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Abstract
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to mis-specification present in empirical investment-q equations under time-to-build
investment. In addition, time aggregation error can give rise to cash flow effects inde-
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firms confirms the validity of the time-to-build investment channel.
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1 Introduction

Investment in fixed capital is one of the most important and volatile components of aggregate ac-

tivity. Understanding investment dynamics is central to the study of aggregate fluctuations. In the

neoclassical theory of firm investment with adjustment costs, the firm’s market value and invest-

ment respond simultaneously to signals about future profitability as encoded in Tobin’s q. In this

theory, Tobin’s q, defined as the expected value of the firm relative to its capital stock becomes a

summary statistic for investment. Nevertheless, despite its theoretical appeal the empirical perfor-

mance of the q theory has been rather disappointing. In contrast to the predictions of the theory,

various measures of internal funds such as profits or cash flow are significant in explaining corporate

investment and the responsiveness of investment to fundamentals is weak. This sensitivity of in-

vestment to internal funds is further taken as evidence of capital market imperfections that disturb

the firm’s investment schedule from the frictionless neo-classical benchmark. This paper uses a

neoclassical investment-q model with time-to-build and time-to-plan features for capital and revis-

its this evidence. We provide a new explanation for the emergence of cash flow effects in empirical

investment-q equations that relies on an important technological aspect of capital production.

Time-to-build and time-to-plan are key technological features of investment. A variety of survey

(Montgomery (1995) and Koeva (2000)) and firm level (Koeva (2001), Del Boca et al. (2008))

evidence suggests that these technological constraints are important at the firm level. This evidence

indicates that the time required for the installation of new equipment and structures ranges from 3

to 4 quarters for equipment and 2 to 3 years for non-residential structures. But as we demonstrate in

this paper, the typical investment-q equation that serves as the benchmark for evaluating the capital

market imperfections hypothesis, is usually not robust to the presence of time-to-build investment.

When time is required to build new capital q is no longer a sufficient statistic for investment. This

result arises because under time-to-build an additional state variable significantly affects optimal

investment decisions. Investment consists of new and partially-finished projects that have not yet
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become productive capital. In addition to q the sum of current expenditures on existing incomplete

projects belongs to the right hand side of the investment regression. In other words, when the firm

decides—on the basis of new information about future investment opportunities—how many new

projects to initiate, past projects already under way influence that decision, i.e. they constitute a

state variable for this decision. The perfect capital markets model we use allows us to characterize

this state variable analytically and show how it induces specification error in the typical investment-

q equation. More importantly, we show this state variable is strongly correlated with cash flow and

thus when not included among the right-hand-side variables of the regression, induces a positive

investment cash-flow sensitivity that is nevertheless not indicative of capital market imperfections.

We use the model to calibrate and simulate an industry to the aggregate U.S. manufacturing

sector. The specification error we identify renders q an insufficient summary statistic is the primary

driver of cash flow effects in our simulated investment-q regressions. Our results closely corroborate

findings recently reported in Eberly et al. (2008) although (as explained below), in contrast to theirs,

our findings are free of measurement error in q. Nevertheless as we demonstrate, measurement error

magnifies the specification error we identify. Further, our model provides an explanation for the

emergence of lagged investment effects in empirical investment-q regressions, in addition to cash-

flow effects. The importance of lagged investment effects is a largely overlooked empirical regularity,

since most of empirical work focuses almost exclusively on the role of cash flow. But as Eberly

et al. (2008) note: “Both cash-flow and lagged-investment effects have been found in virtually every

investment regression specification and data sample.” In our study—as in Eberly et al. (2008)—we

show that the lagged investment rate is an important determinant of current investment because

it proxies for an omitted state variable. In Eberly et al. (2008) simulations, lagged investment

proxies for a regime-switching component in a firms’ demand schedule. In the present model with

time-to-build, lagged investment has a different structural interpretation, capturing time-to-build

effects for the construction of capital.
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We further investigate whether our model can reproduce cross sectional differences in investment

cash-flow sensitivities reported in the majority of empirical studies that test for capital market

imperfections (see for e.g. Fazzari et al. (1988), Gilchrist and Himmelberg (1995), and the survey by

Hubbard (1998)). These studies find that firms which are thought a-priori to be more vulnerable

to imperfections in capital markets, e.g. small, young, with no dividends payout firms, exhibit

higher investment cash flow sensitivities compared to firms that are thought to have ample access

to external finance, e.g. large, old, dividend distributing firms. We show that the model is capable

of reproducing this empirical regularity as long as the former group of (constrained) firms have

longer time-to-build investment schedules compared to the latter group of (unconstrained) firms.

For this purpose we bring to light evidence from large samples of U.S. (Compustat) and U.K.

(Datastream) manufacturing firms that strongly suggests constrained firms to have longer time-to-

build investment schedules compared to unconstrained firms.

The presence of mis-specification under time-to-build begs the question of whether and how

we can mitigate it when undertaking empirical work within the q framework. We show that we

can approximate the omitted state variable with two readily available variables, namely the lagged

investment rate and the growth rate of the capital stock. We evaluate the usefulness of this ap-

proximation for empirical work in our simulated environment and find that it performs almost

as well as its theoretical counterpart, nearly eliminating the cash flow effect from the investment

regression. We then test the predictions of the theoretical model in a large panel of U.K. man-

ufacturing firms and find results that are remarkably consistent with the proposed time-to-build

channel. When we include the two variables above as right-hand-side regressors in the empirical

investment-q equations we find a significant improvement in the fit of the regression equations.

More importantly, the inclusion of these controls nearly eliminates both the cash flow sensitivity

of investment and the cross sectional difference in the cash flow coefficients. Finally, independently

of the time-to-build effect above we show that a cash flow effect can emerge in an investment-q
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equation when researchers estimate an investment-q regression using annual data—a practice fol-

lowed in the majority of studies—that are aggregated from more frequent factor input decisions.

This time or temporal aggregation error has been highlighted in the context of capital and labor

adjustment cost estimates by Hall (2004) but as far as we know the implications in an investment-q

framework have not been explored.

Recent work by Erickson and Whited (2000), Gomes (2001), Cooper and Ejarque (2003), Alti

(2003), Cummins et al. (2006), Abel and Eberly (2003), also cast doubt on the validity of investment

cash flow sensitivities as an indicator of capital market imperfections. Erickson and Whited (2000),

Gomes (2001) and Cummins et al. (2006) stress that cash flow effects may arise because Tobin’s q is

measured with error. Cooper and Ejarque (2003) emphasize market power that creates a divergence

between average and marginal q while in Alti (2003) Tobin’s q is a noisy measure of fundamentals

and cash flow is highly informative about long-run profitability. Finally, in Abel and Eberly (2003)

cash flow effects arise as a result of specification error induced by changes in the user cost of capital.

Yet, our contribution is rather different from all the above. First, in time-to-build, we provide a new

and important channel for the emergence of significant cash flow effects in investment-q regressions.

Importantly, this channel receives considerable support from the data. Second, in contrast to the

studies above our findings do not involve any mis-measurement between average and marginal q

and thus are not driven by measurement error.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 discusses

the solution and calibration. In section 4 results from the simulated version of the model are

presented. Section 5 concludes.

2 The Model

We use a model developed in Tsoukalas (2003) suitable for analyzing firms investment decisions

in a time-to-build environment. A similar framework has been employed by Zhou (2000) to ex-

plain aggregate investment dynamics. The following subsections explain the components that are
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essential to the framework.

2.1 Firms

2.1.1 Technology

We model an industry which is populated by a continuum of risk-neutral infinitely-lived firms. Firm

j produces output, using the following decreasing returns to scale Cobb-Douglas technology:1

yjt = AtωjtF (Kjt,Mjt, Ljt) = AtωjtK
α
jtM

γ
jtL

ν
jt γ + α+ ν < 1

where At is an aggregate (common) and ωjt an idiosyncratic productivity shock. Kjt is capital, Ljt

is the labor input and Mjt is the stock of materials.

The investment technology requires time to build new capital. Specifically, it takes J-periods

(stages) to build new productive capacity. This technology implies that in any given period t,

firms initiate new projects, sJt, and complete partially finished projects, sit, i ̸= J at stage i.

This assumption intends to capture the design and construction (delivery) stages that exist in

undertaking investment projects in plant and equipment as suggested by Kydland and Prescott

(1982). The assumptions of this time-to-build (TTB) technology are summarized below:

sit = si−1,t+1 i = 2, ...J (2.1)

Kt+1 = (1− δ)Kt + s1t (2.2)

It =
J∑

i=1

ϕisit (2.3)

with 0 ≤ ϕi ≤ 1, i = 1, 2, ...J , and
∑J

i=1 ϕi = 1. To clarify notation, sJt denotes new projects at

time t, sJ−1,t denotes projects initiated at time t− 1, that are J − 1 periods away from completion

1Decreasing returns to scale are necessary for firm size to be well defined. Otherwise firm size is indeter-
minate and the entrepreneurial sector reduces to just a single producer.
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at time t, and so on. The last stage project, s1t yields productive capital in the following period.

The parameters ϕi determine the fixed fraction of resources allocated to projects that are i periods

away from completion, or equivalently the proportion of the value of the project put in place in

period i. It denotes total investment expenditures at time t and depends on the resources expended

for the different incomplete projects. Finally, the capital stock depreciates at rate δ.

New investment projects are subject to adjustment costs. It is assumed that firms face a

quadratic cost of adjustment function for investment in new projects, i.e.,

G(sJ,jt,Kjt) =
η

2
(
sJ,jt

Kjt
− δ)2Kjt (2.4)

where the parameter η governs the curvature of G.2 This function has all the usual properties,

i.e., it is convex, with a rising marginal adjustment cost. It also implies a zero adjustment cost in

the steady state.

