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Abstract

Generalized autoregressive heteroskedasticity (GARCH) models are widely

used to reproduce stylized facts of financial time series and today play an es-

sential role in risk management and volatility forecasting. But despite exten-

sive research, problems are still encountered during parameter estimation in

the presence of outliers. Here we show how this limitation can be overcome

by applying the robust weighted trimmed likelihood estimator (WTLE) to the

standard GARCH model. We suggest a fast implementation and explain how

the additional robust parameter can be automatically estimated. We compare

our approach with other recently introduced robust GARCH estimators and

show through the results of an extensive simulation study that the proposed

estimator provides robust and reliable estimates with a small computation cost.

Moreover, the proposed fully automatic method for selecting the trimming pa-

rameter obviates the tedious fine tuning process required by other models to

obtain a “robust” parameter, which may be appreciated by practitioners.
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1. Introduction

Because time-variation in the volatility is a characteristic feature of financial

time series, accurate modeling of this feature is critical in many financial ap-

plications and especially so in risk management. Since the introduction of the

autoregressive conditional heteroskedasticity (ARCH) model by Engle (1982)

and its generalization, known as the GARCH model by Bollerslev (1986), there

has been a large amount of theoretical and applied research work concerning

these models. The success of GARCH models stems mainly from their ability to

reproduce the typical stylized facts of financial time series, particularly, volatil-

ity clustering, the fat-tail distribution of financial returns, and the long-term

memory effect. Additionally, GARCH processes can be modeled with a wide

range of innovation distributions and can be tailored to specific problems. In-

deed, Bollerslev (2008) compiled a glossary of more than 150 GARCH models.

GARCH modeling is now common in practice, but this is despite the fact esti-

mation of its parameters involves solving a rather difficult constrained nonlinear

optimization problem. Moreover, it is common for different software implemen-

tations to leave one with a set of conflicting estimates (Brooks et al., 2001).

And besides the difficulty in parameter estimation, GARCH models remain,

as any other model, approximations that cannot be expected to encompass all

of the complex dynamics of financial markets: Market conditions are strongly

affected by factors such as rumor, news, speculation, policy changes, and even

data recording errors, which can result in abnormal points, or outliers, that are

beyond the scope of the model. Moreover, the maximum likelihood estimator

(MLE) of GARCH models is very sensitive to outliers (Mendes, 2000; Hotta and

Tsay, 1998).

The weighted trimmed likelihood estimator (WTLE), introduced by Hadi

and Luceño (1997) and Vandev and Neykov (1998), is a generalization of the

trimmed likelihood estimator (TLE) of Bednarski and Clarke (1993). Since its

introduction, the WTLE has been applied in many different fields: Markatou

(2000) used the WTLE for mixture models, Müller and Neykov (2003) stud-
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ied related estimators in generalized linear models, and Neykov et al. (2007)

employed the WTLE for robust parameter estimation in a finite mixture of dis-

tributions. Bednarski and Clarke (1993) discuss the Fisher consistency, compact

differentiability, and asymptotic normality of the TLE. Cizek (2008) explores

the consistency and asymptotic properties of the WTLE. Also, see (Vandev and

Neykov, 1998; Müller and Neykov, 2003; Dimova and Neykov, 2004) for the

derivation of the breakdown point of the WTLE for various models.

Different methods have been introduced for robust estimation of GARCH

models. In this work, we compare our estimator to two recent ones that have

been shown to outperform previous approaches. These are the recursive robust

evaluation of parameters based on outlier criterion statistics of Charles and

Darne (2005) and the robust GARCH model of Muler and Yohai (2008) based

on a generalized class of M-estimators.

The literature usually distinguishes between two families of outliers: additive

and innovative outliers. The former are characterized by single abnormal ob-

servations, whereas the latter have effects that propagate all along the process.

Here, we consider additive outliers in the conditional volatility of the simple

GARCH(1,1) model introduced by Bollerslev (1986). Note, however, that the

proposed method can be applied to other GARCH models for which maximum

likelihood estimation is possible.

The remainder of this paper is organized as follows. Section 2 recalls the

definition of the GARCH model and its MLE. Further, the TLE is presented,

followed by an introduction to the proposed GARCH WTLE. In section 3, we

describe how the trimming parameter can be estimated. And section 4 presents

the results of a Monte-Carlo simulation that compares the GARCH WTLE with

recently introduced robust GARCH estimators. Conclusions and ideas for future

work are offered in the last section.

