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Abstract

We develop a model of strategic grade determination by universities dis-
tinguished by their distributions of student academic abilities. Universities
choose grading standards to maximize total wages of graduates. Job placement
and wages hinge on a firm’s productivity assessment given a student’s univer-
sity, grade and productivity signal. We identify conditions under which better
universities set lower grading standards, exploiting the fact that firms cannot
distinguish between “good” and “bad” “A”s. In contrast, a social planner sets
stricter standards at better universities. We show how increases in skilled jobs
drive grade inflation, and determine when grading standards fall faster at better
schools.
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1 Introduction

Universities award grades to measure the performance of students in courses. In turn,

important decisions by third parties are based in part on GPAs — firms tend to offer

higher wages to students with high GPAs, and graduate schools tend to admit high

GPA students1. In this paper, we study how universities choose grading standards

when they care about the decisions made by third parties based on GPAs. We char-

acterize how student body qualities at different schools interact with the depth of the

job market to affect equilibrium grading standards.

Our model reconciles three central empirical regularities describing grading over

the past fifty years: (1) GPAs are higher at better schools, (2) GPAs have risen

over time at all schools, and (3) grading standards have fallen faster over time at

better schools. It is manifest that better universities award more high grades. For

example, Rojstaczer (2003) finds that GPAs at private universities in 2006-2007 are

0.3 higher than at public universities. Table 1 reinforces these findings, presenting

the evolution of grades at selected universities between 1960 and 2000. This table

reveals that grades at better universities are uniformly higher. The table also high-

lights a uniform secular rise in GPAs over time. In addition, over the entire sample

period, GPAs at better universities increased significantly faster, although there is no

significant difference in grade inflation in different universities between 1980-2000.

We develop a model in which universities are distinguished by the distributions of

“academic abilities” of their students: the distribution of student academic abilities

at top schools conditionally stochastically dominates that at lesser schools. Firms

value both “academic ability” and social skills, which are complements in produc-

tion. There are two types of jobs, good and bad, which are distinguished by the

higher marginal product of skills in good jobs. Good jobs are in limited supply. Uni-

versities determine which students receive “A” grades by setting endogenously-chosen

1There is a large empirical grading standard literature; see Bar and Zussman (2010), Rose and
Betts (2004) and Bagues et al. (2008) for both the questions they study and their literature reviews.
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1960 1980 2000 1960 - 2000 1980-2000
Harvard U 2.7 3.05 3.41 0.71 0.36
Princeton U 2.83 3.13 3.36 0.53 0.23
Yale U 2.56 3.27 3.48 0.92 0.21
Columbia U 3.2 3.36 0.16
Stanford U 2.98 3.27 3.55 0.57 0.28
Northwestern U 3.02 3.35 0.33
U Chicago 2.5 3.26 0.76
MIT 2.47 3.27 3.26 0.79 -0.01
Dartmouth C 2.47 3.06 3.33 0.86 0.27
Duke U 2.41 3.02 3.36 0.95 0.34
Average grade inflation 0.7613 0.2411
Standard deviation 0.1531 0.1145

U Illinois 2.77 3.12 0.35
U Miami 2.7 3.05 0.35
Penn State U 2.86 2.99 13
U Wisconsin 2.51 2.89 3.13 0.62 0.24
U Texas 2.6 3 0.4
U Washington 2.31 2.97 3.12 0.81 0.15
UC Irvine 2.9 2.95 0.05
Lehigh U 2.6 2.97 0.37
Georgia Tech 2.78 2.97 0.19
George Washington U 3.03 3.25 0.22
Average grade inflation 0.5933 0.2563

GPA Data from GradeInflation.com. When year X was not available, the closest year was used; if there was no observation in ±5
years, the observation was treated as missing. The top list of schools is from the top list of US News National Universities rankings,
and the bottom list is from the bottom 50 and up of the same list for the sub-samples that had grade points in at least two time

periods. Grade inflation is calculated as difference in GPAs.

Table 1: Evolution of GPAs at selected universities.

cutoffs on academic ability. Firms learn student social skills via job interviews, and

forecast academic abilities using the information contained in the ability distribution

at a student’s university, the university’s grading standard and the student’s grade.

Firms then make job assignments, and wages are competitively determined.

Universities understand how firms determine job placement and wages, and set

grade standards to maximize the total expected wages of their graduates. Top uni-

versities would argue that their higher proportions of high grades simply reflect their

better student bodies; a common grading standard would inevitably lead to more

good grades at better schools. A central result of our analysis is that under weak
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conditions, top universities actually set softer grading standards: the marginal “A”

student at a top university is less able than the marginal “A” student at a lesser

university. The intuition for this result devolves from the basic observation that a

marginal student at a top school can free ride on the better upper tail of students be-

cause firms cannot distinguish “good A” students from “bad A” students. In contrast,

lesser schools must compete for better job assignments by raising the average ability

of students who receive “A” grades, setting excessively high grading standards. It is

the competition for good job assignments for graduates that generates this result—

while giving more “A” grades lowers the expected productivity and hence wages of

students who receive good job assignments, additional well-placed students more than

offset this wage effect in the eyes of university.

Importantly, a social planner who seeks to maximize total output in society would

choose the opposite ordering, setting more demanding grading standards at top schools

whenever there is heterogeneity among students in social skills. Were academic skill

the only source of heterogeneity, the social planner would set the same grading stan-

dard at each school. However, then the expected academic productivity of students

with “A”s at top schools is higher. Firms, which do not see the abilities of students,

would then “over-rate” marginal “A” students from top schools, assigning too many

with low social skills to good jobs. The social planner wants to equalize the ex-

pected productivity of the marginal “A” students who receive good job assignments,

and since the average social skill is less for students from top schools with good job

assignments, the social planner sets a higher grading standard for “A”s at top schools.