2.1.2 The firm’s problem

The firm chooses new investment projects, sJ,jt, materials orders, djt, and labor input, Ljt, in order

to maximize firm value:

max
Ljt,sJ,jt,djt

E0

∞∑

t=0

βtdivjt

where divjt denote dividends. To conserve space a detailed description of the maximization problem

is described in Appendix 1. Re-arranging the first order necessary condition for new projects, sJ,jt

and assuming that projects require 3 periods for completion (i.e. J = 3) gives the equation for

optimal investment rate:

Ij,t

Kj,t
= ϕ3

(
−

1

η
(ϕ3 + βϕ2 + β2ϕ1) + δ

)
+ ϕ3

1

η
β2Et(qj,t+2) +

2∑

i=1

ϕi
si,jt

Kj,t
(2.5)

Optimal investment is a function of future expected marginal q (i.e. the shadow value of installed

capital), reflecting the fact that capital will become productive with a lag and an additional state

2An alternative characterization of the adjustment cost function is to assume that the cost is paid at
the time when resources on projects are expended, i.e., G(s1,jt, ...sJ,jt,Kjt) =

∑J

i=1
ϕi

η
2
(
si,jt
Kjt

− δ)2Kjt. We

choose to work with the simpler form (2.4) because of the analytical simplicity. We have experimented with
this alternative adjustment cost function with very similar results.
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variable that represents part of the investment outlays already underway. Thus in this environment

q ceases to be a sufficient statistic for investment.

3 Solution

The equilibrium of the model is characterized by a set of Euler equations along with the Kuhn-

Tucker conditions for the equality constraints and the given initial values for the state variables.

This equilibrium is a set of non-linear equations and an analytical solution is infeasible to compute.

An approximate solution is calculated by using a second order approximation method around the

non-stochastic steady state of the model. The second order Taylor approximation, as described

in Schmitt-Grohe and Uribe (2004), can be readily used to calculate the decision rules for new

projects, materials orders and labor. Appendix 1 describes the essential computational details of

the solution.

3.1 Calibration

We calibrate the model using a baseline set of parameter values described in Table 1 using quarters

as the time unit. We calibrate the parameters needed to simulate our model to several characteristics

of the U.S. manufacturing sector. Appendix 2 reports in detail the various sources we have used for

the calibration exercise. We briefly comment on the calibration of the TTB technology (i.e. values

for ϕi’s) since this is the key element of the model and the focus of this study. In the baseline

calibration we assume that an equal amount of spending takes place over three quarters, namely

ϕ1 = ϕ2 = ϕ3. A body of empirical evidence supports this assumption. In the robustness section

4.5, we also consider several different values for the time-to-build technology given evidence from

various countries that suggest an unequal pattern of spending over the life of capital projects.

4 Results

In this section, we present results from the calibrated version of the model. The (approximate)

decision rules for the model’s variables are simulated and artificial data are generated. Using the
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artificial data we create a panel of firm level data. We generate a panel of 1000 firms observed over

20 years and demonstrate that a significant cash-flow effect can arise even in a model with perfect

capital markets.

4.1 Investment-q regressions

In this section we use the artificial panel to estimate investment-q regressions augmented with

cash flow. We note that empirical studies, typically rely on annual firm level (e.g. Compustat or

Datastream) data, whereas our model is calibrated quarterly. We first present brief results to build

intuition using our quarterly model and then aggregate our model to correspond to the annual

frequency. This allows to study the role of time aggregation.

To demonstrate the inference-problem associated with reduced form investment equations under

TTB, we estimate an OLS regression on the artificial data,

Ij,t

Kj,t
= α + b1Et(qj,t+2) + b2

πj,t

Kj,t
+ εj,t (4.1)

where the left-hand-side (LHS) variable is the investment rate, and the right-hand-side (RHS)

variables are the expected marginal q along with the profit rate and j indexes firms. Expected

marginal q is the correct statistic for capturing future investment opportunities under TTB because

new investment projects become productive after three periods (see equation 2.5). This is a typical

empirical investment equation except that Tobin’s q is usually taken as a proxy for the un-observed

marginal q. A notable exception is Gilchrist and Himmelberg (1995) who construct a proxy for

marginal expected q. We also note that a typical empirical equation also includes a firm specific

effect. In our model however firms can only differ in the history of shocks they receive so there is not

any ex-ante firm-specific heterogeneity. We contrast this equation with the investment equation

2.5 and note that (ignoring the constant and error term) the correct specification under TTB

includes
∑2

i=1 ϕi
si,jt
Kj,t

as a RHS variable. This sum is the part of investment that has responded

to old information (about productivity) and is therefore a state variable. The question is whether
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omitting this variable invalidates the inference drawn on the role of profits from an empirical

equation like (4.1). The answer is affirmative if the profit rate is correlated with
∑2

i=1 ϕi
si,jt
Kj,t

. This

turns out to be the case with persistent productivity shocks.3 The intuition is as follows. Suppose

that at some time in the past a favorable productivity shock caused a surge in new projects. As

time elapses these new projects come closer to completion time and if the shock is persistent then

at time t there will be a series of outstanding projects, s1ts2t, ..., sJ−1,t. Moreover with persistent

shocks current profits will also reflect the same past productivity shocks that caused the firm to

initiate new projects and are now exactly those projects above that have moved closer to completion.

Therefore current profits are correlated with each of these previous capital projects and hence their

sum. This implies that profits will proxy for this state variable in an investment-q regression. Of

course if q was a sufficient statistic for total investment (it is a sufficient statistic only for new

projects, sJt) then profits would not be significant in a regression with investment and q. Table 2

reports the results from estimating equation (4.1) on our artificial panel of firms. We can observe

that the profit rate coefficient, b2 is positive and statistical significant, even though our model was

designed without capital market imperfections. Therefore, the profit rate appears as a significant

variable and improves the fit of the equation as it proxies for a relevant omitted RHS variable. It

is also important to stress that any role for this variable in these regressions does not arise as a

result of measurement error since we are using the appropriate (marginal) measure of q. Instead

the explanatory role of the profit rate arises as a result of specification error due to TTB for

investment.4

4.2 Quantifying specification and time aggregation error

In this section we have two goals. First, to explore whether time aggregation can spuriously assign a

role to cash flow independently of the specification error that is created as a result of TTB. Second,

3To conserve space we present a set of correlations in Table 4. For the case examined here the correlation
between the two series is equal to 0.83.

4As expected, if we estimate the correct specification (2.5) we find no role for the profit rate. We do not
report these results for brevity but they are available upon request.
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to investigate precisely how the TTB specification error generalizes in the annual framework. We

therefore aggregate our artificial data to correspond to the same annual measures used in empirical

studies and make the investment equations directly comparable. We highlight two findings: (i) we

identify a time aggregation error that can give rise (independently from the specification error due

to TTB) to cash flow effects in investment regressions with annual data and (ii) we demonstrate

that the TTB specification error generalizes in the annual environment.

We re-estimate the empirical investment equation specified in section 4.1 in the annual envi-

ronment (for convenience we drop the firm-specific subscript j), for J = 1, 2, 3, 4. Here as in the

previous section J refers to TTB in quarters, so the maximum length for the construction of capital

we consider is one year.

Iat
Ka

t

= α + b1q
a
t + b2

πa
t

Ka
t

+ εat (4.2)

4.2.1 Time aggregation error

In Appendix 3 we discuss in detail the aggregation of the model to the annual frequency and char-

acterize the error that arises in this environment. The important insight is that time aggregation

gives rise to a non-zero term in the investment regression that is correlated with the profit rate.

This implies a small (but significant) cash flow effect when this term is omitted from the regres-

sion. Table 3 reports the results from estimation of (4.2). Note that adding the profit rate to the

regression yields a positive and statistical significant b2 coefficient (bottom panel). To illustrate

the role of time aggregation in producing a cash flow effect we focus on the J = 1 case. We note

from Table 2 that for J = 1 in the quarterly model, ( πt
Kt

) has no explanatory power. This follows

from the fact that for J = 1 there is no investment outlay that refers to a decision taken previously

(sJt = ... = s1t = It) and hence no omitted RHS state variable. Even though the profit rate will be

correlated with investment rates, its forecasting role for future investment opportunities is properly

accounted for by marginal q. Thus any role for the profit rate in Table 3 in the J = 1 column
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can be solely attributed to the time aggregation error which gives rise to an extra term equal to
(

1
Ka

t

∑4
k=1

It,k
Kt,k

Kt,k −
∑4

k=1
It,k
Kt,k

)
, that is correlated with the profit rate and hence generates a

small positive profit rate coefficient as explained above.

4.2.2 Specification error

On the other hand, the specification error that arises due to the TTB nature of investment can

be seen by examining the first order condition (FOC) for optimal investment when J > 1. For

example, summing the FOC for optimal investment (where k = 1, 2, 3, 4 indicates quarters) over

quarters for J = 3 we get,

−4(ϕ3 + βϕ2 + β2ϕ1)− η

( 4∑

k=1

(
s3t,k

Kt,k
− δ)

)
+ β2

4∑

k=1

Ekqt,k+2 = 0

which after straightforward manipulations and using (2.3) we can write as,

−ϕ3(ϕ3 + βϕ2 + β2ϕ1)−
η

4

( 4∑

k=1

(
It,k

Ka
t

− δ)

)
+

η

4

(
1

Ka
t

4∑

k=1

It,k

Kt,k
Kt,k −

4∑

k=1

It,k

Kt,k

)

+
η

4

4∑

k=1

∑2
i=1 ϕisit,k

Kt,k
+ β2ϕ3

∑4
k=1Ekqt,k+2

4
= 0

Re-arranging this equation to bring
Iat
Ka

t
on the left hand side of the equation we finally arrive

at,

Iat
Ka

t

= constant+

(
1

Ka
t

4∑

k=1

It,k

Kt,k
Kt,k −

4∑

k=1

It,k

Kt,k

)
+

4∑

k=1

∑2
i=1 ϕisit,k

Kt,k
+ ϕ3

1

ηa
β2qat (4.3)

where we have used,
∑4

k=1
It,k
Ka

t
=

Iat
Ka

t
and qat =

∑4
k=1 Ekqt,k+2

4 . This is the annual counterpart to

equation (2.5) and we see that there is an additional RHS variable that reflects the TTB technology

in this version as well. This is given by
∑4

k=1

∑2
i=1 φisit,k
Kt,k

which is a summation (over quarters per

year) of the omitted state variable in equation (2.5), i.e. a linear combination of the latter. The

annual profit rate, (
πa
t

Ka
t
), will be the sum of the corresponding quarterly rates and it will be correlated

with this state variable since both are sums of the corresponding quarterly measures. Therefore
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since the profit rate is correlated with the key omitted state variable and the investment rate (see

Table 4, lower bottom) regressing
Iat
Ka

t
on qat and the profit rate will result in a statistical significant

role for the latter. But this is merely reflecting the omission of an explanatory variable from the

RHS of the regression.5 Since in our model capital markets are perfect, any role for profits must

result from this mis-specification.