2. WTL GARCH(p,q)

For a stationary time series x1, x2, . . . , xt, . . . , xN with mean process xt =

E(xt|Ωt−1) + εt and innovation terms εt, the GARCH model introduced by
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Bollerslev (1986) can be defined as

εt = ztσt ,

zt ∼ Dφ(0, 1) ,

and

σ2
t = ω +

p
∑

i=1

αiε
2
t−i +

q
∑

j=1

βjσ
2
t−j . (1)

Here, Ωt−1 is the information known at time t − 1 where t ∈ Z. Dφ is the

distribution of the innovations z with mean zero, variance one, and additional

distributional parameters φ ∈ ΦI ⊂ RI , where I ∈ N. For example, the ad-

ditional distributional parameter of innovations distributed according to Stu-

dent’s t distribution would be the degree of freedom ν. p ∈ N and q ∈ N∗ are

the order of the GARCH and ARCH terms respectively. Sufficient conditions

for the conditional variance σt to be possitive are ω > 0, αi ≥ 0, βi ≥ 0 and
∑p

i αi +
∑q

i βi < 1 for i = 1, . . . , p and j = 1, . . . , q. When all βi = 0, we have

the ARCH model of Engle (1982).

Given the model in (1) and an observed univariate return series, the MLE

can be used to fit the set of parameters θ = {ω, α, β, φ} ∈ ΘJ ⊂ RJ , where

J = 1 + p + q + I and θ includes the parameters of the GARCH model and of

the innovation distribution. The estimates of the MLE are defined by

θ̂MLE := arg max
θ∈ΘJ

L(θ) , (2)

where the log-likelihood function is

L(θ) = ln
N
∏

t=1

D(εt;σt, θ) . (3)

In particular, expression (3) reduces to the so-called quasi-maximum likelihood

estimator (QML) when the innovations are assumed to be normally distributed,

LQML(θ) = −
1

2

N
∑

t=1

[log(2π) + ln(σ2
t ) +

ε2t
σ2
t

]. (4)
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To reduce the impact of outliers in MLE, Hadi and Luceño (1997) and Van-

dev and Neykov (1998) introduced the WTLE,

θ̂WTLE := arg min
θ∈ΘJ

1

k

k
∑

i=1

wv(i)f(yv(i); θ). (5)

f(yv(1); θ) 6 f(yv(2); θ) 6 · · · 6 f(yv(N); θ) is ordered in ascending order for

fixed parameters θ and for the permutation index v(i) of f(yi; θ) = − lnD(yi; θ)

with probability densityD and weights wi. The key idea in (5) is to trim the n−k

points that are the most unlikely in the estimation of the likelihood function.

The WTLE reduces to (i) the MLE when k = N , (ii) the TLE when wv(i) = 1 for

i ∈ (1, . . . , k) and wv(i) = 0 otherwise, and (iii) the median likelihood estimator

(Vandev and Neykov, 1993) when wv(k) = 1 and wv(i) = 0 for i 6= k. However,

the implementation of the WTLE might not be feasible for large data sets due

to its combinatorial nature. Let us denote by “k sub-sample” the sub-sample

of likely values with index in a sub-set of {1, . . . , N} of length k. Equation

(5) leads then to the problem of finding the k sub-sample that minimizes the

estimator. To overcome this limitation, Neykov and Müller (2003) introduced

the fast-TLE, which involves repeated iterations of a two-step procedure—a

trial step followed by a refinement step. First, a k sub-sample is used to fit an

initial estimate of the parameters. Then, these estimates are used to calculate

the likelihood values of all points in the data set. Third, the order index of

the N − k points that are the most unlikely is used as a new trimming index.

The process is repeated until the convergence criteria are reached. Neykov and

Müller (2003) showed that the refinement step always yields estimates with an

improved or equivalent estimator.