Finally, we identify a plausible driving force underlying grade inflation at uni-

versities: the secular increase over time in the measure of good jobs relative to the

measure of students, possibly reflecting the well-established shift toward skill-biased

technologies. There is extensive evidence that skill demands at jobs have increased

significantly, suggesting that there are now far more good jobs. We show that uni-

versities respond to an increase in good jobs by trying to place less able students at

good jobs. In particular, universities reduce cutoffs for “A” grades.

The upward trend in grades is perhaps less interesting than the inference prob-
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lems it creates for third parties. In and of itself, grade inflation might not increase

inefficiency in the economy. However, we provide conditions under which grade infla-

tion exacerbates differences in grading standards, further distorting hiring decisions.

That is, we provide conditions under which the cutoff for an “A” falls by more at top

schools. Intuitively, if there are very few good jobs, grade standards must be very

high, so that with a common bounded support on ability, ability differences between

the marginal “A” and average “A” student must be small at all schools. However,

when more students get “A”s, this difference grows, and top schools exploit this via

lowering their grading standards by more. We then provide conditions under which

this greater reduction in grading standards at top schools is associated with a greater

increase in the number of “A”s, i.e., for grade inflation at top schools to be higher.

We next review the literature. Section 2 presents the basic model of university

competition. Section 3 derives equilibrium and social planner outcomes when all stu-

dents have the same social skill. Section 4 extends the analysis to a setting in which

students differ in social skills. Section 5 summarizes our findings and discusses the

importance of our assumptions. An appendix contains all proofs.

The Literature. The paper closest to ours is probably a free-rider paper of Yang and

Yip (2003), which also predicts more good grades in better schools. However, this pa-

per predicts that all students receive the same wage, independently of grade: in their

equilibrium, grades convey no information about students. Moreover, in their model,

universities intentionally destroy value by explicitly lying about students’ abilities.

Chen et al. (2007) consider a setting in which the measure of good students at a

school is random, observed by schools, but not by firms. They model the intentional

loss of academic reliability where the grading standard is not fixed, so that otherwise

identical students who take identical actions might not receive the same grade. They

argue that this is why grading standards have varied over time. However, they are

silent as to why there should be significant unobservable variation in the quality

of large populations of students at a university from year-to-year, especially given

indirect, but broadly observable, measures of student quality such as mean SAT and

ACT scores, and measures of typical high school class rank.
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Dubey and Geanakoplos (2009) investigate how discreteness of grades influences

student effort: they find that when students only care about relative rank, coarser

grade structures can motivate students to study harder. MacLeod and Urquiola

(2009) explore how the structure of the schooling market affects tradeoffs between

studying effort, wealth and leisure.

A body of literature studies grading standards from the perspective of a cen-

tral planner. Costrell (1994) studies how different policies toward standards affect

student effort (he states that an egalitarian central planner is likely to pick lower

grading standards than a total earnings maximizer), and provides a review of the

grading literature; Betts (1998) provides an opposing argument.

2 The Competition Between Universities

The world contains two types of universities, u ∈ {H, I}. Universities are distin-

guished by the ability distributions of their student bodies. Abilities at a type

H school are distributed according to a density fH(θ), and the distribution at a

type I school is fI(θ). These densities are continuous and strictly positive on their

common support, [θ, θ̄]. We capture the notion that the student body at a type

H school is better with the concept of conditional first-order stochastic dominance:

fH(x|x > t) first order stochastically dominates fI(θ|θ > t) for all t ∈ [θ, θ̄), written

fH(θ) �C fI(θ). In particular, the associated cumulative distribution functions sat-

isfy FI(θ|θ > t) > FH(θ|θ > t), for all t ∈ (θ, θ̄) and θ ∈ (t, θ̄). To capture the fact

that any single university admits a negligible portion of the entire pool of students, we

assume there is a continuum of each type of university. The total measure of students

is normalized to one, and measure α ∈ (0, 1) of students attend type H universities.

A student is distinguished by his (a) university type, (b) academic ability, θ, and

(c) social skill, µ. Social skills, µ, are distributed according to the density g(·) and

distribution G(·) with nonnegative full interval support, and are distributed indepen-

dently of academic skills. We assume that the distribution of social skills is the same

at all schools. This assumption reflects the observation that universities largely filter
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students via high school academic performance and academic tests such as the SAT

or ACT. We make the standard increasing hazard rate assumption on g and fu.

Both academic ability and social skills contribute to the work productivity of a

student. Via job interviews, firms can observe µ, but they do not directly observe θ.

There are two types of jobs. There is a positive measure Γ of “good” jobs in which

the product of a student with ability (θ, µ) is Sθµ, and many “bad” jobs in which the

product is sθµ, where S > s > 0. Our qualitative findings largely extend to the class

of technologies in which a worker’s output is proportional to θαµ for some α > 0,

reflecting that we do not impose strong structure on the distributions of θ and µ.

Universities know the academic abilities of their students, but not their social

skills.2 Their problem is to assign a grade g ∈ {A,B} to each student.3 Universities

seek to maximize the expected sum of wages earned by graduates.

Firms make students competitive wage offers that earn firms zero expected profits

given their information. Firms do not observe student academic abilities. However,

firms know the university that each student attended and the distribution of academic

abilities at each school, and hence can extract information about academic abilities

from grades. We assume that universities adopt grading strategies that take the form

of a cutoff, so university u gives a student an “A” if and only if his academic ability θ

exceeds a cutoff θ̂u chosen by the university. The same equilibrium outcome would ob-

tain were the labels “A” and “B” reversed: we adopt the convention that an “A” grade

refers to the better subpopulation of students. In addition, since giving all students

“A” grades is equivalent to giving all students “B” grades, without loss of generality,

we assume that if it is optimal for a university to give all students the same grade,

then it gives all students “A” grades, as at Doonesbury’s fictional Walden University.

More generally, our model is sufficiently sparse that equilibria can exist in which

grading strategies do not take a cutoff form. Non-cutoff strategies can emerge in equi-

2Equivalently, universities could treasure academic integrity so that only θ affects grades.
3Lizzeri (1999) argues why universities are not interested in revealing too much information.

