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ABSTRACT

Fragility of regression analysis to arbitrary assumptions and decisions about

choice of control variables is an important concern for applied econometricians (e.g.

Leamer (1983)). Sensitivity analysis in the form of model averaging represents

an (agnostic) approach that formally addresses this problem of model uncertainty.

This paper presents an overview of model averaging methods with emphasis on

recent developments in the combination of model averaging with IV and panel data

settings.
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1 Introduction

In the early Eighties, Leamer (1983) pointed out the fragility of regression analysis to

arbitrary decisions about choice of control variables. The selection of control variables in

empirical research is an important issue which usually hampers consensus on the particular

empirical model to be estimated. The empirical growth literature is probably the best

example. In the growth regressions industry, the main area of effort has been the selection

of appropriate variables to include in linear growth regressions, resulting in a total of more

than 140 variables proposed as growth determinants. Parameter estimates emerging from

these regressions are highly fragile to the inclusion of different sets of regressors.

Extreme Bound Analysis (EBA) was first proposed (Leamer (1983), Leamer and

Leonard (1983)) as a tool for quantifying the sensitivity of regression estimates. Sup-

pose one is interested in measuring the effect of the variable X on the variable Y . Ex-

treme Bounds Analysis consist of the following steps: first, we estimate a fairly general

model in which you regress Y on X and a set of other (control) variables; second, we

estimate several simplified versions of the general model (for example by excluding one or

more explanatory variables); finally we analyze all the different estimated coefficients on

X. Extreme Bounds Analysis is concerned with the largest and smallest values of these

estimates. Suppose the estimated coefficient varies greatly over the range of estimated

models. Inference concerning the coefficient is then said to be be fragile or unreliable,

since the coefficient estimate obtained appears to be sensitive to the precise specification

of the model used. Some authors have criticized this approach on the grounds of its

ad-hoc nature and because it merely presents in a different format the same information

as does conventional regression analysis (e.g. Angrist and Pischke (2010), McAleer et al.

(1985)).

Imagine a situation in which there are many different candidate models for estimating

the effect of X on Y . Facing this challenge, one can estimate a single model and then

make inference based on that selected model ignoring the uncertainty surrounding the

model selection process (i.e. the model selection approach). Following this approach we

are implicitly assuming not only that there exists a true model, but also that this model is

included among the candidate models considered by the researcher. The model selection

literature has proposed different alternatives to carry out the selection step; the book by

Claeskens and Hjort (2008) is an excellent reference. An alternative strategy is to estimate

all the candidate models and then compute a weighted average of all the estimates for the

coefficient on X (i.e. the model averaging approach). With this approach we do not need
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to assume that a true model exists. Moreover, after computing the associated standard

errors, one can make inference based on the whole universe of candidate models. By

doing so, we would be considering not only the uncertainty associated to the parameter

estimate conditional on a given model, but also the uncertainty of the parameter estimate

across different models. This approach would lead us to more reliable, or at least more

honest, conclusions regarding the significance of the estimated effect of X on Y . This

paper presents an overview of the literature on model averaging techniques applied to

empirical research in economics.

Empirical growth is probably the field in economics in which concerns about fragility of

regression estimates have caused the most active literature applying sensitivity analysis

techniques. In this context, Levine and Renelt (1992) is possibly the most influential

paper considering extreme bound analysis, and Sala-i-Martin et al. (2004) is certainly the

paper that popularized the use of model averaging as a tool for applied researchers in the

empirical growth regressions literature.

As in any other subfield of econometrics, in this literature there are Bayesian and

Frequentist approaches to model averaging. The main differences between Frequentist

Model Averaging (FMA) and Bayesian Model Averaging (BMA) arise from the way in

which inference is made, and from the selection of model weights. Compared with the

FMA approach, there has been a huge literature on the use of BMA in statistics and more

recently in economics. Thus, the BMA toolkit is larger than that of FMA. However, the

FMA approach is starting to receive a lot of attention over last decade. In this paper I

review the state of the art in both approaches providing a discussion of their advantages

and drawbacks. Moreover, I argue that the two perspectives are complementary and they

can be reinforced to each other so that dogmatic recommendations are not in the agenda

of this paper.

On the other hand, given the raising interest on causal effects in economics over the

last decades, the combination of model averaging and Instrumental Variables (IV) models

is an interesting line of open research. Panel data represent an alternative to IV for

estimating causal effects in situations with endogenous regressors, so extending the model

averaging apparatus to panel data models is also a relevant research topic. The first steps

on this direction have been taken during the last lustrum (e.g. Durlauf et al. (2008),

Moral-Benito (2010a)). In this paper I summarize the recent developments on model

averaging with endogenous regressors.

The remainder of the paper is organized as follows. Section 2 intuitively presents the

basic concepts of model averaging techniques. The Bayesian approach to model averaging
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is formally presented in Section 3, and the Frequentist alternative in Section 4. Section

5 describes recent model averaging approaches to settings with endogenous regressors,

and in Section 6 I present some examples of model averaging applications in economics.

Finally, Section 7 concludes.

2 Model Averaging as an (Agnostic)

Alternative

It is common in empirical papers to have one baseline specification in which the central

conclusions are based on, and several robustness checks in a companion table or even in an

appendix. The main objective of this approach is to convince the reader that the results

in the paper are robust to different assumptions. However, it is still unclear for the readers

how hard the authors had to work to find their favorite outcomes. This situation arises

because theory does in general not offer enough guidance in the selection of the appropriate

empirical model, and then the empirical researcher faces a problem of model uncertainty.

Therefore, different researchers might propose and use different empirical models that are

compatible with each other for analyzing the same question. In doing so, they first select a

single model (for instance based on a given information criterion or a personal view of the

question of interest), and second they make inference under the selected model as if this

model had been given in advance. In reality, inference based on the final model might give

an excessively optimistic answer due to the under-estimation of the uncertainty associated

with the whole estimation procedure. Model averaging represents an alternative to this

process.1 Moreover, I consider model averaging as an agnostic approach in the sense that

a researcher employing model averaging techniques is unwilling to commit to an opinion

about the best single model.

Frequentist Model Averaging (FMA) and Bayesian Model Averaging (BMA) are two

different approaches to model averaging in the literature. Despite their similarities in the

spirit and the objectives, both techniques differ in the approach to inference and to the

selection of model weights. Sections 3 and 4 present an overview of the developments

on BMA and FMA over the last years, and how both approaches conduct inference and

compute model weights.

1Extreme Bound Analysis is also an option to be considered as commented in the Introduction. How-

ever, once we accept there are different competing models compatible with each other, model averaging

provides a more systematic and rigorous approach to the problem.
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2.1 Historical Perspective

As pointed out by Clemen (1989), Laplace (1818) considered combining regression

coefficient estimates almost 200 years ago. In particular, he derived and compared the

properties of two estimators, one being least squares and the other a kind of weighted

median. Moreover, he also analyzed the joint distribution of the two, and proposed a

combining formula that resulted in a better estimator than either.2

Aside from Laplace, other early treatments of combining multiple estimates came from

the statistical literature. Edgerton and Kolbe (1936) propose to combine different esti-

mates in such a way that the combining weights result from minimizing the sum of squares

of the differences of the scores. Horst (1938) derives a formula for combining multiple

measures in which the criterion is obtaining maximum separation among the individual

population members. Halperin (1961) provided a minimum-squared-error combination of

estimates, and Geisser (1965) appears to be the earliest Bayesian approach to combining

estimates. In the forecasting literature, a flood of papers about combining different fore-

casts was generated in the 1970s since the seminal papers by Barnard (1963) and Bates

and Granger (1969). Timmermann (2006) provides a good overview of this literature.

Despite the basic paradigm for Bayesian Model Averaging (BMA) was introduced by

Leamer (1978), the approach was basically ignored until the 1990s and 2000s when there

has been an enormous literature on the use of BMA. This is so because more powerful

computers and theoretical developments such as Markov chain Monte Carlo Model Com-

position (MC3) allow researchers to overcome the troubles related to implementing BMA.

Raftery (1995) and Fernández et al. (2001b) are good examples of recent BMA applica-

tions in economics. The state of research in the field during the nineties was summarized

in Hoeting et al. (1999).

The forecasting combination articles in the 1970s can be considered the predecessors

of the current Frequentist Model Averaging (FMA) literature. In contrast to BMA, the

FMA approach has started to receive attention over the last decade; see, for example, Hjort

and Claeskens (2003) and Hansen (2007). This is so probably because the Frequentist

approach to model uncertainty was traditionally focused on model selection rather than

model averaging.

2See Stigler (1973) for a brief presentation of Laplace’s work.
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2.2 Basic Concepts

Empirical research in economics is in general plagued by model uncertainty problems.

This means that it is very unlikely that only one model needs to be considered. Imagine

a researcher who is trying to estimate the effect of a particular policy on a particular

outcome. It is a common situation to have more than one possible model to analyze

such effect. Let us suppose that the researcher has q possible models in mind, indexed

by h = 1, ..., q. This implies that there are q different estimates of the effect of interest

depending on the model considered, say
{

β̂1, β̂2, ..., β̂q

}
.