The WTLE can be defined for GARCH models by combining (1), (3), and

(5). This gives the weighted trimmed log-likelihood function

LWTLE(θ) =
1

k

k
∑

i=1

wv(i) lnD(ε̃v(i); σ̃v(i), θ) (6)

where
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σ̃2
t = ω +

p
∑

i=1

αiε̃
2
t−i +

q
∑

j=1

βj σ̃
2
t−j , (7)

and

ε̃2t =







ε2t if t ≤ v(k)

E(ε2t |Ωt−1) if t > v(k) .
(8)

E(εt|Ωt−1) is the expected value of the innovations at time t given past infor-

mation. Here, ε̃t at index t > v(k) are replaced by their expected values in

the conditional variance (7) to limit the impact of the outliers along the time-

dependent variance. In practice, one can use E(ε2t |Ωt−1) = σ2
t rc(ε

2
t/σ

2
t ) in (8)

as defined by Muler and Yohai (2008),

rc(u) =







u if u ≤ c

c if u > c .
(9)

3. Estimation of Trimming Parameter

Here we describe how to automatically define the trimming parameter k in

(6). First, we define the absolute deviation of the log-likely values (ADLLVs),

Vt = | lnD(εt;σt, θ)− lnD(E(εt|Ωt−1);σt, θ)|

= | ln
D(εt;σt, θ)

D(E(εt|Ωt−1);σt, θ)
|,

(10)

where εt are the innovations; θ, the set of GARCH parameters; and Ωt−1, the

past information described in equations (1). In the particular case of normally

distributed innovations, Vt reduces to the conditional coefficient of variation

VQML,t =
x2

t

σ2

t

.

The trimming parameter k is determined using the following multi-step it-

erative procedure: We first compute Vt with the initial parameter values of

GARCH models that can be set or estimated by a biased etimator. We then
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identify the index of the largest absolute deviation values that form a cluster of

unlikely points (Figure 1). This new index is then used in the WTLE to obtain

new estimates. These estimates are used to compute a new Vt. We repeat the

identification of unlikely events until the weighted trimmed log-likelihood func-

tion (6) reaches a maximum. Note that in practice, convergence is achieved in

only a few steps.

4. Simulation Study

4.1. Software and Hardware Employed

All the models compared in this study were implemented in the R statistical

programming language (R Development Core Team, 2010). The computation

time reported is only an indication and may change with the platform. Never-

theless, note the purpose of this work was not to obtain the most efficient im-

plementation. We used a 64-bit Darwin kernel running on an eight-core system

with 16 GB of RAM. All routines were implemented in R, except the compu-

tation of the likelihood function, which was implemented in C (code available

upon request).

4.2. Trimming Paramater k

To assess the efficiency of our approach to estimate the trimming parameter

k, we performed a Monte-Carlo simulation of 1000 runs. For each run, we

generated a GARCH(1,1) time series with parameters ω = 0.1, α = 0.2, and

β = 0.6 as described in (1). Given the time series process xt with conditional

standard deviation σt, we defined a contaminated time series yt. Outliers at

time index i were defined as yi = d · σi, where d is the outlier scale and σi the

conditional standard deviation of xi at time i. For i 6= j, we have yj = xj . The

length of the time series was 1500 and the levels of contamination were set to

1%, 5%, and 10% with outlier scales d ∈ {4, 6, 10}. The indices of the additive

outliers were taken from a truncated Poisson distribution with truncation 10.

For large outlier scales, the identification of unlikely points converged to the

correct index in most of the trials, whereas for smaller outliers, the approach
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d 4 6 10
Offset 0 1 2 3 4 5 6 7 8 9 11 0 1 0

1% 573 274 94 34 12 7 4 1 . 1 . 993 7 1000
5% 617 248 76 33 15 5 2 2 1 1 . 991 9 1000

10% 676 211 71 20 12 6 2 1 . . 1 997 3 1000

Table 1: Identification of unlikely points for 1000 simulation runs. d is the scale
factor of the outliers. Positive offsets are counts of events that were superflu-
ously identified as outliers. Negative offsets are counts of outliers that were not
identified. Zero offset then means that all outliers and no other events have
been identified as abnormal points. The length of the simulated GARCH(1,1)
is 1000 with parameters ω = 0.1, α = 0.2, and β = 0.6

might consider superfluous points as unlikely (Table 1). However, the impact of

considering few points as outliers in the GARCH WTLE has negligible impact

on the estimates, as we will show in the results of the simulation study.

This method differs from the fast-TLE of Müller and Neykov (2003) because

it affords an estimate of the trimming parameter k. However, the method does

not guarantee the best trimming parameter. Indeed, the choice of the trimming

parameter k is subject to the method used to identify the cluster of unlikely

values. In practice, however, the approach yields promising results, as will be

described in the next section.

