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Abstract

Conditional Value-at-Risk (CVaR) measures the expected loss amount beyond VaR. It has vast ad-

vantage over VaR because of its property of coherence. This paper gives an analytical solution in a

complete market setting to the risk reward problem faced by a portfolio manager whose portfolio needs

to be continuously rebalanced to minimize risk taken (measured by CVaR) while meeting the reward goal

(measured by expected return). The optimal portfolio is identified whenever it exists, and the associated

minimal risk is calculated. An example in the Black-Scholes framework is cited where dynamic hedging

strategy is calculated and the efficient frontier is plotted.

Keywords: Conditional Value-at-Risk, Portfolio optimization, Risk minimization, Neyman-Pearson prob-

lem

JEL Classification: G11, G32, C61

Mathematics Subject Classification (2010): 91G10, 91B30, 90C46

1 Introduction

The portfolio selection problem studied by Markowitz [21] is formulated as an optimization problem with the

objective of maximizing expected return, subject to the constraint of variance being bounded above. More

recently, Bielecki et al. [6] solve the reverse problem in a dynamic setting with the objective of minimizing

variance, subject to the constraint of expected return being bounded below. In both cases, the measure of

risk of the portfolio is chosen as variance. However, it has been long noted that this dispersion measure is

∗The findings and conclusions expressed are solely those of the author and do not represent views of the Federal Reserve
Bank of New York, or the staff of the Federal Reserve System.

1



only valid as a risk measure when the loss distribution is symmetric, which is certainly not true for a typical

loan portfolio where the distribution is left skewed. Much research has been done in developing risk measures

that focus on extreme events in the tail. Value-at-Risk (VaR), a tail risk measure that answers the question

of monetary loss over a specified time period with a certain probability, was introduce by JP Morgan [22]

in its Riskmetrics system in 1994. It is regarded as the industrial standard in risk exposure measurement,

and forms the basis for risk capital calculation. Research carried out by Campbell et al. [7], Consigli [9],

Goldfarb and Iyengar [17], Gaivoronski and Pflug [15], Benati and Rizzi [5] centers around VaR, such as its

measurement and risk reward optimization.

Although Value-at-Risk is the most dominant risk measure used in practice, it fails one of the four general

properties, proposed by Artzner et al. [3] and [4], that a coherent risk measure should possess, namely the

property of subadditivity. This property encourages diversification, and the lack of which “can destabilize an

economy and induce crashes when they would not otherwise occur”, see Danielsson et al. [11]. Conditional

Value-at-Risk (CVaR), defined incrementally based on VaR, satisfies all the properties for coherence. For

references on CVaR, see Acerbi and Tasche [1], and Rockafellar and Uryasev [23] and [24]. Its structural

validity as a coherent risk measure, and its intuitive definition as the expected loss amount beyond VaR,

attract great interest in both research community and industry. When historical simulation method is used

for risk calculation, CVaR estimate is typically stabler than VaR estimate since the latter is a quantile

number in the tail, which is highly sensitive to the updating of data set in the look-back period. Moreover,

the convexity of CVaR observed by Rockafellar and Uryasev [23] provides great advantage over VaR in solving

portfolio optimization problems.

Besides the choice of CVaR as the risk measure in this paper, the reward measure is chosen to be the

expected return, as opposed to the expected utility on return. Gandy [16] and Zheng [30] focus on the problem

of utility maximization with the constraint of CVaR being bounded from above. The dynamic solutions they

derived are based on the assumption of a strictly concave utility function which excludes the expected return

as a special case.

Along the line of mean-CVaR optimization, Rochafellar and Uryasev [23] and [24] propose a convex

characterization of CVaR, which calls for the easily implemented tool of linear programming, and has been

widely used as a simulation-based CVaR minimization technique in a static setting. Acerbi and Simonetti

[2] extend this approach to a general spectral measure. However, no analytical solution is given, thus the

technique cannot be adapted to a dynamic setting where the portfolio needs to be continuously rebalanced.

Attempts have been made to cope with the dynamic case. Ruszczynsk and Shapiro [26] revise CVaR into a

2



dynamic risk measure, called the “conditional risk mapping for CVaR”. Their paper leverages Rochafellar

and Uryasev’s static result for CVaR optimization at each time step, and rolls it backwards in time to achieve

a dynamic version. In this paper, we extend Rochafellar and Uryasev’s work, similar to the extension by

Bielecki et al. [6] to the Markowitz [21] result in the mean-variance case, by measuring risk and reward at a

fixed time horizon, while allowing dynamic portfolio management throughout the time period to achieve the

mean-CVaR objective.

It has been observed in Kondor et al. [18] and Cherny [8], that the optimal portfolio normally does

not exist for the mean-CVaR optimization in a static setting if the portfolio value is unbounded. When

the solutions do exist in some limited cases, they take the form of a binary option. We confirm this result

in a dynamic setting with a simple criterion in Theorem 3.17, where the portfolio value is allowed to be

unbounded from above but restricted to be bounded from below since this is crucial in excluding arbitrage

opportunities for continuous-time investment models. In the case the portfolio value is bounded both from

below and from above, Schied [27], Sekine [28], and Li and Xu [20] find the optimal solution to be binary for

CVaR minimization without the return constraint. We call this binary solution where the optimal portfolio

either takes the value of the lower bound or a higher level ‘Two-Line Configuration’ in this paper. The key

to finding the solution is the observation that the core part of CVaR minimization can be transformed into

Shortfall risk minimization using the representation (CVaR is the Fenchel-Legendre dual of the Expected

Shortfall) given by Rockafellar and Uryasev [23]. Föllmer and Leukert [13] characterize the solution to the

latter problem in general semimartingale models to be binary (‘Two-Line Configuration’) where they have

demonstrated its close relationship to the Neymann-Pearson lemma. The main contribution of our paper is

that, when adding the return constraint to the CVaR minimization objective, we prove the optimal solution

to be a ‘Three-Line Configuration’ in Theorem 3.15. This can be viewed in part as a generalization of the

binary solution for Neymann-Pearson lemma with an additional constraint on expectation. The new solution

can take not only the upper or the lower bound, but also a level in between.

This paper is organized as follows: Section 2 formulates the dynamic portfolio selection problem, gives a

conceptual outline of the ‘Three-Line Configuration’ solution and shows an application of the Black-Scholes

model; Section 3 details the analytic solution in general for both the case where portfolio value is bounded

from above and the case where it is unbounded from above in a complete market setting; Section 4 lists

possible future work. The Appendix records all the proofs.
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2 Dynamic Portfolio Selection in the Mean-CVaR Plane

2.1 Conceptual Outline

Suppose the interest rate is a constant r and the risky asset St is a d-dimensional real-valued locally bounded

semimartingale process on the filtered probability space (Ω,F , (F)0≤t≤T , P ) that satisfies the usual conditions

where F0 is trivial and FT = F . The value of a self-financing portfolio Xt which invests ξt shares in the risky

asset evolves according to the dynamics

dXt = ξtdSt + r(Xt − ξtSt)dt, X0 = x0.

Here ξtdSt and ξtSt are interpreted as inner products if the risky asset is multidimensional d > 1 and as

products if d = 1. In the above equation, we assume ξt is a d-dimensional predictable process such that the

stochastic integral with respect to St is well-defined and we are looking for a strategy (ξt)0≤t≤T to minimize

the conditional Value-at-Risk at confidence level 0 < λ < 1 of the final portfolio value: infξt
CV aRλ(XT ),

while requiring the expected value to remain above a constant z: E[XT ] ≥ z. In addition, we require uniform

bounds on the value of the portfolio over time: xd ≤ Xt ≤ xu a.s., ∀t ∈ [0, T ], where the constants satisfy

−∞ < xd < x0 < xu ≤ ∞. Therefore, our Main Problem is

inf
ξt

CV aRλ(XT )(1)

subject to E[XT ] ≥ z,

xd ≤ Xt ≤ xu a.s., ∀t ∈ [0, T ].

Note that the no-bankruptcy condition can be imposed by setting the lower bound xd = 0, and the portfolio

value can be unbounded from above by taking the upper bound xu as infinity.

Assumption 2.1 Assume there is No Free Lunch with Vanishing Risk (as defined in Delbaen and Schacher-

mayer [10]) and the market is complete with a unique equivalent local martingale measure P̃ such that the

Radon-Nikodým derivative dP̃
dP

has a continuous distribution.
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Under the above assumption any F-measurable random variable can be replicated by a dynamic portfolio.

