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Abstract

When a regulator cannot observe or infer individual emissions, corrective policy must rely

on ambient pollution data. Assuming this kind of environment, we study a class of differential

games of pollution control with profit functions that are polynomial in the global pollution stock.

Given an open-loop emissions strategy satisfying mild regularity conditions, an ambient transfer

scheme is exhibited that induces it in Markov-perfect equilibrium (MPE). Proposed transfers are

a polynomial function of the difference between actual and desired pollution levels; moreover,

they are designed so that in MPE no tax or subsidy is ever levied. Their applicability under

stochastic pollution dynamics is studied for a symmetric game of polluting oligopolists with lin-

ear demand. We discuss a quadratic scheme that induces agents to adopt Markovian emissions

strategies that are stationary and linearly decreasing in total pollution. Total expected ambient

transfers are non-positive and their magnitude is linearly increasing in physical volatility, the

size of the economy, and the absolute value of the slope of the inverse demand function. How-

ever, if the regulator is interested in inducing a constant emissions strategy then, in expectation,

transfers vanish. The total expected ambient transfer is compared to its point-source equivalent.

Keywords: differential games, nonpoint source pollution, stochastic dynamics, policy design

JEL Classifications: C72, C73, H23, H41

∗Post-Doctoral Fellow, The Earth Institute at Columbia University, New York, NY; e-mail: sa2164@columbia.edu.

1



1 Introduction

When individual pollution discharges are not observable, a regulator may wish to impose corrective

policy measures that are based on observed total (ambient) pollution levels. As a result, there is an

extensive literature on ambient transfers as a means of nonpoint-source pollution control going back

to the work of Segerson (1988), whose analysis builds on earlier theoretical work of Holmstrom

(1982). Xepapadeas (1992) extends Segerson’s contribution to a dynamic setting under both deter-

ministic and random specifications on pollutant accumulation. Since then a significant and growing

literature has developed, shedding light into the theoretical design and practical implementation of

ambient transfer schemes.

From a practical standpoint, ambient policy has been employed in a variety of settings. Segerson

(1999) describes a number of applications of the basic theoretical ideas: (i) The Everglades Forever

Act, in which the government instituted a cropland tax based on aggregate phosphorus contami-

nation from agricultural runoff; (ii) the Coastal Zone Management Reauthorization Amendments

of 1990 that regulated nonpoint-source pollution in coastal areas of the United States; (iii) a policy

in Lake Okeechobee, Florida, in which dairy farmers were compelled to adhere to ambient water

quality standards, (iv) the Oregon Salmon Restoration Program in which salmon species were to

be listed as endangered unless farmers ensured that agricultural runoff did not significantly deplete

local fisheries.

A common criticism of ambient transfers rests on their dependence on total pollution levels and,

in particular, the fact that they may result in excessive and inequitable penalties Karp (2005). In an

environment with no uncertainty Karp (2005), drawing on earlier work of Karp and Livernois (1994),

investigates these concerns by comparing the tax burdens of (a compelling type of) Pigouvian and

ambient taxes. In his model, which deals with flow rather than stock pollutants, both tax schemes

are linear and evolve over time in an intuitive fashion; moreover, they are designed to induce a

common steady state level of pollution. Karp rigorously investigates the conditions under which

the open-loop equilibrium steady-state tax burden of ambient policy is lower than the Pigouvian

tax, mitigating some of the concerns regarding its potential inequity.

At the same time, it is possible to design ambient transfers so that, in steady-state equilibrium,

no tax or subsidy is ever imposed. In particular, one can make the tax scheme a function of the
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observed difference between actual and desired pollution levels, ensuring that when that difference

is zero transfers accordingly vanish (Xepapadeas, 1992). Indeed, Karp and Livernois’ Karp and

Livernois (1994) ambient scheme (which is revisited in Karp (2005)) can be modified in this way

as well. It should be noted, however, that the equilibrium analysis in Karp and Livernois (1994)

and Karp (2005) deals with necessary conditions for a MPE. Moreover, Xepapadeas (1992) relies

on conjecture functions and examines non-degenerate Markovian Nash equilibria, which may or

may not be Markov perfect.

One important point that the literature has largely left unaddressed is how desirable steady

states are reached.1 That is, researchers have generally not been interested in entire emissions

trajectories, choosing instead to focus on the steady state. Issues of potential inter-temporal welfare

loss (in relation to a social optimum) en route to the steady-state equilibrium are not explored.

Such considerations can be important in instances when convergence to a steady-state is slow,

especially if agents have reason to be disgruntled by the short-run implications of the instituted

policy. In addition, equilibrium dynamics can be important if the regulator’s goal is to ensure that

pollution never exceeds a given level, for example, by enforcing a dynamic environmental standard.

In the case of water pollution, such a standard could be to keep pollution levels low enough so that

water bodies are “swimmable and fishable” at all times. By focusing on entire paths of emissions

instead of just steady-state levels, this paper accommodates such concerns.

We initially focus on a class of deterministic infinite horizon differential games of pollution

control in which agents’ payoffs are polynomial in the total stock of pollution.2 Moreover, we

allow for potential irreversibility or hysteresis effects in the pollution accumulation process. Such

phenomena are typically observed in many ecological processes, notably so in shallow lake systems

(see, for e.g., (Maler et al., 2003; Kossioris et al., 2008)), and carry profound implications for pol-

lution control policy. Given an open-loop emissions strategy satisfying a mild regularity condition,

I exhibit an ambient transfer scheme that induces it in MPE.3 The target open-loop strategy can

1Exceptions include papers by Benchekroun and Van Long (1998), Sorger (2005), and Akao (2008). But these
authors allow for knowledge of individual agents’ actions in the design of policy and thus do not focus on ambient
transfers.

2Specific instances of this model can be found in many previous contributions including (Segerson, 1988; Tsutsui
and Mino, 1990; Xepapadeas, 1992; Dockner and Van Long, 1993; Karp and Livernois, 1994; Dockner et al., 1996;
Benchekroun and Van Long, 1998; Karp, 2005; Wirl, 2007; Dutta and Radner, 2009) .

3This result has certain parallels to the neoclassical-growth work of Boldrin and Montrucchio (1986) who, given
a candidate policy, exhibit an optimal growth problem that produces it as an optimal solution.
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be thought of as the solution to a suitably defined optimal control problem, which may focus on

or reconcile such considerations as (i) social welfare maximization; (ii) meeting dynamic environ-

mental standards at a minimum cost; or, (iii) maximizing the utility of the agent who is worst-off,

among many others.

The proposed transfer scheme is a polynomial function of the observed difference between actual

and desired total pollution and is designed so that, in MPE, no tax or subsidy is levied at any point

in time, not just at the steady-state. Since equilibrium emissions strategies are open-loop and

subgame-perfect, it is less likely that agents will find themselves off equilibrium. Thus, actual

pollution levels will, at least in theory, plausibly match desired ones so that no transfers ever occur.

(This paper employs the MPE criterion described in Definition 4.4 of Dockner et al. (2000), for

which sufficient conditions are given in Theorem 4.4 of the same reference.) We illustrate the results

by deriving the ambient transfer that induces welfare-maximizing emissions for a linear-quadratic

oligopoly game introduced by Benchekroun and Van Long (1998).

Of course, deviations from the equilibrium can happen for a variety of reasons and are observed

in experimental studies. A striking example can be found in Cochard et al. (2005) where ambient

transfers perform quite poorly. At the same time, and in contrast to Cochard et al. (2005), Sprag-

gon (2002) finds ambient transfers to be effective in inducing socially optimal behavior. These

occasionally dramatic discrepancies between experimental studies are not thoroughly understood,

though collusion seems to play a prominent role in the inefficiency observed in Cochard et al. (2005).

