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Abstract

We study the problem of dissolving a partnership when agents have unequal endowments.

Agents bid on the price of the entire partnership. The highest bidder is awarded the part-

nership and buys out her partners’ shares at a per-unit price that is a function of the two

highest bids. We show that there exists no price-setting mechanism satisfying certain mild

regularity properties that is ex-post efficient, for any common prior of valuations. This result

sharply contrasts the equal-endowment case in which efficient dissolution of the sort we are

examining is possible through a simple k-double auction, as suggested by Cramton, Gibbons,

and Klemperer [3].
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1 Introduction

We consider a class of natural bidding mechanisms for dissolving a partnership. Agents submit

sealed bids, which determine the price per unit share of the partnership. In every mechanism in

the class we consider, the price per unit share depends only on the first and second-highest bids,

and is (weakly) increasing in each of these components; moreover, whenever there is a tie for

highest bid, the price per unit share is this bid. The mechanism always awards the partnership

to an agent submitting the highest bid (ties are broken arbitrarily), whom we call the winner;

if p is the price per unit share, any losing agent who initially owned r shares is paid rp by the

winning agent. A mechanism is ex-post efficient if it always awards the partnership to an agent

who values it the most. Our main result is that no mechanism in this class is ex-post efficient if

agents own unequal shares initially.

The partnership-dissolution problem has a rich history in economic theory and has been ex-

tensively studied from the mechanism-design point of view. Myerson and Satterthwaite [13] focus

on the case of complete ownership asymmetry (i.e., a buyer-seller framework) and characterize

all incentive-compatible and interim individually rational (i.e., affording positive expected profit

in the interim stage) mechanisms, showing these two properties to be incompatible with ex-post

efficiency. An important generalization of the Myerson-Satterthwaite model, due to Cramton,

Gibbons and Klemperer [3], considers n agents with agent i owning a fraction ri of the partner-

ship.1 They characterize the set of all incentive-compatible, individually rational, and ex-post

efficient mechanisms for dissolving a partnership. They show that such a dissolution is possible

if and only if (r1, r2, . . . , rn) is sufficiently close to the equal-endowment vector, and that such

a dissolution is impossible for extreme cases of ownership asymmetry. Several authors have ex-

tended the literature to address interdependent valuations (Fieseler et al. [5], Kittsteiner [10],

Galavotti et al. [8]), fairness (Morgan [12]), as well as the explicit modeling of popularly observed

“shootout” clauses (de Frutos and Kittsteiner [7], Brooks et al. [1]).

Our paper is motivated by the k-double auction2 of Cramton et al. [3, §6]. Suppose there are

n agents, with agent i owning a fraction ri of the partnership. In a k-double auction, the agents

submit sealed bids, and the partnership is awarded to the highest bidder who pays each of the

n − 1 other agents an amount
1

n

[

(1 − k)b(1) + kb(2)

]

, (1)

where k ∈ [0, 1] and b(1) and b(2) denote the highest and second-highest bids, respectively. If

1The Myerson-Satterthwaite model is the special case of n = 2, r1 = 1, and r2 = 0.
2They refer to it as a k + 1-price auction.
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ri = 1/n for all agents i, then the k-double auction is ex-post efficient and interim individually

rational [3]. Furthermore, these properties continue to hold as long as the initial ownership vector

is sufficiently close to the equal-endowment vector [3, Proposition 6]. The k-double auction has

been extensively studied since then: notable contributions include the work of McAfee [11], who

considers risk-aversion, of de Frutos [6], who considers agents with asymmetric priors, and of

Kittsteiner [10], who models interdependent valuations. All of these papers focus on symmetric

environments with agents owning identical shares of the partnership.