In such a situation, the most common approach is to select a single model from the q

existing candidates. There is a huge literature on model selection, i.e. the task of selecting

a statistical model from a set of potential models given data. A good overview of this

literature can be found in Claeskens and Hjort (2008). After the model selection step,

both the inference and the conclusions of the analysis are typically based on this single

model. For instance, let us think that the selected model is h = 3, and therefore the

presented result is β̂3. On the other hand, it is also very common to present some extra

estimates as a robustness check. It is easy to imagine a final table with several columns

presenting some of the estimates corresponding to other possible models, for example β̂10,

β̂23, β̂34, and β̂50. If all the presented estimates are close enough, the researcher concludes

that her result is robust and the paper is then ready. However, as previously mentioned,

it will be still unclear for the readers how hard the researcher had to work to select and

defend the selected model h = 3, and more importantly, to find the similar estimates

β̂10, β̂23, β̂34, and β̂50 among the q candidates, bearing in mind that we could easily have

billions of candidate models.

Model averaging represents an agnostic alternative to this approach. The key idea of

model averaging is to consider and estimate all the q candidate models, and then report

a weighted average as the estimate of the effect of interest. Therefore, model averaging

is an agnostic approach in the sense that a researcher relying on this approach holds the

view that the true single model is unknown and probably unknowable. Then, the best

she can do is to consider all the possible alternatives instead of selecting one probably

incorrect option. The model averaging estimate (β̂MA) can then be written as:

β̂MA =

q∑

h=1

ωhβ̂h (1)

where ωh represents the weight associated to model h. In subsequent sections we will

analyze the different alternatives to choose and estimate the weights (ω̂h), to obtain the
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model-specific estimates β̂h, and how can we make inference based on model averaging in

both its Bayesian and Frequentist versions.

3 Bayesian Model Averaging

3.1 Estimation and Inference with BMA

For the sake of illustration, let us consider the case of a normal linear regression model

in which model uncertainty comes from the selection of regressors to include in the right

hand side:

y = Xβ + ǫ (2)

ǫ ∼ N(0, σ2IN)

where y and ǫ are N × 1 vectors of the dependent variable and the random shocks re-

spectively. X is a N × q matrix of regressors that may or may not be included in the

model, and β (q × 1) contain the parameters to be estimated. If we set some components

of β = (β1, β2, ..., βq)
′ to be zeros, there are a total of 2q candidate models to be estimated

—indexed by Mj for j = 1, ..., 2q— which all seek to explain y —the data—. For instance,

setting β1 to be zero implies that we are not including the first regressor (i.e. the first

column of X, being X = (X1, X2, ..., Xq)) in the model. Each model Mj depends upon

parameters βj. In cases where many models are being entertained, it is important to be

explicit about which model is under consideration. Hence, following the Bayesian logic,

the posterior for the parameters calculated using Mj is written as:

g
(
βj|y, Mj

)
=

f (y|βj, Mj) g (βj|Mj)

f (y|Mj)
(3)

and the notation makes clear that we now have a posterior g (βj|y, Mj), a likelihood

f (y|βj, Mj), and a prior g (βj|Mj) for each model.

On the other hand, Bayesian inference suggests that the posterior model probability

can be used to assess the degree of support for Mj. Therefore, posterior model probabilities

will be used as model weights in BMA. Given the prior model probability P (Mj) we can

calculate the posterior model probability using Bayes Rule as:

P (Mj|y) =
f (y|Mj) P (Mj)

f (y)
. (4)
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According to equations (3) and (4), it is now clear that we need to elicit priors for the

parameters of each model and for the model probability itself. This means that Bayesian

Model Averaging (BMA) involves two different prior beliefs, one on the parameter space

(g (βj|Mj)) and another one on the model space (P (Mj)).

In order to calculate the posterior model probability in (4) we also need to compute

f (y|Mj) that is often called the marginal (or integrated) likelihood, and is calculated

using (3) and a few simple manipulations. In particular, if we integrate both sides of

(3) with respect to βj, use the fact that
∫

g (βj|y, Mj) dβj = 1 (since probability density

functions integrate to one), and rearrange, we obtain:

f (y|Mj) =

∫
f
(
y|βj, Mj

)
g
(
βj|Mj

)
dβj. (5)

The quantity f (y|Mj) given by equation (5) is the marginal probability of the data,

because it is obtained by integrating the joint density of (y, βj) given y over βj. The

ratio of integrated likelihoods of two different models is the Bayes Factor and it is closely

related to the likelihood ratio statistic, in which the parameters βj are eliminated by

maximization rather than by integration.

Following Leamer (1978) we can consider β a function of βj for each j = 1, ..., 2q (i.e.

β(βj)) and then calculate the posterior density of the parameters for all the models under

consideration by the law of total probability:

g (β|y) =
∑2q

j=1
P (Mj|y) g (β|y, Mj) (6)

Therefore, the full posterior distribution of β is a weighted average of its posterior

distributions under each of the models, where the weights are given by P (Mj|y).

Given the Bayesian framework based on parameter distributions, when applying BMA

according to equation (6) both estimation and inference come naturally together from the

posterior distribution that provides inference about β that takes full account of model

uncertainty.

Despite the Bayesian spirit of the approach, one might also be interested in point

estimates and their associated variances. If this is so, one common procedure is to take

expectations across (6):

E (β|y) =
∑2q

j=1
P (Mj|y) E (β|y, Mj) (7)

with associated posterior variance:

V (β|y) =
∑2q

j=1
P (Mj|y) V (β|y, Mj) + (8)

+
∑2q

j=1
P (Mj|y) (E (β|y, Mj) − E (β|y))2
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The posterior variance in (8) incorporates not only the weighted average of the esti-

mated variances of the individual models but also the weighted variance in estimates of

the β’s across different models. This means that even if we have highly precise estimates

in all the models, we might end up with considerable uncertainty about the parameter if

those estimates are very different across specifications.

As a by-product of the BMA approach, we can also compute the posterior probability

that a particular variable h is included in the regression. In other words, variables with

high posterior probabilities of being included are considered as robustly related to the

dependent variable of interest. This object is called the posterior inclusion probability for

variable h, and it is calculated as the sum of the posterior model probabilities for all of

the models including that variable:

posterior inclusion probability = P (βh 6= 0|y) =
∑

βh 6=0
P (Mj|y) (9)

Implementing Bayesian Model Averaging can be difficult because of two reasons: (i)

two types of priors (on parameters and on models) need to be elicited and this can be a

complicated task. (ii) the number of models under consideration —2q— is often huge so

that the computational burden of BMA can be prohibitive. In the next sections I present

some of the remedies proposed in the literature to these problems.

3.2 Priors on the Parameter Space

Prior density choice for Bayesian Model Averaging remains an open area of research.

In the context of BMA, improper priors for model-specific parameters cannot be used

because they are determined only up to an multiplicative arbitrary constant. Despite these

constants cancel in the posterior distribution of the model-specific parameters when doing

inference for a given model, they remain in marginal likelihoods leading to indeterminate

model probabilities and Bayes factors. To avoid this situation, proper priors for β under

each model are usually required. Some of the most popular alternatives considered in the

literature are summarized below.

3.2.1 Zellner’s g Priors

Given the normal regression framework, the bulk of the BMA literature favors the

natural-conjugate approach, which puts a conditionally normal prior on coefficients βj.

Virtually all BMA studies use a conditional prior for the j-th model’s parameters (βj|σ2)
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with zero mean and the variance proposed by Zellner (1986), that is, a prior covariance

given by g(X ′
jXj)

−1. This prior variance is proportional to the posterior covariance aris-

ing from the sample ((X ′
jXj)

−1) with the scalar g determining how much importance is

attributed to the prior beliefs of the researcher. The conditional prior on βj is then:

βj|σ2, Mj, g ∼ N(0, σ2g(X ′
jXj)

−1) (10)

Moreover, the variance parameter σ is common to all the models under considera-

tion, so an improper prior is not problematic, and the most common approach is the

uninformative prior proposed by Fernández et al. (2001a): p(σ) ∝ σ−1.3

The popularity of this prior structure is due to two factors: (i) it has closed-form

solutions for the posterior distributions that drastically reduce the computational burden,

and (ii) it only requires the elicitation of one hyperparameter, the scalar g.

Though there are many different options for choosing g (see for example Fernández

et al. (2001a)), the three most popular alternatives are:

• Unit Information Prior (g-UIP): proposed by Kass and Wasserman (1995), it corre-

sponds to taking g = N , and it leads to Bayes factors that behave like the Bayesian

Information Criterion (BIC). Therefore it is possible to combine Frequentist OLS

or MLE for estimation with the Schwarz approximation to the marginal likelihood

for averaging with a Bayesian justification (see for example Raftery (1995) or Sala-

i-Martin et al. (2004)).

• Risk Inflation Criterion (g-RIC): recommended by Foster and George (1994), it

implies setting g = q2.

• Benchmark Prior: After a thorough study, Fernández et al. (2001a) determined

this combination of the g-UIP and g-RIC priors to perform best with respect to

predictive performance. It matches with g = max(N, q2).