Thus the dynamic optimization problem (1) can be reduced to a static problem

inf
X∈F

CV aRλ(X)(2)

subject to E[X] ≥ z, Ẽ[X] = xr, xd ≤ X ≤ xu a.s.

Here the expectation E is taken under the physical probability measure P , and the expectation Ẽ is taken

under the risk neutral probability measure P̃ , while xr = x0e
rT is assumed to satisfy −∞ < xd < x0 ≤ xr <

xu ≤ ∞ in relation to the lower bound xd, the upper bound xu and the initial capital x0.

Although in this paper we focus on the complete market solution, to solve the problem in an incomplete

market setting, the exact hedging argument via Martingale Representation Theorem that translates the

dynamic problem (1) into the static problem (2) has to be replaced by a super-hedging argument via Optional

Decomposition developed by Kramkov [19], and Föllmer and Kabanov [12]. The detail is similar to the process

carried out for Shortfall risk minimization in Föllmer and Leukert [13], and for convex risk minimization

in Rudloff [25]. The second part of the assumption, namely the Radon-Nikodým derivative dP̃
dP

having a

continuous distribution, is imposed for the simplification it brings to the presentation in the main theorems,

instead of technical impossibility, for its lengthy discussion bring diminishing marginal new insight to our

focus on an analytic solution for the main problem (2).

Using the equivalence between Conditional Value-at-Risk and the Fenchel-Legendre dual of the Expected

Shortfall derived in Rockafellar and Uryasev [23],

(3) CV aRλ(X) =
1

λ
inf
x∈R

(

E[(x − X)+] − λx
)

, ∀λ ∈ (0, 1),

the static optimization problem (2) can be reduced to a two-step static optimization we name as

Two-Constraint Problem:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x − X)+](4)

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.
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Step 2: Minimization of Conditional Value-at-Risk

(5) inf
X∈F

CV aRλ(X) =
1

λ
inf
x∈R

(v(x) − λx) .

Without the return constraint on the expectation E[X] ≥ z, we name the problem as

One-Constraint Problem:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x − X)+](6)

subject to Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.

Step 2: Minimization of Conditional Value-at-Risk

(7) inf
X∈F

CV aRλ(X) =
1

λ
inf
x∈R

(v(x) − λx) .

The solution to the Step 1 of One-Constraint Problem (6) is given in Föllmer and Leukert [13] with a

constant translation on the lower bound xd; the solution to Step 2 of One-Constraint Problem (7), and thus

to the main problem in (1) and (2) without the return constraint is given in Schied [27], Sekine [28], and Li

and Xu [20]. Schied [27] derives the solution to a more general law invariant risk measure which includes

CVaR as a special case. Li and Xu [20] derive the solution to CVaR minimization without the assumption

on the probability space being atomless and allowing the portfolio value to be unbounded from above.

In the rest of this subsection, we give a conceptual comparison between the solution to the One-Constraint

Problem and the solution to the Two-Constraint Problem. To this end, we start with the specification of the

solution to the One-Constraint Problem. A constant translation of the result from Föllmer and Leukert [13]

yields the optimal solution to Step 1 of the One-Constraint Problem under Assumption 2.1,

(8) X(x) = xdIA + xIAc , for xd < x < xu,

where we define the set A =
{

ω ∈ Ω : dP̃
dP

(ω) > a
}

and I·(ω) to be the indicator function. The optimality

of this binary solution for X can be proved in various ways, but it is clearly a result of the Neyman-Pearson
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Lemma once the connection between the problem of Minimization of Expected Shortfall and that of hypothesis

testing between P and P̃ is established, see Föllmer and Leukert [13]. To view it as a solution from convex

duality approach, see Theorem 1.19 in Xu [29]. A simplified version to the proof of Proposition 3.14 in this

paper gives a direct method using Lagrange multiplier for convex optimization as a third approach.

Note that in (8), ‘a’ is computed from the budget constraint Ẽ[X] = xr for every fixed level ‘x’. To

proceed to Step 2, Li and Xu [20] vary the value of ‘x’ and look for the best x∗ and its associated optimal

a∗. Under some technical conditions, the solution to Step 2 of the One-Constraint Problem is shown by

Theorem 2.10 and Remark 2.11 in Li and Xu [20] to be

X∗ = xdIA∗ + x∗
IA∗c , (Two-Line Configuration)(9)

CV aRλ(X∗) = −xr +
1

λ
(x∗ − xd)

(

P (A∗) − λP̃ (A∗)
)

,(10)

where (a∗, x∗) is the solution to the capital constraint (Ẽ[X(x)] = xr) in Step 1 and the first order Euler

condition (v′(x) = 0) in Step 2:

xdP̃ (A) + xP̃ (Ac) = xr,(11)

P (A) +
P̃ (Ac)

a
− λ = 0.(12)

We restate the full details of these results in general for convenience in Theorem 3.11 and Theorem 3.16

in Section 3. One interesting observation is that the optimal portfolio exists regardless whether the upper

bound on the portfolio is finite xu < ∞ or otherwise xu = ∞, while we will see shortly that this is no longer

true for the Two-Constraint Problem. More general solution when the Radon-Nikodým derivative dP̃
dP

is not

restricted to have a continuous distribution is presented with computational examples in Li and Xu [20].

Another interesting aspect of the solution is that if the manager invests only in the riskless asset, then the

portfolio value is constant X = xr and the risk is CV aR = −xr. The possibility of investment in the risky

asset is confirmed to decrease the risk as shown in (10).

The Two-Line Configuration in (9) as a final solution to the One-Constraint Problem is inherited from

the structure of the solution to the Expected Shortfall Minimization in (8), thus possessing a direct link to

the solution to the Neyman-Pearson Lemma. We show in this paper, particularly in Proposition 3.14 and

Theorem 3.15, that when the upper bound is finite xu < ∞, under some technical conditions, the solution

to both Step 1 and Step 2 of the Two-Constraint Problem, and thus the Main Problem (1) and (2),
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turns out to be a Three-Line Configurations of the form

X∗∗ = xdIA∗∗ + x∗∗
IB∗∗ + xuID∗∗ , (Three-Line Configuration)(13)

CV aRλ(X∗∗
T ) =

1

λ
((x∗∗ − xd)P (A∗∗) − λx∗∗)(14)

and (a∗∗, b∗∗, x∗∗) is the solution to the same two conditions as in the Two-Line Configuration case, namely

the capital constraint and the first order Euler condition, plus the additional return constraint (E[X(x)] = z

where X(x) = xdIA + xIB + xuID):

xdP (A) + xP (B) + xuP (D) = z,(15)

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr,(16)

P (A) +
P̃ (B) − bP (B)

a − b
− λ = 0,(17)

where we define sets

A =
{

ω ∈ Ω : dP̃
dP

(ω) > a
}

, B =
{

ω ∈ Ω : b ≤ dP̃
dP

(ω) ≤ a
}

, D =
{

ω ∈ Ω : dP̃
dP

(ω) < b
}

.

This solution can be viewed as an extension of the binary solution for the Neyman-Pearson Lemma to a

Three-Line Configuration where an extra constraint on the expected value is introduced.

We will see in Theorem 3.17 that the solution for the optimal portfolio most likely will not exist when the

portfolio value is unbounded from above xu = ∞, but the infimum of the CVaR can still be computed, and

we can find a sequence of portfolios with Three-Line Configuration whose CVaR converge to the infimum.

Since we provide in this paper an analytical solution to the static CVaR minimization problem with the

Three-Line Configuration, it is straight-forward to find the dynamic solution to the Main Problem (1) under

the complete market assumption, even in multidimensional case for the risky asset. This result does not

require the modification of CVaR measure, thus it is different from the solution given by Ruszczyński and

Shapiro in [26].
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2.2 Example: Mean-CVaR Portfolio Selection Problem with Bankruptcy Pro-

hibition under the Black-Scholes Model

We illustrate the calculation of the optimal portfolio as a Three-Line Configuration (13) in the Black-Scholes

Model. Suppose an agent is trading between a money market account with interest rate r = 5% and one

stock that follows geometric Brownian motion dSt = µStdt+σStdWt with parameter values µ = 0.2, σ = 0.1

and S0 = 10. The endowment starts at x0 = 10 and bankruptcy is not allowed at any time, thus xd = 0.