Dubey and Geanakoplos (2009) suggest a story for why a coarse signal structure might help student
motivation. For instance, many graduate programs formulate admission requirements in the form
of thresholds, and these thresholds are largely consistent among departments.
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librium simply because once firms form beliefs (which determine job assignments),

they are not affected by which set of student abilities receive “A”s. However, such

equilibria are not robust to natural refinements that pin down what universities do:

non-cutoff strategies cannot be part of an equilibrium if either (a) firms observe the

true ability of a small measure of students (and schools do not know which ones), from

which firms infer average productivities of “A” and “B” students, or (b) employment

continues for two periods, and firms learn a worker’s true ability after the first period,

and there is either complementary learning-by-doing or workers cannot be reassigned.

Under such scenarios, universities have strict incentives to ensure their most able stu-

dents receive “A”s, and hence that equilibrium grading strategies take cutoff forms.

We denote a student from a type u university with grade g as a ug student. The

zero profit condition for firms implies that a student who receives a good job receives

wage SE[θ|g, u, θ̂u]µ, while a student with a bad job earns wage sE[θ|g, u, θ̂u]µ.
4 The

expected ability of a ug student is Eug[θ] =
∫ θ̄

θ
I(grade is g)θfu(θ)dθ

∫ θ̄

θ
I(grade is g)fu(θ)dθ

.5 Notice that issu-

ing fewer “A”s raises the expected academic ability of both “A” and “B” students:

increasing the grading standard θ̂u increases both EuA[θ] and EuB[θ]. Also, were uni-

versities to set a common grading standard, then a type H university would have

more “A” students because fH(θ) �C fI(θ).

Firms assign a student from university u with grade g and social skills µ to a

good job if and only if the student’ expected productivity µEug[θ] exceeds a critical

endogenous equilibrium standard, K. That is, K denotes the lowest expected pro-

ductivity among students employed on good jobs, and K/E[θ|u, g, θ̂u] ≡ µ̂ug is the

minimum level of social skills required from a ug student for placement at a good job.

Each university is too small to affect the productivity standardK, but each university

internalizes how its grading standard θ̂u affects the hiring standard µ̂ug set by firms.

Given an equilibrium productivity standard K for a good job, a type u university

4Much of the literature (e.g., Yang and Yip (2003) and Coate and Loury (1993)), imposes the re-
striction that everyone at the same job earns the same wage, regardless of their expected productivity.

5If the denominator is 0, we set EuB [θ] = θ and EuA[θ] = θ̄ to preserve continuity.
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maximizes the total income of its student body by choosing θ̂u to maximize

πu = max
θ̂∈[θ,θ̄]

S

∫ +∞

µ̂uA

∫ θ̄

θ̂u

µθdFu(θ)dG(µ) + s

∫ µ̂uA

0

∫ θ̄

θ̂u

µθdFu(θ)dG(µ)

+S

∫ +∞

µ̂uB

∫ θ̂u

θ

µθdFu(θ)dG(µ) + s

∫ µ̂uB

0

∫ θ̂u

θ

µθdFu(θ)dG(µ)

s.t. µ̂uA

∫ θ̄

θ̂u
θdFu(θ)

∫ θ̄

θ̂u
dFu(θ)

= µ̂uB

∫ θ̂u

θ
θdFu(θ)

∫ θ̂u

θ
dFu(θ)

= K.

Subtracting the total productivity of all students of university u were they all em-

ployed on bad jobs (a constant that does not depend on the grading standard) from

πu, we can rewrite the university’s objective as

(S − s)

∫ +∞

µ̂uA

∫ θ̄

θ̂u

µθdFu(θ)dG(µ) + (S − s)

∫ +∞

µ̂uB

∫ θ̂u

θ

µθdFu(θ)dG(µ).

Dividing this result by S − s > 0 yields:

Πu = max
θ̂∈[θ,θ̄]

∫ +∞

µ̂uA

∫ θ̄

θ̂u

µθdFu(θ)dG(µ) +

∫ +∞

µ̂uB

∫ θ̂u

θ

µθdFu(θ)dG(µ).

Thus, a university maximizes the total wage bill of its student body by maximizing

the total product of all of its students who are employed at good jobs.

An immediate implication is that some “A” students from each university always

receive good jobs. A student only receives a good job if his expected productivity

exceeds the endogenous level K (associated with measure Γ of students receiving

good jobs). The common support assumptions on academic abilities and social skills

ensures that both universities have some of the most able students. By setting a

sufficiently high grading standard, a university can ensure that its “A” students have

productivities arbitrarily close to θ̄, and some of these students will also have high

social skills and hence receive good jobs.

2.1 Equilibrium

A symmetric pure strategy equilibrium is a collection of grading standards (θ̂∗H , θ̂
∗
I ),

social skill cutoffs, µ̂∗
ug, u ∈ {H, I}, g ∈ {A,B}, and minimal productivity standard,

K∗, such that:
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• θ̂∗u maximizes the total productivity of students at a type u ∈ {H, I} university

who receive good jobs given productivity standard K∗;

• Firms assign good jobs to maximize profit, µ̂∗
ugEug[θ|θ̂

∗
u] = K∗ if some, but not

all, type ug students receive good jobs, µEug[θ|θ̂
∗
u] ≥ K∗ if all receive good jobs

and µ̄Eug[θ|θ̂
∗
u] < K∗ if none do.

• K∗ “clears” the market: given θ̂∗H , θ̂
∗
I and µ̂∗

ug, the measure of students with

expected productivity of at least K∗ is Γ:

α
[

(1−G(µ̂∗
HA))

(

1− FH(θ̂
∗
H)

)

+ (1−G(µ̂∗
HB))FH(θ̂

∗
H)

]

+

+(1− α)
[

(1−G(µ̂∗
IA))

(

1− FI(θ̂
∗
I )
)

+ (1−G(µ̂∗
IB))FI(θ̂

∗
I )
]

= Γ. (2.1)

The next proposition establishes the existence of a symmetric equilibrium (i.e.,

each type u school sets the same grading standard). Optimization by schools further

pins down the product of students at good jobs—each university will choose a grading

standard that maximizes the productivity of students who receive good jobs.

