM Interval Extended OGLM Interval Extended

BUSUVol(t-i) 2.80e-03 3.82e-03 3.50e-03 4.26e-04 9.71e-04 -8.19e-04
(0.21) (0.19) (0.25) (0.74) (0.55) (0.59)

BUSUVol(t-j) -1.48e-03 -1.93e-03 -3.74e-03 -1.07e-03 -1.39e-03 -6.07e-05
(0.50) (0.50) (0.22) (0.40) (0.39) (0.97)

BUSIVol(t-i) -1.02e-02 -2.34e-02 -1.57e-02 -5.19e-03 -1.17e-02 -1.03e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BUSIVol(t-j) -1.60e-02 -2.37e-02 -2.04e-02 -7.81e-03 -1.36e-02 -1.18e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BISUVol(t-i) 1.99e-02 3.66e-02 3.02e-02 9.82e-03 1.90e-02 1.55e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BISUVol(t-j) 1.57e-02 2.50e-02 2.04e-02 1.21e-02 1.97e-02 1.44e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BISIVol(t-i) 1.49e-03 2.62e-03 4.25e-03 3.33e-04 7.34e-05 2.02e-03
(0.48) (0.35) (0.10) (0.80) (0.97) (0.20)

BISIVol(t-j) -1.91e-03 -2.61e-03 -2.71e-03 -4.87e-04 -9.64e-04 -1.13e-03
(0.36) (0.35) (0.30) (0.70) (0.57) (0.48)
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Table 8: This table displays marginal effects of trader effect variables for Bouygues. For each interval used to classify the data the table
provides marginal response probabilities and P-values in parenthesis.

1 2 3 4
Marg. P-value Marg. P-value Marg. P-value Marg. P-value

BUSUVol(t-1) -2.51E-04 (0.11) -2.93E-04 (0.11) -3.00E-04 (0.11) 1.28E-05 (0.14)
BUSUVol(t-2) 1.54E-04 (0.35) 1.80E-04 (0.35) 1.84E-04 (0.35) -7.85E-06 (0.36)
BUSIVol(t-1) 1.04E-03 (0.00) 1.21E-03 (0.00) 1.24E-03 (0.00) -5.29E-05 (0.00)
BUSIVol(t-2) 1.31E-03 (0.00) 1.53E-03 (0.00) 1.56E-03 (0.00) -6.67E-05 (0.00)
BISUVol(t-1) -1.78E-03 (0.00) -2.08E-03 (0.00) -2.13E-03 (0.00) 9.09E-05 (0.00)
BISUVol(t-2) -1.36E-03 (0.00) -1.59E-03 (0.00) -1.63E-03 (0.00) 6.96E-05 (0.00)
BISIVol(t-1) -1.22E-04 (0.44) -1.43E-04 (0.44) -1.46E-04 (0.44) 6.23E-06 (0.45)
BISIVol(t-2) 1.36E-04 (0.39) 1.59E-04 (0.39) 1.63E-04 (0.39) -6.93E-06 (0.40)

5 6 7
Marg. P-value Marg. P-value Marg. P-value

BUSUVol(t-1) 2.87E-04 (0.11) 2.91E-04 (0.11) 2.53E-04 (0.11)
BUSUVol(t-2) -1.76E-04 (0.35) -1.78E-04 (0.35) -1.55E-04 (0.35)
BUSIVol(t-1) -1.19E-03 (0.00) -1.20E-03 (0.00) -1.05E-03 (0.00)
BUSIVol(t-2) -1.50E-03 (0.00) -1.51E-03 (0.00) -1.32E-03 (0.00)
BISUVol(t-1) 2.04E-03 (0.00) 2.06E-03 (0.00) 1.80E-03 (0.00)
BISUVol(t-2) 1.56E-03 (0.00) 1.58E-03 (0.00) 1.38E-03 (0.00)
BISIVol(t-1) 1.40E-04 (0.44) 1.42E-04 (0.44) 1.23E-04 (0.44)
BISIVol(t-2) -1.56E-04 (0.39) -1.57E-04 (0.39) -1.37E-04 (0.39)
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Figure 3: This figure plots marginal response probabilities for lagged values of BUSUVol and BISIVol, across the intervals used to classify
the frequency distribution of Dk. The plots are referred to Bouygues. The central solid line represents the estimated marginal effect, while
the two dashed lines define confidence intervals at 5%.
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Figure 4: This figure plots marginal response probabilities for lagged values of BISUVol and BUSIVol across the intervals used to classify the
frequency distribution of Dk. The plots are referred to Bouygues. The central solid line represents the estimated marginal effect, while the
two dashed lines define confidence intervals at 5%.
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Table 9: This table provides the estimates of the bivariate probit model, for two stocks,
Bouygues and Bnp. P-values are in parenthesis. The bottom lines displays goodness of fit
statistics.