The expected terminal value E[XT ] at time horizon T = 2 is required to be above a fixed level ‘z’. We first

define two thresholds for the expected return: z∗ = E[X∗] where X∗ comes from (9), is the expected return

of the optimal portfolio for the One Constraint Problem (7); z̄ is the highest expected value achievable by

any self-financing portfolio starting with capital x0 (see Definition 3.2 and Lemma 3.3). When ‘z’ is a low

number, namely z ≤ z∗, the additional return requirement is already satisfied by the Two-Line Configuration

(9) and the optimal solutions for both the One Constraint Problem and the Two Constraint Problem coincide

which we call the ‘Star-System’ (9) and its calculation in the Black-Scholes Model is provided by Li and Xu

[20]. When the return requirement becomes meaningful, i.e., z ∈ (z∗, z̄], we calculate the optimal Three-Line

Configuration (13) which we call the ‘Double-Star-System’.

Since the stock price has log-normal distribution and the Radon-Nikodým derivative dP̃
dP

is a scaled power

function of the final stock price, P (A), P (B), P (D) and P̃ (A), P̃ (B), P̃ (D) can be computed as

P (A) = N(− θ
√

T
2 − ln a

θ
√

T
), P (D) = 1 − N(− θ

√
T

2 − ln b

θ
√

T
), P (B) = 1 − P (A) − P (D),

P̃ (A) = N( θ
√

T
2 − ln a

θ
√

T
), P̃ (D) = 1 − N( θ

√
T

2 − ln b

θ
√

T
), P̃ (B) = 1 − P̃ (A) − P̃ (D),

where N(·) is the cumulative distribution function of a standard normal random variable and θ = µ−r
σ

. Thus

the solution (a∗∗, b∗∗, x∗∗) to equations (15)-(17) can be found numerically, and the final value of the optimal

portfolio, the corresponding dynamic hedging strategy and the associated minimal CVaR are:

X∗∗
t = e−r(T−t)[x∗∗N(d+(a∗∗, St, t)) + xdN(d−(a∗∗, St, t))]

+ e−r(T−t)[x∗∗N(d−(b∗∗, St, t)) + xuN(d+(b∗∗, St, t))] − er(T−t)x∗∗,

ξ∗∗t =
x∗∗ − xd

σSt

√

2π(T − t)
e−r(T−t)−

d2
−

(a∗∗,St,t)

2 +
x∗∗ − xu

σSt

√

2π(T − t)
e−r(T−t)−

d2
+(b∗∗,St,t)

2 ,

CV aRλ(X∗∗
T ) =

1

λ
((x∗∗ − xd)P (A∗∗) − λx∗∗) ,

where d−(a, s, t) = 1
θ
√

T−t
[− ln a + θ

σ
(µ+r−σ2

2 t − ln s
S0

) + θ2

2 (T − t)], d+(a, s, t) = −d−(a, s, t).
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One-Constraint Problem Two-Constraint Problem

xu 30 50 xu 30 30 50
z 20 25 25

z̄ 28.8866 28.8866 45.5955
z
∗ 18.8742 18.8742 18.8742

x
∗ 19.0670 19.0670 x

∗∗ 19.1258 19.5734 19.1434
a
∗ 14.5304 14.5304 a

∗∗ 14.3765 12.5785 14.1677
b
∗∗ 0.0068 0.1326 0.0172

CV aR5%(X∗
T ) -15.2118 -15.2118 CV aR5%(X∗∗

T ) -15.2067 -14.8405 -15.1483

Table 1: Black-Scholes’ Example for One-Constraint and Two-Constraint Problems

The numerical results are summarized in Table 1. As expected we observe that the upper bound on the

portfolio value xu has no impact on the ‘Star-System’, as (x∗, a∗) and CV aRλ(X∗
T ) are optimal whenever

xu ≥ x∗, including the case when xu = ∞. However, the ‘Double-Star-System’ and the minimal CV aRλ(X∗∗
T )

are sensitive to xu. The stricter the return requirement z and the higher the upper bound xu, the more the

Three-Line Configuration X∗∗ deviates from the Two-Line Configuration X∗. The stricter return requirement

(higher z) implies higher minimal CV aRλ(X∗∗
T ) compared to CV aRλ(X∗

T ); the less strict upper bound (higher

xu) translates to decreased minimal CV aRλ(X∗∗
T ). As xu → ∞, CV aRλ(X∗∗

T ) approaches CV aRλ(X∗
T ), in

which case the ‘Double-Star-System’ is an approximation for the minimal CV aR(X∗
T ) achieved by the ‘Star-

System’ while meeting the additional return requirement.

−16 −15 −14 −13 −12 −11 −10
0 

5 

10

15

20

25

30

CV aR(XT )

z

z∗

z̄

Figure 1: Efficient Frontier for Mean-CVaR Portfolio Selection

Figure 1 shows the efficient frontier of our mean-CVaR portfolio selection problem with bankruptcy

prohibition xd = 0 and upper bound xu = 30. All the portfolios on the curve are efficient in the sense that

the lowest risk as measured by CVaR is attained at each level of required expected return z; or conversely,
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for every fixed level of risk, the portfolio achieves the highest expected return. When z ≤ z∗, the straight

line indicates that the optimal portfolio comes from the ‘Star-System’. When z ∈ (z∗, zu], the ‘Double-Star-

System’ forms the optimal portfolio and the minimal CVaR increases as return requirement z increases.

The star positioned at (−xr, xr) = (−11.0517, 11.0517), where xr = x0e
rT , corresponds to the portfolio

that invests purely in the money market account. As a contrast to its position on the traditional Capital

Market Line (the efficient frontier for a mean-variance portfolio selection problem), the pure money market

account portfolio is no longer efficient in the mean-CVaR portfolio selection problem.

3 Analytical Solution to the Main Problem

Suppose Assumption 2.1 holds. We prove the solution to the mean-CVaR problem (2) in general, i.e., the

Two-Constraint Problem (4) and (5), in this section in two seperate cases: when there is finite upper bound

and when there is no upper bound on the portfolio value.

3.1 Case xu < ∞: Finite Upper Bound

We first define the general Three-Line Configuration and some particular Two-Line Configurations as its

degenerate forms. When the portfolio value is bounded from above, the constants satisfy −∞ < xd < xr =

x0e
rT < xu < ∞. Recall the definitions of the sets A, B,D are

(18) A =
{

ω ∈ Ω : dP̃
dP

(ω) > a
}

, B =
{

ω ∈ Ω : b ≤ dP̃
dP

(ω) ≤ a
}

, D =
{

ω ∈ Ω : dP̃
dP

(ω) < b
}

.

Definition 3.1 Suppose x ∈ [xd, xu].

1. Any Three-Line Configuration has the structure X = xdIA + xIB + xuID.

2. The Two-Line Configuration X = xIB + xuID is associated to the above definition in the case

a = ∞, B =
{

ω ∈ Ω : dP̃
dP

(ω) ≥ b
}

and D =
{

ω ∈ Ω : dP̃
dP

(ω) < b
}

.

The Two-Line Configuration X = xdIA + xIB is associated to the above definition in the case

b = 0, A =
{

ω ∈ Ω : dP̃
dP

(ω) > a
}

, and B =
{

ω ∈ Ω : dP̃
dP

(ω) ≤ a
}

.

The Two-Line Configuration X = xdIA + xuID is associated to the above definition in the case

a = b, A =
{

ω ∈ Ω : dP̃
dP

(ω) > a
}

, and D =
{

ω ∈ Ω : dP̃
dP

(ω) < a
}

.

Moreover,
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1. General Constraints are the capital constraint and the equality part of the expected return constraint

for a Three-Line Configuration X = xdIA + xIB + xuID:

E[X] = xdP (A) + xP (B) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr.

2. Degenerated Constraints 1 are the capital constraint and the equality part of the expected return

constraint for a Two-Line Configuration X = xIB + xuID:

E[X] = xP (B) + xuP (D) = z,

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr.

Degenerated Constraints 2 are the capital constraint and the equality part of the expected return

constraint for a Two-Line Configuration X = xdIA + xIB:

E[X] = xdP (A) + xP (B) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr.

Degenerated Constraints 3 are the capital constraint and the equality part of the expected return

constraint for a Two-Line Configuration X = xdIA + xuID:

E[X] = xdP (A) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xuP̃ (D) = xr.

Note that Degenerated Constraints 1 correspond to the General Constraints when a = ∞; Degener-

ated Constraints 2 correspond to the General Constraints when b = 0; and Degenerated Constraints

3 correspond to the General Constraints when a = b.

We use the Two-Line Configuration X = xdIA + xuID, where the value of the random variable X takes

either the upper or the lower bound, as well as its capital constraint to define the ‘Bar-System’ from which

we calculate the highest achievable return.