4.3. Robust Estimation

We compared the GARCH WTLE to the quasi-maximum likelihood estima-

tor (QMLE), the GARCH M-estimators (M1, M2) with their bounded versions

(BM1, BM2) introduced by Muler and Yohai (2008), and the recursive robust

GARCH estimator (REC) of Charles and Darne (2005). For the M1, M2, BM1,

and BM2 estimators, we set the robust parameters to the values recommended

by the authors. However, in the REC, we used stronger threshold statistics

(c = 4) than recommended by Charles and Darne (2005). Indeed, we noticed

that for large outliers, it is crucial to use a low threshold, for otherwise, the un-

filtered outliers will lead to poor convergence rates for the optimization routines.

The trimming parameter for our GARCH WTLE was automatically defined as

described in section 3.

For a contaminated time series yt of xt, where yt = xt for t 6= i and with
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outliers yi = d · σi at time index i and scale d, we compared the models on the

basis of the mean square error (MSE) and relative mean square error (RMSE) of

their estimates. The sample MSE of the contaminated series yt can be defined

as

M̂SEy =
1

N

N
∑

i=1

(θ̂i − θ)2 , (11)

where θ̂ are the fitted parameters of the contaminated series yt, and θ are the

parameters used to simulate the series. N is the number of Monte-Carlo runs.

We expressed the RMSE as the ratio of the MSE of the estimates of yt with its

counterpart for the uncontaminated series xt,

R̂MSE =
M̂SEy(θWTLE)

M̂SEx(θMLE)
. (12)

We considered 5000 runs of simulated GARCH(1,1) series of length 1500 as

described in (1) with 1%, 5%, and 10% outliers. We used a range of outlier

scales, d ∈ {3, 5, 10}, to study how the methods performs with large and small

abnormal points. The outliers were taken from a truncated Poisson distribution

with truncation 10. We also determined the percentage of optimization runs

that converged to an optimal solution. We used two sets of parameters for the

GARCH(1,1) model and explicitly set the starting values in the optimization

routines different from the optimal values.

In the first study (Table 2), we used the parameters ω = 1, α = 0.5, and

β = 0.4 to simulate the time series. Although these values are not typical

estimates encountered with financial returns, i.e., a large β and small α with a

persistence close to 1, we used them in order to compare our results with the

estimates in (Muler and Yohai, 2008). In the second study (Table 3), we used

more realistic coefficients: ω = 1, α = 0.2, and β = 0.6.

As a last comparison, we report the MSE in figure 2 for outlier scales ranging

from 3 to 10. Again, we preformed 5000 simulation runs to estimate the MSE.

The length of simulated series is 1500 and the GARCH parameters used are

ω = 1, α = 0.2, and β = 0.7.
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As noted in Charles and Darne (2005), the bounded M-estimators (BM1,

BM2) have a smaller bias than the unbounded versions, but are subject to

a lower rate of convergence. Moreover, M2 and BM2 have better estimates

than the corresponding less-robust models, M1 and BM1 respectively. And

although the estimates of the REC are close to those of the other estimators,

the computation time was much larger than those of the others (Tables 2 and

3).

We note that throughout the simulation study, the choice of the robustness

tuning parameters was crucial to obtaining reasonable estimates with the REC,

M1, M2, BM1 and BM2. By contrast, our automatic method, introduced in

the previous section, obviated any need for tedious parameter refinement. This

feature can be particularly appealing to practitioners.

Overall, the WTLE yields estimates with the smallest MSE and RMSE and

yet incurs only a small computational cost (Tables 2 and 3).

5. Conclusions and Future Work

We successfully applied the WTLE to GARCHmodeling and showed through

an extensive simulation study that it provides robust and reliable estimates

with a small computation cost. Moreover, the proposed fully automatic method

for selecting the trimming parameter obviates the tedious fine tuning process

required by other models to obtain a “robust” parameter. We also note that

only the simple GARCH(1,1) was used in this model. However, the WTLE can

be used with any GARCH model for which there exists a likelihood estimator.