Bouygues Bnp

Buy Sell Buy Sell

Dopen -9.81e-02 -1.46e-01 -6.40e-02 7.60e-02
(0.00) (0.00) (0.00) (0.00)

Dlunch -4.00e-02 -4.24e-02 4.88e-02 2.03e-02
(0.00) (0.00) (0.00) (0.00)

Dsp -1.36e-02 6.52e-02 -3.70e-02 -7.72e-04
(0.21) (0.00) (0.00) (0.91)

Dclos -6.84e-02 1.05e-01 -3.10e-04 -7.47e-02
(0.00) (0.00) (0.96) (0.00)

δk 3.65e-06 3.32e-06 7.48e-06 1.08e-05
(0.00) (0.00) (0.00) (0.00)

∆tk -1.75e-03 -1.56e-03 -6.70e-03 -5.71e-03
(0.00) (0.00) (0.00) (0.00)

Volume 3.11e-06 2.20e-05 -1.71e-05 -3.62e-05
(0.68) (0.00) (0.00) (0.00)

Dbig 1.13e-01 8.64e-02 7.61e-02 5.80e-02
(0.00) (0.00) (0.00) (0.00)

Init 1.79e-01 -1.15e-01 7.47e-02 -7.56e-02
(0.00) (0.00) (0.00) (0.00)

Dk -3.21e-02 2.38e-02 -3.64e-02 3.13e-02
(0.00) (0.00) (0.00) (0.00)

SR -7.90e+00 -1.50e-01 -2.05e+00 -1.73e+00
(0.00) (0.68) (0.00) (0.00)

Constant 9.61e-02 1.84e-01 -6.36e-03 6.49e-02
(0.00) (0.00) (0.15) (0.00)

QPSin 0.48 0.47 0.49 0.48
QPSout 0.49 0.51 0.49 0.49
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Table 10: This table summarizes bivariate probit estimates over the whole sample. The first
panel is referred to Dbk

, the second one is referred to Dsk
. In both cases, the first column exhibits

the percentage of negative and significant estimates, the central one the quote of insignificant
coefficients and the last one the fraction of positive and significant estimates.

Negative Significant Not significant Positive Significant

Dopen 66.67 28.21 5.13
Dlunch 28.21 28.21 43.59
Dsp 30.77 53.85 15.38
Dclos 38.46 28.21 33.33
δk 5.13 0.00 94.87
∆tk 74.36 23.08 2.56
Volume 33.33 38.46 28.21
Dbig 10.26 12.82 76.92
Init 0.00 0.00 100.00
Dk 100.00 0.00 0.00
SV 76.92 15.38 7.69

Negative Significant Not significant Positive Significant

Dopen 48.72 30.77 20.51
Dlunch 25.64 41.03 33.33
Dsp 15.38 51.28 33.33
Dclos 35.90 30.77 33.33
δk 2.56 5.13 92.31
∆tk 84.62 15.38 0.00
Volume 38.46 33.33 28.21
Dbig 7.69 7.69 84.62
Init 100.00 0.00 0.00
Dk 0.00 0.00 100.00
SV 74.36 17.95 7.69
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