Proposition 1 A pure strategy symmetric equilibrium exists. There is a unique equi-

librium productivity standard K for a good job, and the expected product of students

from school type u who receive good jobs in equilibrium is unique.

Uniqueness of the grading standard is not guaranteed absent assumptions on the

measure of good jobs. For example, if there were so many good jobs that every student

from a type H university receives one, then a type H university could achieve this

either by giving all students “A”s, or by giving a very few students “A”s, so that the

expected productivity of its “B” students was high enough that they receive good jobs.

3 No Heterogeneity in Social Skills

We begin by analyzing the special case in which all students have the same social

skills, µ = 1. To solve for equilibrium, first notice that it is never an equilibrium for

some, but not all, students with grade g from university u to get good jobs. Were this
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so, a university could marginally increase its grading standard, raising the average

ability of both its “A” and “B” students. In turn, the expected productivity of all

students with grade g is raised, so that all now receive good jobs, increasing total

productivity of u alumni at good jobs. A direct implication is that in equilibrium with

Γ ∈ (0, 1), either only “A” students receive good jobs, or type H universities place all

students on good jobs, whereas type I universities only place “A” students. Moreover,

for an equilibrium to exist in which “B” students receive good jobs, Γ must exceed

the measure α of students at H universities. Therefore, as long as Γ ≤ α, only “A”

students receive good jobs in equilibrium when there is no variation in social skills.

So consider an equilibrium in which only “A” students receive good jobs. Were,

say, HA students to have higher expected academic productivities than IA students,

then a type H university could lower its standard for an “A” slightly, and more of

its students would then receive good jobs. Therefore, in equilibrium, the expected

productivity of “A” students at the two types of schools must be equal. Combined

with the capacity constraint, this implies that equilibrium is fully described by:

∫ θ̄

θ̂∗
H

θfH(θ)dθ
∫ θ̄

θ̂∗
H

fH(θ)dθ
=

∫ θ̄

θ̂∗
I

θfI(θ)dθ
∫ θ̄

θ̂∗
I

fI(θ)dθ
(3.1)

α

∫ θ̄

θ̂∗
H

fH(θ)dθ + (1− α)

∫ θ̄

θ̂∗
I

fI(θ)dθ = Γ. (3.2)

The next result establishes that under a weak sufficient condition, type H universities

set slacker grading standards than type I universities.

Proposition 2 Suppose that Γ is small enough that in equilibrium some H students

do not receive good jobs. Then, in equilibrium, θ̂∗H < θ̂∗I .

Proposition 2 implies that there is a positive mass of students at type H uni-

versities who receive “A”s, but whose ability is low enough that they would receive

“B”s at a type I university. This asymmetry simply says that better universities have

incentives to dilute the mass of good “A” students with students who would receive

“B”s elsewhere: even after dilution, the better upper tail of good students at type H
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universities makes an average “A” student at a type H university as good as a typical

“A” student from a type I university.

The result that θ̂∗H < θ̂∗I holds unless every student at a type H university is as-

signed to a good job. In particular, Γ ≤ α is far from necessary for this result, as in

equilibrium a positive measure of students from type I universities receive “A” grades.

Social Planner. A social planner can set and enforce grading standards at schools.

She seeks to maximize total output in the economy, setting grading standards to solve

max
θ̂H ,θ̂I

α

∫ θ̄

θ̂H

θdFH(θ) + (1− α)

∫ θ̄

θ̂I

θdFI(θ) (3.3)

s.t. α

∫ θ̄

θ̂H

dFH(θ) + (1− α)

∫ θ̄

θ̂I

dFI(θ) = Γ. (3.4)

Proposition 3 The social planner sets a common grading standard, θ̂PH = θ̂PI = θ̂P .

When there is no heterogeneity in social skills, no inefficiencies are created by the

fact that with the same grading standard, the expected productivity of “A” students

is higher at a type H university: the “right” students receive good job assignments.

Corollary 1 Suppose Γ is small enough that not all H students receive good jobs.

Then θ̂∗H < θ̂P < θ̂∗I : in equilibrium, too many H students and too few I students

receive good jobs.

The corollary follows since the good jobs capacity is exhausted in both the social

optimum and equilibrium, so both θ̂∗H < θ̂∗I ≤ θ̂P and θ̂P ≤ θ̂∗H < θ̂∗I cannot occur.

Figure 1 conveys the intuition, depicting equilibrium and social planner outcomes.

CFOSD implies that the solid line of equal expected productivities lies below the 45◦

line associated with equal grading standards; Proposition 2 says that the intersection

of the dashed capacity constraint line and the solid equal productivity line is below the

equal grading standards line; and the capacity constraint must be negatively sloped.

Strategic considerations not only induce better universities to set slacker grading stan-

dards than is socially optimal, but they also force lesser universities to set stricter
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Figure 1: Comparison of Equilibrium and Social Planner outcomes.

standards in order to compete. Still, type I universities prefer this outcome to one

in which no grades are disclosed, in which case no I alumni would receive good jobs.

We next characterize how the primitives of our economy affect outcomes.