Eicher et al. (2009c) compare different prior structures and conclude that the combi-

nation of the Unit Information Prior on the parameter space and the uniform prior on

the model space (see the next subsection about priors on model space) outperforms any

other possible combination of priors previously considered in the BMA literature in terms

of cross-validated predictive performance.

3We can also include a constant term (α) in all the models with prior p(α) ∝ 1.
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3.2.2 Laplace Priors

Let us construct a partition of the X matrix such that we can rewrite (2) as follows:

y = X1γ + X2δ + ǫ (11)

ǫ ∼ N(0, σ2IN)

where γ and δ are the new q1 × 1 and q2 × 1 parameter vectors with q1 + q2 = q.

Given this unrestricted model, we can determine which are the focus regressors (X1)

and which are the auxiliary (doubtful) regressors (X2).
4 We can reparametrize the model

in (11) replacing X2δ = X∗
2δ

∗, with X∗
2 = X2PΠ−1/2 and δ∗ = Π1/2P ′δ, where P is

an orthogonal matrix and Π is a diagonal matrix such that P ′X ′
2RX1

X2P and RX1
=

I − X1(X
′
1X1)

−1X ′
1.

In this setting, Magnus et al. (2010) propose to consider an alternative prior struc-

ture that leads to the so-called Weighted-Average Least Squares (WALS) estimator. In

particular, WALS use a Laplace distribution with zero mean for the independently and

identically distributed elements of the transformed parameter vector η = δ∗/σ, whose

ith element, ηi (i = 1, ..., q2) is the population t-ratio on δi, the ith element of δ. As

pointed out by Magnus et al. (2010), ”this choice of prior moments is based on our idea

of ignorance as a situation where we do not know whether the theoretical t-ratio is larger

or smaller than one in absolute value”.

The WALS estimator employs non-informative model-specific priors and drastically

reduces the computational burden of standard BMA being proportional to q2 (or q) instead

of 2q2 (or 2q). In contrast, WALS does not provide either Bayesian posterior distributions

or posterior inclusion probabilities as a measure of robustness.

3.3 Priors on the Model Space

In order to implement any of the BMA strategies described above, prior model prob-

abilities (P (Mj)) must be assigned. This step might be considered as analogous to the

choice of model weights in the Frequentist approach to model averaging (more on this

below).

4Note that the focus regressors may only include a constant term so that we may have the same

situation as in the previous section in which all the regressors were focus regressors.
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3.3.1 Binomial Priors

For the model size (Ξ), the most common prior structure in BMA research is the

Binomial distribution. According to this priors, each variable is independently included

(or not) in a model so that model size (Ξ) follows a Binomial distribution with probability

of success ξ:

Ξ ∼ Bin (q, ξ) (12)

where q is the number of regressors considered and ξ is the prior inclusion probability for

each variable.

Given the above, the prior probability of a model (Mj) with qj regressors is given by:

P (Mj) = ξqj(1 − ξ)q−qj (13)

One commonly-used particular case of this prior structure is to assume that every

model has the same a priori probability (i.e. the uniform prior on the model space). This

uniform prior corresponds to the assumption that ξ = 1/2 so that (13) reduces to:

P (Mj) = 2−q (14)

Moreover, given that E (Ξ) = qξ, we can fix different priors in terms of both the

prior inclusion probability (ξ) or the prior expected model size (E(Ξ)). For instance, the

uniform prior just described implies E(Ξ) = q/2. The choice of one of the hyperparameters

ξ or E(Ξ) automatically produces a value for the other, and it leads to larger or smaller

penalizations to big models.

3.3.2 Binomial-Beta Priors

Ley and Steel (2009b) propose an alternative prior specification in which ξ is treated as

random rather than fixed. The proposed hierarchical prior implies a substantial increase in

prior uncertainty about model size (Ξ), and makes the choice of prior model probabilities

much less critical.

In particular, their proposal is the following:

Ξ ∼ Bin (q, ξ) (15)

ξ ∼ Be (a, b) (16)

where a, b > 0 are hyper-parameters to be fixed by the researcher. The difference with

respect to the Binomial priors is to make ξ random rather than fixed. Model size Ξ will
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now satisfy:

E (Ξ) =
a

a + b
q (17)

The model size distribution generated in this way is the so-called Binomial-Beta dis-

tribution. Ley and Steel (2009b) propose to fix a = 1 and b = (q − E(Ξ))/E(Ξ) through

equation (17), so we only need to specify E(Ξ), the prior expected model size, as in

the Binomial priors. However, sensitivity of the posteriors with Binomial-Beta priors is

smaller than with the Binomial priors.

3.3.3 Dilution Priors

Both the Binomial and the Binomial-Beta priors have in common the implicit as-

sumption that the probability of one regressor appears in the model is independent of the

inclusion of others, whereas regressors are typically correlated. In fact, with this priors

on model space, a researcher could arbitrarily increase (or reduce) the prior model prob-

abilities across theories simply by including redundant proxy variables for some of these

theories. This is the denominated dilution problem raised by George (1999).

To address this issue, Durlauf et al. (2008) introduce a version of George (1999) dilution

priors that assigns probability to neighborhoods of models. Moreover, this kind of dilution

prior assigns uniform probability to neighborhoods rather than models, and solves the

dilution problem. Consider a given theory (or neighborhood of models) (T ) for which we

have qT proxies among the whole set of q regressors. For each possible combination of

variables corresponding to theory T (CT ) we can assign the following prior probability:

P (CT ) = |RCT
|

qT∏

h=1

ξπh(1 − ξ)1−πh (18)

where πh is an indicator of whether or not variable h is included in the combination

CT and RCT
is the correlation matrix for the set of variables included in CT . Since the

determinant of this correlation matrix (|RCT
|) goes to 1 when the set of variables are

orthogonal and to 0 when the variables are collinear, these priors are designed to penalize

models with many redundant variables. In practice, we assign the same probability to all

the models included in the neighborhood CT and uniform probability to all the different

neighborhoods.

Despite its advantages regarding the dilution property, this prior structure requires

agreement on which regressors are proxies for the same theories (i.e. it requires to define

the model neighborhoods) which is usually not within reach.
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3.4 Further Topics in BMA

3.4.1 Computational Aspects

In theory, with the results described above we should be able to carry out BMA.

However, in practice, the number of models under consideration (2q) is often so big that

makes it impossible to estimate every possible model. Accordingly, there have been many

algorithms developed which carry out BMA without evaluating every possible model.

One possible approach is the so-called Occam’s Window proposed by Madigan and

Raftery (1994). The basic idea of this technique is to exclude from the summation models

that predict the data far less well than the best model, and models that receive less

support than any of their simpler submodels. Therefore, using an appropriate search

strategy (for instance the leaps and bounds algorithm by Furnival and Wilson (1974)) the

number of models to be estimated is drastically reduced. Madigan and Raftery (1994)

provide a detailed description of the method.

Another commonly-used alternative, initially developed in Madigan and York (1995)

is Markov Chain Monte Carlo Model Composition (MC3). Markov Chain Monte Carlo

(MCMC) methods are common in Bayesian econometrics. MCMC algorithms in general

take draws from the parameter space in order to simulate the posterior distribution of

interest. However, they do not draw from every region of the parameter space, but

focus on regions of high posterior probability. BMA considers the models as discrete

random variables so that posterior simulators which draw from the model space instead

of the parameter space can be derived. As MCMC in the parameter space, MC3 takes

draws from the model space focusing on models with high posterior model probability.

Implementing and programming MC3 is very intuitive and it is not complicated. In the

Appendix you can find a detailed description of how does MC3 work in practice.

3.4.2 A Frequentist Approach to BMA?

If we assume diffuse priors on the parameter space for any given sample size, or, if we

have a large sample for any given prior on the parameter space we can write equation (7)
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as follows:5

E(β|y) =
2q∑

j=1

P (Mj|y) E(β|y, Mj) =
2q∑

j=1

P (Mj|y) β̂j
ML (19)

where β̂j
ML is the ML estimate for model j.

If one is interested in model averaged point estimates, we can use the Schwarz asymp-

totic approximation to the Bayes factor and uniform model priors so that:

P (Mj|y) =
f(y|β̂j, Mj)N

−qj

2

∑2q

i=1 f(y|β̂i, Mi)N
−qi
2

(20)

where f(y|β̂j, Mj) is the maximized likelihood function for model j.

Comparing this expression with Frequentist model weights based on information cri-

teria (see Section 4.3.1), and given the use of maximum likelihood estimates, I argue that

this commonly-used approach to BMA (e.g. Raftery (1995), Sala-i-Martin et al. (2004),

Moral-Benito (2010a)) can be considered as a Frequentist BMA method.

This approach was first proposed by Raftery (1995) in a general setting. Sala-i-Martin

et al. (2004) popularized its use in economics averaging model-specific OLS estimates in

the so-called Bayesian Averaging of Classical Estimates (BACE). Finally, Moral-Benito

(2010a) generalized the use of this approach to panel data models in the denominated

Bayesian Averaging of Maximum Likelihood Estimates (BAMLE).