An additional implication of the deterministic analysis is that, with moderate monitoring, first-

best outcomes can be achieved in settings in which they cannot be sustained as MPE without the

use of policy. As an example, consider the linear quadratic game studied in Dockner and Van Long

(1993), which draws on foundational work by Tsutsui and Mino (1990). The best one can hope for

in this setting (assuming the discount rate is low enough) is a MPE in nonlinear strategies that

leads to socially optimal steady state pollution levels. At the same time, Wirl (2007) shows that

even this outcome depends crucially on the quadratic nature of the profit function, and does not

hold in its absence. On a more abstract level, the analysis establishes that differential games with

“bad” equilibrium properties can be, via the manipulation of the state-dependent component of

agents’ objective functions, transformed into ones possessing at least one MPE that is obvious and,

where applicable, socially desirable.
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This neat result breaks down when uncertainty is introduced into the pollutant accumulation

process. From a purely technical point of view, the differential game becomes stochastic and its

analysis is substantially complicated. Determining the temporal distribution of pollution as a result

of agents’ emissions rests on solving a stochastic differential equation, an exercise of considerable

mathematical difficulty. Moreover, even when such an equation allows for analytical insight, the

resulting process will typically fail to have a stationary distribution unless certain modeling as-

sumptions are imposed. Such assumptions, while standard in the literature on stochastic models of

economic growth (see Merton (1975)), are not natural in a pollution control context. Xepapadeas

(1992) incorporates stochastic dynamics in his model but focuses on long-run asymptotics (once

again relying on conjecture functions) and does not discuss the dynamic effect of policy implemen-

tation. He also does not quantify the magnitude of the transfers that are needed to induce the

socially optimal steady state. I address some of these issues in this work.

In a stochastic environment, it is no longer reasonable for a regulator to solely focus on open-

loop strategies. This is because such strategies do not make efficient use of available information

and are likely to be suboptimal even in instances where there are no strategic interactions (see

Example 3.1). Indeed, in stochastic control, optimal paths have a random feedback representation.

Therefore, we widen the scope of the regulator’s goals to include general Markovian strategies and

go on to provide an analog of the results of the deterministic section. In the model’s full generality,

little can be said about the probabilistic properties of the global pollution stock trajectory and the

resulting transfers. To make the analysis meaningful, we concentrate on the model by Benchekroun

and Van Long (1998) that was discussed in the deterministic section. Assuming linear demand,

we focus on schemes that induce emissions strategies that are symmetric, stationary, and linearly

decreasing in total pollution. This class of target strategies is appealing for its simplicity. Moreover,

when environmental damages are quadratic, its elements include the social optimum.

Under this specification on target strategies, the stochastic process of total pollution accumu-

lation is a special case of the well-studied Cox-Ingersoll-Ross process (Cox et al., 1985), which is

extensively used in finance and whose probabilistic and asymptotic properties are completely char-

acterized. The underlying stochastic control problem is tractable and it is possible to gauge the

effect of ambient transfers. In particular, given a target strategy, we exhibit a simple quadratic

ambient transfer scheme that induces it in MPE and provide closed-form expressions for expected
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transfers at any point in time. These (expected) transfers are non-positive and their magnitude

increases linearly with physical volatility, the size of the economy, and the absolute value of the

slope of the inverse demand function. Moreover, we show that expected transfers vanish when the

regulator wishes to induce a constant emissions strategy. To the best of our knowledge, this is the

first paper that provides as precise a probabilistic analysis of dynamic nonpoint-source pollution

control policy. This section ends in the spirit of Karp (2005) with a comparison of the expected

transfers of ambient and point-source transfer schemes.

The paper is organized as follows. Section 2 discusses the deterministic model and its policy im-

plications. Section 3 extends the analysis to stochastic environments. Section 4 provides concluding

remarks. Technical proofs are collected in the Appendix.

2 The Deterministic Model

Suppose there are n agents who are involved in a pollution-generating economic activity. Agent i’s

emissions at time t are denoted by ei(t) and the global stock of pollution by x(t) ∈ ℜ+. Agent i’s

profit at time t is denoted by (vectors are indicated in bold)

πi(e(t), x(t)),

where the function πi(·) : ℜn+1 7→ ℜ is strictly concave in ei, and is both polynomial and decreasing

in x (note however that it is not necessarily separable in e and x). In the nonpoint source pollution

literature πi is typically only a function of ei, with the damages from pollution entering only in the

social welfare function. We relax this assumption to allow for agents directly affecting each others’

profits as well as potentially incurring some of the costs of total pollution accumulation.

Agents’ emissions are constrained by technology so that for all i ∈ {1, 2, .., n} there exists

emax
i ∈ ℜ+ such that ei(t) ≤ emax

i . We allow for the possibility of abatement, in the form of a

negative emission rate. The time evolution of pollution is governed by the following differential

equation

ẋ(t) =

n∑

i=1

ei(t) − g(x(t)), (1)
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where g(x) is a polynomial function that denotes the physical rate of natural purification, which

satisfies

lim
x→∞

g(x) = ∞.

The function g(·) may have convex-concave nonlinearities in order to capture potential irreversibil-

ity or hysteresis effects in the pollution accumulation process.4 To preclude the possibility of

nonsensical trajectories, we impose the state non-negativity constraint x(t) ≥ 0.

Suppose that initial pollution levels are universally bounded by a large constant K. Our as-

sumptions imply that the global stock of pollution will be bounded so that, x(t) ∈
[
0, xmax

]
,

where

xmax = max

{

K, max

{

x ∈ ℜ+ : g(x) =
n∑

i=1

emax
i

}}

.

Suppose that the regulator imposes an ambient transfer scheme φ that is a function of total pollution

and calendar time. That is, at time 0, the regulator pre-commits to a policy, announcing to agents

that they will be subject to a particular dynamic transfer of φi(x, t) if at time t the total pollution

stock is equal to x. Focusing on agent i, and denoting other agents’ emissions by ẽ−i(x, t), φ gives

rise to the following differential game:

max
ei(·)

∫ ∞

0
e−δt

[
πi(ei(t), ẽ−i(x(t), t), x(t)) + φi(x(t), t)

]
dt

subject to: ẋ(t) = ei(t) +

n∑

j 6=i

ẽj(x(t), t) − g(x(t))

ei(t) ≤ emax
i , x(t) ≥ 0, x(0) = x0, (2)

where δ is the discount rate.

The regulator wishes to induce an open-loop emissions strategy ê where

ê =
{
êi(t) : t ≥ 0, i ∈ {1, 2, .., n}

}
.

This open-loop strategy ê may represent a control path that achieves or reconciles many social

goals such as (a) maximizing social welfare; (b) ensuring that specific environmental standards are

always met at a reasonable cost, or; (c) maximizing the utility of the worst-off agent, among others.

4For (a non-polynomial) example applicable to shallow lake dynamics, see Maler et al. (2003) and Kossioris et al.
(2008).
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Typically, we can think of ê as the solution to a particular optimal control problem. Given an initial

condition x̂(0) = x0 on total pollution, ê gives rise to an associated pollution path x̂, where

x̂ =
{
x̂(t), t ≥ 0

}
.

Theorem 1 shows that the regulator can induce the open-loop strategy ê in MPE with the use of

a relatively simple ambient transfer scheme. First, we introduce some notation.

Definition 1 An open-loop strategy ê(t) is admissible if it is continuously differentiable and satis-

fies the following inequalities

n∑

j=1

êj(t) ≥ 0 and êi(t) ≤ emax
i , for all t ≥ 0 and i ∈ {1, 2, ..., n}.