We are currently exploring the applicability of the WTLE with multivariate

GARCH models and have obtained promising preliminary results.
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Figure 1: The upper figure is a histogram of the ADLLVs for a simulated
GARCH(1,1) series of length 1500 with parameters ω = 0.1, α = 0.2, and
β = 0.6 with 75 outliers of scale d = 5. The lower figure plots the ADLLVs,
with the most unlikely values in empty circles.
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1% with d = 3 d = 5 d = 10
ω α β conv. time [s] ω α β conv. time [s] ω α β conv. time [s]

QML MSE 0.27 0.01 0.00 100% 0.01 0.72 0.02 0.01 99% 0.01 9.22 0.09 0.03 51% 0.01
RMSE 1.42 1.93 1.33 3.80 8.59 3.80 48.94 38.80 15.03

REC MSE 0.35 0.09 0.03 100% 2.73 0.29 0.08 0.02 100% 2.80 0.29 0.08 0.02 100% 2.82
RMSE 1.88 37.13 14.10 1.55 35.26 13.18 1.57 35.78 13.66

M1 MSE 0.35 0.01 0.01 98% 0.05 0.40 0.01 0.01 98% 0.05 1.09 0.01 0.03 97% 0.05
RMSE 1.84 6.33 3.87 2.10 4.67 4.58 5.79 3.98 17.12

BM1 MSE 0.28 0.01 0.01 90% 0.07 0.28 0.01 0.01 90% 0.07 0.27 0.01 0.01 90% 0.07
RMSE 1.51 2.76 3.17 1.46 2.71 3.10 1.44 2.72 3.12

M2 MSE 0.35 0.01 0.01 96% 0.06 0.52 0.01 0.01 97% 0.06 1.34 0.02 0.04 94% 0.06
RMSE 1.86 6.52 5.61 2.77 6.03 7.81 7.09 6.78 24.37

BM2 MSE 0.27 0.02 0.01 84% 0.08 0.26 0.02 0.01 83% 0.08 0.26 0.02 0.01 85% 0.08
RMSE 1.41 6.98 3.37 1.37 6.92 3.28 1.39 7.00 3.31

WTL MSE 0.20 0.00 0.00 97% 0.36 0.18 0.00 0.00 98% 0.31 0.19 0.00 0.00 98% 0.31
RMSE 1.05 1.75 1.55 0.98 1.01 1.06 1.01 1.04 1.05

5% with d = 3 d = 5 d = 10
ω α β conv. time [s] ω α β conv. time [s] ω α β conv. time [s]

QML MSE 1.70 0.02 0.01 98% 0.01 23.61 0.09 0.05 63% 0.01 20.85 0.24 0.30 22% 0.03
RMSE 8.92 6.55 4.88 123.77 38.19 29.66 109.28 98.76 166.60

REC MSE 0.98 0.12 0.04 99% 3.00 0.26 0.09 0.03 100% 3.68 0.30 0.09 0.03 99% 3.95
RMSE 5.16 50.78 21.78 1.36 35.99 15.07 1.56 37.31 16.59

M1 MSE 2.27 0.03 0.02 98% 0.06 1.85 0.04 0.05 98% 0.06 3.49 0.09 0.14 86% 0.07
RMSE 11.91 13.50 9.59 9.68 17.32 27.42 18.31 39.12 81.54

BM1 MSE 0.58 0.02 0.01 88% 0.08 0.28 0.02 0.01 89% 0.08 0.29 0.02 0.01 88% 0.08
RMSE 3.06 7.61 4.78 1.49 6.86 4.37 1.51 6.66 4.37

M2 MSE 0.93 0.04 0.02 98% 0.07 1.87 0.07 0.06 95% 0.08 3.48 0.09 0.13 75% 0.08
RMSE 4.85 15.45 10.04 9.79 29.95 35.04 18.24 38.26 74.19

BM2 MSE 0.45 0.01 0.01 81% 0.08 0.26 0.01 0.01 82% 0.08 0.26 0.01 0.01 83% 0.08
RMSE 2.36 3.86 4.22 1.36 3.38 3.71 1.38 3.48 3.88

WTL MSE 0.51 0.01 0.01 98% 0.38 0.20 0.00 0.00 96% 0.31 0.20 0.00 0.00 96% 0.30
RMSE 2.66 2.42 2.67 1.07 1.18 1.28 1.08 1.12 1.24

10% with d = 3 d = 5 d = 10
ω α β conv. time [s] ω α β conv. time [s] ω α β conv. time [s]

QML MSE 4.94 0.02 0.02 96% 0.01 71.84 0.10 0.11 45% 0.02 24.62 0.23 0.30 38% 0.02
RMSE 25.26 8.47 9.45 367.45 42.93 56.78 125.93 94.89 158.35