In spite of its desirable properties, the k-double auction is not realistic in the case of asymmetric

ownership. This is because the payment received by any agent who does not win is insensitive

to the relative fraction of the partnership that he owns (see Cramton [3, Proposition 5]). As an

example, consider n = 3, r1 = r2 = 0.49, r3 = 0.02. In this setting, the price of Eq. (1) is strange—

If agent 1 outbids 2 and 3, why should agents 2 and 3 receive the same monetary payment even

though they sell very different fractions of the partnership to agent 1? More generally, it turns

out that the equilibrium strategies for the agents, determined by Cramton et al., are independent

of the shares they own, so an agent will, in expectation, pay or receive the exact same amount

from her opponent regardless of her endowment. Agents’ initial shares come into play only in the

verification of interim individual rationality.3

The salience of this point is echoed by the legal process of partnership dissolution in which

an exogenous (in the form of an independent audit) or endogenous (in the form of inter-agent

bargaining) procedure is used to determine the value of the entire partnership. Once this quantity

has been set, it is multiplied by agents’ individual shares to yield their respective monetary

claims. As an example, consider the recent, highly controversial acquisition of Bear Stearns by

J.P. Morgan. This dissolution involved many asymmetric stakeholders (see Wright4 for a list of

Bear Stearns’ 15 biggest shareholders as of December 2007); in the end the government brokered

an agreement that set a per-share price on Bear Stearns, and shareholders were compensated

according to their individual stakes. For all these reasons, it is natural to examine a class of

mechanisms that fix a price per unit share based on the bids submitted by the agents.

3An exception is found in Bulow et al. [2], who assume different ownership shares and study special cases of the

k-double auction under the assumption of uniform priors. In their model, the bidding is over the per-unit price of

the partnership, and agents’ claims are then adjusted accordingly. Using a special profit function, they explicitly

calculate equilibrium strategies and show that they are unique in the cases of k = 0 and k = 1. On a related note,

Engelbrecht-Wiggans [4] studies the implications of giving equal-endowment agents a variable share in the proceeds

of a first- and second-price auction.
4W. Wright (March 17, 2008), “Employees lose 5bn on Bear Stearns After Knock-Down Sale to JP Morgan,”

Financial News Online.
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In this environment ex-post efficiency proves to be an elusive goal, unless agents have equal

endowments. The proof of this result (appearing in Section 2) requires some analysis, but the

intuition is clear: When bidders are even the slightest bit asymmetric, their marginal bidding

incentives are different. Thus, their bidding strategies cannot be identical, and inefficiency cannot

be ruled out. This negative result holds for all possible common priors on agents’ valuations.

2 Main Results

Suppose there are n agents with agent i owning ri shares of the partnership. We normalize the

total number of shares to 1, so that ri is interpreted as the fraction of the partnership that agent

i owns. We assume that (r1, r2, . . . , rn) 6= (1/n, 1/n, . . . , 1/n); this implies that there exists (at

least) one pair of agents i and j with ri 6= rj . Agent i values the partnership at vi, which is

private information, but it is common knowledge that the valuations are drawn independently

from a distribution F with positive, continuous density f in the interval [0, 1]. Our goal is to find

a natural bidding mechanism that is ex-post efficient, i.e., one that always awards the partnership

to an agent with the highest valuation.

The focus of the paper is on a class of mechanisms in which the agents submit bids for the

partnership. Every mechanism in the class we consider awards the partnership to the highest

bidder, breaking ties arbitrarily. The mechanism also computes p(b1, b2, . . . , bn), which is the

price per unit share of the partnership if the bids submitted are (b1, b2, . . . , bn). Any agent j who

is not awarded the partnership receives a monetary payment of rjp(b1, b2, . . . , bn) from the agent

who wins the partnership (thus, the mechanism is budget-balanced). We assume that agents have

quasi-linear preferences so that an agent with valuation v, who owns a share r of the partnership

and has money m, has a utility of rv+m. Thus, if agent i submits the highest bid and is awarded

the partnership, her utility is vi, resulting in a profit of (vi − p)(1 − ri); for every other agent

j 6= i, the utility is prj , resulting in a profit of (p − vj)rj .

Restriction to price-function class P. To specify a mechanism, we need to describe how

the price per unit share p(b1, b2, . . . , bn) is computed, given a bid-vector. We consider a class of

mechanisms in which the price function depends only on the highest and second-highest bid; in

particular, for the mechanisms we consider, the price per unit share is independent of the identity

of the bidders. Thus, if b(1) and b(2) denote the first and second highest bids in a given bid-vector,

the price per unit share is denoted simply p
(

b(1), b(2)

)

. Furthermore, we assume that the function

p(·, ·) is weakly increasing in its two arguments, and that p(b, b) = b. Let P denote the class of
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price functions satisfying these three properties. (Note that Groves [9] mechanisms imply per-unit

price functions that are not anonymous, and therefore are not in P.)

