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Nonparametric and Semi-Nonparametric Recreational Demand Analysis 

 

 

Abstract 

 

This paper addresses issues of specification testing for the travel cost method (TCM).  Two 

nonparametric approaches to TCM analysis are presented.  In addition, semi-nonparametric count 

models for TCM are developed.  A numerical illustration is provided in which the three methods are 

applied to an actual TCM data set on waterfowl hunting and the results compared to those from a 

parametric analysis.   
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Nonparametric and Semi-Nonparametric Recreational Demand Analysis 

 

Nonparametric smoothing techniques represent a set of flexible tools for analyzing unknown 

regression relationships.  In the nonparametric (NP) methods of interest in this paper, neither the 

error distribution nor the functional form of the regression relationship is pre-specified.  Because of 

this flexibility, NP econometric methods are especially useful as specification checks on parametric 

methods.  This paper explores the application of NP methods in nonmarket valuation.  While the 

published nonmarket valuation literature has addressed the subject of nonparametric and 

semi-nonparametric estimation of discrete choice models for the contingent valuation method, it has 

not addressed application of NP techniques to the travel cost method (TCM).  

 Although NP techniques have a number of advantages over parametric methods, they are 

somewhat unwieldy because, compared to parametric methods, they cannot easily include a large 

number of explanatory variables. Alternatives to NP are expanding parameter space, or 

semi-nonparametric (SNP), methods, which are halfway between parametric and nonparametric 

inference procedures (e.g., Fenton and Gallant).  SNP methods allow the researcher to reduce the 

potential for misspecification bias associated with parametric techniques, while at the same time 

accounting for explanatory variables more easily than NP.  Given this, SNP would appear to make 

NP methods redundant.  In practice, however, this is not the case.  While SNP methods reduce the 

potential for misspecification bias, they do so at the cost of increased complexity over the parametric 

(PARA) approaches and require careful fitting to the data. Creel’s (1997) simulation-based analysis 

sets the stage for application of SNP methods to TCM, but practical issues of estimation and 

interpretation of the results remain open.   Hence, in addition to the presentation of two NP 

approaches to TCM estimation, this paper addresses issues in applying SNP methods to actual TCM 
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data and in interpreting the results.   A numerical illustration is provided in which the three methods 

are applied to an actual TCM data set on waterfowl hunting and the results compared to those from a 

parametric analysis.  The SNP and NP methods act as specification checks on each other. If the 

results are comparable, the researcher can have some reason to believe the benefit estimates are 

robust to the choice of estimator.  

 

A Variable Partition Histogram Approach to Nonparametic Estimation 

A traditionally popular nonparametric technique is the histogram, in which the data are divided into 

partitions on the basis of some smoothing parameter and cell frequencies estimated based on these 

partitions (see e.g., Delgado and Robinson for a survey of nonparametric techniques).  The model 

proposed in this section falls into the general category of variable partition histogram approaches 

(VPHA), which allow a locally adaptive smoothing (Anderson; Van Ryzin).  The specific form uses 

the Pool Adjacent Violators Approach (PAVA), which can be considered a variation on a VPHA 

approach in which each partition is of different width.  The PAVA approach to generating empirical 

Bernoulli trials has been around a relatively long time (e.g., Ayer, Brunk, Ewing, Reid and 

Silverman; Turnbull) and has been applied to discrete choice contingent valuation data (Kristom; 

Haab and McConnell).  For discrete choice data, the goal of PAVA is to insure that the estimated 

cumulative densities are strictly increasing in the bid offer, that is, Fj  = prob(WTP ≤ bidj) = 

Nj/(Nj+Yj),  where Nj = the number of no responses to the bid offer bidj  and Yj the number of yes 

responses to that bid.  Given the initial J empirical properties, the PAVA algorithm takes cases 

where  Fj+1 ≤ Fj and pools Fj+1 and Fj as (Nj + Nj+1)/(Yj + Nj + Yj+1 + Nj+1), where this pooled value is 

associated with bidj , i.e., cell boundaries are bidj and bidj+2.  The pooling is continued until the F's 

are strictly increasing in the bids.    While this method is appealing on intuitive grounds, it also 
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yields the maximum likelihood estimates of the desired probabilities (Ayer, Brunk, Ewing, Reid and 

Silverman). 

 This section presents a modification of this approach for the trips variable, T, which is a 

count data variable censored at 0, and the travel cost variable C, where T = f(C).  The modification 

is analogous in the discrete choice contingent valuation case, where PAVA insures that the empirical 

density is monotonic with respect to the price variable.  The TCM application is designed to insure 

that the integral under f(C) is well-behaved, i.e., that the price-quantity points used to estimate CS 

satisfy the condition that T decreases when C increases (ΔCΔT < 0). Given the original set of data 

points {T1,C1}, {T2,C2},…,{Tk,Ck},  the goal of  the PAVA algorithm is to reconstruct the data 

points to produce a monotonic function representing the minimum loss of data points, and hence, of 

the greatest accuracy in the CS estimate. i    

 Since without great loss of generality the density in most binary choice cases can be 

represented nonparametrically by sets of Bernoulli trials, PAVA for binary choice yields MLE 

estimates.  However, because the usual count distributions such as the Poisson or the negative 

binomial each imply different decision making processes by the recreationist, it would appear that 

PAVA for count models cannot find an analogy in MLE.  Hence, the appeal of PAVA for count 

data must be based on intuitive grounds.  The following procedure is simple and does not require 

sophisticated programming, although a fast compiler is useful in bootstrap applications:  

1) Sort {Tj,Cj), j = 1,…,k in ascending order with respect to Ci, where C1 = minimum observed round 

trip travel cost and Ck = maximum observed round trip travel cost, and where Tj are the sum of trips 

across the sample that are associated with that Cj. 