More type H universities. An increase in the fraction α of top schools flattens

the dashed capacity constraint line because changes in grading standards at type H

universities now have bigger impacts on the measure of students with As. There are

conflicting effects: increasing α shifts the composition of schools from those with high

standards to those with low standards; but increasing α increases the supply of able

students. To determine whether grading standards improve, observe that a marginal

increase in α is a (not necessarily shape preserving) counterclockwise rotation of the

capacity line, and one point of the line remains the same. Whenever this point is

above the 45◦ line, the intersection with the (blue) equal productivity line shifts up

and grading standards rise. Moreover, when α = 1
2
, the rotation point is above 45◦

line, since 1 − FH(t) > 1 − FI(t). Thus, there exists a ᾱ < 1
2
such that for α > ᾱ,

increasing the fraction of type H schools raises grading standards. That is, the supply

effect dominates the composition effect when there are enough top universities.
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Improvements in student body composition. Improving the distribution of

student abilities at a type I university causes type H universities to set higher stan-

dards for an “A”, but has ambiguous effects on I’s grading standard. To see this, let

Eu[x] =
∫ θ̄

x
θdFu

∫ θ̄

x
dFu

, and mu(x) =
∫ θ̄

x
dFu. Consider an improvement in I’s distribution

that corresponds to a weighted average of the ability distributions,

Fλ(x) = P (θ < x|λ, I) = λFH(x) + (1− λ)FI(x). (3.5)

Then E[θ|λ, I, θ > x] = λEH [x]+(1−λ)EI [x], and
∫ θ̄

x
dFλ = λmH(x)+(1−λ)mI(x).

Let (θ∗H(λ), θ
∗
I (λ)) denote the equilibrium pair of grading standards when the ability

distribution at a type I university is Fλ for λ ∈ [0, 1], where (θ∗H , θ
∗
I ) = (θ∗H(0), θ

∗
I (0)).

Differentiating the equilibrium conditions with respect to λ at λ = 0 yields






, A > 0
︷ ︸︸ ︷

E ′
H [θ

∗
H ] θ

∗
H(0)

′ −

, B > 0
︷ ︸︸ ︷

E ′
I [θ

∗
I )] θ∗I (0)

′ =

, C > 0
︷ ︸︸ ︷

EH [θ
∗
I ]− EI [θ

∗
I ]

fH(θH)
︸ ︷︷ ︸

, D > 0

θ∗H(0)
′ + fI(θI)

︸ ︷︷ ︸

, E > 0

θ∗I (0)
′ = mH(θ

∗
I )−mI(θ

∗
I )

︸ ︷︷ ︸

, F > 0

⇒

θ∗H(0)
′ =

CE + BF

AE + BD
> 0 θ∗I (0)

′ =
AF − CD

AE + BD
≶ 0.

Because the distribution of abilities at type H universities dominates that at type I

universities, the parameters C and F are positive. Intuitively, improving the distri-

bution at type I schools creates added “competition” for type H schools forcing them

to raise standards. The ambiguous impact on type I schools reflects that (a) type

I schools can lower grading standards and still have a higher average quality of “A”

students, but (b) the better distribution also increases competition for type I schools,

raising the average ability required for a good job placement. Analogously, one can

show that a deterioration in the distribution of abilities at type H universities eases

grading standards at type I universities, but has ambiguous effects at type H schools.

Good Jobs, Grading Standards and Grade Inflation. We next characterize how

increases in the number of good jobs affect equilibrium outcomes. It follows directly

that increasing Γ causes all universities to lower grading standards: this reduction

in the average quality of “A” students implies there is grade inflation. In particular,

increasing Γ shifts the capacity line outward away from the top right corner, shifting

13



equilibrium outcomes away along the “equal expectations about “A” students” locus

line. The social planner’s choice shifts away along the 45◦ line, resulting in an equal

decrease in grading standards and an increase in “A” grades at both universities.

We are especially interested in identifying when equilibrium grading standards

fall by more at top schools, and when this translates into higher grade inflation at

top schools. Define Qu(t) = E(θ|u, θ > t), where Q(θ̄) = θ̄ preserves continuity. We

characterize the relative impact of Γ on grading standards via the implicit function

θ̂H(θ̂I) defined by QH(θ̂H) = QI(θ̂I) = K, by varying K (K falls with Γ): grading

standards fall faster at type H schools than type I schools if and only if θ̂′H(θ̂I) > 1.

Proposition 4 Suppose there are sufficiently few good jobs, Γ. Then a slight increase

in Γ causes grading standards to fall faster at type H schools than type I schools.

One would like to extend this result to settings where the number of good jobs is

larger, maintaining only the premise that Γ is not so large that all H students receive

good jobs. To do this, we consider a family of ability densities with linear right tails,

where the linear right tail is “long” enough that it describes the abilities of A students:

fu(θ|au, bu) = au + buθ, θ ∈ [t, 1] for some t, (3.6)

where, to ease presentation, we assume a [0, 1] support (extensions to a support [θ, θ̄]

are routine). Positivity of the density implies that au + bu > 0 and au + but > 0, and

fH(·) �C fI(·) implies that aHbI < aIbH . We also need that bH sufficiently exceeds

bI . When densities are linear on their full support, bH > bI suffices.

Proposition 5 Consider densities with linear right tails, where bH sufficiently ex-

ceeds bI , so that aHbI(1+ θ̂I) < aIbH(1+ θ̂H). Then if θ̂u > t, an increase in Γ causes

grading standards to fall faster at type H universities than type I universities.

Corollary 2 If fH(θ̂H) ≥ fI(θ̂I) and grading standards fall faster in H, then the

number of “A”s increases faster at type H universities than type I universities.

14



For example, if fH(t)/fI(t) increases in t, then there exists a t̃ such that fH(t
′) >

fI(t
′), ∀t′ > t̃, in which case Corollary 2 follows if and only if there are sufficiently

few good jobs, Γ.

In sum, when students only differ in academic ability, universities with better stu-

dent bodies press some students from lesser universities out of good job assignments

by setting slacker grading standards than is socially optimal. Further, under plausible

scenarios, more good jobs causes greater grade inflation at top universities. We now

explore how heterogeneity in social skills affects these conclusions.