Definition 3.2 (The ‘Bar-System’) For fixed −∞ < xd < xr < xu < ∞, let ā be a solution to the

12



capital constraint Ẽ[X] = xdP̃ (A) + xuP̃ (D) = xr in Degenerated Constraints 3 for the Two-Line

Configuration X = xdIA+xuID. Consequently, the ‘Bar-System’ Ā, D̄ and X̄ are associated to the constant

ā in the sense X̄ = xdIĀ + xuID̄ where Ā =
{

ω ∈ Ω : dP̃
dP

(ω) > ā
}

, and D̄ =
{

ω ∈ Ω : dP̃
dP

(ω) < ā
}

. Define

the expected return of the ‘Bar-System’ as z̄ = E[X̄] = xdP (Ā) + xuP (D̄).

Lemma 3.3 z̄ is the highest expected return that can be obtained by a self-financing portfolio with initial

capital x0 whose value is bounded between xd and xu:

z̄ = max
X∈F

E[X] s.t. Ẽ[X] = xr = x0e
rT , xd ≤ X ≤ xu a.s..

In the following lemma, we vary the ‘x’ value in the Two-Line Configurations X = xIB + xuID and

X = xdIA + xIB , while maintaining the capital constraints respectively. We observe their expected returns

to vary between values xr and z̄ in a monotone and continuous fashion.

Lemma 3.4 For fixed −∞ < xd < xr < xu < ∞.

1. Given any x ∈ [xd, xr], let ‘b’ be a solution to the capital constraint Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr

in Degenerated Constraints 1 for the Two-Line Configuration X = xIB + xuID. Define the

expected return of the resulting Two-Line Configuration as z(x) = E[X] = xP (B) + xuP (D).† Then

z(x) is a continuous function of x and decreases from z̄ to xr as x increases from xd to xr.

2. Given any x ∈ [xr, xu], let ‘a’ be a solution to the capital constraint Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr

in Degenerated Constraints 2 for the Two-Line Configuration X = xdIA + xIB. Define the

expected return of the resulting Two-Line Configuration as z(x) = E[X] = xdP (A) + xP (B). Then

z(x) is a continuous function of x and increases from xr to z̄ as x increases from xr to xu.

From now on, we will concern ourselves with requirements on the expected return in the interval z ∈ [xr, z̄].

Lemma 3.3 ensures that there are no feasible solutions to the Main Problem (2) if we require a higher expected

return than z̄. We now make the argument that, when the return requirement is below xr, the optimal

solution to the One-Constraint Problem automatically satisfies the additional return constraint, thus

is the optimal solution to the Two-Constraint Problem. Lemma 3.4 demonstrates that the Two-Line

Configuration X = xdIA + xIB satisfying the capital constraint, will also satisfy the return constraint in

this case. We refer to Li and Xu [20] for the general optimal solution to the One-Constraint Problem. For

†Threshold ‘b’ and consequently sets ‘B’ and ‘D’ are all dependent on ‘x’ through the capital constraint, therefore z(x) is
not a linear function of x.
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convenience, we restate them later in Theorem 3.11 under additional Assumption 2.1. From this theorem, we

see that the optimal solution to the One-Constraint Problem, either takes this Two-Line Configuration

form with x = x∗ which we call the ‘Star-System’ X∗ = xdIA∗ + x∗
IB∗ ; or coincides with the ‘Bar-System’;

or results from the pure money market account investment with expected return xr. Lemma 3.3 and Lemma

3.4 then lead to the conclusion that a return constraint where z ∈ (−∞, xr) is too weak to differentiate the

Two-Constraint Problem from the One-Constraint Problem as their optimal solutions concur.

Definition 3.5 For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ [xr, z̄], define xz1 and xz2 to be

the corresponding x value for Two-Line Configurations X = xIB +xuID and X = xdIA +xIB that satisfy

Degenerated Constraints 1 and Degenerated Constraints 2 respectively.

Definition 3.5 implies when we fix the level of expected return z, we can find two particular feasible

solutions: X = xz1IB +xuID satisfying Ẽ[X] = xz1P̃ (B)+xuP̃ (D) = xr and E[X] = xz1P (B)+xuP (D) = z;

X = xdIA + xz2IB satisfying Ẽ[X] = xdP̃ (A) + xz2P̃ (B) = xr and E[X] = xdP (A) + xz2P (B) = z. The

values xz1 and xz2 are well-defined because Lemma 3.4 guarantees z(x) to be an invertible function in both

cases. We summarize in the following lemma whether the Two-Line Configurations satisfying the capital

constraints meet or fail the return constraint as x ranges over its domain [xd, xu] for the Two-Line and

Three-Line Configurations in Definition 3.1.

Lemma 3.6 For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ [xr, z̄].

1. If we fix x ∈ [xd, xz1], the Two-Line Configuration X = xIB +xuID which satisfies the capital constraint

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1 satisfies the expected return constraint:

E[X] = xP (B) + xuP (D) ≥ z;

2. If we fix x ∈ (xz1, xr], the Two-Line Configuration X = xIB +xuID which satisfies the capital constraint

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1 fails the expected return constraint:

E[X] = xP (B) + xuP (D) < z;

3. If we fix x ∈ [xr, xz2), the Two-Line Configuration X = xdIA+xIB which satisfies the capital constraint

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2 fails the expected return constraint:

E[X] = xP (B) + xuP (D) < z;

4. If we fix x ∈ [xz2, xu], the Two-Line Configuration X = xdIA+xIB which satisfies the capital constraint

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2 satisfies the expected return constraint:

E[X] = xP (B) + xuP (D) ≥ z.
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We turn our attention to solving Step 1 of the Two-Constraint Problem (4):

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x − X)+]

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

Notice that a solution is called for any given real number x, independent of the return level z or capital

level xr. From Lemma 3.6 and the fact that the Two-Line Configurations are optimal solutions to Step 1 of

the One-Constraint Problem (see Theorem 2.2 in Li and Xu [20]), we can immediately draw the following

conclusion.

Proposition 3.7 For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ [xr, z̄].

1. If we fix x ∈ [xd, xz1], then there exists a Two-Line Configuration X = xIB + xuID which is the

optimal solution to Step 1 of the Two-Constraint Problem;

2. If we fix x ∈ [xz2, xu], then there exists a Two-Line Configuration X = xdIA + xIB which is the

optimal solution to Step 1 of the Two-Constraint Problem.

When x ∈ (xz1, xz2), Lemma 3.6 shows that the Two-Line Configurations which satisfy the capital

constraints (Ẽ[X] = xr) do not generate high enough expected return (E[X] < z) to be feasible anymore. It

turns out that a novel solution of Three-Line Configuration is the answer: it can be shown to be both feasible

and optimal.

Lemma 3.8 For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ [xr, z̄]. Given any x ∈ (xz1, xz2), let

the pair of numbers (a, b) ∈ R
2 (b ≤ a) be a solution to the capital constraint Ẽ[X] = xdP̃ (A) + xP̃ (B) +

xuP̃ (D) = xr in General Constraints for the Three-Line Configuration X = xdIA+xIB+xuID. Define

the expected return of the resulting Three-Line Configuration as z(a, b) = E[X] = xdP (A)+xP (B)+xuP (D).

Then z(a, b) is a continuous function which decreases from z̄ to a number below z:

1. When a = b = ā from Definition 3.2 of ‘Bar-System’, the Three-Line Configuration degenerates to

X = X̄ and z(ā, ā) = E[X̄] = z̄.

2. When b < ā and a > ā, z(a, b) decreases continuously as b decreases and a increases.
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3. In the extreme case when a = ∞, the Three-Line configuration becomes the Two-Line Configuration

X = xIB + xuID; in the extreme case when b = 0, the Three-Line configuration becomes the Two-Line

Configuration X = xdIA + xIB. In either case, the expected value is below z by Lemma 3.6.

Proposition 3.9 For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ [xr, z̄]. If we fix x ∈ (xz1, xz2),

then there exists a Three-Line Configuration X = xdIA + xIB + xuID that satisfies the General Con-

straints which is the optimal solution to Step 1 of the Two-Constraint Problem.

Combining Proposition 3.7 and Proposition 3.9 (a main result on the optimality of the Three-Line Con-

figuration), we arrive to the following summary of the solutions.

Theorem 3.10 (Solution to Step 1: Minimization of Expected Shortfall)

For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ [xr, z̄]. X(x) and the corresponding value

function v(x) described below are optimal solutions to Step 1: Minimization of Expected Shortfall of

the Two-Constraint Problem:

• x ∈ (−∞, xd]: X(x) = any random variable with values in [xd, xu] satisfying both the capital constraint

Ẽ[X(x)] = xr and the return constraint E[X(x)] ≥ z. v(x) = 0.