2) Starting with j = 1, compare Tj and Tj+1.  

3) If Tj+1 < Tj, continue. 



4) If Tj+1 ≥ Tj, then pool Tj and Tj+1 into a cell whose boundaries are Cj and Cj+2, i.e., for pooled trip 

cell Tj  + Ti+1, pooled trip cell cost is Cj.   The required assumption is that users who paid Cj+1 

would be willing to pay Cj, which is reasonable for a normal good given that Cj+1 > Cj.  

5) The pooling loop is continued until the Tj's are strictly decreasing in Cj. The pooled data pairs are 

denoted {T
*
j,C

*
j}, j = 1,…m, where m ≤  k. 

 In sum, the goal of steps 1 through 5 is to maximize the number of data points m subject to 

{ }**** ,,0 ii CTCT ∀<ΔΔ , j = 1,…, m. Of course, numerous variables other than C, such as income, 

site quality, differences in sampling rates among origins, and unobserved variables, influence the 

number of trips. Hence, the stronger the relationship between T and C, and the lower the influence of 

other variables on T, the greater the number of cells, or histograms, in the set {T *, C*}.  

 Given the set of points  {T
*
j,C

*
j}, j = 1,…, m, the approximation of the integral CS = 

 is estimated using the trapezoidal rule as follows:  ∫
mC
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where, to simplify the notation,  T = T* and C = C* for the rest of this section. Since no condition 

except ΔCΔT < 0 is set for the demand function drawn between the available points, the lower 

bound of  CSPAVA deletes the lower triangles, giving . The upper bound 

CS estimator includes the upper triangle and is thus 
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 A potentially important question involving the CS measure regards the extent of the impact 

of the truncation resulting from the exclusion of the approximation of from the estimation 

of CS, where Cp is the choke price.  In parametric TCM models, closed form solutions to the 

continuous integral usually imply a choke price that requires an extrapolation outside the range of 

the available travel cost data.   For the NP, SNP, and PARA cases, given that this choke price is 

usually unobserved, truncating the upper limit of the CS measure at Cm may be preferable if a 

conservative measure is desired,.  The data set used in the numerical illustration below is 

exceptional in that a Cm ≥ Cp is observed. Given that this price is less than 9% greater than the 

highest observed C associated with nonzero trips, its use as the choke price does not seem 

unreasonable.  

∫
p

m

C

C

dCCf )(

Choke price issues aside, because the integral in the PAVA procedure is a line operator, it 

gives a consistent estimator of mean consumer surplus in the population: expected population 

consumer surplus is the expectation of consumer surplus conditional on a set of characteristics. 

PAVA switches the order of integration to give the integral over demand price unconditional on the 

characteristics. 

 Note that the nonparametric recreational demand model can be modified to handle 

discrete/continuous processes.  It is common in the TCM literature to model the trip participation 

process in two stages. In the first stage the recreationist decides which of the j = 1,…,L alternative 



sites to visit. In the second stage, she decides how many trips to take to the chosen site.  One way to 

deal with the first stage is to use a multinomial logit approach to estimate probabilities for selection 

among the alternatives (Feather and Hellerstein; Feather, Hellerstein, and Tomasi).  These 

probabilities are then used to construct the expected trip cost, E(Cg), g = 1,…, N individuals, and in 

multivariate cases, the expected values of the other explanatory variables.  The expected trip costs 

can then be used along with the dependent variable Tg (total trips taken by individual g) in a 

continuous regression of a trip demand function or in a hurdle model application (Feather and 

Hellerstein). The results are used to calculate total CS for each individual.    While the first stage 

has been only modeled parametrically in the literature, it is possible to model it nonparametrically in 

a simple procedure, at least for the case where the number of elemental alternatives L is the same for 

each individual. The nonparametric probability that individual g chooses elemental alternative l  is 

(2)     

∑
=

= L

j

gj

gl
gl

T

T
P

1

, g = 1,...,N ; j = 1,...,L       . 

Given estimates of Pgl, expected cost from the first stage RUM is . The data set 

used in the nonparametric estimation is then  {Tg, E(Cg)}.  The nonparametric estimate of  Pgl can 

be used as a specification test on the estimate of Pgl from a multinomial regression.  