Moreover, as noted by Moral-Benito (2010b), posterior distributions of the parameters

can also be obtained with this approach. Analogously to the posterior mean, these poste-

rior distributions are weighted averages of marginal posterior distributions conditional on

each individual model. More concretely, these posteriors are mixture normal distributions

because model-specific posteriors are normal. This is so because we can make use of the

Bernstein-von Mises theorem6 (also known as the Bayesian CLT) which basically states

that a Bayesian posterior distribution is well approximated by a normal distribution with

mean at the MLE and dispersion matrix equal to the inverse of the Fisher information.

5The equivalence of classical inference and Bayesian inference under diffuse priors is well-known in the

classical normal regression model. For the LIML case, Kleibergen and Zivot (2003) show this equivalence

for a particular choice of non-informative priors. Note also that the large sample equivalence is only an

approximation.
6Berger (1985) provides an in-depth analysis and an excellent illustration.
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3.4.3 Jointness

The main focus of Bayesian Model Averaging is the identification of the robust de-

terminants of a given outcome when model uncertainty is present. However, another

relevant issue which arises in this framework is to identify whether different sets of regres-

sors are substitutes or complements in the determination of the outcome. For example,

in an extreme case, the effect of a particular regressor on the outcome variable might

appear or disappear by simply including a specific covariate in the regression. Account-

ing for these interdependencies among the regressors delivers more parsimonious models

with minimally reduced explanatory power. To some extent, the dilution priors on model

space described in the previous section take into account these interdependencies among

redundant regressors. However, you need to elicit the priors before seeing the data; hence

you have to assume if the regressors are substitutes or complements ex-ante (in the dilu-

tion prior setting, a neighborhood is a set of complement covariates). Although in some

circumstances you might have an idea, this is not always the case.

In the framework of growth regressions, Ley and Steel (2007) and Doppelhofer and

Weeks (2009a) define ex-post measures of dependence among explanatory variables that

appear in linear regression models. The object of interest in both approaches is the

measure of jointness (or interdependency) of two regressors Xi and Xj in the context of

linear regressions.

According to Ley and Steel (2007), any jointness measure should satisfy four criteria:

(i) interpretability: any jointness measure should have either a formal statistical or a

clear intuitive meaning in terms of jointness; (ii) calibration: values of the jointness

measure should be calibrated against some clearly defined scale, derived from either formal

statistical or intuitive arguments; (iii) extreme jointness: the situation where two variables

always appear together should lead to the jointness measure reaching its value reflecting

maximum jointness; and (iv) definition: the jointness measure should always be defined

whenever at least one of the variables considered is included with positive probability.

Based on these criteria, they propose two alternative measures:

J∗
LS =

P (i ∩ j)

P (i) + P (j) − P (i ∩ j)
∈ [0, 1] (21)

JLS =
P (i ∩ j)

P (i) + P (j) − 2P (i ∩ j)
∈ [0,∞) (22)

where P (i ∩ j) is the sum of the posterior probabilities of the regression models that

contain both Xi and Xj, and P (i) and P (j) are the posterior inclusion probabilities of Xi
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and Xj, respectively.

Alternatively, Doppelhofer and Weeks (2009a) propose the following jointness statistic:

JDW = ln
P (i ∩ j)P (̃i ∩ j̃)

P (i ∩ j̃)P (̃i ∩ j)
(23)

where P (i∩j) is the same as before, P (̃i∩ j̃) represents the sum of all the posterior model

probabilities of those models in which neither Xi nor Xj are included, and the other two

elements are defined accordingly. For more details on the advantages and drawbacks of

both approaches see the comments by Strachan (2009) and Ley and Steel (2009a), and

the rejoinder of Doppelhofer and Weeks (2009b).

4 Frequentist Model Averaging

4.1 Definition of FMA Estimators

Let us take the linear model in matrix form to illustrate the definition of the FMA

estimator:

y = βX1 + X2γ + U (24)

where y, X1, and U are N × 1 vectors of the dependent variable, the treatment variable

of interest and the random shocks respectively. X2 is a N × q matrix of doubtful control

variables that may or may not be included in the model, and β and γ (q × 1) contain

the parameters to be estimated. Despite we make this distinction between X1 and X2 for

illustration purposes, FMA can easily handle situations in which we cannot make such a

distinction. Finally, N is the number of observations in the sample.

If we set some components of γ = (γ1, γ2, ..., γq)
′ to be zeros, there are a total of 2q

candidate models to be estimated. Given the coefficient of interest is β, let β̂M be the

estimator of β under the candidate model M with M ∈ {M1, M2, ...,M2q}. The most

common approach in applied research is to take the selected model as given and base the

inference on this single estimate β̂M while the actual estimator is:

β̂ =





β̂M1
if the first model is selected

β̂M2
if the second model is selected

...
...

β̂M2q if the 2q-th model is selected
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We can also rewrite the above estimator as

β̂ =
2q∑

j=1

ω̃Mj
β̂Mj

where:

ω̃Mj
=

{
1 if the candidate model Mj is selected

0 otherwise

This estimator is the usual pre-test estimator that suffers from the previously com-

mented drawbacks if model uncertainty (in the selection of the control variables for ex-

ample) is present. Therefore, we consider the smoothed weights ωMj
and accordingly, the

FMA estimator is given by:

β̂FMA =
2q∑

j=1

ωMj
β̂Mj

(25)

where 0 ≤ ωMj
≤ 1, and

∑2q

j=1 ωMj
= 1. Such estimator is labeled as the FMA estimator

of β which integrates the model selection and estimation procedure.

4.2 FMA Inference

Hjort and Claeskens (2003) studied the asymptotic properties of the FMA estima-

tor with the form in equation (25). The main result is the obtaining of its asymptotic

distribution:7 √
N
(
β̂FMA − βtrue

)
d→ Λ (26)

where Λ =
∑2q

j=1 ωMj
Λj.

However, inference based on this limiting distribution Λ will still ignore the uncertainty

involved in the model selection step. Therefore, confidence intervals constructed from

β̂FMA and the variance of Λ in the usual way, will produce too optimistic inference and

will lead to misleading conclusions because the real coverage probability is lower than the

intended level.

In response to this problem, Buckland et al. (1997) proposed an alternative approach

to deal with this issue when constructing confidence intervals of FMA estimators. Their

method takes the extra model uncertainty into account by including an extra term in the

variance of the FMA estimator. In particular, the proposed formula for the estimated

7More details about the derivation of this distribution can be found in the Appendix.
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standard error of β̂FMA is:

ŜE(β̂FMA) =
2q∑

j=1

ωMj

√
τ̂ 2
j /N + b̂2

j (27)

where τ̂ 2
j estimates the variance of Λj, and b̂j = β̂Mj

−β̂FMA captures the extra uncertainty

associated with the variation of estimates across different models. This formula implies an

estimated variance for the FMA estimator that closely resembles its Bayesian counterpart

in equation (8) (i.e. the posterior variance for the BMA estimator). Note that we still

have to replace the fixed weights in equations (25) and (27) by their estimates in order

to apply FMA.

4.3 Model Weights in FMA

FMA estimators crucially depend on the weights selected for estimation. In the pre-

vious subsections the weights were taken as fixed, but it is important to remark here that

different weights will result in different asymptotic properties of the corresponding FMA

estimators.

4.3.1 Weight Choice Based on Information Criteria

Probably the most common approach to weight choice in Frequentist Model Averaging

is the one based on different information criteria of the form:

Ij = −2 log(Lj) + ϕj

where Lj is the maximized likelihood function for the j-th model, and ϕj is a penalty

term function of the number of parameters and/or the number of observations of model

j (i.e. qj).

Buckland et al. (1997) propose to use the following model weights:

ωMj
=

exp(−Ij/2)
∑2q

h=1 exp(−Ih/2)
(28)

The penalty term ϕj = 2qj corresponds to the Akaike Information Criterion (AIC),

being qj the number of parameters in model j. Therefore Akaike weights are one common

alternative. Another possible choice is ϕj = qj ln(N) that corresponds to the Bayesian
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Information Criterion (BIC). Given the use of BIC is also justified from a Bayesian view-

point, this illustrates one clear similarity between BMA and FMA, that provide in fact

the same point estimates under some particular circumstances.

Information criteria such as the AIC and the BIC select one single best model regard-

less of the parameter of interest. However, there are situations in which one model is

best for estimating one parameter, whereas another model is best for another parameter.

Aware of this situation, Claeskens and Hjort (2003) propose to use the Focused Informa-

tion Criterion (FIC) to select the best model, but depending on the parameter of interest.

Of course, the FIC can naturally be employed as an alternative to construct FMA model

weights.

4.3.2 Weight Choice Based on Mallow’s Criterion

Hansen (2007) proposes to select the model weights in least squares model averaging

by minimizing the Mallow’s criterion. Despite this criterion is similar to the Akaike

information criterion in the model selection spirit, the approach to calculate the weights

in Hansen (2007) in the model averaging setting is different.

Hansen (2007) considers the following homoskedastic linear regression:

yi =
∞∑

j=1

θjxij + ei (29)

E(ei|xi) = 0

E(e2
i |xi) = σ2

where xi = (xi1, xi2, ...).