Admissibility ensures feasibility along any subgame.5 Given an admissible open-loop strategy ê,

we define the functions f ê

i :
[
0, xmax

]
× [0,∞) 7→ ℜ, where

f ê

i (x, t) = −δ

∫
∂

∂ei
πi(ê(t), x)dx +

∂

∂t

[ ∫
∂

∂ei
πi(ê(t), x)dx

]

+
∂

∂ei
πi(ê(t), x)

[ n∑

j=1

êj(t) − g(x)

]

− πi(ê(t), x), (3)

for i ∈ {1, 2, .., n}. The model assumptions imply that the functions f ê

i are well-defined and

polynomial in x. Let m̂i ≥ 1 denote the polynomial degree of f ê

i . The following theorem summarizes

the paper’s first result.

Theorem 1 Consider an admissible open-loop strategy ê and the functions f ê

i given by Eq. (3).

Suppose that the functions V i(x, t) :
[
0, xmax

]
× [0,∞) 7→ ℜ, where

V i(x, t) = −

∫
∂

∂ei
πi(ê(t), x)dx −

∫ ∞

t

f ê

i (x̂(s), t)e−δ(s−t)ds,

are bounded from below and satisfy lim supt→∞ e−δtV i(x̂(t), t) ≤ 0, for all initial conditions x0 and

i ∈ {1, 2, ..., n}. The ambient transfer

φ̂i(x, t) =

m̂i∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
, i ∈ {1, 2, ..., n} (4)

5Definition 2 generalizes this concept for arbitrary Markovian strategies.
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induces ê in Markov perfect equilibrium.

Proof. Consider the Hamilton-Jacobi-Bellman (HJB) equation for agent i, assuming that other

agents choose the open-loop emission strategies ê−i,

δV i(x, t) − V i
t (x, t) = max

{

πi(ei, ê−i(t), x) + φ̂i(x, t) + V i
x(x, t)

[

ei +
∑

j 6=i

êj(t) − g(x)

]∣
∣
∣
∣

x = 0 ⇒ ei +
∑

j 6=i

êj(t) ≥ 0, ei ≤ emax
i

}

. (5)

The fact that ê is admissible implies that
∑n

j=1 êj(t) ≥ 0 and êi(t) ≤ emax
i . Thus, state non-

negativity is not violated and upper bound constraints are respected. To ensure that agent i’s

best response is given by êi(t), the right-hand-side of Eq. (5) must be maximized at that level

of emissions. As the function πi is strictly concave in ei, it is sufficient to impose that the value

function V i(x, t) satisfy

V i
x(x, t) = −

∂

∂ei
πi(ê(t), x). (6)

Eq. (6) in turn implies

V i(x, t) = −

∫
∂

∂ei
πi(ê(t), x)dx + Âi(t), (7)

where Âi(t) is a time-dependent function. Substituting the value function given by (7) into the

HJB conditions obtains the following equation

δ

[

−

∫
∂

∂ei
πi(ê(t), x)dx + Âi(t)

]

−
∂

∂t

[

−

∫
∂

∂ei
πi(ê(t), x)dx + Âi(t)

]

=

= πi(ê(t), x) + φ̂i(x, t) −
∂

∂ei
πi(ê(t), x)

[ n∑

j=1

êj(t) − g(x)

]

. (8)

Recalling Eq. (3) and rearranging terms, Eq. (8) may be written in the following way

φ̂i(x, t) − δÂi(t) +
d

dt
Âi(t) = f ê

i (x, t)

(4)
⇒

n̂∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
− δÂi(t) +

d

dt
Âi(t) = f ê

i (x, t)

⇒

n̂∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
− f ê

i (x, t) − δÂi(t) +
d

dt
Âi(t) = 0. (9)
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Considering the Taylor expansion of f ê

i (x, t) (recall that f ê

i is polynomial in x) about (x̂(t), t),

Eq. (9) obtains the following differential equation

d

dt
Âi(t) − δÂi(t) − f ê

i (x̂(t), t) = 0. (10)

Solving differential equation (10) yields

Âi(t) = eδt

[

Âi(0) +

∫ t

0
f ê

i (x̂(s), s)e−δsds

]

.

Setting

Âi(0) = −

∫ ∞

0
f ê

i (x̂(s), s)e−δsds

implies the particular solution

Âi(t) = −

∫ ∞

t

f ê

i (x̂(s), s)eδ(t−s)ds.

The theorem’s assumptions imply that V i(x, t) satisfies sufficient conditions for optimality given

by Theorem 4.4 in Dockner et al. (2000).

Economic Interpretation. Equations (3) and (4) may at first glance seem difficult to interpret.

However, keeping in mind the theory of optimal control they can be explained in an intuitive way.

Suppose that the open-loop strategy ê satisfies the HJB equations (and thus is a MPE) without the

use of any transfer scheme. Denote by V i
NT the optimal value functions, which would apply to this

hypothetical no-transfer (NT) case. To be precise, the functions V i
NT (x, t) denote the maximized

stream of discounted future profits at time t and current state x, given that the open-loop strategy

ê satisfies the HJB conditions and is a MPE. Optimality at ê ensures that they are given by Eq. (7)

for Âi(t) ≡ 0 so that

V i
NT (x, t) = −

∫
∂

∂ei
πi(ê(t), x)dx.

A little bit of calculus then yields the following expression for f ê

i

f ê

i (x, t) = −πi(ê(t), x) −
d

d∆

[

e−δ∆V i
NT

(
x(t + ∆), t + ∆)

)
]

∆=0, x(t)=x

. (11)
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(For a straightforward justification of Eq. (11), refer to the derivation of the HJB conditions on pages

41-43 of Dockner et al. (2000)) Viewed in this light, the function f ê

i has a natural interpretation.

It is the difference evaluated at (x, t) between (a) the negative of an agent’s profit function applied

to ê and; (b) the rate of change of his maximized stream of discounted future profits if ê satisfied

the HJB conditions, and therefore constituted a MPE, without the use of transfers. [Note that

if ê were a MPE without the use of policy this difference would be identically zero, i.e. f ê

i ≡ 0,

negating the need for any transfers.]

As the open-loop strategy ê will not in general constitute a MPE, it is necessary to introduce a

transfer scheme that will actually induce it. As previously discussed, policy makers are constrained

to using instruments that only keep track of cumulative pollution levels. In addition, proposed

schemes must be realistic; they cannot generate huge budget imbalances, nor can they rely on

command-and-control measures. To this end, and similar to Xepapadeas (1992), a reasonable class

of instruments is one which determines the size of the dynamic transfer as an explicit function of

the deviation of the global pollution stock from its desired dynamic target {x̂(t), t ≥ 0}. To this

effect, the following ambient transfer is proposed

φi(x, t) =

m̂i∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
.

The assumption that the functions πi and g are polynomial in x implies that f ê

i will also be

polynomial in x. Thus, its Taylor expansion is valid on the whole domain (in other words, f ê

i is an

entire function) and we may write

φ̂i(x, t) =

m̂i∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
= f ê

i (x, t) − f ê

i (x̂(t), t), ∀(x, t) ∈
[
0, xmax

]
× [0,∞).

(12)

When added to an agent’s profit function, the transfer φ̂i(x, t) ensures that the right-hand-side

of Eq. (11) will be zero, so long as the optimal value functions are appropriately altered. That is,

the transfer will have the effect of equating the negative of the agent’s profit function evaluated at

ê to the rate of change of an appropriately defined maximized stream of discounted future profits.

To this end, the functions V i(x, t) remain consistent to the form given by Eq. (7). However, in

11



contrast to the hypothetical NT case, they will now also include a nontrivial function of t, Âi(t),

so that

V i(x, t) = V i
NT (x, t) + Âi(t).