4.2.3 Incorrect inference in the investment-q regression under TTB

We now discuss the results reported in Table 3. In the top panel we demonstrate the incorrect

inference drawn for the magnitude of the adjustment cost parameter, ηa (imposing b2 = 0). Us-

ing the estimated coefficient on q as the basis for obtaining an estimate of the adjustment cost

parameter—i.e. computing ηa = 1
b1
, a practice typically followed in the literature—would lead a

researcher to infer an estimate considerable higher compared to the true value. Note that in this

case the magnitude of the overestimation of ηa ranges from roughly 7% for J = 1 to 22% for J = 4

(top panel, Table 3). Thus lengthier time-to-build technology produces adjustment cost estimates

that imply slower adjustment speeds for capital. The reason for the incorrect inference based on

the coefficient of q is the fact that the true coefficient of the latter is scaled by ϕJ (see equation

4.3) and thus the estimated regression coefficient is an amalgam of ϕJ and ηa. Therefore as ϕJ falls

with the length of the TTB so does b1, the regression coefficient on q. The source of this overesti-

mation lies in the fact that in this simple investment-q framework it is not possible to separately

identify the TTB parameters and the adjustment cost parameter from the estimated coefficient on

q.6 Interestingly, Barnett and Sakellaris (1999) and Del Boca et al. (2008) using US and Italian

annual firm level data respectively, provide evidence consistent with our findings, reporting signifi-

5The estimated coefficients in Table 3 reflect both the time aggregation and specification error. However,
the former’s contribution to the b2 estimates for J > 1 is extremely small. This can be shown by using∑

4

k=1

It,k
Kt,k

instead of
Ia
t

Ka
t
as the LHS variable in (4.3) thus eliminating the aggregation error. The resulting

estimated coefficients are nearly identical to those shown in Table 3 and are not reported but are available
upon request.

6We can also examine the true bias in the q coefficient this regression framework generates in the hypo-
thetical case that a researcher knows the true values of the TTB parameters. This information is summarized
in the Appendix on inference and biases under TTB investment. We note in this case there is an upward bias
in the q coefficient (equivalently a downward bias in the magnitude of ηa) due to the fact that the expected
value of b1 moves in proportion with the coefficient of the omitted variable (see Appendix 3).
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cantly lower adjustment cost parameter estimates when TTB investment is allowed for. While our

results suggest a potential explanation for the reported low q estimates in the literature there is

one caveat. This is due to the fact that empirical work uses Tobin’s q instead of the unobserved

marginal q. Thus it is not straightforward to compare our simulated results with empirical findings.

As Erickson and Whited (2000) demonstrate measurement error in q will also lead to coefficient

estimates that are biased towards zero.

We now focus on the role of cash flow in this TTB environment which is the main goal of this

study. The bottom panel of Table 3 includes the profit rate as an additional RHS variable. Two

findings are worth noting. First, augmenting the regression with the profit rate generates a positive

and statistically significant coefficient on the latter. Second, and more importantly the inclusion

of the profit rate improves the fit of the equation as evidenced by the increase in the adjusted R2

values reported in the bottom panel. In addition, the coefficient of the profit rate increases as the

TTB length increases. For example, as we move from J = 2 to J = 3 the profit rate coefficient rises

from 0.22 to 0.29. In other words, the regression results indicate a higher sensitivity of investment

to profits as the length of TTB increases. This follows from standard econometric results since

marginal q, profit rate and the omitted state variable are strongly correlated (e.g. Judge et al.

(1985), p.858); accordingly the mean value of the profit rate coefficient reported in Table 3 will

vary proportionately with the true coefficient of
∑4

k=1

∑2
i=1 φisit,k
Kt,k

with a factor of proportionality

that is determined by the correlation of the RHS regressors with the omitted state variable and

vary inversely with the true coefficient on q which falls with ϕJ as J increases (Appendix 3 provides

the details). The results of Table 3 clearly illustrate that the omission of the TTB state variable

generates a large bias of the profit rate coefficient since the true coefficient on this variable is zero.

This bias ranges from 0.22 to 0.35 and leads to incorrect inferences on the role of cash flow in the

investment-q regression framework.

We now turn to the question of whether our model can replicate the different cross sectional
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investment-cash flow sensitivity reported in the majority of empirical studies that test the imperfect

capital markets hypothesis.

4.3 Cross sectional implications

In this section we discuss some potential cross sectional implications of TTB. Our model predicts

that the cash flow effect will be present across different cross sections of firms as long as all cross

sections share the same TTB technology. This will be true for example for small vs. large firms.

On the other hand, studies that seek to test for capital market imperfections typically report

investment-cash flow sensitivities that vary significantly by cross section (see Fazzari et al. (1988)

or Gilchrist and Himmelberg (1995)). Evidently our model predicts the same cash flow sensitivity

for either small or large firms if they are subject to the same TTB technology. The length for TTB

however will crucially depend on the type of investment that firms undertake. Consider for example

two firms (A and B) that are identical in all other respects except that firm A invests proportionally

more in structures and less in equipment compared to firm B. The available evidence discussed in

Appendix 2 suggests that TTB is considerably longer for structures than it is for equipment.

Therefore firm A will be characterized by a longer TTB technology compared to firm B. The

results from Table 3 then predict a larger cash flow coefficient for firm A compared to firm B. Is

it then likely that differences in TTB technologies exist among different groups of firms in such a

way as to be able to capture the differences in investment-cash flow sensitivities reported in the

literature? For this purpose we bring to light evidence that strongly suggests TTB varies by firm

size. We have information from a large sample of Compustat and Datastream firms (U.S. and U.K.

manufacturing sectors respectively) that allows us to compute investment spending in structures

and equipment. Table 5 reports the mean ratio of structures to equipment investment for small

and large firms classified as such using the same classification criteria adopted by existing empirical

work. The robust feature of Table 5 is that small firms exhibit higher structures to equipment

spending ratios compared to large firms and in some cases these differences are also statistical
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significant at the 5% and 10% significance level.7 Consequently small firms may be characterized

by longer TTB periods for their capital expenditures. The implication is that small firms should

exhibit higher sensitivity to profits compared to large firms. Even one quarter difference in the

TTB technology can produce significant differences in investment–profit sensitivities between firms

as Table 3 illustrates. The model is thus capable in replicating the cross sectional differences in

investment cash-flow sensitivities documented in empirical work by exploiting differences in TTB

technology as suggested by the evidence above.

4.4 Implications for empirical work

In light of our findings it is worthwhile investigating the empirical implications and offer some

recommendations for empirical work. Specifically we would like to know what particular information

from the data can be used in order to estimate a correctly specified investment-q regression under

TTB investment. For the remainder of the analysis we focus on the case J = 3. It is quite

straightforward to generalize for any J . The key state variable that creates the link with cash flow

(or more generally any profitability measure) is given by,

4∑

k=1

∑2
i=1 ϕisit,k

Kt,k

In Appendix 3 we show that the state variable above can be approximated by the following

expression,

4∑

k=1

∑2
i=1 ϕisit,k

Kt,k
≅

4∑

k=1

(It−1,k

Kt,k
− ϕ1(1−

(1− δ)

gt,k
)
)

(4.4)

where gt,k = Kk
Kk−1

denotes the quarterly growth rate of capital in year t. For data observed at

7The pattern of capital expenditure reported in the Annual Capital Expenditure Survey from the US
Census Bureau also shows that in contrast to large firms, small firms (classified by number of employees)
invest more in structures compared to equipment. Over the period reported (1995-2006) small firms have an
average ratio of structures to equipment expenditure equal to 0.60, while large firms have an average ratio
equal to 0.49. The data are for the non farm business sector and cover the period 1995 to 2006. The Annual
Capital Expenditure Survey reports capital expenditure separately by structures and equipment for firms
with and without employees. The data can be found at: http://www.census.gov/csd/ace.
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the annual frequency one can approximate the RHS of the above expression with

Iat−1

Ka
t

− 4ϕ1(1−
4(1− δ)

gat
) (4.5)

where the superscript a denotes annual measures. The expression above involves only observable

variables, namely lagged investment rate adjusted by the growth rate of capital,
Iat−1

Ka
t

and the growth

rate of capital, gat . It follows from the expression above that one need only use
Iat−1

Ka
t

and the inverse

growth rate of capital (gat )
−1 as additional RHS regressors in the investment-q regression (the rest

of the terms will be subsumed in the constant) to control for the omitted state variable. Most

importantly the use of the variables above as RHS regressors has a very practical advantage from

an empirical perspective; they do not require knowledge of the TTB length (i.e. the same regressors

control for TTB for any J) or the TTB parameters.

4.4.1 Simulation analysis

Table 6 reports investment-q regression results augmented with the two variables above, i.e. lagged

investment rate, and the inverse growth rate of capital. To judge the adequacy of our proposed

controls for TTB we compare Table 6 with the regression results from Table 3. There are two notable

findings. First, and most importantly the profit rate coefficient in Table 6 falls dramatically for

all J as compared to the corresponding coefficients from Table 3 (see bottom panel, Table 6). For

example, for J = 3 the profit rate coefficient drops to 0.004 compared to 0.29. The coefficient

on the profit rate is still positive—due to the time aggregation error—but the adjusted R2 does

not increase when the profit rate is added to the regression indicating that this variable contains

no explanatory power—as seen by the difference in the adjusted R2 between the top and bottom

panels of Table 6. Second, the TTB state variable can potentially account for a significant fraction

of the total variance in the investment rate. This fraction can be calculated by comparing the R2

values between Tables 3 and 10 which suggests that up to an additional 11% (for J = 4) of the

total variance in investment can be explained by this channel. These results clearly suggest that

the inclusion of the two proposed variables can sufficiently control for TTB investment and are
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therefore useful in empirical work.8

Another serious concern that often arises in empirical work with investment equations is the

use of Tobin’s or average q calculated from financial market data. Typically researchers are either

unable to observe marginal q or the homogeneity assumptions that must be satisfied for the two

measures to be equivalent are violated (due to for example market power or decreasing returns to

scale). Thus researchers must rely on financial market information and use average (or Tobin’s)

q to control for future investment opportunities in the RHS of the investment regression. The

use of average q has been criticized extensively because of the measurement error it may entail

(see Erickson and Whited (2000) and Cummins et al. (2006) among others) but we think it is

instructive to assess the regression implications when one has only available this imperfect measure.