( ) gj

L

j

gjg CPCE ∑
=

=
1

   

Kernel Approach to Nonparametic TCM Estimation 

While the PAVA approach in the previous section is simple to compute, the discontinuities inherent 

in the histograms do not allow estimation of derivatives (a minor concern here). In addition, 

asymptotic convergence of the PAVA to the true density may be slower than for the kernel 

approach, at least for smooth densities.  The kernel is a continuous function that describes the shape 
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of a weight function, or local averaging procedure, that is used to represent a regression relationship 

Ti = m(Ci)+εi, i = 1,…n.  The kernel imposes greater form on the demand function than does the 

PAVA approach through the selection of a bandwidth, which controls the level of smoothing of the 

function m(Ci).  The higher the bandwidth, the higher the amount of smoothing. 

 The Koning (1996) implementation of the Nadaraya-Watson (NW) approach (Härdle; 

Silverman) is used for the kernel TCM regression.  For the regression of the (Nx1) travel cost vector 

trips T on C,  the NW function is  
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where  is the predicted value of trips evaluated at some travel cost xj, K(.) is the kernel 

function,  h is the bandwidth, and V is the number of increments of xj.  Given the estimated 

bandwidth, a smooth function for  can be found by setting V arbitrarily large.  In this 

application, V is set equal to 1000, and x = {x1, x2,…, xv} represents a sequence starting from 

minimum observed travel cost to maximum observed travel cost in equal increments.  Given the 

function above, the trapezoidal estimate of CS is generated as described in the previous section but 

with the data points { , xj}, j = 1, …V.   Note that unlike the PAVA method described in the 

previous section, the count data nature of trips is not accounted for in estimation.  However, it is not 

clear how a kernel count model can be constructed without making any potentially incorrect 

assumptions about the nature of the underlying count data distribution. 

( jxT̂ )

( )jxT̂

( )jxT̂

 Many different kernel functions are available and the choice of which one to use is a 

combination of art and science.  The criterion used here is to choose the kernel function that 
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minimizes the sum of the differences between predicted and total actual trips, subject to  

being strictly decreasing in xj. Of several K(u) functions examined, the Epanechnikov kernel best 

mets this criterion. Letting u = (xj – ci)/h, this kernel is 

( )jxT̂
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where indicator I = 1 if 5≤u , and I =0 otherwise. The starting bandwidth is found according to 

Silverman, using the rule 
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where s is the standard deviation of C, w = (Cp=0.75  - CP=0.25), and Cp=0.75  and CP=0.25 are the values 

of Ci corresponding (or closest) to the  75th and 25th  percentiles of an empirical distribution of the 

observed travel cost values.  Cross-validation (e.g., Härdle, Nason) can be used to find the optimal 

value of h.  In this application, half the data is randomly omitted, and equation 5 is applied to the 

remaining data to produce the starting value of h.   Given this starting value, a search is performed 

over h to find the value that minimizes the squared prediction error of the omitted half of the data.ii  

For the results here, simulated annealing (Goffe, Ferrier, and Rodgers) is used to minimize 

to find the optimal value of h, where and  are the omitted 

trips and estimated trips, respectively. 
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iii Alternatively, a grid search around the starting value of h 

can be used to find the omitted sample squared prediction error minimizing value. 
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Semi-Nonparametric and Parametric Count Data Approaches 

Creel (1997) presents the first discussion of using the Fourier form for recreational demand analysis. 

The Fourier form itself will be discussed only briefly here, with a focus on the application of the 

Fourier to count data models and on issues of calculation of the benefit estimate based on this form. 

The Fourier functional form is the only functional form known to have Sobolev flexibility, which 

means that the difference between the model h(x,θ) and the true function f(x) can be made arbitrarily 

small for any value of x as the sample size becomes large (Gallant, 1987).iv The Fourier flexible 

functional form hk(x,θ),  which attaches linear and quadratic terms to the Fourier to help decrease 

the number of terms needed to model nonperiodic functions (Gallant, 1982), is specified as  

(6)      [ ] [ ]( )∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧

′−′+′+′+=
A J

j

jjkk sjwsjvCxxbUh
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the (k-A-J) x 1 row vector x is the vector of all arguments of the utility difference model, k is the 

dimension of θ, A (the length) and J (the order) are positive integers, and kα are vectors of positive 

and negative integers that form indices in the conditioning variables, after shifting and scaling of x 

by s(x).  For example, if x contains 3 variables and length = order = 1, then the kα vectors are 

(1,0,0), (0,1,0), and (0,0,1).  The function s(x) prevents periodicity in the model and is a function 

that shifts and scales the variable to lie in an interval less than 2π (Gallant, 1982).  Specifically, the 

variable is scaled by subtracting its minimum value, then dividing by the maximum value and then 

multiplying the resulting value by (2 π  - 0.00001), which produces a final scaled variable in the 

interval [0, 2 π - 0.000001].  If a variable has only three unique values, then only the v or w 



transformation may be performed. With two values, none of the transformations can be performed.  

A formal criterion for choosing A and J is not well established.  Chalfant and Gallant suggest a rule 

of thumb that the dimension of θ = N
2/3, but this may be high.  Asymptotic theory calls for θ = N

1/4 

(Andrews), but Fenton and Gallant note that θ  = N1/2 is likely to be more representative of actual 

practice.  