REC MSE 2.62 0.15 0.06 94% 3.04 0.19 0.08 0.03 100% 4.31 2.19 0.12 0.05 96% 4.52
RMSE 13.39 62.34 32.22 0.99 34.23 16.75 11.19 48.16 27.59

M1 MSE 6.71 0.07 0.03 97% 0.07 1.41 0.14 0.07 98% 0.07 3.70 0.12 0.14 84% 0.09
RMSE 34.33 29.03 17.84 7.19 55.25 37.57 18.93 50.07 74.53

BM1 MSE 1.58 0.03 0.01 86% 0.08 0.25 0.03 0.01 86% 0.08 0.26 0.03 0.01 86% 0.08
RMSE 8.08 14.03 6.73 1.27 11.32 4.92 1.33 10.86 4.71

M2 MSE 2.38 0.08 0.03 98% 0.07 0.99 0.18 0.07 97% 0.09 3.51 0.11 0.14 70% 0.09
RMSE 12.19 33.12 15.11 5.04 72.23 39.34 17.96 46.08 72.99

BM2 MSE 1.35 0.01 0.01 81% 0.08 0.24 0.01 0.01 81% 0.08 0.26 0.01 0.01 81% 0.08
RMSE 6.92 5.13 5.98 1.25 2.87 3.95 1.30 2.84 4.14

WTL MSE 0.86 0.01 0.01 100% 0.37 0.25 0.00 0.00 99% 0.30 0.23 0.00 0.00 99% 0.30
RMSE 4.41 2.75 3.13 1.28 1.36 1.36 1.15 1.20 1.35

Table 2: Mean square error and relative mean square error for the simple GARCH(1,1) with 1%, 5% and 10% outliers, yi = d·σi,
with scale d = {3, 5, 10} and parameters ω = 1, α = 0.5, and β = 0.4. The length of simulated series is 1500 and the number
of Monte-Carlo replications is 5000. We also report the percentage count of convergence of the optimization routines and the
elapsed computation time in seconds.
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1% with d = 3 d = 5 d = 10
ω α β conv. time [s] ω α β conv. time [s] ω α β conv. time [s]

QML MSE 0.16 0.00 0.01 100% 0.02 1.49 0.01 0.04 99% 0.01 14.95 0.13 0.13 37% 0.01
RMSE 2.19 1.27 1.40 20.11 5.14 7.47 201.79 117.43 27.31

REC MSE 0.23 0.01 0.02 99% 1.69 0.24 0.01 0.02 98% 1.63 0.24 0.01 0.02 98% 1.66
RMSE 3.03 10.35 4.74 3.19 10.13 4.92 3.22 10.54 5.02

M1 MSE 0.17 0.00 0.01 96% 0.06 0.54 0.00 0.03 98% 0.06 3.21 0.01 0.16 80% 0.07
RMSE 2.28 1.94 2.13 7.25 3.49 5.65 43.38 8.14 33.20

BM1 MSE 0.24 0.00 0.02 92% 0.08 0.24 0.00 0.02 92% 0.08 0.24 0.00 0.02 92% 0.08
RMSE 3.20 2.73 3.39 3.22 2.72 3.38 3.28 2.72 3.44

M2 MSE 0.32 0.00 0.02 93% 0.07 0.81 0.01 0.05 95% 0.08 3.02 0.01 0.17 76% 0.08
RMSE 4.33 3.15 4.20 10.95 5.37 9.33 40.80 11.93 34.11

BM2 MSE 0.23 0.01 0.02 88% 0.08 0.23 0.01 0.02 89% 0.08 0.24 0.01 0.02 87% 0.08
RMSE 3.17 6.86 3.66 3.17 6.88 3.68 3.22 6.93 3.71

WTL MSE 0.07 0.00 0.01 97% 0.38 0.08 0.00 0.01 98% 0.33 0.08 0.00 0.01 98% 0.33
RMSE 1.00 1.15 1.21 1.03 1.02 1.04 1.04 1.01 1.03

5% with d = 3 d = 5 d = 10
ω α β conv. time [s] ω α β conv. time [s] ω α β conv. time [s]

QML MSE 3.79 0.00 0.04 99% 0.01 43.56 0.02 0.17 12% 0.02 135.92 0.04 0.09 0% 0.03
RMSE 51.92 3.07 8.88 595.98 19.21 35.04 1859.42 33.35 18.22