We introduce measurement error in our marginal q and use this noisy indicator as our q measure,

qat = qat + χt, χt ∼ N(0, σ2
χ)

where χ denotes measurement error and we set σ2
χ to 1/10 the variance of marginal qa implying

a signal to noise ratio of 10. We report the results from regressing the investment rate on this noisy

measure of q and the profit rate in Table 7. The estimated profit rate coefficients are noticeably

larger compared to the corresponding coefficients from Table 3. For example, for J = 3 the

estimated profit rate coefficient equals 0.42 compared to 0.29 in Table 3. These results suggest

that the use of a noisy indicator of marginal q magnifies the specification error arising from TTB

investment. Panel II of the same Table reports results when we control for TTB by including the

additional RHS regressors and panel III adds the profit rate to the regression of panel II. The

important finding from comparing panels II and III is that the role of profit rate is un-important

as seen by the nil difference between the adjusted R2 values at the bottom of Table 7. This

8In additional simulated regressions (not reported for brevity) we further examine the usefulness of these
variables under the three alternative TTB parametrizations we examine in section 4.5. We note that the
findings are qualitatively similar, namely, the coefficient of the profit rate approaches zero and adding the
latter as an additional RHS regressor does not improve the predictive power of the regression.
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demonstrates that the inclusion of the two variables that control for TTB investment is also robust

to measurement error in q.

4.5 Robustness to TTB technology

In this section we consider three alternative calibrations of the TTB process using available evi-

dence from various countries and manufacturing industries. First, there exists evidence indicating

little resources are spent in the initial stages of the project (TTP spending pattern). For example,

TTP effects seem to be an important feature for investment in structures (see Del Boca et al.

(2008) and Koeva (2001), Christiano and Todd (1996) or Edge (2007)). Second, evidence indicat-

ing that spending follows a hump shaped pattern, i.e increasing when approaching the middle of

the construction phase and declining towards the end (hump shaped TTB spending pattern, see

Zhou (2000) and Palm et al. (1993)). Finally, evidence indicating that the majority of resources

are spend in the first stages with a declining portion allocated in the later stages (declining TTB

spending pattern, see Peeters (1998) and Altug (1989)). We explore these three different TTB

spending patterns that imply time-to-plan (TTP) effects, hump shaped spending effects, and de-

clining spending effects. Table 8 conveniently summarizes the TTB parameter values we use in

each case. We re-estimate the investment equation (4.2) on our artificial panel using the three

alternative parametrizations. Table 9 reports results under the TTP investment pattern. The re-

gression results are qualitatively very similar to those in Table 3. The most notable finding from

the TTP technology is that the role of the profit rate seems to be more important compared to

the baseline TTB case. From Tables 3 and 9 we see that the estimated profit coefficients (b2) are

on average larger under TTP for all J , and that the predictive role of the profit rate (as captured

by differences in the adjusted R2) is higher. We also note that this result is consistent with the

cross sectional implications we highlighted in the previous section. Given the evidence presented

in section 4.2 we would expect small firms investment technology to have a stronger TTP element

compared to large firms since the former invest dis-proportionately more in structures compared
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to the latter. Under TTP investment we would therefore expect differences in cash flow effects to

be even more pronounced among firms that differ in size. Tables 10 and 11 report results for the

hump shaped and declining pattern of TTB respectively. Tables 10 and 11, similar to Tables 3 and

7, show positive and statistically significant profit rate coefficients, validating the TTB channel for

the emergence of the cash flow effect in these alternative parametrizations.

4.6 Empirical application

In this section we test the predictions of the theoretical model using firm level data from the

UK manufacturing sector. This dataset consist of UK quoted company balance sheets collected by

Datastream. The main variables we use are flows of investment, sales, profits, cash flow and Tobin’s

q. Investment is defined as the purchase of fixed assets by the firm. Cash flow is measured as the

sum of the firm’s after tax profits and depreciation. Tobin’s q is computed as the ratio of the sum of

the market value of the firm and the firm’s total debt to the replacement value of its capital stock.

The measure of the replacement value of capital stock is obtained from the book value of the firm’s

stock of net fixed assets, using the investment data in a standard perpetual inventory formula. The

detailed data Appendix provides precise definitions and sources of all variables used in the empirical

analysis. Table 12 reports summary statistics for the variables used in the empirical application.

The first column lists the variables used. The second column reports sample means and standard

deviations for all firm-years. The third and fourth columns reports the same information according

to the size (based on the number of employees) classification.

The firm level panel we use comprises of 7091 firm-year observations (760 firms). As in previous

work with the investment-q framework we estimate regressions with Tobin’s q augmented by cash

flow to illustrate the effect of the latter and the cross sectional sensitivity between different types

of firms emphasized in the literature. We specify and estimate the identical equation we have used

in the previous sections. In order to create sub-samples of firms that are expected to face different

degrees of capital market imperfections we use size and dividend payout ratios as splitting criteria.
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These classification criteria have been widely employed in previous work that test the capital

markets imperfection hypothesis with the investment-q framework. For the size classification we

use the number of employees (or alternatively real sales). We then further augment our equations

with the two variables that aim to control for the omitted state variable as explained in section

4.4. The estimation results for the employment classification are presented in Table 13. We report

both OLS (in columns (0) to (3)) and first differenced GMM (in columns (4) and (5)) results.9

Columns (1) and (4) clearly demonstrate a cash flow effect present in the investment regression.

The estimated cash flow coefficients are positive and significant in most cases at the 1% level. For

example, the estimated cash flow coefficients in columns (1) and (4) range from 0.07 to 0.098 for

small firms and 0.06 to 0.036 for large firms. Moreover, the difference in the cash flow coefficients

between small and large firms based on the GMM estimates is significant at the 5% level as can

be seen by the test on the equality of coefficients. These results are in line with typical findings

reported in earlier work with UK firm level panel data (see e.g. Carpenter and Guariglia (2008),

and Bond et al. (2003)). Despite the cash flow effect the tests on the GMM equations indicates

some problems with this specification. The m2 test of second order serial correlation of the first

differenced residuals is rejected at the 10% level and while the Hansen’s J test of overidentifying

restrictions cannot be rejected at the 10% level, this is only marginal (see column (4)).

In columns (2), (3) and (5) we augment the regressions with the two variables that aim to

control for any possible TTB effects. According to the simulated results of section 4.4, if the TTB

channel is important, we would expect to see these variables to be statistically significant and

improve the fit of the regression. First, as we can see from columns (2), (3) and (5) both of these

variables enter the equations significantly; in all cases they are significant at the 1% level. In the

GMM equation (column 5) both m2 and Hansen’ J test indicate no problems with the specification,

whereas this inclusion improves the fit of the equation as seen by the adjusted R2 values in columns

9We present results using both methods, we note however, that the most recent empirical literature
typically reports results from first-differenced GMM specifications.
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(2) and (3). More importantly, the cash flow effect almost completely disappears as can be seen by

the estimated coefficients for both types of firms—small and large. The estimated coefficients for

small and large firms decline from 0.098 to 0.014 and from 0.036 to 0.012 respectively (comparing

columns (4) and (5)) and we cannot reject the null of equality between them. Looking across the

OLS estimates we note that the explanatory power of the regression when the two variables are

included as RHS regressors is improving significantly. For example the adjusted R2 rises from 0.21

(when only Tobin’s q is included) to 0.60 when the two additional variables are included (compare

columns (0) and (3)). Further, adding cash flow to this last regression only marginally improves the

fit of the equation from 0.60 to 0.61 (compare columns (2) and (3)) and the size of the coefficients

are significantly smaller. Thus the inclusion of the two variables that aim to control for the TTB

effect of investment nearly eliminate the cash flow effect previously estimated. A similar set of

findings is reported in Tables 14 and 15 when alternative classification schemes are used. Last, we

note that the coefficient on q appears to be quite small and implies large adjustment cost estimates.

We remind the readers that the coefficient on q would also reflect the TTB parameters and hence

the true adjustment cost estimate may be much larger than the one implied here. Although it is

not possible to separately identify the TTB from the adjustment cost parameter in this framework,

a suggestive back of the envelope calculation using the calibrated TTB parameters shows that the

coefficients on Tobin’s q should be scaled by a factor of between 4 to 10 (corresponding to ϕJ = 0.25

and ϕJ = 0.1) implying much lower adjustment cost estimates. However, an additional confounding

factor that makes the interpretation of q problematic is the likely measurement error present in

Tobin’s q. Controlling for the latter as in Erickson and Whited (2000) may also resolve part of the

bias present in the Tobin’s q coefficient.

The results from the empirical analysis are remarkably in line with the predictions of the

theoretical model; the TTB channel emphasized in this study appears to be able to explain away

the cash flow effect, a very robust finding in the empirical investment-q literature. These findings
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therefore pose a question mark on the validity of the interpretation of the cash flow effect in the

investment-q framework.

5 Conclusions

We revisit the interpretation of an important empirical regularity, namely the finding, established

in a large body of empirical work, that cash flow is important in investment regressions because

it reflects capital market imperfections. This paper develops a rich decision theoretic model of

investment with time-to-build and time-to-plan features for the installation of capital and shows

that cash flow may be found to be important even if capital markets are perfect and even when

future investment opportunities are properly accounted for. This new explanation relies on the

idea and supportive empirical evidence that it takes time to build productive capital. With time-

to-build, the simple q framework is inadequate to fully explain optimal investment as it omits a

key state variable from the investment regression. We show how a researcher can, under certain

assumptions on the time-to-build technology, approximate for this omitted state variable and hence

obtain the correct inference from a modified investment-q regression. We evaluate the validity of

the TTB channel in a large panel of UK manufacturing firms and find that the cash flow effect

largely disappears when we control for TTB investment confirming the predictions of the model.