 There are a number of concerns about the use of  a semi-nonparametric OLS or GLS 

estimator. First, the functional form Ti = hk(x, )  + ei does not account for the censored and count 

nature of trips.  Second, while 

θ̂

( ) ( ) 0..⎯→⎯− sa

k xhxTε ˆ,θ  in principle, in applied work this limit 

may not be achievable. If it is not, the GLS estimator is not particularly desirable.  Third, GLS does 

not guarantee that estimated trips are nonnegative or that the sum of estimated trips does not equal 

actual trips. Because it is frequently of interest in TCM analysis to predict the new level of trips 

given a change in a policy relevant variable, it is a useful property for the sum of estimated trips to 

equal actual trips as a baseline.  Placing the Fourier form in a count data MLE framework can 

adequately address these three concerns. 

 Given that GLS does not account for the censored (at zero) and the integer nature of the 

dependent variable and may produce biased, and almost certainly, inefficient coefficient estimates, 

count data regression models such as the Poisson or negative binomial have received extensive 

attention in parametric TCM applications (e.g., Hellerstein; Creel and Loomis, 1990).v Count data 

models assume a distribution over Prob(Trips = T; T = 0,1,2,...), as in Prob(Trips=T)= 

Exp(-λ)((λT)/T!) for the Poisson case. The single parameter Poisson distribution has a rather 

restrictive  assumption that the mean, E(Trips),  and variance, σ2(Trips), of the distribution are 

equal.  The two parameter negative binomial relaxes this assumption and allows the variance to 
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vary.  By doing this, the negative binomial can control for overdispersion of the dependent 

variable.  The usual functional form chosen for the Poisson parameter and the negative binomial 

mean in these parametric applications is λ = E(TRIPS) = exp(f(x,β)), where x is the vector of 

explanatory variables, and where the usual functional form for f(x,β) is x′β. The exponential form 

eliminates the possibility of a negative λ.  If sampling weights are used in the MLE, such as a 

population variable with aggregate trip data, then exp(f(x,β)) is multiplied by the weight 

(Hellerstein).  Unlike with a log-linear GLS application, among the useful properties of the 

Poisson and negative binomial in TCM applications are that zero trip values are allowed and, if a 

constant is included, the sum of predicted trips across all observations is equal to total actual trips.  

 However, nonnegativity of estimated trips is not needed for consistent estimation of the CS 

estimate.  Hence, the numerical illustration below includes OLS results using the SNP functional 

form. 

 For the Poisson case, and similarly for the negative binomial, the parameter λ can be made 

highly flexible by setting λ = exp[hk(x,θ)].  However, while a likelihood function utilizing this 

specification for the density is highly flexible, it maybe not be fully SNP.  A fully SNP specification 

is not obtained because λ = exp[hk(x,θ)] presumes that λ belongs to a class of linear exponential 

models and because there are remaining cross-moment restrictions, e.g., the variance and mean are 

still equal.   A count approach that may be fully flexible is that of Cameron and Johansson (1997), 

although the authors do not attempt to demonstrate this feature. This approach utilizes a polynomial 

series expansion from a baseline Poisson density. The major downside of this approach is that the 

likelihood function for this nonlinear model can have multiple optima, which makes traditional 

gradient methods difficult to apply. Because of the difficulty of applying this model in practice, it is 

not extensively discussed here, although results are given briefly in footnote ix.  



 Given the coefficient estimates, the total consumer surplus is the sum of each individual’s or 

representative consumer’s CS, or  

(7)      [ ] ,dTCh w( = CS kk

TC

TC

i

n

=1i

j

ij

ij

),(exp

max

θx∫∑ ∗

where TCij
max is the choke price (or to be conservative, maximum observed trip cost), i.e. the travel 

cost that drives trips from origin i to site j to zero, and wi is some weighting index, if required by 

the data.  Evaluating the CS of each individual separately, as opposed to evaluating average 

CS/person at the sample means and then multiplying by n persons, is necessary since the SNP form 

can be highly nonlinear.  Because it is not practical to evaluate this function analytically, it is 

estimated empirically utilizing the “second stage” approach (e.g., Cooper and Loomis).vi  

Taken individually, Fourier coefficients do not have an economic interpretation, and there is 

little point reporting them, especially if the number of parameters is large. To give the Fourier 

regression results an economic interpretation, they must be re-expressed in terms of the base 

variables. One possible way to add economic content is to generate graphs of the relationship 

between the benefit measure and the explanatory values numerically (Creel and Loomis, 1997).  

Another way is to evaluate ∂exp[hk(x,θ)] /∂x and use this expression to form elasticities or 

flexibilities, noting that  
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In the numerical illustration below, the regression results are expressed in terms of flexibilities 

evaluated at total trips and the mean price. 
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Numerical Illustration 

The data set used for the numerical illustration covers 1989-1990 waterfowl hunting trips for the 

six national wildlife refuges (NWR’s) in California’s San Joaquin Valley (SJV) and consists of the 

whole population of hunters to the SJV NWR's for the 1989-1990 hunting season. The waterfowl 

hunting trip data for the San Joaquin Valley refuges were obtained from the on-site sign-up sheets 

the hunters are required to sign before they enter the hunting area. Since total participation per 

sampling unit is known, it is possible to include nonparticipants in the data set by including Tkj’s 

that are zero, where k = the hunter’s county of origin and j = the refuge (for a total of 396 

observations).   Full details of the data are in Cooper and Loomis (1993). 