4 Heterogeneous Social Skills

Suppose now that students differ in their social skills. For heterogeneity in social

skills to alter outcomes, there must be a sufficient difference between the highest and

lowest social skill that not all “A” students receive good job assignments. If not,

then our previous analysis characterizes outcomes. We maintain the assumption that

the dispersion is not sufficient for “B” students to receive good job assignments in

equilibrium. Thus, the support [µ, µ̄] of the distribution of social skills G(·) is neither

very small, nor very large; i.e., heterogeneity in social skills is “intermediate” so that

K∗ > max{µEu[θ|θ > θ̂∗u], µ̄E[θ|θ < θ̂∗u]}.

Proposition 6 Suppose µg(µ) is increasing in µ and heterogeneity in social skills

is intermediate. Then, in the unique equilibrium, type I schools set higher grading

standards than type H schools. Further, µ̂∗
H ≤ µ̂∗

I , where the inequality is strict as

long as some A students do not receive good jobs.

The result says that as long as the density over social skills does not fall quickly,

g′(µ) > −g(µ)
µ
, then top universities set slacker grading standards. When Γ is small

enough that in equilibrium not all students at a school receive “A”s, and the dis-

persion in social skills is sufficient that an “A” student with the lowest social skill is

not offered a good job, then equilibrium is characterized by interior solutions, and a

15



university’s best response is characterized by the intersection of

θ̂u = K

g(µ̂u)
1−G(µ̂u)

µ̂u

E[µ|µ > µ̂u] +
g(µ̂u)

1−G(µ̂u)
µ̂2
u

≡ R(µ̂u)

µ̂uEu[θ|θ > θ̂u] = K ⇔ µ̂uQ(θ̂u) = K.

The bottom efficient job assignment equation is decreasing in (µ̂, θ̂) space (see Figure

2). The CFOSD assumption implies that EI [θ|θ > θ̂] < EH [θ|θ > θ̂], for every θ̂.

Therefore, µ̂∗
HA < µ̂∗

IA. Since µg(µ) is increasing in µ, the right-hand side of the top

equation is increasing in µ, which combined with µ̂∗
HA < µ̂∗

IA, implies θ̂∗H < θ̂∗I .
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Figure 2: Equilibrium and Social Planner outcomes. µ is uniformly distributed on
[0, 1], fH(θ) = 2θ, fI(θ) = 2− 2θ, [θ, θ̄] = [0, 1].

Corollary 3 In any interior equilibrium, E[θ|H, θ > θ̂∗H ] > E[θ|I, θ > θ̂∗I ].

The corollary follows directly from optimal job assignment, µ̂∗
HAE[θ|H, θ > θ̂∗H ] =

µ̂∗
IAE[θ|I, θ > θ̂∗I ]; and Proposition 6, which states that µ̂∗

HA < µ̂∗
IA. Corollary 3 says

that otherwise identical students from H and from I receive different wages at good

jobs: in particular, students from lesser universities receive lower wages.

We now derive the qualitative impact of intermediate levels of heterogeneity in

social skills on the social planner’s grading standards.
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Proposition 7 Suppose heterogeneity in student social skills is intermediate, so that

not all “A” students receive good jobs, and no “B” students receive good jobs. Then

the social planner sets θ̂PH > θ̂PI and µ̂P
HA < µ̂P

IA.

The social planner sets µ̂HAE[θ|θ > θ̂H ] = µ̂IAE[θ|θ > θ̂I ] and E[µ|µ > µ̂HA]θ̂H =

E[µ|µ > µ̂IA]θ̂I . The first equality confirms that a social planner sets the same stan-

dards on the social skills of students assigned to good jobs as competitive firms: each

marginal student has the same expected productivity given his social skills and the

information contained in an “A” grade from his university. As a result, even though

the distributions of social skills at universities are the same, the average social skill

of “A” students from a type H university who receive good job assignments is less.

The second equality says that the social planner sets grading standards to equate

the expected productivities of the marginal “A” student at each university. Then,

because the average social skill of students from a type H university with good jobs is

less, a social planner sets a more demanding grading standard at type H universities.

Heterogeneity across universities in student body compositions leads to worse

equilibrium outcomes than were there a common ability distribution at schools. One

might conjecture that this heterogeneity also hinders the social planner because it

causes firms to distort hiring decisions toward students from better universities. This

conjecture is false: homogeneity harms a planner’s ability to distinguish better pop-

ulations of students. To see this, note that with heterogeneous distributions, the

social planner could set common grading and social skill cutoffs; however, the planner

chooses not to. It follows that homogenizing the university pool is suboptimal.

In sum, as long as there is not so much heterogeneity in social skills that some “B”

students receive good jobs, then under mild conditions, better universities set lower

grading standards, even though a social planner would make the opposite choice.

These findings extend when some “B” students with exceptional skills also receive

good jobs, as long as the distribution of social skills is such that “A” students dominate

decision making. We believe that this is the relevant real world scenario. However,

if, for example, g(µ) is sufficiently flat with sufficient dispersion, then type H schools

may weigh the job prospects of “B” students by enough that they set higher grading
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standards, in order to raise the fraction of “B” students that receive good jobs.

5 Conclusion

The central message of this paper is that competition for good job assignments for

graduates causes better universities to set lower standards for “A”s, because their

marginal “A” students can ride on the coat tails of the better average qualities of “A”

students. We show that a social planner sets the opposite ordering on grading stan-

dards. We also show that increases in the number of good jobs drives down standards

for “A”s, and that under plausible scenarios, standards fall more at better schools.

Although our setting features just two types of universities, none of our analysis

hinges on this modeling choice. To see that our results extend as long as univer-

sity types can be CFOSD-ordered by their distributions over academic abilities, note

that additional types enter via the equilibrium standard for a good job assignment,

and our analysis simply establishes that better schools set lower grading standards.

In particular, our analysis extends when there is a continuum of different university

types. So, too, our analysis does not hinge on our common support assumption, as

long as some students at a lesser schools get good jobs.