Our results suggest that investment cash flow sensitivities are not the right framework to evaluate

the capital market imperfections view. Recently, researchers have undertaken carefully designed

tests that are robust to a range of problems associated with this framework. Rauh (2006) for

example designs an experiment that can identify variation in the availability of internal funds that

is by construction orthogonal to future investment opportunities. His results lend support to the

existence of capital market imperfections. Another type of capital that should be less subject to the

critique raised in this paper is inventories. Inventories are most likely not subject to TTB effects

and have low adjustment costs compared to fixed investment suggesting they provide a more robust

way to test for the perfect capital markets hypothesis.
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Finally, since our model is designed with perfect capital markets, is not equipped to evaluate

the impact of capital market imperfections in the investment-q regressions we have examined. It

is entirely possible that at least some of the cash flow effects found in previous empirical work are

due to agency costs in capital markets that drive a wedge between the cost of internal and external

finance. We can only conjecture that if capital market imperfections coexist with TTB effects will

render cash flow sensitivities difficult to interpret as indicators for the severity of financing con-

straints. An interesting possibility is to examine how the presence of capital market imperfections

can interact and influence the length of TTB. One may reasonably conjecture that small firms

may be characterized by lengthier TTB technology because they are constrained in the funds they

can extract from the market in order to proceed with the construction (or delivery) stages of their

projects. This is an interesting avenue left for future research.
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A Appendix 1

This section derives the equilibrium conditions of the model. A firm i in this industry solves

(dropping the subscript):

max
Lt,sJt,dt

E0

∞∑

t=0

βtdivt (A.1)

s.t.

divt = AtωtK
α
t M

γ
t L

ν
t − wLt − dt − It −

η

2
(
sJt

Kt
− δ)2Kt

Kt+1 = (1− δ)Kt + s1t

sJt = sJ−1,t+1

It =

J∑

i=1

ϕisit

with 0 ≤ ϕi ≤ 1, i = 1, 2, ...J ,

Mt+1 = (1− δm)Mt + dt

lnAt+1 = ρAlnAt + σAε
A
t+1 εAt ∼ N(0, 1)

lnωt+1 = ρωlnωt + σωε
ω
t+1 εωt ∼ N(0, 1)

given the initial values, K0,M0, sj0, j = 1, ..., J − 1; {εAt }
0
t=−J+1, {ε

ω
t }

0
t=−J+1.

Introducing the Kuhn-Tucker multipliers qt and µt we can write the Langrangean for this

problem,
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max
Lt,sJt,dt

E0

∞∑

t=0

βt{divt + qt(Kt+1 − (1− δ)Kt − s1t) + µt(Mt+1 − (1− δm)Mt − dt)}

The first order conditions associated with this problem are:

w.r.t Lt (labor)

(νAtωtK
α
t M

γ
t L

ν−1
t − w) = 0

w.r.t dt (deliveries)

−1 + βEt

{
At+1ωt+1γK

α
t+1M

γ−1
t+1 L

ν
t+1 + (1− δm)

}
= 0

w.r.t sJt (project starts)

−βt(ϕJ + η(
sJt

Kt
− δ))− βt+1Et(ϕJ−1)− βt+2Et(ϕJ−2)

+...+ βt+J−1Et(−ϕ1 + qt+J−1) = 0

w.r.t Kt+J (capital)

βt+J−1Et(−qt+J−1)

+βt+JEt

{
At+Jωt+JαK

α−1
t+J M

γ
t+JL

ν
t+J + η(

sJ,t+J

Kt+J
− δ)

sJ,t+J

Kt+J
−

η

2
(
sJ,t+J

Kt+J
− δ)2 + qt+J(1− δ)

}
= 0

qt(Kt+1 − (1− δ)Kt − s1t) = 0 qt ≥ 0

µt(Mt+1 − (1− δm)Mt − dt) = 0 µt ≥ 0

Collecting all the equations above that characterize equilibrium yields:

EtF (yt+J , ..., yt+1, yt, xt+J , ..., xt+1, xt) = 0 (A.2)
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where Et denotes the mathematical expectations operator conditional on information at time t, xt

denotes the vector of state variables and consists of capital, Kt, materials, Mt partially complete

projects, {sjt}
J−1
j=1 , and the two exogenous precesses for productivity, At, and ωt. The vector yt

denotes the vector of choice variables and consists of labor, Lt, materials orders, dt, and new

projects, sJt. The solution to the model given in equation A.2 can be expressed as

yt = g(xt, σ)

xt+1 = h(xt, σ) + πσεt+1

where g is a function that maps the vector of states, xt to choice variables, yt, h is a function that

maps the state vector at time t to time t+ 1, π is a vector selecting the exogenous state variables,

in this case At and ωt, and σ = [σA σω]. We want to find a second order approximation of the

functions, g, h around the non-stochastic steady state, (xt, σ) = (x, 0). The non-stochastic steady

state is defined as vectors (x, y) such that F (y, ..., y, y, x, ..., x, x) = 0.

To compute the second order approximation around (x, σ) = (x, 0), one substitutes the proposed

policy rules into (A.2) and makes use of the fact that derivatives of any order of (A.2) must equal

zero in order to compute the coefficients of the Taylor approximations of the proposed policy

functions. The second order solution for all variables of the model is completely characterized by

the matrices that collect the first and second order derivatives of the policy (g) and transition

(h) functions with respect to the state variables and σ, gx, hx, gxx, hxx, gσσ, hσσ. For example, the

second order approximation for g and h can be written respectively as (see Schmitt-Grohe and

Uribe (2004)),

[g(x, σ)]i = [g(x, 0)]i + [gx(x, 0)]
i
a(x− x)a +

1

2
[gxx(x, 0)]

i
ab(x− x)a(x− x)b +

1

2
[gσσ(x, 0)]

i[σ][σ]

[h(x, σ)]j = [h(x, 0)]j + [hx(x, 0)]
j
a(x− x)a +

1

2
[hxx(x, 0)]

j
ab(x− x)a(x− x)b +

1

2
[gσσ(x, 0)]

j [σ][σ]
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where i = L, sJ , d, a, b = K,M, {sj}
J−1
j=1 , A, ω, j = K,M, {sj}

J−1
j=1 , A, ω. [gx]

i
a, [hx]

i
a denote the

(i, a) element of the first order derivative of g, h with respect to x and similarly for the second

order derivatives. Notice that all the matrices collecting first and second order derivatives above are

evaluated at the non-stochastic steady state, i.e. (x, 0). In turn the non-stochastic steady state can

be easily computed by solving the f.o.c’s setting At = At+1 = E(A) and similarly ωt = ωt+1 = E(ω)

and solving the resulting static system of equations for x, y.

B Appendix 2

Description of the calibration. The values for the output elasticity of materials, γ, labor,

ν and capital, α are taken from the manufacturing plant level study of Sakellaris and Wilson

(2004) (Table 1, p.15, C). These values imply an overall returns to scale equal to 0.98. This value

is consistent with Basu and Fernald (1997) estimates of the returns to scale in manufacturing.

There is a variety of empirical evidence of time-to-build for capital projects. Regarding equipment

investment, Abel and Blanchard (1986) document an average delivery lag for manufacturing firms

equal to three quarters (during which time they pay installments for the purchase of the capital

good). Mayer and Sonenblum (1955) report that the average time across industries needed to

equip plants with new machinery is 2.7 quarters. Montgomery (1995) examines a long series of

finely detailed surveys conducted by the U.S. Department of Commerce on TTB patterns for a

wide range of firm construction projects. His calculations imply a time-to-build between five to

six quarter for non-residential structures. There is still evidence of lengthier construction times for

non-residential structures. According to Mayer (1960) and Koeva (2001) it takes approximately two

years to complete non-residential structures. A recent study by Del Boca et al. (2008) using Italian

firm level data suggests that investment projects require 2-3 years from initial stage to completion,

while equipment investment becomes productive within a year. Based on this evidence and given

the fact that the model’s empirical counterpart is total capital we think that three or four quarters

is a reasonable length for the time-to-build assumption. We set the length of the time-to-build
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equal to three quarters (J=3) in our baseline calibration but we also discuss results varying this

value up to four quarters. In terms of the resources spent on each stage of the construction (or

installments for delivery) Kydland and Prescott (1982) assume an equal cost distribution. Recently,

Zhou (2000) argues that time-to-build is very important for explaining investment dynamics. He

estimates ϕi for various values of J and reports that an (approximately) equal distribution of

cost for time-to-build investment produces the best fit for aggregate U.S. investment. There also

exist estimates (e.g. Del Boca et al. (2008)) particularly for investment in structures that point

to initial planning phases with little or no resources spent followed by construction phases with

increasing resources as projects near completion. This pattern of spending is known as time-to-plan

(TTP). For the baseline calibration we set ϕ1 = ϕ3 = 0.333, ϕ2 = 0.34 and explore TTP in the

simulations as an alternative scenario. The parameter that governs the convexity of the adjustment

cost function, η is set equal to 1.08 at the quarterly rate. This parameter is estimated by Barnett

and Sakellaris (1999) using a Tobin’s q approach in a panel of manufacturing firms from 1959 to

1987 (see Table 3 p.256). In implementing their approach the authors assume a time-to-build of one

year thus closely corresponding to our assumptions. The magnitude of (convex) adjustment costs

estimated by Barnett and Sakellaris (1999) and more recently by Cooper and Haltiwanger (2006)

seem to be conforming much better to the q theory of investment compared to earlier estimates

that produced implausibly large adjustment cost estimates (See for example, Hayashi (1982), or

Summers (1981)).We choose to work with these recent (more realistic) estimates for another reason.

A higher adjustment cost parameter η would imply a greater positive serial correlation of investment

that would (in the presence of autocorrelated productivity) be more strongly correlated with profits,

thus making it easier to obtain a significant profit rate coefficient in a mis-specified regression. We

also experiment with several alternative values for η taken from these studies. The subjective

discount factor, β, is chosen to match the average risk-free real interest rate over the period 1947

I to 2006 II. The real interest rate is defined as the 3-month U.S. T-bill rate less consumer price
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inflation. The depreciation rate for materials is calculated as follows. The stock of materials at the

end of a quarter is (1−δm)Mt. Usage of materials in quarter t is δmMt. Since usage is not available

quarterly but only annually we use the following approximation. usageyq = usagey

outputy output
y
q , where y

denotes year and q quarters. This calculation should be sufficiently accurate since materials usage

and output are highly correlated and their ratio will thus be quite smooth in the short-run. The

data used for this calculation are available from the Annual Survey of Manufacturers (ASM) and the

NBER manufacturing productivity database. δm is then calculated from the restriction (1−δm)Mt

δmMt
=

materials inventories at end quarter t
usage of materials in quarter t

. In the data (1962-2000) the ratio is on average equal to

0.33. The calculation implies δm = 0.75. We set δ the fixed capital depreciation rate to 0.025 per

quarter. We calibrate the process for the idiosyncratic productivity shock, ρω, σω to match the

autocorrelation and standard deviation of (cyclical) aggregate manufacturing investment. Finally,

we calibrate the process for the aggregate productivity shock, ρA, σA to match the autocorrelation

and standard deviation of (cyclical) aggregate manufacturing output. The data for this calculation

(manufacturing investment and output) are taken from the Bureau of Economic Analysis and cover

the period 1967 II to 2004 IV.