 The Pseudo-Maximum Likelihood (Gourieroux, Montfort, and Trognon) parametric and 

SNP count results, as well as OLS SNP regression results, are presented in the form of flexibilities in 

Table 1.  Brief descriptions of the variables are in the footnotes to the table. The flexibilities 

presented in the table for variable x are constructed around base estimated total trips ( ) and the 

mean of the variable x, i.e., 

Tk
ˆΣ

T

x

x

T

k

k

ˆ

ˆ

Σ∂
Σ∂

. Generating the travel cost variable E(Ck) from the results of 

the nonparametric first stage as discussed at the end of the first section  is the same as Ckj for this 

data set, given that while the hunters come from all over the State, the refuges are clustered 

together.vii  The base variables are used in linear form rather than in logarithmic form simply 

because the former fit the data better than the semi-log specification.   In addition, for SNP 

regressions in which the base variables undergo a logarithmic transformation before undergoing the 

Fourier transformation,  ∂T̂  ⁄ ∂C was not strictly less than zero across the observed travel cost  

range (evaluated numerically).  The relationship ∂T̂  ⁄ ∂C < 0 holds across the observed C for all the 

SNP regressions in table 1, and of course holds for the parametric model given its negative 
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coefficient on C.   The adjusted R2 and log-likelihood values show that the biggest gains in fit come 

with just the first series transformation, even though all the regressions are statistically different from 

each other on the basis of likelihood ratio tests.  However, as is discussed further below, SP-III and 

SP-IV results are unstable due to high levels of multicollinearity.  This is not surprising given that 

these two models have 25 and 45 coefficients each, respectively.viii  The SNP specifications with 

order J = 2 (SP-II and SP-IV) produced flexibilities for H20DEL much smaller than the other 

models, although the flexibility was not significant for SP-II. 

 Because the Fourier form produces estimators that are inherently highly collinear, hypothesis 

tests derived from the covariance matrix are not trustworthy.  Instead, confidence intervals for the 

regression results are produced with a bootstrap approach.  Specifically, 1,000 simulated data sets 

are generated by randomly drawing (with replacement) observations from the real data set to create 

simulated data sets with the same sample size as the real data set. The bootstrap is the most general 

method for estimating confidence intervals since it uses the actual sample as the population for the 

choice sets.  The confidence intervals presented in Table 1 are constructed from the regression 

results on each simulated data set and are of the bias corrected accelerated (BCa) type (Efron, 1987), 

which gives the bootstrap results an interpretation analogous to t-statistics by making the estimated 

confidence interval symmetric around the mean. 

 The α term in the table is a test of the equi-dispersion  property of the Poisson form and was 

performed with the following regression (Cameron and Trivedi, 1990): 

(9)     
[ ]

[ ] ii

i

iiT ελα
λ

λ +=
−

− ˆ
1ˆ

ˆ 2

, 

where   = exp(hk(xi,θ)) for the SNP and exp(xi’b) for the parametric case.  If  Ho:α = 0 is not 

rejected, then the Poisson condition E(T) = var(T) is not rejected.  For the Poisson  models in Table 

iλ̂
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1, α  is both large and significant only in the parametric case.  While it is significantly different 

from 0 at the 10% level for SP-II, given that  α=0.04 for this model, the drawback of using Poisson 

over the negative binomial in this case  cannot be great.  The null hypothesis is not rejected for 

SP-I, III, and IV.  The estimates of α for the Fourier Poisson models suggest that the Fourier form 

provides a substantial increase in flexibility over the parametric form, and even does so with only a 

few leading Fourier terms.   However, cross-validation results below suggest that SNP-IV and 

perhaps SNP-III are highly over-fitted.   If so, the dependent variable in equation 9 will be close to 

zero, and hence α = 0 will hardly ever be rejected for SNP-III and IV.  

  The first two columns of Table 2 give the solution to the PAVA model from the first section. 

 In the table, the value in the jth row of  “Trips” column is the total number of trips at travel cost C* 

greater than or equal to C*j but less than C*j+1.  As is evident from the first two columns, the 

relationship between trips and travel cost is highly nonlinear.  If an econometric model predicted 

trips precisely, then these predicted values, when summed to correspond to the travel cost cells in the 

first column, should yield the same vector of trips in the second column.  The value of this test over 

a single measure of fit such as the R2 is that it can indicate across what travel cost range estimated 

trips may deviate from actual trips. This knowledge can be useful if tracking movements along the 

demand curve..  As Table 2 shows, the parametric count model (“Param”) noticeably underpredicts 

trips for the lowest C* cell and overpredicts trips for the next cell.   The SNP models did notably 

better, although there is still room for improvement in the tail of the distribution.   