We first reason intuitively as to what the function Âi(t) should look like. We see from the Taylor

expansion of Eq. (12) that the transfer scheme φ introduces an instantaneous term which only

depends on calendar time, namely −f ê

i (x̂(t), t). This transfer is incurred independently of agents’

actions or current states. Relating this aspect of the scheme to the time-dependent component

of the value function, we intuitively suspect that Âi(t) will equal the discounted stream of these

time-dependent transfers so that

Âi(t) = −

∫ ∞

t

e−δ(s−t)f ê

i (x̂(s), s)ds. (13)

Moving on to a formal argument, the function Âi(t) is most certainly not arbitrary. The HJB

conditions imply that the negative of an agent’s profit function must be equal to the rate of change

of his maximized stream of discounted profits. Thus, Âi(t) must be a (non asymptotically divergent)

solution of the following differential equation

−
[
φi(x, t) + πi(ê(t), x)

]
−

d

d∆

[

e−δ∆

(

V i
NT

(
x(t + ∆), t + ∆)

)
+ Âi(t + ∆)

)

︸ ︷︷ ︸

V i(x(t+∆),t+∆)

]

∆=0, x(t)=x

= 0

⇒ f ê

i (x̂(t), t) + δÂi(t) −
d

dt
Âi(t) = 0, i ∈ {1, 2, ..., n}. (14)

Does our intuitive guess meet this criterion? The answer is yes, as the expression of Eq. (13)

satisfies differential equation (14) while ensuring that the value functions do not diverge as t → ∞.

Note that the polynomial assumption on πi and g is absolutely critical for the above scheme to

work. This is because in its absence the Taylor approximation of f ê

i would only be locally valid.

In particular, Eq. (12) would only hold in a neighborhood around (x̂(t), t) and Markov perfection

would be lost. Finally, it is important to explain why Theorem 1 does not extend to arbitrary, non

open-loop, Markovian strategies. This is because, again, the polynomial nature of f ê

i is potentially

lost if ê(t) is substituted by a feedback strategy ê(x, t). That said, in some instances and for some

target non-open loop strategies (one of which is extensively discussed in Example 3.1) polynomiality

is preserved, and one can induce these feedback strategies with the proposed set of schemes.
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Theorem 1 gives rise to two immediate corollaries.

Corollary 1 All admissible open-loop strategies ê for which ∂
∂ei

πi(ê(t), x) and ∂2

∂t∂ei
πi(ê(t), x) are

bounded for all i ∈ {1, 2, .., n} satisfy the assumptions of Theorem 1.

Proof. Recall that under our assumptions both e and x are bounded. The result follows.

As an example, Corollary 1 is satisfied for profit functions πi that are separable in e and x,

provided the target ê is bounded from below by a strictly positive number (an interior assumption

that is typically true of first-best solutions) and does not change too rapidly. These modeling

assumptions are present in many well-studied dynamic games of pollution control.

Corollary 2 Eq. (4) implies that φ̂(x̂(t), t) ≡ 0. Thus, in equilibrium, the mechanism prescribed

by Theorem 1 ensures that no transfers are ever made.

The practical relevance of Corollaries 1 and 2 hinges on the robustness of our equilibrium

analysis. On this score, Theorem 1 implies that a desirable open-loop emissions strategy may be

induced in Markov-perfect equilibrium. This finding suggests that agents are less likely to deviate

from the equilibrium path as they do not condition their emissions on anything else but calendar

time, knowing that their actions will constitute a best response regardless of perceived pollution

levels. The predictive capacity of an equilibrium open-loop strategy that is subgame perfect is, at

least in theory, quite robust. As a result, provided there is no uncertainty in the evolution of the

global pollution stock, Corollary 2 indicates that it is unlikely for any tax or subsidy to ever be

levied.

Example 2.1 Adopting the model of polluting oligopolists by Benchekroun and Van Long (1998),

suppose there are n identical agents producing a homogeneous good. I take the output of each agent

to equal his emissions and assume that each agent has a constant unit cost c ≥ 0. Furthermore,

assume that the underlying demand for the produced good is linear so that the inverse demand

function P (·) is given by

P (e) = B − b

n∑

j=1

ej .
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Hence, agent i’s profit at time t is given by

πi(e(t), x(t)) ≡ πi(e(t)) =

[

B − b
n∑

j=1

ej(t)

]

ei(t) − cei(t).

The pollution stock’s rate of natural purification is linear so that g(x) = βx, β > 0. We are

interested in calculating a transfer scheme along the lines of Theorem 1 that will induce an open-

loop strategy ê(t). As the profit function in this example is independent of the state, the transfer

scheme is quite simple to calculate. The functions fi are linear in x so that applying Eq. (3) obtains

f ê

i (x, t) = −δ

[

B − b
∑

j 6=i

êj(t) − 2bêi(t) − c

]

x − b

[
∑

j 6=i

d

dt
êj(t) + 2

d

dt
êi(t)

]

x

+

[

B − b
∑

j 6=i

êj(t) − 2bêi(t) − c

][ n∑

j=1

êj(t) − βx

]

−

[

N − b

n∑

j=1

êj(t)

]

êi(t) + cêi(t).

Hence, the sum that appears in Eq. (4) will consist of just one term so that

φ̂i(x, t) =

(

− (δ + β)

[

B − b
∑

j 6=i

êj(t) − 2bêi(t) − c

]

− b

[
∑

j 6=i

d

dt
êj(t) + 2

d

dt
êi(t)

])

[x − x̂(t)],

i ∈ {1, 2, ..., n}. (15)

We go on to illustrate Eq. (15) with a specific open-loop strategy. Suppose, along the lines of Xepa-

padeas (1992) and Benchekroun and Van Long (1998), that pollution creates environmental dam-

ages, which are not internalized by polluting agents, denoted by a convex and increasing function

D(x(t)). In this example, we take damages to be quadratic, so that

D(x(t)) = −θx(t)2, θ > 0.

The socially optimal emission schedule is defined to be the solution of the following optimal control

problem
(
by symmetry we may simply focus on e(t) =

∑n
i=1 ei(t)

)
:

max
e(·)

∫ ∞

0
e−δt

(
[
B − be(t)

]
e(t) − ce(t) − θx(t)2

)

dt

subject to: ẋ(t) = e(t) − βx(t)

e(t) ≤ emax, x(t) ≥ 0, x(0) = x0. (16)
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Let the constants α1 and α2 equal

α1 =

[
(
δ + 2β

)
b −

√

(δ + 2β)2b2 + 4θb

]/

2 < 0

α2 = α1
(B − c)/b

δ + β − α1
b

< 0.

It is straightforward to show that an interior optimal control e∗(t) will be equal to

e∗(t) =
α1

b
x∗(t) +

B − c + α2

2b
, (17)

where x∗(t) satisfies the differential equation

dx∗(t)

dt
=

B − c + α2

2b
+

[
α1

b
− β

]

x∗(t),

subject to initial condition x∗(0) = x0. Thus,

e∗(t) =
α1

b

[

−
B − c + α2

2b
(

α1
b
− β

) +

(

x0 +
B − c + α2

2b
(

α1
b
− β

)

)

e

(
α1
b
−β

)
t

]

︸ ︷︷ ︸

x∗(t)

+
B − c + α2

2b
. (18)

Suppose for simplicity that model primitives are such that e∗(t) ∈
[
0, emax

]
for all t. We proceed to

calculate a transfer scheme along the lines of Theorem 1 that will induce the open-loop strategies

e∗(t)

n
, i ∈ {1, 2, ..., n}.