C Appendix 3

Time Aggregation. To obtain annual from quarterly measures we adopt the same methodology

as in the national accounts and employed by Hall (2004). Specifically, we set all the flow variables

at the annual rate equal to the sum of the corresponding flow variables over the quarters, i.e., for

flow variable x, xat =
∑4

k=1 xt,k, where x = I, π, si, , i = 1, ...J and a denotes annual frequency.

The annual measure for marginal q, is the average over the corresponding quarterly measure.

However, it differs slightly depending on the TTB. We use the following definitions,

J = 1 , qat =

∑4
k=1 qt,k

4
J = 2 , qat =

∑4
k=1Ekqt,k+1

4
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J = 3 , qat =

∑4
k=1Ekqt,k+2

4
J = 4 , qat =

∑4
k=1Ekqt,k+3

4

In general
∑4

k=1 Ekqt,k+J−1

4 ̸=
∑4

k=1 qt,k
4 . However, with autocorrelated productivity shocks the

two measures are highly correlated. We use the marginal expected q for each different J to isolate

the omitted variable effect. Our results are broadly similar if we use the same q for each J .

Finally, we take the annual capital stock to correspond to the end of year (i.e. fourth quarter)

stock. Alternatively, the annual measure for the capital stock can be calculated from Ka
t+1 =

(1− δa)Ka
t + sa1t. The results are insensitive to this alternative definition.

Expression for the time aggregation error. To derive this expression we assume no TTB

(i.e. J = 1). We begin with equation,

−4− η

( 4∑

k=1

(
It,k

Kt,k
− δ)

)
+

4∑

k=1

qt,k = 0

where t denotes years.

If we add and subtract η

(∑4
k=1(

It,k
Ka

t
− δ)

)
we get

−4− η

( 4∑

k=1

(
It,k

Ka
t

− δ)

)
+ η

(
1

Ka
t

4∑

k=1

It,k

Kt,k
Kt,k −

4∑

k=1

It,k

Kt,k

)
+

4∑

k=1

qt,k = 0

The term,

(
1

Ka
t

∑4
k=1

It,k
Kt,k

Kt,k −
∑4

k=1
It,k
Kt,k

)
which will be ̸= 0 in general, represents the time

aggregation error. It is easy to see that this term will be zero only when investment is equal to

replacement investment (δK), so that capital in year t, Ka
t = Kt,k. Similar expressions for the time

aggregation error characterize J = 2, 3, 4.

Re-writing this equation (dividing by four and using
∑4

k=1
It,k
Ka

t
=

Iat
Ka

t
, qat =

∑4
k=1 qt,k
4 , 1η

4

= 1
ηa )

after suppressing all the constant terms yields the final equation,

Iat
Ka

t

= constant+

(
1

Ka
t

4∑

k=1

It,k

Kt,k
Kt,k −

4∑

k=1

It,k

Kt,k

)
+

1

ηa
qat
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Empirical proxy. Next, we show the derivation of the empirical proxy in equation 4.5.

4∑

k=1

∑2
i=1 ϕisit,k

Kt,k
=

4∑

k=1

(It−1,k

Kt,k
− ϕ1(1−

(1− δ)

gt,k
) + ϕ1(

ϕ2

ϕ1
− 1)

s1t,k

Kt,k
+ ϕ2(

ϕ3

ϕ2
− 1)

s2t,k

Kt,k

)

The RHS of the equation above yields,

Iat−1

Ka
t

+
4∑

k=1

(It−1,k

Kt,k
−

It−1,k

Ka
t

)
− ϕ1

4∑

k=1

(
1−

(1− δ)

gt,k
)
)
+

(
ϕ1(

ϕ2

ϕ1
− 1)

s1t,k

Kt,k
+ ϕ2(

ϕ3

ϕ2
− 1)

s2t,k

Kt,k

)

Equation 4.7 in the text follows from the above when we impose the symmetry assumption of

TTB (i.e. ϕ1 = ϕ2 = ϕ3) and use gt,k ≅
1
4g

a
t .

Coefficient bias. We derive the expressions that determine the biases in the coefficients of q

and the profit rate in the investment regression.

Consider the regression

y = X1β1 +X2β2 +X3β3 + u

where y =
Iat
Ka

t
, X1 = qat , X2 =

πa
t

Ka
t
, X3 =

∑4
k=1

∑2
i=1 φisit,k
Kt,k

. The true coefficient of
πa
t

Ka
t
will be β2 = 0.

Now suppose we specify the following regression equation (i.e. equation 4.4)

y = X1β1 +X2β2 + e

where the error e term is now given by

e = X3β3 + u

The OLS coefficient vector is given by,

[
b1

b2

]
=

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

][
X ′

1y

X ′
2y

]
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Using standard matrix formulas this equation can be written as,

[
b1

b2

]
=

[
D−1

1 D−1
2

D−1
3 D−1

4

][
X ′

1y

X ′
2y

]

where D−1
1 = (X ′

1X1 −X ′
1X2(X

′
2X2)

−1X ′
2X1)

−1,

D−1
2 = −(X ′

1X1 −X ′
1X2(X

′
2X2)

−1X ′
2X1)

−1(X ′
1X2)(X

′
2X2)

−1,

D−1
3 = −(X ′

2X2)
−1(X ′

2X1)(X
′
1X1 −X ′

1X2(X
′
2X2)

−1X ′
2X1)

−1,

D−1
4 = (X ′

2X2)
−1 + (X ′

2X2)
−1(X ′

2X1)(X
′
1X1 −X ′

1X2(X
′
2X2)

−1X ′
2X1)

−1(X ′
1X2)(X

′
2X2)

−1

The expected value of the OLS coefficients on the profit rate and marginal q will be given by,

E(b2) = [D−1
3 (X ′

1X1) +D−1
4 (X ′

2X1)]β1 + [D−1
3 (X ′

1X3) +D−1
4 (X ′

2X3)]β3

E(b1) = [D−1
1 (X ′

1X1) +D−1
2 (X ′

2X1)]β1 + [D−1
1 (X ′

1X3) +D−1
2 (X ′

2X3)]β3

One can show thatD−1
1 > 0, D−1

2 < 0, D−1
3 < 0, D−1

4 > 0 as long as (X ′
1X1−X ′

1X2(X
′
2X2)

−1X ′
2X1)

−1 >

0. SinceX1 = qat , X2 =
πa
t

Ka
t
this condition simplifies to (var(qat )−cov(qat ,

πa
t

Ka
t
)var(

πa
t

Ka
t
)−1cov(qat ,

πa
t

Ka
t
)) >

0. This can further be written as 1 > ρ2x1,x2
which will be always satisfied unless ρ2x1,x2

= 1. It is

easy to see from the expressions above that when this condition is satisfied, E(b2) will fall with β1,

while E(b1) will rise with β1 and rise with β3. Therefore as long as ϕJ is falling with J this will

always be the case.

D Data Appendix

We started with 11,536 firm-year observations (1113 firms) over the period 1980-2000. We excluded

firms that changed the date of their accounting year-end by more than a few weeks, so that the

data refers to 12 month accounting periods. To control for the potential influence of outliers we

removed observations beyond the 1st and 99th percentiles for each of the regression variables; we

also excluded observations characterized by an investment to capital ratio greater than one. This
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trimming is aimed at eliminating observations reflecting particularly large mergers or coding errors.

Note that these types of sample selection are common in the literature and we employ them for

compatibility with previous work. We have also dropped firm-year observations that did not have

complete records on the variables used in our regressions. Moreover, because we use Generalized

Method of Moments (GMM) to estimate the investment equations in first differences with values

of the regressors lagged twice or more as instruments we require at least three cross sectional

observations to allow for the first differencing process and the construction of the instruments.

This meant that only firms with a minimum of three consecutive observations were kept in the

sample. After all these adjustments we were left with a panel of 7091 firm-year observations (760

firms). The following describes the construction of variables (with Datastream codes in parenthesis

where applicable).

Investment(I). Up to 1991: fixed assets purchased by the company excluding assets acquired

from new subsidiaries (v341). After 1991: cash paid by the company towards the purchase of fixed

assets (v1024: property, plant or equipment).

Depreciation(δ). We use rates of 8.19% for plant and machinery and 2.5% for land and buildings

(from King and Fullerton (1984)). For each observation we then calculate the proportion of land and

building investment and calculate the depreciation rate as follows: δ = 0.0819∗(1−mb)+0.025∗mb,

where mb is the average value of the proportion of buildings investment as described above.

Replacement value of the capital stock(K). We use net tangible fixed assets as the historic value

of the capital stock (as computed above). We assume that replacement cost and historic cost are

the same in the first year of data for each firm. We then apply the perpetual inventory formula

(Bond and Meghir (1994)) as follows: Kt = Kt−1 ∗ (1 − δ) ∗ Pt
Pt−1

+ It. In the formula Pt denotes

the price of investment goods computed from the implicit deflator for gross fixed capital formation

available from the National Statistics Office.

Cash flow(CF). Sum of after tax profits (v623) and depreciation (v136).
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Tobin’s q (q). Ratio of value of firm to replacement value of capital. Value of firm is the sum

of enterprise value of firm (v1504), borrowings repayable within one year (v309), total loan capital

repayable after one year (v321).

Total number of employees. Average number of employees as disclosed by the company (v219).

Sales. Amount of goods and services to third parties relating to the normal industrial activities

of the company (v104). Real sales are obtained by dividing with the GDP deflator.

Dividend payout ratio. Ratio of dividends (v187) to operating profits (v137).

The two variables that proxy for the omitted state variable due to TTB investment as con-

structed as follows.

It−1

Kt
: using the definitions of investment and capital provided above.

Inverse of the gross growth rate of capital. (gk)−1 = kt−1

kt
, where k is capital as computed above

(K) deflated by the GDP deflator.

E Appendix on inference and biases under TTB in-

vestment

In this section we report the inference problem in the investment-q framework under TTB invest-

ment. As explained in section 4.1.1 an investment-q regression that fails to account for TTB would

lead one (a) to overestimate the adjustment cost parameter implied by the coefficient of q due to

the scaling by the TTB parameter and (b) introduce a positive bias in the profit rate coefficient, as

the true value of the latter in this model is equal to zero. In addition to this information we also

report the true bias of the coefficient on q assuming that a researcher knows the true value of ϕJ

and adjusts the coefficient estimate of b1 accordingly. Table 16 summarizes this information. Note

that under all TTB parametrizations the inferred adjustment cost estimate, η̂a is always higher

than the true value and rises with J . By contrast in the hypothetical case a researcher knows the

TTB parameters the coefficient on q is biased upward (equivalently the adjustment cost estimate

is biased downwards) and the true bias is negative. This is due to the fact that the mean value of
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the coefficient on q rises with the true parameter of the omitted state variable. Finally, the bias of

the profit rate coefficient is always positive and rises with J .