Now consider the sequence of candidate models j = 1, 2, ... seeking to approximate

(29). The j-th model uses the first φj elements of xi with 0 < φ1 < φ2 < .... Given the

above, the j-th candidate model is:

yi =

φj∑

j=1

θjxij + ei (30)

with corresponding approximating error
∑∞

j=φj+1 θjxij. Let us rewrite (30) in matrix

form:

Y = XjΘj + e (31)

where Y and e are N × 1 vectors, Xj is a N × φj matrix, and Θj is a φj × 1 vector

of parameters. Let J = J(N) ≤ N be the candidate model with the largest number of
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regressors, and λ = (λ1, ..., λJ)′ a weight vector in the unit simplex in R
J :

HN =

{
λ ∈ [0, 1]J :

J∑

j=1

λj = 1

}

The least squares model averaging estimator of ΘJ can be defined as:

Θ̂J(λ) =
J∑

j=1

λj

(
Θ̂j

0

)

where Θ̂j represents the least squares estimate of model j.

We are now ready to introduce the Mallows’ criterion to be minimized in order to

obtain the model weights:

λ̂ = argmin
λ∈HN

CN(λ)

where:

CN(λ) = (Y − XJΘ̂J(λ))′(Y − XJΘ̂J(λ)) + 2σ2λ′Φ

with Φ = (φ1, ..., φJ)′.

Furthermore, Hansen (2007) provides an optimality result of his Mallows Model Av-

eraging (MMA) estimator. In particular, it states that the MMA estimator achieves the

lowest possible squared error when we constrain the weight vector to the discrete set HN

(i.e. it is asymptotically optimal). However, it is important to mention that the optimality

of MMA fails under heteroskedasticity.

In a situation of instrument uncertainty (i.e. many candidate instruments for a given

set of endogenous variables), Kuersteiner and Okui (2010) propose to apply the MMA

approach to the first stage of the 2SLS, LIML and Fuller estimators, and then use the

average predicted value of the endogenous variables in the second stage.

4.3.3 Weight Choice Based on Cross-Validation Criterion

In a recent paper, Hansen and Racine (2009) propose how to optimally average across

non-nested and heteroskedastic models. In particular, they suggest to select the weights

of the least squares model averaging estimator by minimizing a deleted-1 cross-validation

criterion, so that the approach is labeled as Jackknife Model Averaging (JMA). In com-

parison with MMA, JMA (and its optimality result) is appropriate for more general linear

models (i.e. random errors may have heteroskedastic variances, and the candidate models

are allowed to be non-nested). Aside from this two points, the setup is the same as for
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the MMA estimator in (29). Let us further define:

µi =
∞∑

j=1

θjxij

so that the jackknife version of the model averaging estimator of µ is:

µ̂(λ) =
J∑

j=1

λjP̂jY = P̂ (λ)Y

where P̂j = D̂j(Pj − IN) + IN , Pj = Xj(X
′
jXj)

−1X ′
j is the projection matrix under the

j-th candidate model, D̂j is the N × N diagonal matrix with the i-th diagonal element

being (1 − hj
ii)

−1, hj
ii = Xj,i(X

′
jXj)

−1X ′
j,i, and Xj,i is the i-th row of Xj. The deleted-1

cross-validation criterion is defined as:

CV (λ) = (Y − µ̂(λ))′(Y − µ̂(λ))

Finally, the JMA estimator is µ̂(λ̂∗) with weights given by:

λ̂∗ = argmin
λ∈HN

CV (λ)

Moreover, there is also a theorem that builds the asymptotic optimality of the JMA

estimator in the sense of achieving the lowest possible expected squared error. Hansen

and Racine (2009) also conduct Monte Carlo simulations showing that JMA can achieve

significant efficiency gains over existing model selection and averaging methods in the

presence of heteroskedasticity.

5 Model Averaging and Endogeneity

The methods described above are all based on the strict exogeneity assumption of the

regressors. This assumption implies that there is no correlation between the Xs and the

unobservables (ǫ) affecting the output Y (i.e. cov(X, ǫ) = 0). In the treatment effects

terminology, it corresponds to the assumption that the treatment is conditionally ran-

domly assigned to the population so that the ordinary least squares (OLS) estimates of

the parameters can be interpreted as causal effects. However, in many applications such

as empirical growth regressions this assumption is clearly violated. Therefore we might

have some Xs, say X1, that are endogenous, and some others, say X2, that are exoge-

nous (i.e. X1 variables are correlated with the unobservables given the X2 variables and
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thus cov(X1, ǫ|X2) 6= 0). Under these circumstances, obtaining estimates of causal effects

requires the availability of an exogenous source of variation on the endogenous variables,

that is, a set of valid instruments (Z) which satisfies the conditional IV identifying as-

sumption cov(Z, ǫ|X2) = 0. Given the interest on causal effects over the last decades, how

to tackle the issue of endogeneity in the model averaging framework is an important line

of open research.

Formally, when we face a situation in which we have endogenous (X1) and exogenous

(X2) regressors together with a set of valid instruments (Z) in a linear context, the model

to be estimated is:

y = X1β1 + X2β2 + ǫ (32)

X1 = Zπ1 + X2π2 + V

where y and X1 are the N × 1 vector and the N × q1 matrix of endogenous variables, X2

is the N × q2 matrix of exogenous regressors or control variables,8 and Z corresponds to

the N × qZ matrix of instrumental variables. Moreover, β1, β2, π1 and π2 represent the

q1 ×1, q2 ×1, qZ × q1 and q2 × q1 vectors and matrices of parameters respectively. Finally,

the unobservables in the first equation (i.e. the structural form equation) are captured by

the N ×1 vector ǫ, and V is the N ×q1 matrix of errors corresponding to the q1 remaining

equations (usually labeled as reduced form equations).

In this framework, we can define the Q × 1 vector Ui = (ǫi, V
′
i )

′ and further assume:

Ui ∼ N(0, Σ) (33)

where Σ is a Q × Q symmetric and positive definite covariance matrix, and Q = 1 + q1.

Given this assumption we can construct the (pseudo) likelihood function for such a model

and estimate the parameters via (pseudo) maximum likelihood (i.e. Limited Information

Maximum Likelihood (LIML)), or we can estimate the parameters via two-stage least

squares (2SLS). In both cases we need to have as many instruments as endogenous regres-

sors (qZ ≥ q1) together with the rank condition rank(E(Z ′X1)) = q1 in order to guarantee

identification. In the just-identified case (qZ = q1), LIML and 2SLS coincide.

Given the IV setting described above, two main sources of model uncertainty arise. In

particular we might have uncertainty surrounding the selection of endogenous variables

X1 of interest, and uncertainty in the choice of exogenous (or control) variables X2. As

8We can also refer to the exogenous regressors X2 as control or conditioning variables in the sense that,

in some cases, they must be included in the model in order to guarantee the validity of the instruments

even if their effect is not of central interest.
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previously stated, how to address the problem of model uncertainty in these settings is an

open issue in the model averaging literature. Given the LIML likelihood function and fol-

lowing techniques advanced by Raftery (1995), one natural possibility is the combination

of LIML estimates with BIC model weights. An important remark here is the importance

of considering comparable likelihoods across models. Even in the case of a model not

including some elements of X1 in the structural equation, for the sake of comparability

we need to consider the full set of reduced form equations for all the variables in X1. This

means that we must construct for this model the likelihood f(y, X1|X2, Z) with the full set

of candidate endogenous variables in order to guarantee comparability with all the other

models under consideration, i.e., the joint likelihood of y and X1 must be constructed for

all the models. The differences across models emerge in the form of zero restrictions on

the parameter vectors β1, β2, and π2 for those variables (either X1 for β1, or X2 for β2

and π2) not included in a particular model. However, the key point is that the set of q1

reduced form equations for X1 must be considered in all the candidate models (i.e. the

matrix π1 is the same in all the models) despite not all the q1 endogenous variables in

X1 are included in all the models’ structural form equations given the existence of model

uncertainty in the choice of such variables.

In order to present the LIML likelihood, note that the model in (32) can be written

as follows: (
1 −β′

1

0 Iq1

)(
y′

X ′
1

)
=

(
β′

2 0

π′
2 π′

1

)(
X ′

2

Z ′

)
+

(
ǫ′

V ′

)
(34)

or more compactly:

BY ′ = CW ′ + U ′ (35)

where:

B =

(
1 −β′

1

0 Iq1

)

Q×Q

Y ′ =

(
y′

X ′
1

)

Q×N

C =

(
β′

2 0

π′
2 π′

1

)

Q×(q2+qZ)

W ′ =

(
X ′

2

Z ′

)

(q2+qZ)×N

U ′ =

(
ǫ′

V ′

)

Q×N
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The gaussian log-likelihood function of the full model (i.e. the model that includes all

the candidate variables) is:

ln f(Y |W,Mf ) = −NQ

2
log 2π + N log | det B| − N

2
log det Σ − 1

2
tr(Σ−1U ′U) (36)

where note that Y includes both y and X1, W includes X2 and Z, and Mf refers to the

full model including all the candidate variables available. Despite the fact that number of

parameters to be estimated might be huge and the problem might become computationally

unfeasible from a model averaging perspective, we can concentrate out the reduced form

parameters and drastically reduce the computational burden (see Moral-Benito (2010b)).