• x ∈ [xd, xz1]: X(x) = any random variable with values in [x, xu] satisfying both the capital constraint

Ẽ[X(x)] = xr and the return constraint E[X(x)] ≥ z. v(x) = 0.

• x ∈ (xz1, xz2): X(x) = xdIAx
+xIBx

+xuIDx
where Ax, Bx, Dx are determined by ax and bx as in (18)

satisfying the General Constraints: Ẽ[X(x)] = xr and E[X(x)] = z. v(x) = (x − xd)P (Ax).

• x ∈ [xz2, xu]: X(x) = xdIAx
+ xIBx

where Ax, Bx are determined by ax as in Definition 3.1 satisfying

both the capital constraint Ẽ[X(x)] = xr and the return constraint E[X(x)] ≥ z. v(x) = (x−xd)P (Ax).

• x ∈ [xu,∞): X(x) = xdIĀ + xuIB̄ = X̄ where Ā, B̄ are associated to ā as in Definition 3.2 satisfying

both the capital constraint Ẽ[X(x)] = xr and the return constraint E[X(x)] = z̄ ≥ z.

v(x) = (x − xd)P (Ā) + (x − xu)P (B̄).

To solve Step 2 of the Two-Constraint Problem, and thus the Main Problem (2), we need to find

1

λ
inf
x∈R

(v(x) − λx),

where v(x) has been computed in Theorem 3.10. Depending on the z level in the return constraint being

lenient or strict, the solution is sometimes obtained by the Two-Line Configuration which is optimal to the
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One-Constraint Problem, and at other times obtained by a true Three-Line configuration. To proceed in

this direction, we recall the solution to the One-Constraint Problem from Li and Xu [20].

Theorem 3.11 (Theorem 2.10 and Remark 2.11 in Li and Xu [20] when xu < ∞)

1. Suppose ess sup dP̃
dP

≤ 1
λ
. X = xr is the optimal solution to Step 2: Minimization of Conditional

Value-at-Risk of the One-Constraint Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP

> 1
λ
.

• If 1
ā
≤ λ−P (Ā)

1−P̃ (Ā)
(see Definition 3.2 for the ‘Bar-System’), then X̄ = xdIĀ + xuID̄ is the optimal

solution to Step 2: Minimization of Conditional Value-at-Risk of the One-Constraint

Problem and the associated minimal risk is

CV aR(X̄) = −xr +
1

λ
(xu − xd)(P (Ā) − λP̃ (Ā)).

• Otherwise, let a∗ be the solution to the equation 1
a

= λ−P (A)

1−P̃ (A)
. Associate sets A∗ =

{

ω ∈ Ω : dP̃
dP

(ω) > a∗
}

and B∗ =
{

ω ∈ Ω : dP̃
dP

(ω) ≤ a∗
}

to level a∗. Define x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)

so that configuration

X∗ = xdIA∗ + x∗
IB∗

satisfies the capital constraint Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr.
‡ Then X∗ (we call the ‘Star-

System’) is the optimal solution to Step 2: Minimization of Conditional Value-at-Risk

of the One-Constraint Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1

λ
(x∗ − xd)(P (A∗) − λP̃ (A∗)).

Definition 3.12 In part 2 of Theorem 3.11, define z∗ = z̄ in the first case when 1
ā

≤ λ−P (Ā)

1−P̃ (Ā)
; define

z∗ = E[X∗] in the second case when 1
ā

>
λ−P (Ā)

1−P̃ (Ā)
.

We see that when z is smaller than z∗, the binary solutions X∗ and X̄ provided in Theorem 3.11 are indeed

the optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-Constraint

‡Equivalently, (a∗, x∗) can be viewed as the solution to the capital constraint and the first order Euler condition in equations
(11) and (12).
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Problem. However, when z is greater than z∗ these Two-Line Configurations are no longer feasible in the

Two-Constraint Problem. We now show that the Three-Line Configuration is not only feasible but also

optimal. First we establish the convexity of the objective function and its continuity in a Lemma.

Lemma 3.13 v(x) is a convex function for x ∈ R, and thus continuous.

Proposition 3.14 For fixed −∞ < xd < xr < xu < ∞, and a fixed level z ∈ (z∗, z̄].

Suppose ess sup dP̃
dP

> 1
λ
. The solution (a∗∗, b∗∗, x∗∗) (and consequently, A∗∗, B∗∗ and D∗∗) to the equations

xdP (A) + xP (B) + xuP (D) = z, (return constraint)

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr, (capital constraint)

P (A) +
P̃ (B) − bP (B)

a − b
− λ = 0, (first order Euler condition)

exists. X∗∗ = xdIA∗∗ +x∗∗
IB∗∗ +xuID∗∗ (we call the ‘Double-Star System’) is the optimal solution to Step

2: Minimization of Conditional Value-at-Risk of the Two-Constraint Problem and the associated

minimal risk is

CV aR(X∗∗) =
1

λ
((x∗∗ − xd)P (A∗∗) − λx∗∗) .

Joining Proposition 3.14 with Theorem 3.11, we arrive to the Main Theorem of this paper.

Theorem 3.15 (Minimization of Conditional Value-at-Risk When xu < ∞)

For fixed −∞ < xd < xr < xu < ∞.

1. Suppose ess sup dP̃
dP

≤ 1
λ

and z = xr. The pure money market account investment X = xr is the

optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-Constraint

Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP

≤ 1
λ

and z ∈ (xr, z̄]. The optimal solution to Step 2: Minimization of Condi-

tional Value-at-Risk of the Two-Constraint Problem does not exist and the minimal risk is

CV aR(X) = −xr.

3. Suppose ess sup dP̃
dP

> 1
λ

and z ∈ [xr, z
∗] (see Definition 3.12 for z∗).
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• If 1
ā

≤ λ−P (Ā)

1−P̃ (Ā)
(see Definition 3.2), then the ‘Bar-System’ X̄ = xdIĀ + xuID̄ is the optimal

solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-Constraint

Problem and the associated minimal risk is

CV aR(X̄) = −xr +
1

λ
(xu − xd)(P (Ā) − λP̃ (Ā)).

• Otherwise, the ‘Star-System’ X∗ = xdIA∗+x∗
IB∗ defined in Theorem 3.11 is the optimal solution

to Step 2: Minimization of Conditional Value-at-Risk of the Two-Constraint Problem

and the associated minimal risk is

CV aR(X∗) = −xr +
1

λ
(x∗ − xd)(P (A∗) − λP̃ (A∗)).

4. Suppose ess sup dP̃
dP

> 1
λ

and z ∈ (z∗, z̄]. the ‘Double-Star-Sytem’ X∗∗ = xdIA∗∗ + x∗∗
IB∗∗ + xuID∗∗

defined in Proposition 3.14 is the optimal solution to Step 2: Minimization of Conditional Value-

at-Risk of the Two-Constraint Problem and the associated minimal risk is

CV aR(X∗∗) =
1

λ
((x∗∗ − xd)P (A∗∗) − λx∗∗) .

We observe that the pure money market account investment is rarely optimal. The condition that the

Radon-Nikodým derivative is bounded above (ess sup dP̃
dP

≤ 1
λ
) is not satisfied in typical continuous distribu-

tion model, for example the Black-Scholes model. When the return constraint is low z ∈ [xr, z
∗], the Two-Line

Configurations which are optimal to the CV aR minimization problem without the return constraint is also

the optimal when adding the return constraint. When the return constraint is materially high z ∈ (z∗, z̄],

the optimal Three-Line-Configuration takes the value of the upper bound xu to raise the expected return

although the minimal risk will be compromised at a higher level. We have already seen this in a numerical

example in Section 2.2.

3.2 Case xu = ∞: No Upper Bound

We first restate the solution to the One-Constraint Problem from Li and Xu [20] in the current context:

when xu = ∞, we interpret Ā = Ω and z̄ = ∞.

Theorem 3.16 (Theorem 2.10 and Remark 2.11 in Li and Xu [20] when xu = ∞)
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1. Suppose ess sup dP̃
dP

≤ 1
λ
. The pure money market account investment X = xr is the optimal solution

to Step 2: Minimization of Conditional Value-at-Risk of the One-Constraint Problem and

the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP

> 1
λ
. The ‘Star-System’ X∗ = xdIA∗ + x∗

IB∗ defined in Theorem 3.11 is the

optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the One-Constraint

Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1

λ
(x∗ − xd)(P (A∗) − λP̃ (A∗)).