39



Table 1: Calibrated parameters

Description Value Source

γ elasticity materials 0.53 Sakellaris and Wilson (2004) (Table 1, p.15, C)

ν elasticity labor 0.32 Sakellaris and Wilson (2004) (Table 1, p.15, C)

α elasticity capital 0.13 Sakellaris and Wilson (2004) (Table 1, p.15, C)

ϕ1 fraction in final stage 0.33 various (see Appendix)

ϕ2 fraction in middle stage 0.34 various (see Appendix)

ϕ3 fraction in initial stage 0.33 various (see Appendix)

δ depreciation capital 0.025 standard value from literature

δm depreciation materials 0.75 NBER man. productivity data

β = 1
1+r

discount factor 0.99 average risk free rate

ηa adjustment cost 0.27 Barnett and Sakellaris (1999) estimates

σA std. deviation common 0.045 BEA manufacturing output

ρA AR(1) common 0.90 BEA manufacturing output

σω std. deviation idiosyncratic 0.025 BEA manufacturing investment

ρω AR(1) idiosyncratic 0.90 BEA manufacturing investment
Notes. See Appendix 2 for a detailed description of the calibration sources.

Table 2: Investment regressions–empirical specification

Coefficient J = 1 J = 2 J = 3 J = 4

b1 0.91 0.55 0.41 0.33

(0.0001) (0.001) (0.002) (0.002)

b2 0.0001 0.49 0.54 0.58

(0.0001) (0.001) (0.002) (0.003)

R
2

0.99 0.97 0.92 0.87

Notes. The Table reports coefficients of the regression,
Ij,t
Kj,t

= α + b1Et(qj,t+2) + b2
πj,t

Kj,t
+ εj,t based on the quarterly model.

In this Table J denotes TTB in quarters. Standard errors are in parenthesis. All statistics are averages over 500 replications.
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Table 3: Investment regressions–empirical specification with annual measures

True ηa = 0.27

Coefficient J = 1 J = 2 J = 3 J = 4

b1 3.50 3.37 3.20 3.00

(0.0001) (0.004) (0.008) (0.01)

η̂a = 1
b1

0.28 0.29 0.31 0.33

R
2

0.99 0.98 0.94 0.88

b1 3.46 2.97 2.55 2.20

(0.001) (0.006) (0.01) (0.02)

b2 0.03 0.22 0.29 0.35

(0.0007) (0.003) (0.004) (0.006)

R
2

0.99 0.99 0.95 0.91

Notes. The top panel reports the coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + εat . The bottom panel reports coefficients of

the regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t
+ εat . In this Table J denotes TTB in quarters. Standard errors are in parenthesis. All

statistics are averages over 500 replications.

Table 4: Correlations (baseline calibration)

J = 4 J = 3 J = 2

State variable
∑4

k=1

∑3
i=1 φisit,k
Kt,k

∑4
k=1

∑2
i=1 φisit,k
Kt,k

∑4
k=1

∑1
i=1 φisit,k
Kt,k

πa
t

Ka
t

0.73 0.85 0.84

J = 3
Iat
Ka

t

∑4
k=1

∑2
i=1 φisit,k
Kt,k

πa
t

Ka
t

qat
Iat
Ka

t
1 0.99 0.86 0.97

∑4
k=1

∑2
i=1 sit,k
Kt,k

1 0.85 0.93
πa
t

Ka
t

1 0.83

qat 1
Notes. This Table reports correlations between the profit rate and the state variable that arises under the TTB assumption.
In this Table J denotes TTB in quarters. All statistics are averages over 500 replications.
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Table 5: Firm level data–Evidence for TTB

Size Test

Firm-year Mean values Small Large ( Istr
Ieqp

)small > ( Istr
Ieqp

)large

observations

I. Compustat (1980-2007)

4818 Istr
Ieqp

0.36♭ 0.29 p− value=0.042

7628 Istr
Ieqp

0.37† 0.32 p− value=0.095

II. Datastream (1980-2000)

3885 Istr
Ieqp

0.51♭ 0.24 p− value=0.19

3856 Istr
Ieqp

0.48† 0.18 p− value=0.18

Notes. Upper panel: Compustat sample of manufacturing firms. Lower panel: Datastream sample of manufacturing firms.

Small firms are classified as belonging to the lower 25 percentile using either real sales (♭) or real total assets (†). Large

firms are those belonging to the upper 25 percentile of the corresponding distribution. We use the method proposed by Bond

and Meghir (1994) to estimate gross investment in structures (Istr) and equipment (Ieqp). Specifically we use the following

calculation: Iit = ITt
∆Kit

∆KTt
, where i=structures, equipment. ITt denotes total gross investment (Compustat data item 30,

Datastream item v431 and v1024), Kit capital stock (book value) in i=structures, equipment (Compustat data item 155 and

156, Datastream item v327 and v328) and KTt total (book value) capital stock (Compustat data item 8, Datastream item

v330).
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Table 6: Investment regressions–empirical specification with annual measures: controlling
for TTB (baseline TTB)

Coefficient J = 2 J = 3 J = 4

b1 2.23 1.79 1.31

(0.001) (0.003) (0.005)

b3 0.24 0.38 0.69

(0.002) (0.003) (0.005)

b4 -0.11 -0.11 0.03

(0.004) (0.003) (0.004)

R
2

0.99 0.99 0.99

b1 2.21 1.78 1.23

(0.001) (0.001) (0.01)

b2 -0.02 0.004 0.04

(0.004) (0.004) (0.006)

b3 0.24 0.37 0.69

(0.001) (0.003) (0.005)

b4 -0.14 -0.12 0.05

(0.002) (0.003) (0.004)

R
2

0.99 0.99 0.99

∆R
2
between top and bottom panels 0.00 0.00 0.00

Notes. Baseline TTB as calibrated in Table 8. The top panel reports the coefficients of the regression,
Iat
Ka

t
= α+b1q

a
t +b3

Iat−1

Ka
t

+

b4(g
a
t )

−1 + εat . The bottom panel reports coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t
+ b3

Iat−1

Ka
t

+ b4(g
a
t )

−1 + εat . In

this Table J denotes TTB in quarters. Standard errors are in parenthesis. All statistics are averages over 500 replications.
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Table 7: Investment regressions–empirical specification with annual measures and mea-
surement error in q: TTB baseline pattern

Coefficient J = 2 J = 3 J = 4

I.

b1 2.62 2.23 1.58

(0.01) (0.01) (0.01)

b2 0.40 0.42 0.44

(0.008) (0.005) (0.006)

R
2

0.96 0.93 0.89

II.

b1 1.05 1.22 0.92

(0.008) (0.008) (0.007)

b3 0.13 0.62 0.92

(0.004) (0.01) (0.01)

b4 -0.53 -0.03 0.15

(0.004) (0.01) (0.01)

R
2

0.98 0.98 0.98

III.

b1 0.99 1.06 0.59

(0.005) (0.005) (0.02)

b2 -0.13 0.17 0.14

(0.008) (0.009) (0.007)

b3 0.10 0.64 1.06

(0.003) (0.01) (0.007)

b4 -0.64 0.06 0.33

(0.005) (0.01) (0.005)

R
2

0.98 0.98 0.98

∆R
2
between panels II and III 0.00 0.00 0.00

Notes. Baseline TTB pattern as calibrated in Table 8. Panel I reports coefficients of the regression,
Iat
Ka

t
= α+b1q

a
t +b2

πa
t

Ka
t
+εat .

Panel II reports coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + b3

Iat−1

Ka
t

+ b4(g
a
t )

−1 + εat . Panel III reports coefficients of the

regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t
+ b3

Iat−1

Ka
t

+ b4(g
a
t )

−1 + εat . In this Table J denotes TTB in quarters. Standard errors are in

parenthesis. All statistics are averages over 500 replications.
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Table 8: TTB parametrizations

Baseline TTB pattern

J = 2 ϕ2 = 0.5 ϕ1 = 0.5

J = 3 ϕ3 = 0.33 ϕ2 = 0.34 ϕ1 = 0.33

J = 4 ϕ4 = 0.25 ϕ3 = 0.25 ϕ2 = 0.25 ϕ1 = 0.25

TTP pattern

J = 2 ϕ2 = 0.1 ϕ1 = 0.9

J = 3 ϕ3 = 0.1 ϕ2 = 0.45 ϕ1 = 0.45

J = 4 ϕ4 = 0.1 ϕ3 = 0.30 ϕ2 = 0.30 ϕ1 = 0.30

Hump shaped TTB pattern

J = 3 ϕ3 = 0.1 ϕ2 = 0.8 ϕ1 = 0.1

J = 4 ϕ4 = 0.1 ϕ3 = 0.4 ϕ2 = 0.4 ϕ1 = 0.1

Declining TTB pattern

J = 2 ϕ2 = 0.8 ϕ1 = 0.2

J = 3 ϕ3 = 0.5 ϕ2 = 0.4 ϕ1 = 0.1

J = 4 ϕ4 = 0.4 ϕ3 = 0.3 ϕ2 = 0.2 ϕ1 = 0.1
Notes. Values for φ are not applicable for J=2 under the hump shaped TTB spending pattern. In this case we can only consider
equal, declining and TTP investment spending patterns.

Table 9: Investment regressions–empirical specification with annual measures: TTP pattern

True ηa = 0.27

Coefficient J = 2 J = 3 J = 4

b1 3.34 3.19 2.92

(0.009) (0.01) (0.01)

η̂a = 1
b1

0.30 0.31 0.34

R
2

0.93 0.86 0.75

b1 2.70 2.35 1.75

(0.01) (0.01) (0.002)

b2 0.44 0.45 0.50

(0.006) (0.007) (0.01)

R
2

0.95 0.89 0.80

Notes. The top panel reports the coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + εat . The bottom panel reports coefficients of

the regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t
+ εat . In this Table J denotes TTB in quarters. Standard errors are in parenthesis. All

statistics are averages over 500 replications.
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Table 10: Investment regressions–empirical specification with annual measures: Hump
shaped TTB pattern

True ηa = 0.27

Coefficient J = 2 J = 3 J = 4

b1 n.a. 3.23 3.01

(0.01) (0.01)

η̂a = 1
b1

n.a. 0.31 0.33

R
2

n.a. 0.92 0.87

b1 n.a. 2.27 1.99

(0.01) (0.01)

b2 n.a. 0.42 0.67

(0.006) (0.02)

R
2

n.a. 0.95 0.90

Notes. The top panel reports the coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + εat . The bottom panel reports coefficients of

the regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t
+ εat . In this Table J denotes TTB in quarters. Standard errors are in parenthesis. All

statistics are averages over 500 replications. See also notes to Table 8.