Having the likelihood function for the full model, it is easy to obtain the likelihood

functions for the remaining models in order to compute the marginal likelihoods and

model weights (or posterior model probabilities). Given the focus on model averaging,

we need all the model-specific likelihoods in which some parameters are restricted to be

zero depending on the variables (either endogenous or exogenous) included in the model.

If a given endogenous variable is excluded from the full model, we simply restrict to zero

the corresponding element of the β1 vector of coefficients, but the rest of the likelihood

remains unchanged in order to guarantee comparability across models. If the excluded

variable is an exogenous one, we restrict to zero the corresponding elements of the vectors

β2 and π2.
9

As advanced by Raftery (1995), we can extend the model averaging approach to the

setting of endogenous variables by computing BIC weights from the LIML likelihoods just

described. Given the likelihood function, Section 3.4.2 of this survey formally presents the

approach and its Bayesian justification. Moreover, this is also the approach considered

by Moral-Benito (2010a) and Moral-Benito (2010b) in a panel data setting (see below for

more details).

In the cross-sectional setting, Durlauf et al. (2008) represents the first attempt to

address the issue of endogenous regressors in a BMA context.10 More concretely, the

paper is concerned with uncertainty surrounding the selection of the endogenous and

exogenous variables of interest. Therefore they consider 2q1+q2 candidate models indexed

by j = 1, ..., 2q1+q2 . The authors propose to use 2SLS model-specific estimates for each

9Note that this particular likelihoods with restrictions would not be necessary if we are not interested

in model comparison and our only interest is the estimation of a single model.
10Despite the section is devoted to the connection between model averaging and endogeneity, all

advances on this direction are based on the Bayesian spirit of model averaging.
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single model, and then take the average:

E(θ|y) =
2q1+q2∑

j=1

P (Mj|y) E(θ|y, Mj) ≈
2q1+q2∑

j=1

P (Mj|y) θ̂j
2SLS (37)

where θ̂j
2SLS is the 2SLS estimate for model j, and θ = (β1, β2, vec(π1), vec(π2), vech(Σ))

is the h × 1 vector of parameters to be estimated.

The weights P (Mj|y) ∝ f(y|Mj)P (Mj) are inspired in a limited information version

of the BIC (i.e. LIBIC) approximation to the integrated likelihood f(y|Mj):

f(y|Mj) ≈ exp
[
− N(q1 + 1)

2
log(2π) − N

2
log(det(Σ̂)) − h

2
log N

]
(38)

where Σ̂ =
∑N

i=1 ÛiÛ
′
i and Ûi is the predicted residual from the 2SLS estimates. With

respect to model priors (P (Mj)), Durlauf et al. (2008) use the dilution priors previously

described.

The main drawback of this approach is that its formal justification remains an open

issue as stated by the authors. They only give an heuristic interpretation to the results

emerging from this averaging of 2SLS estimates. Moreover, since the model weights

are based on ”pseudo” likelihoods that are in principle not comparable across models,

the comparability of these model weights represents another important caveat of the

approach. This is so because in this approach, if an endogenous variable is not included

in the model, its associated reduced form equations are not considered either. Then, the

different models have ”pseudo” likelihoods functions for different variables which are not

comparable (e.g. the likelihood f(y, x1|z) is not comparable to the likelihood f(y, x2|z)).

More recently, Durlauf et al. (2009) consider model averaging across just-identified models

so that model-specific 2SLS estimates θ̂j
2SLS coincide with model-specific LIML estimates

θ̂j
LIML so that the proper likelihood-based BIC weights have formal justification but are

still not comparable across models.

In a recent paper, Eicher et al. (2009b) extend BMA to formally account for model

uncertainty not only in the selection of endogenous and exogenous variables, but also in

the selection of instruments (Z). This third source of uncertainty emerges if we have a set

of instruments that satisfy all the exclusion restrictions given a set of endogenous variables

regardless of the particular model considered and thus we do not know which instruments

to include in a given model. In the previous setting, the inclusion of a given endogenous

variable in the model implied its own set of valid instruments to be included in the model.

In particular, Eicher et al. (2009b) propose a 2-step procedure that first averages across

the first-stage models (i.e. linear regressions of the endogenous variables on the exogenous
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ones and the instruments) and then, given the fitted endogenous regressors from the first

stage it again takes averages in the second stage. In both steps the authors propose to

use BIC weights. In this approach, some issues such as the selection of instruments (i.e.

identification of some particular models which depends on q1 and qZ) and the statistical

justification for the use of BIC-inspired weights in this context are still unclear.

All in all, given the potential criticisms of the approaches to model averaging and

endogeneity in the existing literature (e.g. Durlauf et al. (2008), Eicher et al. (2009b)),

the approach from first principles presented at the beginning of this section seems to be

the most appropriate one to simultaneously address the issues of model uncertainty and

endogeneity. The proposed approach, based on averaging across LIML estimates, guaran-

tees comparability of the model likelihoods, and it has statistical justification (see Raftery

(1995)). Its main disadvantage is the greater computational burden due to the large num-

ber of reduced form parameters to be estimated in all the models under consideration.11

5.1 Panel Data and Model Averaging

Another relevant open line of research is that of model averaging and panel data as

an alternative approach to address the issue of endogenous regressors. Omitted vari-

ables biases arising from individual-specific and time-invariant unobservable factors can

be alleviated by resorting to panel data models with fixed effects. Panel data com-

prises information on individuals (i = 1, ..., N) over different time periods (t = 1, ..., T ).

Therefore, the correlation between X and ǫ might arise because of a time-invariant and

individual-specific characteristic (ηi), that is a component of ǫi (ǫi = ηi + ϑit) so that:

yit = xitβ + ηi + ϑit (39)

where:

E(ηi|xi) 6= 0 (40)

E(ϑit|xi, ηi) = 0 (41)

where xi is a T × 1 vector such that xi = (xi1, xi2, ..., xiT )′.

Assumption (40) indicates that the regressors are correlated with the time invariant

component of the error term and thus they are endogenous with respect to the fixed

11Note however that concentration of the likelihood functions with respect to the common parameters

reduces this computational burden (e.g. Moral-Benito (2010b)).
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effects. However, assumption (41) is usually labeled as a strict exogeneity assumption

that represents the independence of the transitory shocks (ϑ) with respect to both the

regressors and the permanent component of the shock (η).

Moral-Benito (2010a) considers such a panel setting and shows how to combine differ-

ent panel data estimators with BMA techniques using different prior structures. In partic-

ular, Moral-Benito (2010a) extends to the panel data setting in (39)-(41) the Benchmark

g-Priors and a diffuse prior (in the spirit of Sala-i-Martin et al. (2004)) on the parameter

space, and the Binomial and Binomial-Beta priors on the model space. For the model

weights, he considers BIC inspired weights that have both a Bayesian (g-UIP prior) and

a Frequentist (Schwarz) interpretation.

In this framework we might also have dynamics that complicate the model-specific

estimation step. In particular, the vector xit can also include a lagged dependent variable

(yit−1) which is correlated with ϑit−1 by definition and thus assumption (41) is violated.

Moral-Benito (2010a) also considers a dynamic model as follows:

yit = αyit−1 + xitβ + ηi + ϑit (42)

where:

E(ηi|yi, xi) 6= 0 (43)

E(ϑit|yt−1
i , xi, ηi) = 0 (44)

where yt−1
i is a (t − 1) × 1 vector such that yt−1

i = (yi1, yi2, ..., yit−1)
′. Assumption (44)

makes it clear that endogeneity generated by the dynamics of the model is taken into

account.

In this setting, uncertainty comes from the selection of the xs to be included in the

model. Moral-Benito (2010a) proposes to combine BMA with a panel likelihood-based

estimator which allows obtaining consistent estimates of the autoregressive parameter α

based on assumptions (43)-(44). Moreover, since model-specific estimates are based on

a proper likelihood function, model weights are given by the BIC approximation to the

marginal likelihood (see Raftery (1995)). The approach is labeled Bayesian Averaging of

Maximum Likelihood Estimates (BAMLE).

On the other hand, panel data can also be useful for addressing the biases arising

from reverse causality, which is a source of bias different from the biases just described.

Coming back to the static setting in (39), the reverse causality problem arises if, instead
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of the assumptions in (40)-(41), we face:

E(ηi|xi) 6= 0 (45)

E(ϑit|xi, ηi) 6= 0

In this setting, using panel data without additional instruments (Z) one can obtain

causal effect estimates based on the following identification strategy: realizations of the

endogenous regressors far enough in time are independent of the current shocks12 (i.e.

cov(xit−τ , ϑit) = 0). Then, we can use this previous realizations (xit−τ ) as ”internal”

instruments in the spirit of (32). Using this strategy, Moral-Benito (2010b) constructs a

likelihood function for panel data models with unobserved heterogeneity (i.e. fixed effects)

and endogenous regressors and combines this likelihood with BMA methods employing

the BAMLE approach.