We observe that although there is no upper bound for the portfolio value, the optimal solution remains

bounded from above, and the minimal CV aR is bounded from below. The question of minimizing CV aR

risk of a self-financing portfolio (bounded from below by xd to exclude arbitrage) from initial capital x0 is

meaningful in the sense that the risk will not approach −∞ and the minimal risk can be achieved by an

optimal portfolio. We will see in the following theorem that in the case we add substantial return constraint

to the CV aR minimization problem, although the minimal risk can still be calculated, they are truly infimum

and not minimum, thus they can be approximated closely by a sub-optimal portfolio, but not achieved by

an optimal portfolio.

Theorem 3.17 (Minimization of Conditional Value-at-Risk When xu = ∞)

For fixed −∞ < xd < xr < xu = ∞.

1. Suppose ess sup dP̃
dP

≤ 1
λ

and z = xr. The pure money market account investment X = xr is the

optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-Constraint

Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP

≤ 1
λ

and z ∈ (xr,∞). The optimal solution to Step 2: Minimization of Condi-

tional Value-at-Risk of the Two-Constraint Problem does not exist and the minimal risk is

CV aR(X) = −xr.
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3. Suppose ess sup dP̃
dP

> 1
λ

and z ∈ [xr, z
∗]. The ‘Star-System’ X∗ = xdIA∗ + x∗

IB∗ defined in Theorem

3.11 is the optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-

Constraint Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1

λ
(x∗ − xd)(P (A∗) − λP̃ (A∗)).

4. Suppose ess sup dP̃
dP

> 1
λ

and z ∈ (z∗,∞). The optimal solution to Step 2: Minimization of Condi-

tional Value-at-Risk of the Two-Constraint Problem does not exist and the minimal risk is

CV aR(X∗) = −xr +
1

λ
(x∗ − xd)(P (A∗) − λP̃ (A∗)).

From the proof of the above theorem in the Appendix, we note that in case 4, we can always find a

Three-Line Configuration as a sub-optimal solution, i.e., there exists for every ǫ > 0, a corresponding portfolio

Xǫ = xdIAǫ
+ xǫIBǫ

+ αǫIDǫ
which satisfies the General Constraints and produces a CV aR level close to the

lower bound: CV aR(Xǫ) ≤ CV aR(X∗) + ǫ.

4 Future Work

In Assumption 2.1, we require the Radon-Nikodým derivative to have continuous distribution. When this

assumption is weakened, the main results should still hold, albeit in a more complicated form. The outcome

in its format resembles techniques employed in Föllmer and Leukert [13] and Li and Xu [20] where the point

masses on the thresholds for the Radon-Nikodým derivative in Definition (18) have to be dealt with carefully.

It will also be interesting to extend the closed-form solution for CVaR minimization to the minimization of

Law-Invariant Risk Measures in general. Investigation of the solutions in incomplete markets is a natural

broadening of curiosity: will the Third-Line Configuration remain optimal?

5 Appendix

Proof of Lemma 3.3. The problem of

z̄ = max
X∈F

E[X] s.t. Ẽ[X] = xr, xd ≤ X ≤ xu a.s.
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is equivalent to the Expected Shortfall Problem

z̄ = − min
X∈F

E[(xu − X)+] s.t. Ẽ[X] = xr, X ≥ xd a.s.

Therefore, the answer is immediate. ⋄

Proof of Lemma 3.4. Choose xd ≤ x1 < x2 ≤ xr. Let X1 = x1IB1 + xuID1 where B1 =
{

ω ∈ Ω : dP̃
dP

(ω) ≥ b1

}

and D1 =
{

ω ∈ Ω : dP̃
dP

(ω) < b1

}

. Choose b1 such that Ẽ[X1] = xr. This capital

constraint means x1P̃ (B1)+xuP̃ (D1) = xr. Since P̃ (B1)+ P̃ (D1) = 1, P̃ (B1) = xu−xr

xu−x1
and P̃ (D1) = xr−x1

xu−x1
.

Define z1 = E[X1]. Similarly, z2, X2, B2, D2, b2 corresponds to x2 where b1 > b2 and P̃ (B2) = xu−xr

xu−x2
and

P̃ (D2) = xr−x2

xu−x2
. Note that D2 ⊂ D1, B1 ⊂ B2 and D1\D2 = B2\B1. We have

z1 − z2 = x1P (B1) + xuP (D1) − x2P (B2) − xuP (D2)

= (xu − x2)P (B2\B1) − (x2 − x1)P (B1)

= (xu − x2)P
(

b2 < dP̃
dP

(ω) < b1

)

− (x2 − x1)P
(

dP̃
dP

(ω) ≥ b1

)

= (xu − x2)

∫



b2<
dP̃
dP

(ω)<b1

ff

dP

dP̃
(ω)dP̃ (ω) − (x2 − x1)

∫



dP̃
dP

(ω)≥b1

ff

dP

dP̃
(ω)dP̃ (ω)

> (xu − x2)
1

b1
P̃ (B2\B1) − (x2 − x1)

1

b1
P̃ (B1)

= (xu − x2)
1

b1

(

xu − xr

xu − x2
−

xu − xr

xu − x1

)

− (x2 − x1)
1

b1

xu − xr

xu − x1
= 0.

For any given ǫ > 0, choose x2 − x1 ≤ ǫ, then

z1 − z2 = (xu − x1)P (B2\B1) − (x2 − x1)P (B2)

≤ (xu − x1)P (B2\B1)

≤ (xu − x1)

(

xu − xr

xu − x2
−

xu − xr

xu − x1

)

≤
(x2 − x1)(xu − xr)

xu − x2
≤ x2 − x1 ≤ ǫ.

Therefore, z decreases continuously as x increases when x ∈ [xd, xr]. When x = xd, z = z̄ from Definition

3.2. When x = xr, X ≡ xr and z = E[X] = xr. Similarly, we can show that z increases continuously from

xr to z̄ as x increases from xr to xu. ⋄

Lemma 3.6 is a logical consequence of Lemma 3.4 and Definition 3.5; Proposition 3.7 follows from Lemma
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3.6; so their proofs will be skipped.

Proof of Lemma 3.8. Choose −∞ < b1 < b2 ≤ b̄ = ā ≤ a2 < a1 < ∞. Let configuration

X1 = xdIA1 + xIB1 + xuID1 correspond to the pair (a1, b1) where A1 =
{

ω ∈ Ω : dP̃
dP

(ω) > a1

}

, B1 =
{

ω ∈ Ω : b1 ≤ dP̃
dP

(ω) ≤ a1

}

, D1 =
{

ω ∈ Ω : dP̃
dP

(ω) < b1

}

. Similarly, let configuration X2 = xdIA2
+xIB2

+

xuID2
correspond to the pair (a2, b2). Define z1 = E[X1] and z2 = E[X2]. Since both X1 and X2 satisfy the

capital constraint, we have

xdP̃ (A1) + xP̃ (B1) + xuP̃ (D1) = xr = xdP̃ (A2) + xP̃ (B2) + xuP̃ (D2).

This simplifies to the equation

(19) (x − xd)P̃ (A2\A1) = (xu − x)P̃ (D2\D1).

Then

z2 − z1 = xdP (A2) + xP (B2) + xuP (D2) − xdP (A1) − xP (B1) − xuP (D1)

= (xu − x)P (D2\D1) − (x − xd)P (A2\A1)

= (xu − x)P (D2\D1) − (xu − x)
P̃ (D2\D1)

P̃ (A2\A1)
P (A2\A1)

= (xu − x)P̃ (D2\D1)

(

P (D2\D1)

P̃ (D2\D1)
−

P (A2\A1)

P̃ (A2\A1)

)

= (xu − x)P̃ (D2\D1)









∫



b1≤
dP̃
dP

(ω)<b2

ff

dP

dP̃
(ω)dP̃ (ω)

P̃ (D2\D1)
−

∫



a2<
dP̃
dP

(ω)≤a1

ff

dP

dP̃
(ω)dP̃ (ω)

P̃ (A2\A1)









≥ (xu − x)P̃ (D2\D1)

(

1

b2
−

1

a2

)

> 0.

Suppose the pair (a1, b1) is chosen so that X1 satisfies the budget constraint Ẽ[X1] = xr. For any given

ǫ > 0, choose b2 − b1 small enough such that P (D2\D1) ≤ ǫ
xu−x

. Now choose a2 such that a2 < a1 and

equation (19) is satisfied. Then X2 also satisfies the budget constraint Ẽ[X2] = xr, and

z2 − z1 = (xu − x)P (D2\D1) − (x − xd)P (A2\A1) ≤ (xu − x)P (D2\D1) ≤ ǫ.