Applying Eq. (15) to the desired strategies yields the following ambient transfer

φ∗
i (x, t) = −

(

(δ + β)

[

B − b
n + 1

n
e∗(t) − c

]

+ b
n + 1

n

d

dt
e∗(t)

)

[x − x̂(t)], i ∈ {1, 2, ..., n}.(19)

3 The Stochastic Setting

In a physical environment in which pollutant accumulation evolves stochastically, state-dependent

policy needs to be designed with caution. This is because deviations from any kind of dynamic

target are inevitable and actual transfers will have to be made between agents and the regulating

authority. Appropriate policy tools should arguably result in transfers that are moderate, or at

the very least predictable (in a probabilistic sense). In this section, we attempt to address some of

these issues in a systematic fashion.
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Departing from a deterministic physical environment we assume that the evolution of the pol-

lution stock is governed by a stochastic analogue of Eq. (1), i.e., the following stochastic differential

equation

dx(t) =

[ n∑

j=1

ej(t) − g(x(t))

]

dt +
√

h(x(t))dWt, x(0) = x0, (20)

where the functions g(x) is defined as before, h(x) is a non-negative polynomial, and Wt is a Wiener

process. Thus, pollutant accumulation is a diffusion process with instantaneous drift
∑n

j=1 ei(t) −

g(x(t)), and variance h(x(t)).

In a stochastic environment, a regulator may justifiably wish to induce emissions strategies that

are not necessarily open-loop. This is because the evolution of the state is not perfectly predictable

like it is in the deterministic case and an open-loop policy does not make efficient use of available

information. Indeed, in stochastic control, optimal paths have a (random) feedback representation

(see Example 3.1). Therefore, it is reasonable for the regulator to wish to adapt his or her goals to

the random trajectory of the total pollution stock.

Suppose the regulator wishes to induce a Markovian emissions strategy ê such that

ê =
{
êi(x, t) : (x, t) ∈ ℜ+ × [0,∞), i ∈ {1, 2, .., n}

}
.

This strategy ê may represent a control path that achieves or reconciles many social goals such

as (a) maximizing expected social welfare; (b) ensuring that specific environmental standards are

always met at a reasonable cost, or; (c) maximizing the utility of the worst-off agent, among

others. Equivalently to the deterministic settting, we can think of ê as the solution to a particular

stochastic optimal control problem. Given an initial condition x̂(0) = x0 on total pollution, ê has

an associated random pollution path x̂, where

x̂ =
{
x̂(t), t ≥ 0

}
,

that is governed by stochastic differential equation (23).

We again provide necessary notation. First, the concept of admissibility is extended to Marko-

vian strategies.
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Definition 2 A Markovian strategy ê(x, t) is admissible if it is continuously differentiable and

satisfies the following inequalities

n∑

j=1

êj(0, t) ≥ 0 for all t ∈ [0,∞) and êi(x, t) ≤ emax
i for all (x, t) ∈ ℜ+ × [0,∞), i ∈ {1, 2, ..., n}.

Consequently, Eq. (3) is altered in the following way to accommodate randomness and the strategy’s

feedback representation,

f ê

i (x, t) = −δ

∫
∂

∂ei
πi(ê(x, t), x)dx +

∂

∂t

[ ∫
∂

∂ei
πi(ê(x, t), x)dx

]

+
∂

∂ei
πi(ê(x, t), x)

[ n∑

j=1

êj(x, t) − g(x)

]

+
∂

∂x∂ei
πi(ê(x, t), x)

h(x)

2

−πi(ê(x, t), x), i ∈ {1, 2, ..., n}. (21)

This function admits an equivalent economic interpretation as the one discussed after the proof of

Theorem 1. We now proceed to provide a stochastic equivalent to Theorem 1. In what follows, E

denotes the expected value operator.

Theorem 2 Consider an admissible Markovian strategy ê(x, t) and suppose that the functions

f ê

i given by Eq. (21) are polynomial in x. Furthermore, suppose that the functions V i(x, t) :

ℜ+ × [0,∞) 7→ ℜ, where

V i(x, t) = −

∫
∂

∂ei
πi(ê(x, t), x)dx −

∫ ∞

t

f ê

i

(
E[x̂(s)], t

)
e−δ(s−t)ds,

are bounded from below and satisfy lim supt→∞ e−δtE
[
V i(x̂(t), t)

]
≤ 0, for all initial conditions x0

and i ∈ {1, 2, ..., n}. The ambient transfer

φ̂i(x, t) =

m̂i∑

k=1

∂kf ê

i

∂xk

(
E[x̂(t)], t

)
[
x − E[x̂(t)]

]k

k!
, i ∈ {1, 2, ..., n} (22)

induces ê(x, t) in Markov perfect equilibrium.

Proof. Identical to Theorem 1, except that we invoke Theorem 8.5 in Dockner et al. (2000).

Theorem 2 is primarily presented to make the analysis consistent with that of Section 2. Its

boundedness conditions seem to be quite strong (especially since the state space is now unbounded

from above), which implies that its reach may not be wide as that of Theorem 1. In the example
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that follows we do not apply Theorem 2, relying instead on a different proof technique that does

not require boundedness of the value functions.

Example 3.1 Consider the stochastic equivalent of Example 2.1. We follow Xepapadeas (1992)

and assume that h(x) = σ2x. Thus, the evolution of the pollution stock is governed by the following

stochastic differential equation

dx(t) =

[ n∑

j=1

ej(t) − βx(t)

]

dt + σ
√

x(t)dWt, x(0) = x0. (23)

Suppose that the regulator is interested in inducing a symmetric and stationary Markovian

emissions strategy that is linearly decreasing in total pollution levels. The target emissions strategy,

ê, therefore satisfies

êi(x, t) = êi(x) =
1

n

[
E − γx

]
, i ∈ {1, 2, .., n} (24)

where γ ≥ 0 and 0 < E ≤ emax. Observe that ê is an admissible Markovian strategy, ensuring that

state non-negativity is always maintained.

With this target strategy specification, the pollutant dynamics (23) can be rewritten in the

following way:

dx(t) = (β + γ)

[
E

β + γ
− x(t)

]

dt + σ
√

x(t)dWt, x(0) = x0. (25)

Eq. (25) is an instance of the celebrated Cox-Ingersoll-Ross (Cox et al., 1985) process, which is

extensively used in finance. Fortunately, its evolution and steady-state properties are completely

characterized. The following proposition summarizes.

Proposition 1 (Cox et al., 1985) Stochastic differential equation (25) has a unique solution given

by the diffusion process
{
x̂(t) : t ≥ 0

}
where

(a) x̂(t) has a noncentral chi-square distribution with expectation

E[x̂(t)] = x̂0e
−(β+γ)t +

E

β + γ

[
1 − e−(β+γ)t

]
,

and variance

Var[x̂(t)] = x̂0
σ2

β + γ

[
e−(β+γ)t − e−2(β+γ)t

]
+

Eσ2

2(β + γ)2
[
1 − e−(β+γ)t

]2
.
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(b) If 2E > σ2 then {x̂(t) : t ≥ 0} has a stationary distribution that is Gamma

(

2E
σ2 , σ2

2(β+γ)

)

.

Due to its relevance for financial applications, much numerical analysis has been undertaken to

describe the precise nature of this noncentral chi-square distribution.6 For our purposes, knowledge

of its mean and variance will suffice.

In view of Proposition 1, the class of target strategies introduced in Eq. (24) holds consider-

able appeal. This is because, if somehow induced, its elements lead to an equilibrium pollutant

accumulation process that can be described in precise probabilistic terms. Moreover, this class of

target strategies is insightful because it lends itself to simple policy prescriptions. In particular, a

quadratic ambient transfer scheme is presented that induces, in MPE, a strategy satisfying Eq. (24),

which meets the stability condition 2E > σ2.