 Table 3 presents the consumer surplus (CS) point estimates and some descriptive statistics 

for each of the models.  Confidence intervals (CIs), standard errors, and coefficients of variation for 

the CS measures are created using the bootstrap method described earlier.  The BCa confidence 

intervals are shown for each point estimate. For cases where the empirical bootstrap CS distribution 



is biased (relative to the point estimate), the CI from this distribution is shown as well.  Presented on 

a per-trip basis, estimated CS ranges from $11.39 for SP-I to $32.26 for SP-II.   A comparison 

among the SNP count model results in table 2 shows that the greatest percentage difference between 

the model predictions occurs in the tails of the distribution, where SP-I predicts one trip in the travel 

cost range $171.69 ≤ C < $188.38, while SP-II and SP-IV predict 25.4 and 27.5 trips, respectively, 

and where the true value is 19.  Most likely, even though they represent only a small fraction of 

total trips, it is these differences in the tails that cause the SP-I and SP-II CS estimates to differ by 

almost a magnitude of 3.   

 As Table 3 shows, the empirical CI is biased enough in the cases of SP-III and IV that BCa 

lower bounds are negative.  Because PAVA imposes the least structure on the data, the statistics for 

it should provide the lower bound on efficiency relative to the parametric and semi-nonparametric 

methods.   Both SNP-III and IV have higher coefficients of variation than the PAVA point 

estimate, which suggests that these two models are overfitted and that collinearity makes the results 

unstable. The SNP-I OLS model produces CS results similar to the SNP-I count model.  However, 

as Table 2 shows, the SNP-I OLS underpredicts trips by around 50%, so it is probably not as useful 

as the count models for predicting changes in trips associated with policy shocks. While they are not 

reported here, OLS versions of SNP-II, III, and IV were also tried. Again, the CS/trip values were 

relatively close to the count data versions, although trip predictions were off.   That the CS/trip 

results for the count data SNP models are close to those for the fully flexible OLS SNP model 

speaks well for the flexibility of the count SNP model. ix  For the kernel model, the estimated 

bandwidth h was 2.84.x  Estimated CS/trip was within several cents of the PAVA estimate, and as 

would be expected, its coefficient of variation is lower than that for PAVA but higher than the 

parametric one. 
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)

Cross-validation can be used to better assess at what point over-fitting begins in the SNP 

count models. The cross-validation procedure involves removing one observation {Ti, Xi}, where Ti  

is trips and Xi is a vector of explanatory variables, doing the regression on the remaining data, and 

then using the estimated coefficients to predict  = f( Xi). This procedure is carried out for each i = 

1,…,N observations to create the (N x1) vector of predictions . Out-of sample squared prediction 

error is .  For the SNP-I, SNP-II, SNP-III, and SNP-IV count models, the square 

roots of this statistic are 0.891, 0.832, 0.830, and 3.792, respectively (normalizing on the parametric 

count error by setting it to 1 to make comparisons more obvious).  The results show a gain in 

out-of-sample predictive power in moving from the parametric model through SNP-I to SNP-II. 

However, SNP-III has hardly any gain in this test over SNP-II, and SNP-IV does several times 

worse than the parametric count model.  In fact, a look at the results in Table 3 shows that the 

coefficient of variation of the SNP-IV consumer surplus estimate is much higher than that for the 

PAVA model, which appears to corroborate with the results of this cross-validation test.  Finally, 

the coefficient of variation for SNP-III and SNP-IV are larger than that for PAVA, which again 

suggests that SNP-II represents the maximum amount of fitting advisable for these data.  

iT̂

T̂

( ) ( TTTT ˆˆ −
′

−

 Table 4 presents the results of the hypothesis test Ho: CSi - CSj = 0, where the subscripts 

reference the approaches.  Each of the 1,000 simulated data sets was saved, thereby allowing each 

data set to be analyzed by each approach and hence, allowing pairwise comparisons of the CS 

estimates across these approaches. The tests are based on the 90% CIs from the empirical interval as 

well as 90% CIs from the BCa transformation. In most cases, the null hypothesis is not rejected at 

the 5% level of significance.  Of all the models, SNP-I is the one for which equality is most often 

rejected.  The general conclusion drawn from the results from the various approaches is that for this 
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data set the true CS value is somewhere within the range of the values reported in Table 3. Note  

that the parametric-based value falls in this range. 

 

Conclusions 

Nonparametric (NP) methods are especially useful approaches for TCM modeling at the exploratory 

level.  The two NP approaches used here gave quite similar benefit estimates, although the PAVA is 

less efficient than the kernel given that it imposes less structure on the data. The semi-nonparametric 

(SNP) models presented here provide both a means to deal with multiple explanatory variables more 

easily than with NP methods, and unlike NP, embed the parametric model, thereby providing a 

direct link to economic models.  However, while the SNP approach should converge on the correct 

function as the sample becomes large, in practice, samples may not be large enough to ensure 

convergence.  The estimation results show that with real world data, the SNP approach requires 

careful modeling, as is demonstrated in the increasing instability in the econometric results for the 

SNP models as the number of parameters increases.  For the data set examined here using the SNP, 

only a few series transformation terms were needed to improve the fit substantially, and maintain a 

balance in the tradeoff between efficiency and bias. 