We conclude that the expected value of the Three-Line configuration decreases continuously as b decreases
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and a increases. ⋄

In the following we provide the main proof of the paper: the optimality of the Three-Line configuration.

Proof of Proposition 3.9. Denote ρ = dP̃
dP

. According to Lemma 3.8, there exists a Three-Line configu-

ration X̂ = xdIA + xIB + xuID that satisfies the General Constraints:

E[X] = xdP (A) + xP (B) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr.

where

A = {ω ∈ Ω : ρ(ω) > â} , B =
{

ω ∈ Ω : b̂ ≤ ρ(ω) ≤ â
}

, D =
{

ω ∈ Ω : ρ(ω) < b̂
}

.

As standard for convex optimization problems, if we can find a pair of Lagrange multipliers λ ≥ 0 and µ ∈ R

such that X̂ is the solution to the minimization problem

(20) inf
X∈F, xd≤X≤xu

E[(x − X)+ − λX − µρX] = E[(x − X̂)+ − λX̂ − µρX̂],

then X̂ is the solution to the constrained problem

inf
X∈F, xd≤X≤xu

E[(x − X)+], s.t. E[X] ≥ z, Ẽ[X] = xr.

Define

λ =
b̂

â − b̂
, µ = −

1

â − b̂
.

Then (20) becomes

inf
X∈F, xd≤X≤xu

E
[

(x − X)+ + ρ−b̂

â−b̂
X
]

.

Choose any X ∈ F where xd ≤ X ≤ xu, and denote G = {ω ∈ Ω : X(ω) ≥ x} and L = {ω ∈ Ω : X(ω) < x}.
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Note that ρ−b̂

â−b̂
> 1 on set A, 0 ≤ ρ−b̂

â−b̂
≤ 1 on set B, ρ−b̂

â−b̂
< 0 on set D. Then the difference

E
[

(x − X)+ + ρ−b̂

â−b̂
X
]

− E
[

(x − X̂)+ + ρ−b̂

â−b̂
X̂
]

= E
[

(x − X)IL + ρ−b̂

â−b̂
X (IA + IB + ID)

]

− E
[

(x − xd) IA + ρ−b̂

â−b̂
(xdIA + xIB + xuID)

]

= E
[

(x − X)IL +
(

ρ−b̂

â−b̂
(X − xd) − (x − xd)

)

IA + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]

≥ E
[

(x − X)IL + (X − x) IA + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]

= E
[

(x − X) (IL∩A + IL∩B + IL∩D) + (X − x) (IA∩G + IA∩L) + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]

= E
[

(x − X) (IL∩B + IL∩D) + (X − x) IA∩G + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]

= E
[

(x − X) (IL∩B + IL∩D) + (X − x) IA∩G + ρ−b̂

â−b̂
(X − x) (IB∩G + IB∩L) + ρ−b̂

â−b̂
(X − xu) (ID∩G + ID∩L)

]

= E
[

(x − X)
(

1 − ρ−b̂

â−b̂

)

IB∩L +
(

x − X + ρ−b̂

â−b̂
(X − xu)

)

ID∩L + (X − x) IA∩G

+ ρ−b̂

â−b̂
(X − x) IB∩G + ρ−b̂

â−b̂
(X − xu) ID∩G

]

≥ 0.

The last inequality holds because each term inside the expectation is greater than or equal to zero. ⋄

Theorem 3.10 is a direct consequence of Lemma 3.6, Proposition 3.7, and Proposition 3.9.

Proof of Lemma 3.13. The convexity of v(x) is a simple consequence of its definition (4). Real-valued

convex functions on R are continuous on its interior of the domain, so v(x) is continuous on R. ⋄

Proof of Proposition 3.14. For z ∈ (z∗, z̄], Step 2 of the Two-Constraint Problem

1

λ
inf
x∈R

(v(x) − λx)

is the minimum of the following five sub-problems after applying Theorem 3.10:

Case 1

1

λ
inf

(−∞,xd]
(v(x) − λx) =

1

λ
inf

(−∞,xd]
(−λx) = −xd;

Case 2

1

λ
inf

[xd,xz1]
(v(x) − λx) =

1

λ
inf

[xd,xz1]
(−λx) = −xz1 ≤ −xd;
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Case 3

1

λ
inf

(xz1,xz2)
(v(x) − λx) =

1

λ
inf

(xz1,xz2)
((x − xd)P (Ax) − λx) ;

Case 4

1

λ
inf

[xz2,xu]
(v(x) − λx) =

1

λ
inf

[xz2,xu]
((x − xd)P (Ax) − λx) ;

Case 5

1

λ
inf

[xu,∞)
(v(x) − λx) =

1

λ
inf

[xu,∞)

(

(x − xd)P (Ā) + (x − xu)P (B̄) − λx
)

.

Obviously, Case 2 dominates Case 1 in the sense that its minimum is lower. In Case 3, by the continuity

of v(x), we have

1

λ
inf

(xz1,xz2)
((x − xd)P (Ax) − λx) ≤

1

λ
((xz1 − xd)P (Axz1

) − λxz1) = −xz1.

The last equality comes from the fact P (Axz1) = 0: As in Lemma 3.8, we know that when x = xz1, the Three-

Line configuration X = xdIA + xIB + xuID degenerates to the Two-Line configuration X = xz1IB + xuID

where axz1
= ∞. Therefore, Case 3 dominates Case 2. In Case 5,

1

λ
inf

[xu,∞)
(v(x) − λx) =

1

λ
inf

[xu,∞)

(

(x − xd)P (Ā) + (x − xu)P (B̄) − λx
)

=
1

λ
inf

[xu,∞)

(

(1 − λ)x − xdP (Ā) − xuP (B̄)
)

=
1

λ

(

(1 − λ)xu − xdP (Ā) − xuP (B̄)
)

=
1

λ

(

(xu − xd)P (Ā) − λxu

)

≥
1

λ
inf

[xz2,xu]
((x − xd)P (Ax) − λx) .

Therefore, Case 4 dominates Case 5. When x ∈ [xz2, xu] and ess sup dP̃
dP

> 1
λ
, Theorem 3.10 and Theorem

3.11 imply that the infimum in Case 4 is achieved either by X̄ or X∗. Since we restrict z ∈ (z∗, z̄] where

z∗ = z̄ by Definition 3.12 in the first case, we need not consider this case in the current proposition. In the

second case, Lemma 3.4 implies that x∗ < xz2 (because z > z∗). By the convexity of v(x), and then the

26



continuity of v(x),

1

λ
inf

[xz2,xu]
((x − xd)P (Ax) − λx) =

1

λ
((xz2 − xd)P (Axz2) − λxz2)

≥
1

λ
inf

(xz1,xz2)
((x − xd)P (Ax) − λx) .

Therefore, Case 3 dominates Case 4. We have shown that Case 3 actually provides the globally infimum:

1

λ
inf
x∈R

(v(x) − λx) =
1

λ
inf

(xz1,xz2)
(v(x) − λx).

Now we focus on x ∈ (xz1, xz2), where X(x) = xdIAx
+ xIBx

+ xuIDx
satisfies the general constraints:

E[X(x)] = xdP (Ax) + xP (Bx) + xuP (Dx) = z,

Ẽ[X(x)] = xdP̃ (Ax) + xP̃ (Bx) + xuP̃ (Dx) = xr,

and the definition for sets Ax, Bx and Dx are

Ax =
{

ω ∈ Ω : dP̃
dP

(ω) > ax

}

, Bx =
{

ω ∈ Ω : bx ≤ dP̃
dP

(ω) ≤ ax

}

, Dx =
{

ω ∈ Ω : dP̃
dP

(ω) < bx

}

.

Note that v(x) = (x − xd)P (Ax) (see Theorem 3.10). Since P (Ax) + P (Bx) + P (Dx) = 1 and P̃ (Ax) +

P̃ (Bx) + P̃ (Dx) = 1, we rewrite the capital and return constraints as

x − z = (x − xd)P (Ax) + (x − xu)P (Dx),

x − xr = (x − xd)P̃ (Ax) + (x − xu)P̃ (Dx).

Differentiating both sides with respect to x, we get

P (Bx) = (x − xd)
dP (Ax)

dx
+ (x − xu)

dP (Dx)

dx
,

P̃ (Bx) = (x − xd)
dP̃ (Ax)

dx
+ (x − xu)

dP̃ (Dx)

dx
.

Since

dP̃ (Ax)

dx
= ax

dP (Ax)

dx
,

dP̃ (Dx)

dx
= bx

dP (Dx)

dx
,
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we get

dP (Ax)

dx
=

P̃ (Bx) − bP (Bx)

(x − xd)(a − b)
.