Adapting Eq. (21) to fit our example leads to the following expression (as the target strategy

is stationary we suppress the time argument from f ê

i )

f ê

i (x) = −δ

[

γb
n + 1

2n
x2 −

(

B − c −
b(n + 1)

n
E

)

x

]

−

[

B − b(E − γx)

]
E − γx

n
+

c

n

[
E − γx

]

+

[

γb
n + 1

n
x +

(

B − c −
b(n + 1)

n
E

)]
[
E − (β + γ)x

]
+

σ2

2
γb

n + 1

2n
x, (26)

for i ∈ {1, 2, .., n}. Similar to the proof of Theorem 1, this function will appear in the HJB equation

of the stochastic control problem faced by the agents. The third result of the paper is summarized

in the following Proposition. Its proof does not rely on the sufficient conditions of Theorem 2, and

is presented separately in the paper’s Appendix.

Proposition 2 Consider the problem setting of Example 3.1. Let ê denote a target Markovian

strategy given by Eq. (24) such that 2E > σ2. The ambient transfer scheme φ̂ such that

φ̂i(x, t) =
d2f ê

i

dx2

(

E[x̂(t)]

)[
x − E[x̂(t)]

]2

2
+

df ê

i

dx

(

E[x̂(t)]

)
[
x − E[x̂(t)]

]
, i ∈ {1, 2, ..., n}, (27)

where all relevant quantities are defined in Proposition 1 and Eq. (26), induces ê in Markov-perfect

equilibrium.

6See Dyrting (2004) for a discussion of efficient numerical methods to determine its probability distribution
function.
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Proof. See Appendix.

Note that the function
d2f ê

i

dx2 is a constant such that

d2f ê

i

dx2
= −

bγ
[
δ(n + 1) + 2n(β + γ) + 2β

]

n
. (28)

Thus, in equilibrium, at time t an agent incurs an expected ambient transfer that is equal to

E
[
φi(x̂(t), t)

]
= −

bγ
[
δ(n + 1) + 2n(β + γ) + 2β

]

n

Var[x̂(t)]

2
, (29)

where Var[x̂(t)] is given by Proposition 1. This transfer is non-positive and can be clearly seen to

be zero in the deterministic σ = 0 case. Interestingly, it is also zero when γ vanishes (i.e., when

the regulator wishes to induce a constant emissions strategy). The next proposition gives a precise

description of the total discounted cost of policy implementation.

Proposition 3 Expected total ambient transfers (across time and agents) are equal to

−σ2bγ

[

δ(n + 1) + 2n(β + γ) + 2nβ

]
E + δx̂0

δ(δ + β + γ)(δ + 2(β + γ))
(30)

Proof. We proceed to calculate

E

[ ∫ ∞

0
e−δtφ̂i(x̂(t), t)dt

]

= E

[ ∫ ∞

0
e−δt

(
d2f ê

i

dx2

[
x̂(t) − E[x̂(t)]

]2

2
+

df ê

i

dx

(

E[x̂(t)]

)
[
x̂(t) − E[x̂(t)]

)

dt

]

.

By Proposition 1 and Fubini’s Theorem, the expectation and integral operators can be interchanged

so that

E

[ ∫ ∞

0
e−δtφ̂i(x̂(t), t)dt

]

=

∫ ∞

0
e−δt d

2f ê

i

dx2

Var[x̂(t)]

2
dt =

d2f ê

i

dx2

σ2(E + δx̂0)

2δ(δ + β + γ)(δ + 2(β + γ))

= −
bγ

[
δ(n + 1) + 2n(β + γ) + 2β

]

n

σ2(E + δx̂0)

2δ(δ + β + γ)(δ + 2(β + γ))

= −σ2bγ

[
δ(n + 1)

n
+ 2(β + γ) +

2β

n

]
E + δx̂0

2δ(δ + β + γ)(δ + 2(β + γ))

Adding all of the above terms for i ∈ {1, 2, ..., n} establishes the result.
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Proposition 4 Expected total ambient transfers are non-positive. They are equal to zero when γ is

equal to zero. Their absolute value is decreasing in β and δ, increasing in γ, and linearly increasing

in E,n, b, and σ2.

Proof. The monotonicity results regarding β and γ can be established by taking the appropriate

derivatives of Eq. (30) and observing their signs. All other statements are obvious by inspection.

Propositions 3 and 4 provide a precise account of the expected tax burden agents will bear. That

their magnitude is linearly increasing in σ2 and E is because of the linear effect these parameters

have on the global pollution stock’s volatility, and subsequent deviation from expected value levels

(see Proposition 1). Equivalently, the linear effect of b can be traced to the coefficient of the ambient

transfer’s quadratic term exhibited in Eq. (28). Moreover, this coefficient’s sign is responsible for

the fact that expected transfers are non-positive.

We observe that ambient policy becomes more expensive as n, the size of the economy, grows.

This point makes intuitive sense: the greater the number of polluting agents, the less an individual

one will feel that his or her actions affect the global pollution stock. Therefore, it becomes more

and more expensive to influence agent behavior. We revisit this point when we briefly address

point-source policy. Monotonicity results regarding β, γ and δ can be understood by noting the

countervailing effects these parameters have on (a) the transfer coefficient of Eq. (28) and (b) the

discounted stream of pollution volatility, i.e.,

σ2(E + δx̂0)

2δ(δ + β + γ)(δ + 2(β + γ))

which was calculated in the proof of Proposition 3.

Equivalently to Example 2.1, we illustrate Proposition 2 and Eq. (27) by applying it to the social

optimum. (We once again posit a quadratic damage function of θx(t)2). Recalling the constants

α1 and α2 from Example 2.1, let

α̃1 = α1

α̃2 = α2 +
α1σ

2

δ + β − α1
b

.

21



Assuming the regularity condition

B − c + α̃2

b
> σ2

it is straightforward to show that the following symmetric and stationary Markovian strategy

maximizes total expected welfare

e∗i (x) =
1

n

[
B − c + α̃2

2b
︸ ︷︷ ︸

E∗

−

(

−
α̃1

b
︸ ︷︷ ︸

γ∗

)

x

]

. (31)

Thus, the socially optimal policy is consistent with our class of target strategies given by Eq. (24).

Applying Eq. (31) to Eqs. (26) and (27) obtains the following transfer scheme

φ∗
i (x, t) = −

bγ∗
[
δ(n + 1) + 2n(β + γ∗) + 2β

]

n

[
x − E[x∗(t)]

]2

2
+

1

2n

[

− 2(B − c)
[
(n − 1)γ∗ +

n(β + δ)
]
+ 2bβ(n + 1)

(
E∗ − 2γ∗E[x∗(t)]

)
+ 2bδ(n + 1)

(
E∗ − γ∗E[x∗(t)]

)
+ 4bγ∗nE∗

+bγ∗(n + 1)σ2 − bn(γ∗)2E[x∗(t)]

]
[
x − E[x∗(t)]

]
, i ∈ {1, 2, ..., n}. (32)

where, by Proposition 1,

E[x∗(t)] = x̂0e
−(β+γ∗)t +

E∗

β + γ∗

[
1 − e−(β+γ∗)t

]
.

But, while we focus on the social optimum, an important implication of Proposition 2 is that it

is possible to induce strategies that reconcile many different considerations. One may wish, for

instance, to induce a linear strategy that maximizes steady-state payoffs while ensuring that the

mean and variance of steady-state pollution levels be below certain exogenously determined levels.

In view of Proposition 1, determining such a target strategy (i.e., solving for the relevant E and γ)

would amount to solving a two-variable nonlinear optimization problem with quadratic constraints.