 The PAVA approach imposes the fewest assumptions on the data and the parametric count 

model imposes the most.  The empirical comparisons of the consumer surplus estimates indicate 

that the parametric count model appears trustworthy in estimating this value.  At the same time, one 

should note the relatively short length of the confidence interval around the parametric estimate 

compared with those of the NP and SNP models.  This relatively precise fit makes the parametric 

results appear better than what the data themselves suggest.  An implication of this result for 

econometric analysis is that, in the absence of specification tests of parametric models against NP or 
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SNP models, the researcher should be explicit in noting that precision of the parametric point 

estimate is attributable more to the imposition of specific assumptions used in estimation, such as 

functional form, than would be explained by the data themselves.    

 With finite samples, the regression results for the higher parameter SNP models show that 

flexible regression tools can produce dubious results.  Therefore, a risk-reducing research strategy is 

to apply several different flexible tools to analyzing the data set, as is done here.  If equality of the 

parametric to the NP and SNP results is rejected in each case, then the “truth” of the parametric 

model is certainly questionable.  
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Table 1. Parametric and Semi-Nonparametric (SNP) Regression Results.  

 

  

Results Presented in Form of Flexibilities (90% BCa Confidence Intervals Shown in Parentheses) 

      
 PML Poisson Count Model  

        

Variable Parametric  SNP-I SNP-II SNP-III  SNP-IV SNP-I (OLS) 

    
TC(RT) -3.10  -6.98 -2.64 -5.54  -3.31 -6.63

 (-4.24, -1.99) (-9.2, -4.82) (-4.24, -1.09) (-7.41, -3.73) (-5.55, -1.15)   
(-8.50, 

-4.81) 
 

INC89 0.16  -3.36 2.34 -1.18  14.02 -10.21

 (-0.74, 1.08) (-8.0, 1.12) (-0.74, 20.54) (-6.1, 3.66) (-12.67, 41.83) (-27.76, 6.56) 

PSBAG 0.29  0.15 0.12 0.06  0.14 0.22

 (0.04, 0.55) (-0.05, 0.36) (0.04, 0.36) (-0.18, 0.32) (-0.22, 0.50) 
 

  
(-0.48, 

0.96) 

H20DEL 1.59  0.91 -130.60 1.30  -133.58 -3.72

 (0.67, 2.54) (-0.10,  1.97) (-76.45, 0.67) (0.25, 2.40) (-191.3, -77.73)   
(-7.93, 

-0.34) 
 

#coef 5  13 21 25  45 13  

α 1.34 (10.3) 0.09 (0.12) 0.06 (1.51) 0.04 (1.99) 0.02 (0.76)          
-- 
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Table 1. – continued 

 

   

LnL -8754  -4063 -2987 -3617  -2491     -- 

Adj R2 0.511  0.899 0.949 0.933  0.977 0.313

 
Notes: 

BCa 90% confidence interval applies the bias corrected accelerated approach (Efron) to 1000 bootstrap runs. 

SNP-I: order = length = 1; SNP-II; order = 2; length = 1; SNP-III: order = 1; length = 2; SNP-IV: order=length =2. 

OLS-I: ordinary least squares with SNP  transformation of data, order = length = 1. 

#Coef is number is coefficients in the regression; The coefficient α is a test of overdispersion.  

h2 = 1 - RSS/TSS, where RSS is residual sum of squares and TSS is total sum of squares.  For OLS (with a constant term),  h2 equals 

ESS/TSS, though this is not necessarily the case for nonlinear models (Peterson and Stynes, 1986).  

The variables are (see Cooper and Loomis, 1993, for details): TC(RT) is round trip travel cost, including variable vehicle operating cost 

and the opportunity cost of travel time, from county i to refuge j. H20DEL is water deliveries to refuge j.  INCOME is average 

income in county i.  PSBAG is the price of substitutes index, weighted by bag at the destination to reduce multicollinearity. 
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Table 2. Comparison of Actual, Count Data, and OLS Estimated Trips 
  
Aggregated According to the Trip Cost Cells From the PAVA Model  

  

  Estimated trips -- Count Models  

    
TC(RT) Trips Param SNP-I SNP-II SNP-III SNP-IV SNP-I 

(OLS) 

        

        
1.07 

8727 6632.9 8458.2 8622.7 8762.0 8750.4 9656.3 

    
42.13 2496 4701.7 2697.8 2494.9 2375.9 2405.3 381.9 

    
55.73 2419 2369.9 2188.4 2409.4 2310.7 2411.2 215.6 

    
117.62 334 211.5 417.5 364.1 394.7 397.8 39.2 

    
130.38 237 319.3 476.6 356.8 369.2 277.8 2.2 

    
137.34 92 87.9 144.3 84.8 135.5 76.8 2.4 

    
157.76 41 58.6 9.7 31.8 36.3 38.1 6.3 

    
168.90 22 1.8 0.8 1.3 5.3 4.7 0.0 

    
171.68 19 12.1 1.0 25.4 5.2 27.5 0.1 

    
188.38 6 0.4 0.0 1.2 0.2 0.8 0.0 

    
206.02 2 0.4 0.0 1.7 0.0 1.7 0.0 

    
225.50 0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 3. Consumer Surplus per Trip Estimates and Related Statistics  

     

 PAVA  Kernel SNP-I 
(OLS) 

 

      

CS/Trip 24.72  24.87 12.38  

BCa 90% (16.67 ,  58.49) (10.78 ,  39.45) (8.15 , 16.72) 