Therefore,

(v(x) − λx)′ = P (Ax) + (x − xd)
dP (Ax)

dx
− λ

= P (Ax) +
P̃ (Bx) − bP (Bx)

a − b
− λ.

When the above derivative is zero, we arrive to the first order Euler condition

P (Ax) +
P̃ (Bx) − bP (Bx)

a − b
− λ = 0.

To be precise, the above differentiation should be replaced by left-hand and right-hand derivatives as detailed

in the Proof for Corollary 2.8 in Li and Xu [20]. But the first order Euler condition will turn out to be the

same because we have assumed that the Radon-Nikodým derivative dP̃
dP

has continuous distribution.

To finish this proof, we need to show that there exists an x ∈ (xz1, xz2) where the first order Euler

condition is satisfied. From Lemma 3.8, we know that as x ց xz1, ax ր ∞, and P (Ax) ց 0. Therefore,

lim
xցxz1

(v(x) − λx)′ = −λ < 0.

As x ր xz2, bx ց 0, and P (Dx) ց 0. Therefore,

lim
xրxz2

(v(x) − λx)′ = P (Axz2
) −

P̃ (Ac
xz2

)

axz2

− λ.

This derivative coincides with the derivative of the value function of the Two-Line configuration that is

optimal on the interval x ∈ [xz2, xu] provided in Theorem 3.10 (see Proof for Corollary 2.8 in Li and Xu [20]).

Again when x ∈ [xz2, xu] and ess sup dP̃
dP

> 1
λ
, Theorem 3.10 and Theorem 3.11 imply that the infimum of

v(x) − λx is achieved either by X̄ or X∗. Since we restrict z ∈ (z∗, z̄] where z∗ = z̄ by Definition 3.12 in the

first case, we need not consider this case in the current proposition. In the second case, Lemma 3.4 implies

that x∗ < xz2 (because z > z∗). This in turn implies

P (Axz2
) −

P̃ (Ac
xz2

)

axz2

− λ < 0.
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We have just shown that there exist some x∗∗ ∈ (xz1, xz2) such that (v(x)−λx)′|x=x∗∗ = 0. By the convexity

of v(x) − λx, this is the point where it obtains the minimum value. Now

CV aR(X∗∗) =
1

λ
(v(x∗∗) − λx∗∗)

=
1

λ
((x∗∗ − xd)P (A∗∗) − λx∗∗) .

⋄

Proof of Theorem 3.15. Case 3 and 4 are already proved in Theorem 3.11 and Proposition 3.14. In Case

1 where ess sup dP̃
dP

≤ 1
λ

and z = xr, X = xr is both feasible and optimal by Theorem 3.11. In Case 2, fix

arbitrary ǫ > 0. We will look for a Two-Line solution Xǫ = xǫIAǫ
+αǫIBǫ

with the right parameters aǫ, xǫ, αǫ

which satisfies both the capital constraint and return constraint:

E[Xǫ] = xǫP (Aǫ) + αǫP (Bǫ) = z,(21)

Ẽ[Xǫ] = xǫP̃ (Aǫ) + αǫP̃ (Bǫ) = xr,(22)

where

Aǫ =
{

ω ∈ Ω : dP̃
dP

(ω) > aǫ

}

, Bǫ =
{

ω ∈ Ω : dP̃
dP

(ω) ≤ aǫ

}

,

and produces a CVaR level close to the lower bound:

CV aR(Xǫ) ≤ CV aR(xr) + ǫ = −xr + ǫ.

First, we choose xǫ = xr − ǫ. To find the remaining two parameters aǫ and αǫ so that equations (21) and

(22) are satisfies, we note

xrP (Aǫ) + xrP (Bǫ) = xr,

xrP̃ (Aǫ) + xrP̃ (Bǫ) = xr,

and conclude that it is equivalent to find a pair of aǫ and αǫ such that the following two equalities are
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satisfied:

−ǫP (Aǫ) + (αǫ − xr)P (Bǫ) = γ,

−ǫP̃ (Aǫ) + (αǫ − xr)P̃ (Bǫ) = 0,

where we denote γ = z − xr. If we can find a solution aǫ to the equation

(23)
P̃ (Bǫ)

P (Bǫ)
=

ǫ

γ + ǫ
,

then

αǫ = xr +
P̃ (Aǫ)

P̃ (Bǫ)
ǫ,

and we have the solutions for equations (21) and (22). It is not difficult to prove that the fraction P̃ (B)
P (B)

increases continuously from 0 to 1 as a increases from 0 to 1
λ
. Therefore, we can find a solution aǫ ∈ (0, 1

λ
)

where (23) is satisfied. By definition (3),

CV aRλ(Xǫ) =
1

λ
inf
x∈R

(

E[(x − Xǫ)
+] − λx

)

≤
1

λ

(

E[(xǫ − Xǫ)
+] − λxǫ

)

= −xǫ.

The difference

CV aRλ(Xǫ) − CV aR(xr) ≤ −xǫ + xr = ǫ.

Under Assumption 2.1, the solution in Case 2 is almost surely unique, the result is proved. ⋄

Proof of Theorem 3.17. Case 1 and 3 are obviously true in light of Theorem 3.16. The proof for Case 2

is similar to that in the Proof of Theorem 3.15, so we will not repeat it here. Since E[X∗] = z∗ < z in case

4, CV aR(X∗) is only a lower bound in this case. We first show that it is the true infimum obtained in Case

4. Fix arbitrary ǫ > 0. We will look for a Three-Line solution Xǫ = xdIAǫ
+ xǫIBǫ

+ αǫIDǫ
with the right

parameters aǫ, bǫ, xǫ, αǫ which satisfies the general constraints:

E[Xǫ] = xdP (Aǫ) + xǫP (Bǫ) + αǫP (Dǫ) = z,(24)

Ẽ[Xǫ] = xdP̃ (Aǫ) + xǫP̃ (Bǫ) + αǫP̃ (Dǫ) = xr,(25)
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where

Aǫ =
{

ω ∈ Ω : dP̃
dP

(ω) > aǫ

}

, Bǫ =
{

ω ∈ Ω : bǫ ≤
dP̃
dP

(ω) ≤ aǫ

}

, Dǫ =
{

ω ∈ Ω : dP̃
dP

(ω) < bǫ

}

,

and produces a CVaR level close to the lower bound:

CV aR(Xǫ) ≤ CV aR(X∗) + ǫ.

First, we choose aǫ = a∗, Aǫ = A∗, xǫ = x∗ − δ, where we define δ = λ
λ−P (A∗)ǫ. To find the remaining two

parameters bǫ and αǫ so that equations (24) and (25) are satisfies, we note

E[X∗] = xdP (A∗) + x∗P (B∗) = z∗,

Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr,

and conclude that it is equivalent to find a pair of bǫ and αǫ such that the following two equalities are satisfied:

−δ(P (B∗) − P (Dǫ)) + (αǫ − x∗)P (Dǫ) = γ,

−δ(P̃ (B∗) − P̃ (Dǫ)) + (αǫ − x∗)P̃ (Dǫ) = 0,

where we denote γ = z − z∗. If we can find a solution bǫ to the equation

(26)
P̃ (Dǫ)

P (Dǫ)
=

P̃ (B∗)
γ
δ

+ P (B∗)
,

then

αǫ = x∗ +

(

P̃ (B∗)

P̃ (Dǫ)
− 1

)

δ,

and we have the solutions for equations (24) and (25). It is not difficult to prove that the fraction P̃ (D)
P (D)

increases continuously from 0 to P̃ (B∗)
P (B∗) as b increases from 0 to a∗. Therefore, we can find a solution

31



bǫ ∈ (0, a∗) where (26) is satisfied. By definition (3),

CV aRλ(Xǫ) =
1

λ
inf
x∈R

(

E[(x − Xǫ)
+] − λx

)

≤
1

λ

(

E[(xǫ − Xǫ)
+] − λxǫ

)

=
1

λ
(xǫ − xd)P (Aǫ) − xǫ.

The difference

CV aRλ(Xǫ) − CV aR(X∗) ≤
1

λ
(xǫ − xd)P (Aǫ) − xǫ −

1

λ
(x∗ − xd)P (A∗) + x∗

=
1

λ
(x∗ − xd)(P (Aǫ) − P (A∗)) +

(

1 −
P (Aǫ)

λ

)

(x∗ − xǫ) = ǫ.

Under Assumption 2.1, the solution in Case 4 is almost surely unique, the result is proved. ⋄
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