The same panel setting is also considered in Chen et al. (2009) who combine panel

GMM estimators with BMA. In particular, they interpret the exponentiated GMM ob-

jective function as the model-specific ”pseudo” marginal likelihood, and then use LIBIC

weights in the spirit of Durlauf et al. (2008). The formal justification of the considered

model-specific ”pseudo” likelihoods is an important caveat of this approach as in the

cross-sectional case discussed in the previous subsection.13

6 Model Averaging in Economics

Until the 1990s, the bulk of the literature on model averaging came from two different

sources: on the one hand, statistical papers developing the BMA apparatus with little

emphasis on economic applications (e.g. Raftery (1995), Fernández et al. (2002), Volinsky

et al. (1997)), and, on the other hand, papers from the forecasting combination literature

to be discussed below. However, since the beginning of the 21st century, new methods

together with more powerful computers are inspiring a flurry of BMA activity in different

fields of economics.

Empirical growth is, without any doubt, the most active field in which model averaging

techniques are being applied. In the search for a satisfactory empirical model of growth,

the main area of effort has been the selection of appropriate variables to include in linear

12Note that this is the same strategy as the one adopted in the dynamic panel setting above in which

one could interpret that the lagged dependent variable is an additional endogenous regressor.
13It is also worth mentioning the well-documented finite sample biases in the panel GMM estimates

they consider (see for instance Alvarez and Arellano (2003)).
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growth regressions. The literature concerned with this task is enormous: a huge number of

papers have claimed to have found one or more variables correlated with the growth rate,

resulting in a total of more than 140 variables proposed as growth determinants. However,

given the limited number of observations, the fragility of these regressions causes a big

concern among growth researchers.

In an attempt to investigate the robustness of the results, Levine and Renelt (1992)

employ the extreme-bounds analysis proposed by Leamer (1983) and Leamer and Leonard

(1983), and they concluded that very few variables (e.g. investment) were robustly corre-

lated with growth. In contrast, Sala-i-Martin (1997) relaxed the robustness requirements,

constructed weighted averages of OLS coefficients and found that some were fairly stable

across specifications. However, the way in which standard errors and distribution of es-

timates are computed in Sala-i-Martin (1997) are somehow ad hoc and they lack formal

justification. The seminal papers on model averaging and growth are Fernández et al.

(2001b) and Sala-i-Martin et al. (2004). Following Raftery (1995), Sala-i-Martin et al.

(2004) combine OLS estimates with BIC weights in a pseudo-Bayesian approach denomi-

nated Bayesian Averaging of Classical Estimates (BACE). On the other hand, Fernández

et al. (2001b) employ the Benchmark g Priors for the parameters in a pure Bayesian

spirit. Both approaches use the Binomial prior on the model space with different prior

expected model sizes (other papers applying these priors to the empirics of growth are

Masanjala and Papageorgiou (2008) and Crespo-Cuaresma et al. (2009)). Magnus et al.

(2010) consider the WALS approach with uniform model priors in the growth context,

and Wagner and Hlouskova (2009) apply a FMA estimator based on principal compo-

nents using four weighting schemes: equal, MMA, AIC, and BIC. Durlauf et al. (2008) is

the first paper worried about causal effects in BMA empirical growth research using BIC

weights and dilution priors on the model space. Moral-Benito (2010a) extends the use

of model averaging techniques to a panel data setting considering and comparing differ-

ent prior structures on both the parameter space and the model space. In the spirit of

Raftery (1995), Moral-Benito (2010a) proposes to combine maximum likelihood estimates

with model averaging using BIC weights in the so-called Bayesian Averaging of Maximum

Likelihood Estimates (BAMLE) approach. Finally, Moral-Benito (2010b) and Mirestean

and Tsangarides (2009) combine model averaging techniques with causal effect estimates

in a panel data framework.

Since the seminal paper by Bates and Granger (1969), there has been an enormous lit-

erature on forecast combination with the aim of improving forecasting performance. From

a Frequentist viewpoint, there is a vast empirical literature on forecast combining, and
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there are also a number of simulation studies that compare the performance of combining

methods in controlled experiments. These studies are surveyed by Diebold and Lopez

(1996) and Timmermann (2006). With respect to the Bayesian approach to model aver-

aging, there are many BMA applications to forecasting financial variables such as stock

returns (e.g. Avramov (2002), Cremers (2002)) or exchange rates (e.g. Wright (2008a)).

In the macro forecasting literature, Garratt et al. (2003) employ BMA to predict inflation

and output growth in the UK and Wright (2008b) forecasts US inflation by BMA.

Aside from empirical growth and forecast combination, model averaging techniques

are becoming popular in other fields of economics. Pesaran et al. (2009) employ model

averaging as a remedy to the risk of inadvertently using false models in portfolio manage-

ment; by means of model averaging Crespo-Cuaresma and Slacik (2009) identify the most

important determinants of currency crises in the framework of binary choice models for a

panel of countries; Eicher et al. (2009a) study the effect of Preferential Trade Agreements

(PTAs) on trade flows using BMA to account for the existent model uncertainty prob-

lem in this literature; Wan and Zhang (2009) consider FMA estimators to determine the

degree to which recreation and tourism development affected a range of socioeconomic

indicators (e.g. earnings per job, income per capita, etc.) in 311 rural U.S. counties in

the 1990’s and 2000; in labor economics, Tobias and Li (2004) apply model averaging to

estimate Mincer equations; Cohen-Cole et al. (2007) study the controversial issue of the

deterrent effect of capital punishment employing a BMA approach; Galbraith and Hodg-

son (2009) analyze the determinants of the value of works of art using model averaging; in

the health economics literature, Morales et al. (2006) characterize the dose-response re-

lationship between an environmental exposure and adverse health outcomes using model

averaging techniques.

7 Conclusions and Future Research

The choice of control variables in regression analysis applied to empirical research in

economics is a critical issue that is, in general, underestimated. As illustrated by Leamer

(1983) among others, conclusions from empirical studies may well depend on the controls

included, so that the results are sensitive to different choices of control explanatory vari-

ables. Model averaging approaches estimate the effect of interest under all the possible

combinations of controls, and report a weighted average effect. Therefore, model averag-

ing takes into account the uncertainty surrounding the selection of controls (i.e. model
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uncertainty) in a natural manner.

This paper has presented an overview of existent model averaging techniques and

their applications in economics. Both the Frequentist and the Bayesian approaches to

model averaging have been summarized. Bayesian Model Averaging (BMA) involves the

elicitation of model and parameter priors; Frequentist Model Averaging (FMA) requires

to choose model weights and model-specific estimators. Several alternatives on both sides

have been described in this paper. Moreover, an attempt to connect both approaches is

made in Section 3.4.2.

How to tackle the issue of endogenous regressors in the model averaging framework is

an interesting line of open research. The state of the art of the literature on BMA and

endogeneity in the conditional IV and panel settings has been summarized in this paper.

Allowing for endogenous regressors in the FMA approach could be an interesting topic

for future research.

In a recent paper, Angrist and Pischke (2010) argue that the rise of design-based ap-

proaches is the main responsible for the credibility revolution in empirical economics in

the last three decades. The treatment effects literature has represented a huge progress in

the estimation of more credible causal effects. For instance, randomized experiments and

regression discontinuity can be extremely useful for that purpose. Matching estimators

might also be very useful, but their identifying exogeneity assumption is conditional on a

set of covariates (i.e. it is necessary to control for a group of regressors in order to guar-

antee the randomness of the treatment assignment). Provided that a set of conditioning

(or control) variables is required for the validity of the approach, fragility of results to

different conditioning sets can potentially be a cause of concern. Extending the model av-

eraging apparatus to non-parametric matching (or other design-based approaches) might

be a fruitful line for future research.
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A Appendix

A.1 Asymptotic Theory of FMA Estimators

Suppose the density of the model in Section 4 is:

ftrue = f(y, β, γ) = f(y, β0, γ0 + δ/
√

N)

where β is a parameter present in all models with β0 its corresponding true value. γ

is a vector around its true value γ0 with perturbation δ/
√

N . This setting is the local

misspecification framework considered in Hjort and Claeskens (2003) for deriving the

asymptotic results of FMA estimators. Let µtrue = µ(ftrue) be the quantity of interest

being µ(·) a known function. The estimator of µtrue under the model Mj is given by:

µ̂Mj
= µ(β̂Mj

, γ̂Mj
, γ0, M

C
j )

where β̂Mj
and γ̂Mj

are maximum likelihood estimates and MC
j is the complement of Mj.

Hjort and Claeskens (2003) analyzed the asymptotic properties of the FMA estimator:

µ̂FMA =
2q∑

j=1

ωMj
µ̂Mj

where ωMj
is a weight function for model Mj given DN = δ̂full, an estimator of δ under

the model with all the q controls (i.e. the full model).