Our first result shows that any ex-post efficient mechanism with a price function p ∈ P must

induce a symmetric and strictly increasing equilibrium that is unique and in which agents bid

their valuations. Furthermore, the price per unit-share should be insensitive to changes in bids

almost everywhere.

Proposition 1 Suppose (r1, r2, . . . , rn) 6= (1/n, 1/n, . . . , 1/n) and consider the bidding mecha-

nism with a price function p ∈ P. Suppose the mechanism awards the partnership to the highest

bidder at a price per unit share p. If the mechanism is ex-post efficient, then

(a) it induces a symmetric and strictly increasing equilibrium that is unique and in which all

agents bid their valuations,5 and

(b) p must satisfy ∂p
∂b(1)

= ∂p
∂b(2)

= 0 almost everywhere.

Proof. Fix a mechanism with a price-function p ∈ P, and assume that agents’ valuations are i.i.d.

random variables with a cdf F . By ex-post efficiency, there must exist at least one symmetric and

strictly increasing equilibrium bidding strategy. In what follows, we will show that this strategy

must be unique, and that it must consist of agents truthfully bidding their valuations.

To this end, pick a symmetric, strictly increasing strategy h(v) and suppose agent i conjectures

that all other agents bid according to it. Let πi(vi, bi) be her expected profit, given a valuation

of vi and a bid of bi. Denote by G the distribution of the maximum of the other n− 1 valuations,

so that G(u) = F (u)n−1. In addition denote by Z(·|u) the distribution of the second-highest of

the other n − 1 valuations, given a highest of u among them, so that Z(y|u) = [F (y)/F (u)]n−2

for y ≤ u. We may write

πi(vi, bi) =

∫ h−1(bi)

0
(1 − ri)(vi − p(bi, h(u)))dG(u) +

∫ 1

h−1(bi)

∫ h−1(bi)

0
ri(p(h(u), bi) − vi)dZ(y|u)dG(u)

+

∫ 1

h−1(bi)

∫ u

h−1(bi)
ri(p(h(u), h(y)) − vi)dZ(y|u)dG(u). (2)

5Note that the uniqueness result extends only to symmetric strictly increasing equilibria. In particular, it does

not preclude the existence of asymmetric equilibria. But these are of no interest since they would immediately fail

ex-post efficiency, which requires symmetric and strictly increasing bidding strategies.
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For the strategy h to be an ex-post efficient equilibrium, it must satisfy the necessary first-order

conditions of the associated optimization problem. Thus, we differentiate Eq. (2) with respect to

bi and set the derivative equal to 0 at bi = h(vi). Recalling that p(b, b) = b for all b obtains

∫ vi

0
−(1 − ri)

∂

∂b(1)
p(h(vi), h(u))dG(u) +

(1 − ri)(vi − h(vi))g(vi)

h′(vi)
+

ri
d

dbi

[
∫ 1

h−1(bi)

∫ h−1(bi)

0
(p(h(u), bi) − vi)dZ(y|u)dG(u) +

∫ 1

h−1(bi)

∫ u

h−1(bi)
(p(h(u), h(y)) − vi)dZ(y|u)dG(u)

]

bi=h(vi)

= 0. (3)

Now suppose vi = v for all i, so that bi = b = h(v) for all i. Consequently, we apply Eq. (3)

to all agents and then add all of the resulting equalities. Using the fact that p ∈ P, and therefore

does not depend on the identity of the two highest bidders, we obtain

−(n − 1)

∫ v

0

∂

∂b(1)
p(h(v), h(u))dG(u) +

(n − 1)(v − h(v))g(v)

h′(v)
+

d

db

[
∫ 1

h−1(b)

∫ h−1(b)

0
(p(h(u), b) − v)dZ(y|u)dG(u) +

∫ 1

h−1(b)

∫ u

h−1(b)
(p(h(u), h(y)) − v)dZ(y|u)dG(u)

]

b=h(v)

= 0. (4)

On the other hand, focusing on two agents i and j such that ri 6= rj , we subtract their

respective Eqs. (3) when vi = vj = v. Taking into account that ri 6= rj obtains

∫ v

0

∂

∂b(1)
p(h(v), h(u))dG(u) −

(v − h(v))g(v)

h′(v)
+

d

db

[
∫ 1

h−1(b)