Empirical 90% (3.02 ,  47.25) (17.62 ,  45.84) (9.93 , 17.72) 

Standard Error  13.44  8.71 2.61  

Coef. Variation 0.41  0.31 0.20  

     

 Count Data Models 

     

 Parametric  SNP-I SNP-II  

     

CS/Trip 26.09  11.39 32.26  

     

BCa 90% (18.19 ,  34.24) (6.61 ,  16.33) (17.5 , 52.57) 
 

Empirical 90% --  -- --  
 

Standard Error 4.88  2.95 11.49  
 

Coef. Variation 0.19  0.23 0.37  

     

 SNP-III  SNP-IV   
 

 

CS/Trip 14.59  26.37  
 

 

BCa 90% (-0.86 , 32.17) (-49929 ,  88570)  
 
 

Empirical 90% (10.27 , 20.63) (15.04 ,  431.85)  
 
 

Standard Error 10.02  40177  
 

 

Coef. Variation 0.66  15.05   
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Table 4. Hypothesis tests comparing benefit estimates from each model  

  
(1 = equality not accepted; 0 = equality accepted)   

     
      
PAVA 

     
Kernel 

 
Param 

  SNP-I  SNP-II    
SNP-III 

 
SNP-IV 

 

         
PAVA            

  -- 
0 0 1 0 0 0  

     
Kernel 

0 
           
  -- 

0 1 0 1 0  

     
Param 

0 
0         

-- 
1 0 0 0  

      
SNP-I 

0 
0 1           

  -- 
1 0 0  

      
SNP-II 

0 
0 0 1         

-- 
1 0  

      
SNP-III 

0 
0 0 0 0           

  -- 
0  

      
SNP-IV 

0 
0 0 0 0 0          

-- 

 

     

Notes: 
 
Lower Triangle is the hypothesis test based on BCa transformations of the bootstrap results.  

Upper Triangle is the hypothesis tests based on empirical confidence intervals of the bootstrap 

results. 

SNP results are for the count models. 
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Endnotes 

 
i The subscript k refers to the maximum number of unique values of C, where k = n, the sample size. 

For each Cj, j=1,…,k, Tj is the total number of trips associated with Cj.  Hence, with this horizontal 

summation of individual demand points, {Tj,Cj} represent points along a total demand function.  

ii Cross-validation can be of the “leave one out” or “leave half out” variety (Nason). The former is 

slow in this case and may be overkill in this application. 

iii Simulated annealing differs from gradient methods in that it permits movements that increase the 

objective function in addition to ones that decrease it (we are minimizing here), so that the program 

can move out of local optimum if need be. A version of the annealing routine by E. Tsionas was 

used and is available from http://gurukul.ucc.american.edu/econ/gaussres/optimize/optimize.htm. 

iv Note that asymptotically, SNP results can be considered nonparametric (Gallant and Tauchen), 

making the distinction between the two somewhat artificial, at least in theory if not in practice. 

v Given the flexibility of the Fourier, the fact that GLS does not account for the censored and 

integer nature of the dependent variable in its Fourier application is probability not of major 

concern in and of itself, but the lack of a nonnegativety constraint is.  

vi The SNP, Kernel, and PAVA computer programs written in Gauss are available directly from the 

author at jcooper@econ.ag.gov. Similar programs for CVM are available as well.  

vii To maintain degrees of freedom, the nonparametric first stage model is not used to create 

expected values of the other variables for the regressions utilizing the data set {Tk, Ck, Xk,}, where Xk 

is the matrix of explanatory variables, and k = 1,…,N denotes individuals (or sampling aggregations, 

as is the case here).  If the goal of the study is to recover properly the total consumer surplus of each 

individual across all the choices, then this data set should be used instead of  {Tkj, Ckj, Xkj,}, k = 
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1,…N, j = 1,…,L.  However, in this study the econometric comparisons are of interest, and 

reliability of the parametric and semi-parametric results are increased by maintaining the larger 

sample size. 

viii The experiment here suggests that inclusion of the quadratic terms as well as the Fourier series 

terms in the regressions had little impact on the CS estimates. Hence, they are left out for the sake of 

efficiency. 

ix While not reported in the tables, the Cameron and Johansson model, which takes a polynomial 

series expansion around a baseline Poisson density, was also tried.  Because traditional gradient 

methods are difficult to use with this model, I used the method of annealing, as recommended by the 

authors. The CS/trip estimates for a PP2 (Poisson polynomial of order 2) and PP3 are $26.52 and 

$21.13, respectively. However, convergence could not be achieved with PP1, and for both PP2 and 

PP3 the covariance matrix was not positive definite. 

x Not accounting for population differences across the centroids (observation i) in this dataset with 

trips aggregated by centroid can result in heteroskedasticity – predicted trips for high (low) 

population centriods will be higher (lower) than expected from their travel costs alone. To account 

for the impact of population-related heteroskedascity in the kernel regression, Ci is weighted by the 

ratio of total sample population size to population size at that observation. The weights are 

multiplied by the same size and divided by the sum of the weights so that the sum of the weights 

across the observations is the sample size (e.g., Greene, 1992). The weight is 
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