Table 11: Investment regressions–empirical specification with annual measures: Declining
TTB pattern

True ηa = 0.27

Coefficient J = 2 J = 3 J = 4

b1 3.44 3.30 3.15

(0.001) (0.005) (0.007)

η̂a = 1
b1

0.29 0.30 0.32

R
2

0.99 0.96 0.95

b1 3.26 2.74 2.54

(0.002) (0.01) (0.01)

b2 0.10 0.25 0.40

(0.001) (0.004) (0.007)

R
2

0.99 0.98 0.97

Notes. The top panel reports the coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + εat . The bottom panel reports coefficients of

the regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t
+ εat . In this Table J denotes TTB in quarters. Standard errors are in parenthesis. All

statistics are averages over 500 replications.
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Table 12: Summary statistics

All firm - Firm-years with Firm-years with

years SMALLit = 1 SMALLit = 0
Iit
Kit

0.148 0.146 0.151

(0.104) (0.129) (0.098)

qit 3.57 4.27 3.39

(4.78) (6.28) (4.20)
CFit

Kit
0.269 0.252 0.273

(0.35) (0.46) (0.30)
Iit−1

Kit
0.130 0.122 0.131

(0.08) (0.09) (0.07)

(gkit)
−1 1.47 1.97 1.20

(4.20) (5.88) (3.06)

Number of 5086.25 224.01 6778.4

employees (14789.29) (144.33) (16844.65)

Real sales 4141.73 180.78 5566.98

(14199.91) (176.14) (16323.29)

Dividend 0.216 0.209 0.217

payout ratio (2.25) (0.99) (2.42)

Number of 7091 1950 5141

observations

Number of firms 760
Notes. The Table reports sample means. Standard deviations in parenthesis. The subscript i indexes firms and t indexes time,
where t = 1980− 2000. SMALLit is a dummy variable equal to 1 if firm i belongs to the lower 25th percentile of firms in the
sample in terms of number of employees and equal to 0 otherwise.
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Table 13: The effects of cash flow on investment: controlling for TTB

Dependent OLS OLS OLS OLS First-diff. First-diff.

variable: GMM GMM
Iit
Kit

(0) (1) (2) (3) (4) (5)

qit 0.006*** 0.005*** 0.002*** 0.003*** 0.004*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
CFit

Kit
∗ SMALLit 0.07*** 0.023*** n.a. 0.098*** 0.014

(0.01) (0.01) (0.02) (0.02)
CFit

Kit
∗ (1− SMALLit) 0.06*** 0.025*** n.a. 0.036 0.012

(0.01) (0.01) (0.02) (0.02)
Iit−1

Kit
n.a. 0.29*** 0.30*** n.a. 0.19***

(0.01) (0.01) (0.06)

(gkit)
−1 n.a. -0.41*** -0.41*** n.a. -0.55***

(0.02) (0.02) (0.05)

Test on equality of
CFit

Kit
coeff. across small and

large firm-years (p-value) 0.14 0.70 0.03 0.91

m2 (p-value shown) 0.06 0.41

Hansen’s J (p-value shown) 0.116 0.652

adjusted R2 0.21 0.27 0.61 0.60
Notes. SMALLit is a dummy variable equal to 1 if firm i has employees in the lower 25th percentile (equal to 225 employees)
of all firms in the sample and 0 otherwise. A constant, time and industry dummies are included in all specifications although
not reported for brevity. Standard errors and test statistics are asymptotically robust to heteroskedasticity. In columns (4)
and (5) all right hand side regressors are lagged twice and used as instruments. m2 is a test for second order serial correlation
in the first differenced residuals, asymptotically distributed as N(0,1) under the null of no serial correlation introduced by
Blundell et al. (1992). The J statistic is a test of the overidentifying restrictions, distributed as χ2 under the null of instrument
validity. ***Indicates significance at the 1% level.
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Table 14: The effects of cash flow on investment: controlling for TTB (alternative classifi-
cations (dividend payout))

Dependent OLS OLS OLS OLS First-diff. First-diff.

variable: GMM GMM
Iit
Kit

(0) (1) (2) (3) (4) (5)

qit 0.006*** 0.004*** 0.002*** 0.002*** 0.003*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
CFit

Kit
∗ SMALLit 0.07*** 0.029*** n.a. 0.058*** 0.003

(0.01) (0.01) (0.02) (0.01)
CFit

Kit
∗ (1− SMALLit) 0.06*** 0.024*** n.a. 0.036 0.021

(0.01) (0.01) (0.03) (0.02)
Iit−1

Kit
n.a. 0.30*** 0.31*** n.a. 0.17***

(0.01) (0.01) (0.05)

(gkit)
−1 n.a. -0.40*** -0.41*** n.a. -0.52***

(0.02) (0.02) (0.05)

Test on equality of
CFit

Kit
coeff. across small and

large firm-years (p-value) 0.32 0.31 0.46 0.28

m2 (p-value shown) 0.02 0.56

Hansen’s J (p-value shown) 0.55 0.91

adjusted R2 0.21 0.27 0.62 0.60
Notes. SMALLit is a dummy variable equal to 1 if firm i has a dividend payout ratio below the median (equal to 0.22) of all
firms in the sample and 0 otherwise. A constant, time and industry dummies are included in all specifications although not
reported for brevity. Standard errors and test statistics are asymptotically robust to heteroskedasticity. In columns (4) and (5)
all right hand side regressors are lagged twice and used as instruments. m2 is a test for second order serial correlation in the
first differenced residuals, asymptotically distributed as N(0,1) under the null of no serial correlation introduced by Blundell
et al. (1992). The J statistic is a test of the overidentifying restrictions, distributed as χ2 under the null of instrument validity.
***Indicates significance at the 1% level.
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Table 15: The effects of cash flow on investment: controlling for TTB (alternative classifi-
cations (real sales))

Dependent OLS OLS OLS OLS First-diff. First-diff.

variable: GMM GMM
Iit
Kit

(0) (1) (2) (3) (4) (5)

qit 0.006*** 0.004*** 0.002*** 0.002*** 0.004*** 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
CFit

Kit
∗ SMALLit 0.07*** 0.024*** n.a. 0.092*** 0.025

(0.01) (0.01) (0.02) (0.01)
CFit

Kit
∗ (1− SMALLit) 0.07*** 0.030*** n.a. 0.038 0.011

(0.01) (0.01) (0.02) (0.01)
Iit−1

Kit
n.a. 0.30*** 0.31*** n.a. 0.17***

(0.01) (0.01) (0.05)

(gkit)
−1 n.a. -0.40*** -0.41*** n.a. -0.51***

(0.01) (0.02) (0.04)

Test on equality of
CFit

Kit
coeff. across small and

large firm-years (p-value) 0.74 0.27 0.02 0.38

m2 (p-value shown) 0.06 0.55

Hansen’s J (p-value shown) 0.54 0.40

adjusted R2 0.21 0.27 0.62 0.60
Notes. SMALLit is a dummy variable equal to 1 if firm i has real sales below the 25th percentile (equal to 216.03) of all
firms in the sample and 0 otherwise. A constant, time and industry dummies are included in all specifications although not
reported for brevity. Standard errors and test statistics are asymptotically robust to heteroskedasticity. In columns (4) and (5)
all right hand side regressors are lagged twice and used as instruments. m2 is a test for second order serial correlation in the
first differenced residuals, asymptotically distributed as N(0,1) under the null of no serial correlation introduced by Blundell
et al. (1992). The J statistic is a test of the overidentifying restrictions, distributed as χ2 under the null of instrument validity.
***Indicates significance at the 1% level.
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Table 16: Investment regressions–inference and bias

True ηa = 0.27 True b
2
= 0

Coefficient J = 2 J = 3 J = 4

I. Baseline TTB

b
1

2.97 2.55 2.20

Inferred η̂a = 1

b1
0.34 0.39 0.45

estimated b
1
scaled by ϕJ 5.94 7.65 8.80

i.e. b
1

1

ϕJ

Inferred η̂a = ϕJ

b1
0.17 0.13 0.11

true bias assuming ϕJ is known -0.10 -0.14 -0.16

b
2

0.22 0.29 0.35

bias in b
2

0.22 0.29 0.35

II. TTP

b
1

2.70 2.35 1.75

Inferred η̂a = 1

b1
0.37 0.42 0.57

b
1
scaled by ϕJ 27 23.5 17.5

i.e. b
1

1

ϕJ

Inferred η̂a = ϕJ

b1
0.037 0.042 0.057

true bias assuming ϕJ is known -0.233 -0.228 -0.213

b
2

0.44 0.45 0.50

bias in b
2

0.44 0.45 0.50

III. Hump shaped TTB

estimated b
1

n.a. 2.27 1.99

Inferred η̂a = 1

b1
n.a. 0.44 0.50

estimated b
1
scaled by ϕJ n.a. 22.7 19.9

i.e. b
1

1

ϕJ

Inferred η̂a = ϕJ

b1
n.a. 0.044 0.05

true bias assuming ϕJ is known n.a. -0.232 -0.22

b
2

n.a. 0.42 0.67

bias in b
2

n.a. 0.42 0.67

IV. Declining TTB

b
1

3.26 2.74 2.54

Inferred η̂a = 1

b1
0.30 0.36 0.39

estimated b
1
scaled by ϕJ 4.07 5.48 6.35

i.e. b
1

1

ϕJ

Inferred η̂a = ϕJ

b1
0.25 0.18 0.16

true bias assuming ϕJ is known -0.02 -0.09 -0.11

b
2

0.10 0.25 0.40

bias in b
2

0.10 0.25 0.40

Notes. Each panel reports the coefficients of the regression,
Iat
Ka

t
= α + b1q

a
t + b2

πa
t

Ka
t

+ εat separately reported in Tables 3, 7,

8 and 9. The scaling of the b1 coefficients are based on the values of φJ shown in Table 8. In this Table J denotes TTB in
quarters.
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