∫ h−1(b)

0
(p(h(u), b) − v)dZ(y|u)dG(u) +

∫ 1

h−1(b)

∫ u

h−1(b)
(p(h(u), h(y)) − v)dZ(y|u)dG(u)

]

b=h(v)

= 0. (5)

Subtracting Eq. (5) from Eq. (4) yields

∫ v

0

∂

∂b(1)
p(h(v), h(u))dG(u) =

(v − h(v))g(v)

h′(v)
. (6)

Since g(v) > 0, h′(v) > 0, and p ∈ P (which implies that ∂p/∂b(1) ≥ 0), we apply the above

argument to all v and conclude that

h(v) ≤ v, ∀v ∈ [0, 1]. (7)
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We turn to proving the other side of the inequality. First, we multiply Eq. (5) by n− 1, and add

it to Eq. (4) to obtain

d

db

[
∫ 1

h−1(b)

∫ h−1(b)

0
(p(h(u), b) − v)dZ(y|u)dG(u) +

∫ 1

h−1(b)

∫ u

h−1(b)
(p(h(u), h(y)) − v)dZ(y|u)dG(u)

]

b=h(v)

= 0. (8)

Eq. (8) can be simplified to

−v
d

db

[

1 − G(h−1(b))

]

b=h(v)

+
d

db

[
∫ 1

h−1(b)
p(h(u), b)F (h−1(b))n−2(n − 1)f(u)du

]

b=h(v)

+

d

db

[
∫ 1

h−1(b)

∫ u

h−1(b)
p(h(u), h(y))dZ(y|u)dG(u)

]

b=h(v)

= 0. (9)

Performing the necessary differentiations obtains

−v
d

db

[

1 − G(h−1(b))

]

b=h(v)

=
v(n − 1)F (v)n−2f(v)

h′(v)
, (10)

d

db

[
∫ 1

h−1(b)
p(h(u), b)F (h−1(b))n−2(n − 1)f(u)du

]

b=h(v)

= −
h(v)(n − 1)F (v)n−2f(v)

h′(v)
+

(n − 1)

∫ 1

v

[

∂

∂b(2)
p(h(u), h(v))F (v)n−2 + p(h(u), h(v))(n − 2)F (v)n−3 ·

f(v)

h′(v)

]

f(u)du,

(11)

and (by performing a double application of the Leibniz rule)

d

db

[
∫ 1

h−1(b)

∫ u

h−1(b)
p(h(u), h(y))dZ(y|u)dG(u)

]

b=h(v)

=

−

[
∫ 1

h−1(b)
p(h(u), b)dZ(h−1(b)|u)dG(u) ·

dh−1

db

]

b=h(v)

=

−

∫ 1

v

p(h(u), h(v))(n − 2)F (v)n−3(n − 1)f(u)du ·
f(v)

h′(v)
. (12)

Combining Eqs. (10), (11), and (12) into Eq. (9) and dividing by n − 1 yields

−

∫ 1

v

∂

∂b(2)
p(h(u), h(v))F (v)n−2f(u)du =

(v − h(v))F (v)n−2f(v)

h′(v)
. (13)

Identical reasoning as before necessitates

h(v) ≥ v, ∀v ∈ [0, 1]. (14)
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Combining inequalities (7) and (14) establishes that

h(v) = v, ∀v ∈ [0, 1].

The above argument shows that h(v) = v is the unique symmetric and strictly increasing bidding

strategy that could satisfy the first-order conditions for an ex-post efficient equilibrium that are

exhibited by Eq. (3). Therefore, since p is assumed to be ex-post efficient, h(v) = v must be the

unique ex-post efficient equilibrium induced by p. This concludes the proof of part (a).

We turn to proving part (b). By part (a), we must have

h(v) = v, ∀v ∈ [0, 1].

Thus, Eqs. (6) and (13) obtain

∫ 1

v

∂

∂b(2)
p(u, v)F (v)n−2f(u)du =

∫ v

0

∂

∂b(1)
p(v, u)F (u)n−2f(u)du = 0, ∀v ∈ [0, 1]. (15)

Eq. (15) can hold for all v ∈ [0, 1] only if

∂p

∂b(1)
=

∂p

∂b(2)
= 0 almost everywhere.