REC MSE 0.23 0.01 0.03 98% 3.07 0.30 0.02 0.03 97% 2.93 0.30 0.01 0.03 96% 3.04
RMSE 3.19 13.28 5.53 4.17 14.17 6.70 4.13 13.19 6.80

M1 MSE 0.62 0.01 0.02 93% 0.07 0.83 0.03 0.05 92% 0.08 2.74 0.04 0.08 55% 0.09
RMSE 8.50 9.90 4.94 11.40 25.73 10.76 37.52 33.19 15.93

BM1 MSE 0.25 0.00 0.02 91% 0.09 0.25 0.00 0.02 91% 0.08 0.29 0.00 0.02 91% 0.08
RMSE 3.47 3.71 3.82 3.47 3.65 3.77 3.99 3.20 3.86

M2 MSE 0.46 0.01 0.03 94% 0.08 1.02 0.03 0.06 83% 0.10 3.66 0.04 0.12 48% 0.11
RMSE 6.34 10.71 6.29 13.90 25.55 11.80 50.03 31.89 24.97

BM2 MSE 0.24 0.01 0.02 88% 0.09 0.24 0.01 0.02 87% 0.08 0.28 0.01 0.02 88% 0.08
RMSE 3.26 4.04 3.68 3.29 4.09 3.70 3.86 4.22 4.04

WTL MSE 0.08 0.00 0.01 97% 0.40 0.08 0.00 0.01 96% 0.32 0.08 0.00 0.01 96% 0.32
RMSE 1.12 1.35 1.37 1.08 1.13 1.11 1.07 1.10 1.09

10% with d = 3 d = 5 d = 10
ω α β conv. time [s] ω α β conv. time [s] ω α β conv. time [s]

QML MSE 13.36 0.01 0.10 90% 0.02 28.69 0.03 0.13 2% 0.03 4.22 0.04 0.12 0% 0.03
RMSE 170.38 6.97 20.77 365.73 27.73 25.02 53.83 32.06 24.25

REC MSE 0.44 0.02 0.03 37% 3.88 0.40 0.02 0.05 92% 3.79 0.38 0.02 0.04 93% 3.92
RMSE 5.56 14.71 6.52 5.07 17.31 9.04 4.86 15.18 8.68

M1 MSE 0.85 0.02 0.03 65% 0.07 0.70 0.03 0.05 90% 0.08 3.48 0.04 0.10 51% 0.09
RMSE 10.82 13.33 6.09 8.91 28.03 10.53 44.38 32.43 20.50

BM1 MSE 0.27 0.01 0.02 92% 0.08 0.28 0.01 0.02 92% 0.08 0.32 0.00 0.02 91% 0.08
RMSE 3.46 4.70 3.89 3.52 4.55 3.82 4.08 3.83 3.87

M2 MSE 0.48 0.02 0.04 94% 0.09 0.90 0.03 0.06 80% 0.10 4.17 0.04 0.12 49% 0.11
RMSE 6.18 14.88 6.88 11.50 27.51 11.49 53.12 32.96 24.58

BM2 MSE 0.25 0.00 0.02 87% 0.08 0.26 0.00 0.02 88% 0.08 0.29 0.00 0.02 87% 0.08
RMSE 3.21 3.31 3.62 3.27 3.31 3.69 3.73 3.46 4.07

WTL MSE 0.09 0.00 0.01 100% 0.39 0.09 0.00 0.01 99% 0.32 0.09 0.00 0.01 99% 0.31
RMSE 1.18 1.47 1.47 1.15 1.18 1.19 1.15 1.17 1.19

Table 3: Mean square error and relative mean square error for the simple GARCH(1,1) with 1%, 5% and 10% outliers, yi = d·σi,
with scale d = {3, 5, 10} and parameters ω = 1, α = 0.2, and β = 0.6. The length of simulated series is 1500 and the number
of Monte-Carlo replications is 5000. We also report the percentage count of convergence of the optimization routines and the
elapsed computation time in seconds.
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Figure 2: MSE for the simple GARCH(1,1) with 5% outliers, yi = d·σi, and with
scale d ranging from 3 to 10. GARCH parameters used are ω = 1, α = 0.2, and
β = 0.7. The length of simulated series is 1500 and the number of Monte-Carlo
replications is 5000.
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