One feature that we do not integrate is to our model is effort, and how grading

standards affect student effort, where effort both affects academic performance and

on-the-job productivity. In such a setting, universities must account for how their

grading standards affect effort choices, and equilibrium job assignment. Lower stan-

dards for “A” grades may induce students to exert less effort (especially if the density

of ability for the marginal student is low), and universities will internalize this effect.

One can clearly provide conditions under which endogenizing effort does not reverse

the conclusion that better universities set lower grading standards. More generally,

a thorough analysis of effort and grading is an interesting topic for future research.
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6 Appendix

Proof of Proposition 1. Substitute the market-clearing conditions into the maxi-

mized objectives of the universities. Each university maximizes a continuous function

on the convex set [θ, θ̄]. Therefore, by Berge’s maximum theorem, there is an upper

hemicontinuous best-response relation θ∗u(K). Labor-market clearing implies that

K∗(θ∗H , θ
∗
I ) is a continuous function of its arguments, since the densities are positive

on their support. Substituting the best responses of the two types of universities into

the market-clearing condition yields a upper hemicontinuous correspondence K∗(K),

defined on [θµ, θ̄µ̄] to itself, which has a fixed point by Kakutani’s theorem.

Now suppose there were multiple equilibrium standards, K1, K2, for good job as-

signments, with K1 > K2. Then, choosing the same grading standard facing K2,

each university can place more students at good jobs. But then the labor markets

cannot clear for both K1 and K2. Further, facing a single equilibrium standard K,

the measure of students from type u university is pinned down by optimization—each

university chooses a grading standard that maximizes the expected product of those

receiving good jobs. �

Proof of Proposition 2. Suppose only students with “A” grades receive good

jobs. Equilibrium requires EHA[θ] = EIA[θ]. Define QU(x) =
∫ θ̄

x
tfU (t)dt

∫ θ̄

x
fU (t)dt

for x ∈ [θ, θ̄),

with Q(θ̄) = θ̄, to be the expected productivity of “A” students given any standard

x; QU(x) is trivially strictly increasing in x. By CFOSD, QH(x) > QI(x) for all

x ∈ [θ, θ̄), so the value y defined by QH(y) = QI(x) is less than x. �

Proof of Proposition 3. Because “A” students are hired before “B” students, the

social planner gives “A” to all students who, in her opinion, should be employed

on a good job, and the labor market assigns good jobs only to “A” students. The

first-order conditions to the social planner’s problem are:

−αθ̂HfH(θ̂H) + αλfH(θ̂H) = 0

−(1− α)θ̂IfI(θ̂I) + (1− α)λfI(θ̂I) = 0.

By the full support assumption, the densities are positive, so the first-order conditions

simplify to θ̂PH = λ and θ̂PI = λ. �
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Proof of Proposition 4. Observe that Q−1
H (θ̄) = Q−1

I (θ̄) = θ̄, and CFOSD im-

plies that Q−1
H (θ̄ − ε) > Q−1

I (θ̄ − ε) for any ε positive, but sufficiently small. Thus,

Q′
H(θ̄) < Q′

I(θ̄). By the implicit function theorem, θ̂′H(θ̂I | θ̂I = θ̄) =
Q′

I(θ̄)

Q′
H
(θ̄)

> 1.

Continuity of θ̂′H(θ̂I) ensures that θ̂′H(θ̂I) > 1 over some non-degenerate interval,

[θ̃I , θ̄). The result follows. �

Proof of Proposition 5. By Proposition 4, there is an interval [θ̃I , 1] where θ̂
′
H(θ̂I)

is at least 1, so that θ̂′H(θ̂I) = 1 when θ̂I = θ̃I . Thus, for some θ̂H = θ̂H(θ̃I) and

θ̂I = θ̃I , QH(θ̂H) = QI(θ̂I) and Q′
H(θ̂H) = Q′

I(θ̂I). The second derivative of θ̂H(θ̂I) is

∂2θ̂H

∂θ̂2I
=

Q′′
I (θ̂I)Q

′
H(θ̂H)−Q′

I(θ̂I)Q
′′
H(θ̂H)

∂̂θH
∂̂θI

(Q′
H(θ̂H))

2
=

Q′′
I (θ̂I)(Q

′
H(θ̂H))

2 −Q′′
H(θ̂H)(Q

′
I(θ̂I))

2

(Q′
H(θ̂H))

3
.

Thus, Q′
H(θ̂H) = Q′

I(θ̂I), θ̂H(θ̂I) is concave if Q′′
I (θ̂I) < Q′′

H(θ̂H). We now solve for

the shapes of derivatives of Q(·|·) when densities have linear right tails:

Q(t|a, b) =
2

1− t

a
2
(1− t2) + b

3
(1− t3)

b(1 + t) + 2a
,

Q′(t|a, b) =
2(a+ bt)(3a+ 2b+ bt)

3(2a+ b+ bt)2
=

2

3

(

1−
(a+ b)2

(2a+ b+ bt)2

)

,

Q′′(t|a, b) =
4b(a+ b)2

3(2a+ b+ bt)3
.

Observe that Q′(θ̂H |bH) = Q′(θ̂I |bI) implies aH+bH
2aH+bH+bHθH

= aI+bI
2aI+bI+bIθI

, which in turn

combined with aHbI(1 + θ̂I) < aIbH(1 + θ̂H) implies bH
bH(1+θ̂H)+2aH

> bI
bI(1+θ̂I)+2aH

.

Multiply both sides of this inequality of derivatives by aH+bH
bH(1+θ̂H)+2aH

and bI+aI
bI(1+θ̂I)+2aI

,

respectively, and multiply by 4
3
:

4bH(aH + bH)
2

3(2aH + bH + bH θ̂H)3
︸ ︷︷ ︸

Q′′(θ̂H |aH ,bH)

>
4bI(aI + bI)

2

3(2aI + bI + bI θ̂I)3
︸ ︷︷ ︸

Q′′(θ̂I |aI ,bI)

.