Proposition 1 implies the following interesting fact. If we could find an ex-post efficient

mechanism with a price function belonging in P, then this same mechanism would be ex-post

individually rational. That is, this mechanism would always result in non-negative profits for

all players, regardless of their valuations. This is a consequence of two things. First, since p

belongs to P, the price it gives rise to always lies between the two bids. Given this fact, the

necessary truthfulness of part (a) ensures that ex-post profits are always positive. Such a result

would be remarkably strong; it should therefore come as no surprise that ex-post efficiency is not

possible within our framework. Finally, notice how the assumption of unequal shares is critical:

Proposition 1 is not true under symmetric ownership since the k-double auction belongs in P and

induces a non-truthful symmetric and strictly increasing equilibrium (Proposition 5 in [3]). It

also clearly violates part (b).

Theorem 1 Suppose (r1, r2, . . . , rn) 6= (1/n, 1/n, . . . , 1/n) and consider the bidding mechanism

with a price function p ∈ P. Suppose the mechanism awards the partnership to the highest bidder

at a price per unit-share p. This mechanism cannot be ex-post efficient for any common prior.
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Proof. Fix a common prior F and assume that a mechanism p ∈ P is ex-post efficient. By part

(a) of Proposition 1, p must also be incentive compatible. Suppose agent i has a valuation of v.

For an agent i the equilibrium expected transfer function that the mechanism p gives rise to is

the following

−

∫ v

0
(1 − ri)p(v, u)dG(u) +

∫ 1

v

∫ v

0
rip(u, v)dZ(y|u)dG(u) +

∫ 1

v

∫ u

v

rip(u, y)dZ(y|u)dG(u).

Since this transfer scheme is incentive-compatible and ex-post efficient, Lemma 1 in Cramton et

al. [3] applied to the appropriate ex-post efficient share function implies that

−

∫ v1

0
(1 − ri)p(v1, u)dG(u) +

∫ 1

v1

∫ v1

0
rip(u, v1)dZ(y|u)dG(u) +

∫ 1

v1

∫ u

v1

rip(u, y)dZ(y|u)dG(u)

+

∫ v2

0
(1 − ri)p(v2, u)dG(u) −

∫ 1

v2

∫ v2

0
rip(u, v2)dZ(y|u)dG(u) −

∫ 1

v2

∫ u

v2

rip(u, y)dZ(y|u)dG(u) =

∫ v2

v1

udG(u), ∀v1, v2 ∈ [0, 1]. (16)

Focusing on the case when v1 = 1 and v2 = 0, we differentiate both sides of Eq. (16) with respect

to ri to obtain
∫ 1

0
p(1, u)dG(u) −

∫ 1

0

∫ u

0
p(u, y)dZ(y|u)dG(u) = 0

⇒

∫ 1

0

∫ u

0
(p(1, u) − p(u, y))dZ(y|u)dG(u) = 0. (17)

Since p ∈ P we must have p(1, u) ≥ p(u, y) for all u ∈ [0, 1], y ≤ u. Thus, Eq. (17) necessitates

p(1, u) = p(u, y), for almost all u ∈ [0, 1], y ≤ u. (18)

Now, again because p ∈ P we can deduce

p(1, u) ≥ u ∀u ∈ [0, 1], (19)

p(u, y) ≤ u ∀u ∈ [0, 1], y ≤ u. (20)

Expressions (18), (19), and (20) ensure that

p(u, y) = u, for almost all u ∈ [0, 1], y ≤ u. (21)

Eq. (21) contradicts part (b) of Proposition 1.

Theorem 1 establishes that ex-post efficiency is unattainable in the class of per-unit prices P.

The key property driving the impossibility result is anonymity. If anonymity is relaxed so that

the price per share paid by an agent is allowed to depend on his endowment, the impossibility

result no longer holds: the classical double auction, which satisfies all the other properties that

define the class P, is an ex-post efficient mechanism.
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3 Conclusion

In this paper we re-examine the partnership-dissolution problem and the bidding procedures that

it gives rise to. In contrast to the existing literature, we assume that agents’ bids determine the

per-unit price of the partnership. We find that ownership asymmetry complicates the quest for

economic efficiency: Given relatively mild assumptions on the mechanism’s price function, we

show that ex-post efficiency is unattainable when endowments are unequal.
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