Let us introduce some notation. The score function is given by:

(
U(y)

V (y)

)
=

(
∂ log f(y, β0, γ0)/∂β

∂ log f(y, β0, γ0)/∂γ

)

with (1 + q) × (1 + q) variance matrix at (β0, γ
′
0)

′ given by:

J =

(
J00 J01

J10 J11

)
and inverse J−1 =

(
J00 J01

J10 J11

)

The following theorem corresponds to Theorem 4.1 in Hjort and Claeskens (2003), and

it provides the asymptotic distribution of the FMA estimator:

Theorem A.1 If the weight functions ωMj
sum to 1 and have at most a countable number

of discontinuities, then:

√
N (µ̂FMA − µtrue)

d→ Λ = µ′
βJ−1

00 ζ + w′[δ − δ̂(D)]
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where D ∼ N(δ, Ψ) is the limit of DN , Ψ = J11, µβ = ∂µ
∂β

evaluated at the point (β0, γ
′
0),

ζ ∼ N(0, J00) independent of D, δ̂(D) =
{∑

ωMj
π′

Mj
(πMj

Ψ−1π′
Mj

)−1πMj

}
Ψ−1D, and

w = J10J
−1
00 µβ − µγ. Finally, let πMj

be the projection matrix mapping δ to δj.

A.2 Markov Chain Monte Carlo Model

Composition

The Markov Chain Monte Carlo Model Composition (MC3) algorithm proposed by

Madigan and York (1995) generates a stochastic process that moves through model space.

The idea is to construct a Markov chain of models M(i), i = 1, 2, ... with state space Ψ. If

we simulate this Markov chain for i = 1, ..., N , then under certain regularity conditions,

for any function h(Mj) defined on Ψ, the average:

Ĥ =
1

N

N∑

i=1

h (M (i))

converges with probability 1 to E (h (M)) as N → ∞. For example, to compute (7) in

this fashion, we set h(Mj) = E(β|y, Mj).

To construct the Markov chain, we define a neighborhood nbd(M) for each M ∈ Ψ that

consists of the model M itself and the set of models with either one variable more or one

variable fewer than M . Then, a transition matrix q is defined by setting q(M → M ′) = 0

∀ M ′ /∈ nbd(M) and q(M → M ′) constant for all M ′ ∈ nbd(M). If the chain is currently

in state M , then we proceed by drawing M ′ from q(M → M ′). It is the accepted with

probability:

min

{
1,

Pr (M ′|y)

Pr (M |y)

}

Otherwise, the chain stays in state M .14

14Koop (2003) is a good reference for the reader interested in developing a deeper understanding of

the MC3 algorithm.

34



References

Alvarez, J. and M. Arellano (2003): “The Time Series and Cross-Section Asymp-

totics of Dynamic Panel Data Estimators,” Econometrica, 71, 1121–1159.

Angrist, J. and J. Pischke (2010): “The Credibility Revolution in Empirical Eco-

nomics: How Better Research Design is Taking the Con Out of Econometrics,” The

Journal of Economic Perspectives, 24, 3–30.

Avramov, D. (2002): “Stock Return Predictability and Model Uncertainty,” Journal of

Financial Economics, 64, 423–258.

Barnard, G. (1963): “New Methods of Quality Control,” Journal of the Royal Statistical

Society. Series A (General), 126, 255–258.

Bates, J. and C. Granger (1969): “The Combination of Forecasts,” Operational

Research Quarterly, 20, 451–468.

Berger, J. (1985): Statistical Decision Theory and Bayesian Analysis, Springer-Verlag,

New York.

Buckland, S., K. Burnham, and N. Augustin (1997): “Model Selection: An Inte-

gral Part of Inference,” Biometrics, 53, 603–618.

Chen, H., A. Mirestean, and C. Tsangarides (2009): “Limited Information

Bayesian Model Averaging for Dynamic Panels with Short Time Periods,” IMF Work-

ing Paper WP/09/74.

Claeskens, G. and N. Hjort (2003): “The Focused Information Criterion,” Journal

of the American Statistical Association, 98, 900–916.

——— (2008): Model Selection and Model Averaging, Cambirdge University Press.

Clemen, R. (1989): “Combining Forecasts: A Review and Annotated Bibliography,”

International Journal of Forecasting, 5, 559–583.

Cohen-Cole, E., S. Durlauf, J. Fagan, and D. Nagin (2007): “Model Uncertainty

and the Deterrent Effect of Capital Punishment,” Federal Reserve Bank of Boston

Working Paper.

35



Cremers, K. (2002): “Stock Return Predictability: A Bayesian Model Selection Per-

spective,” The Review of Financial Studies, 15, 1223–1249.

Crespo-Cuaresma, J., G. Doppelhofer, and M. Feldkircher (2009): “The De-

terminants of Economic Growth in European Regions,” CESifo Working Paper Series.

Crespo-Cuaresma, J. and T. Slacik (2009): “On the Determinants of Currency

Crises: The Role of Model Uncertainty,” Journal of Macroeconomics, 31, 621–632.

Diebold, F. X. and J. A. Lopez (1996): “Forecast Evaluation and Combination,”

Handbook of Statistics, 241–268.

Doppelhofer, G. and M. Weeks (2009a): “Jointness of Growth Determinants,”

Journal of Applied Econometrics, 24, 209–244.

——— (2009b): “Jointness of Growth Determinants: Reply to Comments by Rodney

Strachan, Eduardo Ley and Mark F.J. Steel,” Journal of Applied Econometrics, 24,

252–256.

Durlauf, S., A. Kourtellos, and C. Tan (2008): “Are Any Growth Theories Ro-

bust?” Economic Journal, 118, 329–346.

——— (2009): “Is God in the Details? A Reexamination of the Role of Religion in

Economic Growth,” Discussion Papers Series, Tufts University, No. 0613.

Edgerton, H. and L. Kolbe (1936): “The Method of Minimum Variation for the

Combination of Criteria,” Psychometrika, 1, 183–188.

Eicher, T., C. Henn, and C. Papageorgiou (2009a): “Trade Creation and Diversion

Revisited: Accounting for Model Uncertainty and Natural Trading Partner Effects,”

Journal of Applied Econometrics, forthcoming.

Eicher, T., A. Lenkoski, and A. Raftery (2009b): “Bayesian Model Averaging

and Endogeneity Under Model Uncertainty: An Application to Development Determi-

nants,” University of Washington Working Paper UWEC-2009-19.

Eicher, T., C. Papageorgiou, and A. Raftery (2009c): “Default Priors and Pre-

dictive Performance in Bayesian Model Averaging, with Application to Growth Deter-

minants,” Journal of Applied Econometrics, forthcoming.

36



Fernández, C., E. Ley, and M. Steel (2001a): “Benchmark Priors for Bayesian

Model Averaging,” Journal of Econometrics, 100, 381–427.

——— (2001b): “Model Uncertainty in Cross-Country Growth Regressions,” Journal of

Applied Econometrics, 16, 563–576.

——— (2002): “Bayesian Modeling of Catch in a Northwest Atlantic Fishery,” Journal

of the Royal Statistical Society, Series C, 51, 257–280.

Foster, D. and E. George (1994): “The Risk Inflation Criterion for Multiple Regres-

sion,” The Annals of Statistics, 22, 1947–1975.

Furnival, G. and R. Wilson (1974): “Regression by Leaps and Bounds,” Techno-

metrics, 16, 499–511.

Galbraith, J. and D. Hodgson (2009): “Dimension Reduction and Model Averaging

for Estimation of Artists’ Age-Valuation Profiles,” CIRANO Working Paper.

Garratt, A., K. Lee, H. Pesaran, and Y. Shin (2003): “Forecast Uncertainties

in Macroeconomic Modeling: An Application to the U.K. Economy,” Journal of the

American Statistical Association, 98, 829–838.

Geisser, S. (1965): “A Bayes Approach for Combining Correlated Estimates,” Journal

of the American Statistical Association, 60, 602–607.

George, E. (1999): “Discussion of ”Model Averaging and Model Search Strategies” by

M. Clyde,” in Bayesian Statistics, ed. by J. Bernardo, A. Berger, P. Dawid, and S. A.,

Oxford University Press.

Halperin, M. (1961): “Almost Linearly-Optimum Combination of Unbiased Estimates,”

Journal of the American Statistical Association, 56, 36–43.

Hansen, B. (2007): “Least Squares Model Averaging,” Econometrica, 75, 1175–1189.

Hansen, B. and J. Racine (2009): “Jackknife Model Averaging,” Unpublished

Manuscript.

Hjort, N. and G. Claeskens (2003): “Frequentist Model Average Estimators,” Jour-

nal of the American Statistical Association, 98, 879–899.

Hoeting, J., D. Madigan, A. Raftery, and T. Volinsky (1999): “Bayesian Model

Averaging: A Tutorial,” Statistical Science, 14, 382–417.

37



Horst, P. (1938): “Obtaining a Composite Measure from a Number of Different Mea-

sures of the same Attribute,” Psychometrika, 1, 53–60.

Kass, R. and L. Wasserman (1995): “A Reference Bayesian Test for Nested Hypoth-

esis with Large Samples,” Journal of the American Statistical Association, 90, 928–934.

Kleibergen, F. and E. Zivot (2003): “Bayesian and Classical Approaches to Instru-

mental Variable Regression,” Journal of Econometrics, 114, 29–72.

Koop, G. (2003): Bayesian Econometrics, Wiley-Interscience.

Kuersteiner, G. and R. Okui (2010): “Constructing Optimal Instruments by First-

Stage Prediction Averaging,” Econometrica, 78, 697–718.

Laplace, P. S. (1818): Deuxime Supplément a la Théorie Analytique des Probabilités,
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