Therefore, θH(θI) is concave at θ̃. Since
∂θ̂H
∂θI

> 1 for every θ̂I > θ̃I , concavity of θH(θI)

at θ̃ contradicts θ′H(θ̃I) = 1. �

Proof of Corollary 2. −fu(θu)dθ̂u is the increase in “A”s at university u respond-

ing to dΓ. As increasing Γ causes grading standards to fall and dθ̂H
dθ̂I

> 1, the result

follows. �
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Proof of Proposition 6. University u solves:

max
θ̂u,µ̂u

∫ µ̄

µ̂u

∫ θ̄

θ̂u

θµdFu(θ)dG(µ), (6.1)

s.t. µ̂uEu[θ|θ > θ̂u] = K. (6.2)

The associated first-order conditions for interior solution are:

−g(µ̂u)µ̂u

∫ θ̄

θ̂u

θdFu(θ) + λEu[θ|θ > θ̂u] = 0,

−fu(θ̂u)θ̂

∫ µ̄

µ̂u

µdG(µ) + λµ̂u

fu(θ̂u)

1− Fu(θ̂u)

(

Eu[θ|θ > θ̂u]− θ̂u

)

= 0.

The densities are positive everywhere. Integrating and rearranging terms yields

E[µ|µ > µ̂u]θ̂u =
g(µ̂u)

1−G(µ̂u)
µ̂2
u

(
K

µ̂u

− θ̂u

)

.

Solve for θ̂u:

θ̂u =
K g(µ̂u)

1−G(µ̂u)
µ̂u

E[µ|µ > µ̂u] +
g(µ̂u)

1−G(µ̂u)
µ̂2
u

≡ R(µ̂u). (6.3)

R(·) is an increasing function since g(µ) + µg′(µ) is positive for all µ in the support:

sign
∂R(x)

∂x
= sign

{∫ µ̄

x

µ
g(µ)

g(x)
dµ+ g′(x)x

∫ µ̄

x

µ
g(µ)

(g(x))2
dµ

}

= sign {(xg(x))′} .

Equilibrium is governed by equations (6.2) and (6.3). The latter is a decreasing

curve in (µ̂, θ̂) space (see Figure 2) so there is a unique equilibrium described by their

intersections. If the optimal solution is on the boundary with µ̂ = µ, the optimality

condition becomes R(µ) ≥ θ̂; if it is at θ̂ = θ, the optimality condition becomes

R(µ̂) ≤ θ.

The CFOSD assumption implies that EI [θ|θ > θ̂] < EH [θ|θ > θ̂], for every θ̂ < θ̄.

Hence, the efficient job assignment equation (6.2) for a type H school is everywhere

to the left of that for a type I school; and since R(µ̂) increases in µ̂, it intersects

the job assignment equation for H below that for I, so that µ̂∗
HA ≤ µ̂∗

IA. Equality

only occurs if the intersections occur at µ̂ = µ, i.e., all “A” students get good jobs.

Further, since R(µ̂) is increasing, µ̂∗
HA < µ̂∗

IA implies θ̂∗H < θ̂∗I . See Figure 2. �
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Proof of Proposition 7. The social planner chooses grading standards to maximize

expected output subject to the constraint that job placement decisions are based on

student social skills and the information contained in grades:

max
θ̂H ,θ̂I ,µ̂H ,µ̂I

α

∫ µ̄

µ̂HA

∫ θ̄

θ̂H

(µθ) dFH(θ)dG(µ) + (1− α)

∫ µ̄

µ̂IA

∫ θ̄

θ̂I

(µθ) dFI(θ)dG(µ)

s.t. α

∫ µ̄

µ̂HA

∫ θ̄

θ̂H

dFH(θ)dG(µ) + (1− α)

∫ µ̄

µ̂IA

∫ θ̄

θ̂I

dFI(θ)dG(µ) = Γ.

The first-order conditions (assuming an interior solution) for a type u school are:

αg(µ̂uA)µ̂uA

∫ θ̄

θ̂u

θdFu = αg(µ̂uA)λ

∫ θ̄

θ̂u

dFu,

α

(∫ 1

µ̂uA

µdG

)

θ̂ufuθ̂u = αλ

(∫ 1

µ̂uA

dG

)

fu(θ̂u).

The densities and α cancel on both sides. After canceling and isolating λ on the

right-hand side, the equations for both types of universities become

µ̂uEu[θ|θ > θ̂u] = λ, (6.4)

E[µ|µ > µ̂u]θ̂u = λ. (6.5)

Optimality condition, equation (6.5), is the same for both university types. If the opti-

mal solution is on the boundary, µ̂u = µ, the condition is θ̂uE[µ] ≥ λ; if it is at θ̂u = θ,

the condition becomes θE[µ|µ < µ̂u] ≤ λ. Denote the implicit function for θ̂u from

equation (6.4) by Ru(µ̂) and that from equation (6.5) by Q(µ̂). Their derivatives are

R′
u(x) = −

λ

x2

>1
︷ ︸︸ ︷

1

(Eu[θ|θ > t])′
t=λ

x

, Q′(x) = −
λ

(E[µ|µ > x])2

<1
︷ ︸︸ ︷

(E[µ|µ > x])′x .

Because both Fu(·) and G(·) feature increasing hazards, the derivatives of both ex-

pectations are less than 1 (Bagnoli and Bergstrom (2005)). As E[µ|µ > x] > x for all

x < µ̄, we have 0 > Q′(x) > R′
u(x). By CFOSD, the efficient job assignment equa-

tion (6.4) for a type H school is everywhere to the left of that for a type I school.

Therefore, the intersection of equations (6.4) and (6.5) in (µ̂, θ̂) space that determine

(θ̂H , µ̂HA) occur above and to the left of the intersection that determines (θ̂I , µ̂IA).

Thus, θ̂PH ≥ θ̂PI and µ̂P
HA ≤ µ̂P

IA, and µ̂P
HA = µ̂P

IA occurs only when lower boundary on

support of µ binds for both types of universities, so that all “A” students get good jobs.
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