Static setting. We see that, in this example, the main effect of adding uncertainty to the problem

is that in contrast to the deterministic case agents will, in expectation, incur a tax burden. A

reasonable question to ask is whether this insight translates to a stochastic, but static environment.

It is not difficult to observe that it does not. In this sense, the assumption of a dynamic pollution

stock is crucial. The argument is a simple stochastic analog of the analysis appearing in the

beginning of section 3.1 in Xepapadeas (1992).
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Suppose the regulator wishes to induce an emissions profile ê. This results in total pollution x̂,

where

E[x̂] =
n∑

j=1

êi.

Suppose, further, that the regulator institutes a linear ambient transfer φ̂ such that

φ̂i(x) = ki

[

x − E[x̂]

]

, ki ∈ ℜ, i ∈ {1, 2, ..., n}.

First order conditions establish that setting

ki = −
∂E[πi]

∂ei
(ê), ki ∈ {1, 2, .., n}

induces ê in equilibrium. Expected transfers will clearly be zero as the transfer is linear in x.

We briefly note how this result is consistent to the dynamic analysis. This is because, while in

a dynamic framework expected transfers may be strictly negative, the relevant comparison involves

a setting in which the regulator wishes to induce a constant (i.e., static) emissions strategy. In

this case, Proposition 4 establishes that, similar to a static framework, expected transfers will once

again vanish.

Comparison to generic point source transfers. The prudence of instituting ambient policy

will, in large part, depend on whether the transfer it imposes is excessive. To this end, it is

useful to compare the expected tax burden of Proposition 3 to one that a generic point-source

tax/subsidy would generate. Karp (2005) pursues this goal for the case of a flow pollutant and

rigorously compares the two tax burdens in the open-loop equilibrium case, providing conditions

under which one dominates the other.

Suppose that the regulator is able to observe individual emissions and charge a tax/subsidy per

unit of individual emissions. That is, the regulator can impose a transfer of (similar to Benchekroun

and Van Long (1998) and Karp (2005))

φi(x)ei

to an agent i. The goal is to once again induce a target strategy that satisfies Eq. (24). Using
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cumbersome but straightforward analysis7 one can show that a transfer scheme such that

φi(x) = β1x + β2, i ∈ {1, 2, .., n}

where

β1 =

−bγ

n

»

δ
2n

+ (n + 1)β + nγ

–

δ
2

+ β + γ n−1
n

≤ 0

β2 =

γ

»

− (B − c)(n − 1) + (n + 1)β σ2

2
+ 2bEn

–

+ β1

»

E(n − 1) + nσ2

2

–

− (B − c)(β + δ)n + bE(β + δ)(n + 1)

(β + δ)n + γ(n − 1)
,

(33)

induces a strategy satisfying Eq. (24) that meets the stability condition 2E > σ2. Consequently,

the total expected discounted transfer across agents and time is equal to

E

∫ ∞

0
e−δt

[
β1x̂(t) + β2

][
E − γx̂(t)

]
dt

=

∫ ∞

0
e−δt

[

− β1γE
[
x̂(t)2

]
+

[
Eβ1 − β2γ

]
E

[
x̂(t)

]
+ β2E

]

dt

= −β1γ

[
σ2(E + δx̂0)

2δ(δ + β + γ)(δ + 2(β + γ))
+

2E2 + 2δEx0 + δ(β + δ + γ)x2
0

δ(β + δ + γ)(2β + δ + 2γ)

]

+
[
Eβ1 − β2γ

] E + δx0

δ(δ + β + γ)
+

β2E

δ
. (34)

The complexity of Eq. (34) does not permit easy comparisons between the magnitudes of the two

tax/subsidy burdens. Still, observing Eqs. (30) and (34) there are a few key points worth making.

First, under nonpoint-source policy the expected tax burden diverges as the size of the econ-

omy grows. This does not occur under a point source tax/subsidy where, as Eq. (34) shows, the

tax/subsidy converges. Thus, sustaining a given policy as the economy grows becomes harder under

the former compared to the latter. Then again, this should not be especially surprising. As Karp

(2005) discusses in his paper, when the size of the economy becomes large ambient policy becomes

intuitively untenable. An agent has to feel that his actions have a nontrivial impact on the total

pollution stock in order to be affected by ambient standards, and alter his behavior accordingly. For

7Derivation and Mathematica output available upon request.
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example, an ambient standard for automobile emissions in say, New York City, would be patently

unrealistic.

Second, there exists a threshold value of volatility for which the nonpoint source tax burden

becomes smaller than its equivalent point source one. This is because as volatility decreases, the

probabilistic evolution of the pollution stock more closely resembles the evolution of its absolute

value. For low values of volatility the actual process is very close to its expected value and therefore

ambient transfers along the lines of Proposition 2 become accordingly small.

Third, recall that as γ becomes small the expected tax burden in the nonpoint-source policy

gets driven down to zero. This does not occur in the point-source case. Here, as γ tends to 0 the

transfer converges to

−(B − c)(β + δ)n + bE(β + δ)(n + 1)

n(β + δ)
·

E

δ
.

Thus, if the regulator is interested in inducing a strategy that is relatively insensitive to changes in

total pollution he or she may be well served to focus on ambient transfers.

We end this section by briefly noting that point-source policy can, in the spirit of Akao (2008),

be designed so that in MPE no tax/subsidy is ever levied. This can be accomplished by modifying

the standard policy in the following way. Consider introducing a per-unit tax/subsidy that depends

on the deviation of an agent from the target Markovian strategy, so that the transfer is given by

the following expression

φi(x) ·

[

ei −
E − γx

n

]

.

In this case, setting φi such that

φi(x) = γ1x + γ2, i ∈ {1, 2, .., n}

where

γ1 =

−bγ

n

»

δ
2n

+ (n + 1)β + nγ

–

δ
2

+ β + γ
≤ β1 ≤ 0

γ2 =

γ

»

− (B − c)(n − 1) + (n + 1)β σ2

2
+ 2bEn

–

+ γ1n

»

E + σ2

2

–

− (B − c)(β + δ)n + bE(β + δ)(n + 1)

n(β + δ + γ)
,

(35)
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induces the desired Markovian strategy with zero actual transfers.

4 Conclusion

This paper sheds light on the ability of ambient transfers to influence MPE behavior for a large

class of differential games of pollution control. The analysis suggests that, under deterministic

pollution accumulation, these policy tools are able to induce a wide set of open-loop strategies in

MPE. Moreover, proposed schemes are designed so that, in equilibrium, no tax or subsidy is ever

levied. The fact that we have a MPE in open loop strategies indicates that deviations from the

equilibrium path are, at least in theory, relatively unlikely.

The applicability of these results is explored under a stochastic framework for pollutant ac-

cumulation. When physical dynamics are uncertain, it is no longer possible to guarantee zero

transfers in equilibrium and it becomes important to gauge the scale of potential taxes or subsidies.

This exercise is undertaken for a simple linear oligopoly model and a regulating authority that is

interested in inducing emissions that are symmetric, stationary, and linearly decreasing in total

pollution. We derive closed-form expressions for expected ambient transfers at any point in time

and find that they are non-positive, with their magnitude increasing linearly with volatility, the size

of the economy, and the slope of the inverse demand function. In addition, these expected transfers

vanish if the regulating authority wishes to induce a constant emission strategy. The simplicity of

the stochastic analysis implies that one may solve for the target strategy that maximizes profits

subject to the constraint that the mean and variance of steady-state levels of pollution be below

certain exogenously determined levels. Finally, expected transfers are compared to those generated

by a generic point source policy.

Appendix

Proof of Proposition 2 Consider the Hamilton-Jacobi-Bellman equation for agent i,

δV i(x, t) − V i
t (x, t) = max

ei≤emax
i

{
[
B − b

∑

j 6=i

ej(x, t) − bei

]
ei − cei + φ̂i(x, t)

+V i
x(x, t)

[

ei +
∑

j 6=i

ej(x, t) − βx

]

+ V i
xx(x, t)

σ2x

2

∣
∣
∣
∣

x = 0 ⇒ ei +
∑

j 6=i

êj(x, t) ≥ 0

}

.

(36)

26



Assuming that other agents choose the stationary Markovian strategies êj(x) = E−γx
n

and dropping

superscripts, Eq. (36) obtains

δV (x, t) − Vt(x, t) = max
ei≤emax

i

{[

B −
b(n − 1)

n
(E − γx) − bei

]

ei − cei + φ̂(x, t)

+Vx(x, t)

[

ei +
(n − 1)

n
(E − γx) − βx

]

+ Vxx(x, t)
σ2x

2

∣
∣
∣
∣

x = 0 ⇒ ei + (n − 1)
E − γx

n
≥ 0

}

.

(37)

To ensure that agent i’s best response is given by êi(x) = E−γx
n

(note also that this response is

clearly feasible), the right-hand-side of Eq. (5) must be maximized at that level of emissions. Thus,

it is sufficient to impose that the value function V (x, t) satisfy

Vx(x, t) = −

[

B − c −
b(n + 1)

n
(E − γx)

]

. (38)

Following identical reasoning as in the proof of Theorem 1 the specification of φ̂ ensures that the

value function

V (x, t) = −γ
b(n + 1)

2n
x2 −

[

B − c −
b(n + 1)

n
E

]

x −

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds. (39)

solves the HJB equation (37) for the desired maximizing control êi(x) = E−γx
n

. That is, V (x, t)

satisfies the partial differential equation

δV (x, t) − Vt(x, t) =

[

B − b(E − γx)

]
E − γx

n
+

c

n

[
E − γx

]
+ φ̂(x, t)

+ Vx(x)
[
E − (β + γ)x

]
+ Vxx(x)

σ2x

2
. (40)

But, while this choice of V (x, t) solves the HJB equation, it is not possible to invoke standard

sufficiency theorems to establish optimality. This is because the state space is no longer bounded;

hence, the candidate value function will not be bounded or even bounded from below. For this

reason, it is necessary to use an alternative sufficiency theorem given by Theorem 3.4 Dockner et al.

(2000) that relies on finite horizon approximations of the value function. A similar approach was

recently used in the context of a fishery game by Wang and Ewald (2010).

To this end, consider a finite-horizon version of our problem over t ∈ [0, T ] with no salvage

function and postulate that a value function of the form

V (x, t;T ) = A1(t;T )x2 + A2(t;T )x + A3(t;T ) (41)
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solves the Hamilton-Jacobi-Bellman equation (37) for a maximizing control of ei(x) =
[
E − γx]/n,

with the added terminal time constraint V (x, T ;T ) = 0. In particular,

[

δA1(t;T ) −
d

dt
A1(t; T )

]

x2 +

[

δA2(t;T ) −
d

dt
A2(t;T )

]

x + δA3(t;T ) −
d

dt
A3(t;T )

=

[

B − b(E − γx)

]
E − γx

n
+

c

n

[
E − γx

]
+ φ̂(x, t)

+
[
2A1(t;T )x + A2(t;T )

][
E − (β + γ)x

]
+ A1(t;T )σ2x. (42)

and

A1(T ;T ) = A2(T ;T ) = A3(T ;T ) = 0.

Using Eq. (40), it is possible to cancel out φ̂(x, t) and to rewrite Eq. (42) in the following way

[

δA1(t;T ) −
d

dt
A1(t; T ) +

δγb(n + 1)

2n

]

x2 +

[

δA2(t; T ) −
d

dt
A2(t;T ) + δ

(

B − c −
Eb(n + 1)

n

)]

x

+δA3(t;T ) −
d

dt
A3(t;T ) + δ

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds −

d

dt

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds

︸ ︷︷ ︸

equivalently to Eq. (10), this expression equals −f ê

i

(
E[x̂(t)]

)

.

=

[

2A1(t;T )x + A2(t; T ) + B − c −
b(n + 1)

n
(E − γx)

]
[
E − (β + γ)x

]
+

[

A1(t;T ) +
γb(n + 1)

2n

]

σ2.

(43)

Collecting the terms involving x2, A1(t;T ) must satisfy the following differential equation

−
d

dt
A1(t;T ) +

[
δ + 2(β + γ)

]
A1(t;T ) = −γ

b(n + 1)

2n
(δ + 2(β + γ)). (44)

The solution of (44) satisfying A1(T ; T ) = 0 is given by

A1(t;T ) = −γ
b(n + 1)

2n
e(δ+2(β+γ))t

∫ T

t

(δ+2(β+γ))e−(δ+2(β+γ))sds = −γ
b(n + 1)

2n

[

1−e−(δ+2(β+γ))(T−t)

]

,

so that

lim
T→∞

A1(t;T ) = −γb
n + 1

2n
. (45)

28



Similarly, collecting the terms involving x, A2(t;T ) must satisfy

−
d

dt
A2(t;T ) +

[
δ + β + γ]A2(t; T ) = −

[
δ + β + γ

]
[

B − c −
b(n + 1)

n
E

]

,

+

[

A1(t;T ) +
γb(n + 1)

2n
︸ ︷︷ ︸

γb(n+1)
2n

e−(δ+2(β+γ))(T−t)

]
[
2E + σ2

]
. (46)

The solution of (46) satisfying A2(T ; T ) = 0 is given by

A2(t;T ) = −

[

B−c−
b(n + 1)

n
E

][

1−e−(δ+β+γ)(T−t)

]

+Ke(δ+β+γ)t

∫ T

t

e−(δ+2(β+γ))(T−s)e−(δ+β+γ)sds,

where K =
[
2E + σ2

]γb(n+1)
2n

. It is easy to see that A2(t;T ) will satisfy

lim
T→∞

A2(t;T ) = −

[

B − c −
b(n + 1)

n
E

]

(47)

Finally, A3(t; T ) will need to satisfy

δA3(t;T ) −
d

dt
A3(t; T ) = f ê

i

(
E[x̂(t)]

)
+

[

A2(t;T ) + B − c −
b(n + 1)

n
E

]

E. (48)

Using identical reasoning as before it is easy to show that

lim
T→∞

A3(t;T ) = −

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds, (49)

so that collecting Eqs. (45), (47), and (49) obtains

lim
T→∞

V (x, t;T ) = V (x, t). (50)

Finally, it is necessary to examine the limiting properties of E
[
V (x̂(t), t)

]
:

lim sup
t→∞

e−δtE
[
V (x̂(t), t)] = lim sup

t→∞
e−δt

[

− γ
b(n + 1)

2n
E[x̂(t)2] −

[

B − c −
b(n + 1)

n
E

]

E[x̂(t)]

−

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds

]

= lim sup
t→∞

e−δt

[

− γ
b(n + 1)

2n

[

Var[x̂(t)] +
[
E[x̂(t)]

]2
]

−

[

B − c −
b(n + 1)

n
E

]

E[x̂(t)]

]

. (51)

Given Proposition 1, it is easy to see that the process {x̂(t) : t ≥ 0} converges to the relevant

Gamma distribution in L2 so that

lim sup
t→∞

e−δtE
[
V (x̂(t), t)] = lim

t→∞
e−δtE

[
V (x̂(t), t)] = 0. (52)

Given Eqs. (50) and (52), applying the stochastic equivalent of Theorem 3.4 in Dockner et al. (2000)

completes the proof.
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