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1. Introduction 

City size distribution has been the subject of numerous empirical investigations 
by urban economists, statistical physicists, and urban geographers. One of the stylised 
facts in Urban Economics is that the city size distribution in many countries can be 
approximated by a Pareto distribution whose exponent is equal to one. If this is the case, 
it can be concluded that there is evidence for Zipf’s Law1 (Zipf, 1949) and means that, 
ordered from largest to smallest, the size of the second city is half that of the first, the 
size of the third is a third of the first, and so on. Another well-known stylised fact is 
Gibrat’s Law or the Law of Proportionate Growth (Gibrat, 1931), which establishes that 
the growth rate of a variable is independent of its initial size. Both are considered to be 
two sides of the same coin. While Gibrat’s Law has to do with the population growth 
process, Zipf’s Law refers to its resulting population distribution. 

These are extensively studied empirical regularities in many countries, 
especially in the United States (US); see Ioannides and Overman (2003), Black and 
Henderson (2003), Eeckhout (2004), or González-Val (2010). Ioannides and Overman 
(2003) propose a nonparametric procedure to estimate Gibrat’s Law for city growth 
processes as a time-varying geometric Brownian motion and to calculate local Zipf 
exponents from the mean and variance of city growth rates. They use data from 
metropolitan areas from 1900 to 1990 (112 to 334 metropolitan areas) and arrive at the 
conclusion that Gibrat’s law holds in the urban growth processes and that Zipf’s law is 
also fulfilled approximately for a wide range of city sizes. Nevertheless, Black and 
Henderson (2003) arrive at different conclusions for the same period (probably because 
they use different metropolitan areas; their data goes from 194 metropolitan areas in 
1900 to 282 in 1990). Zipf’s law holds only for cities in the upper third of the 
distribution, while Gibrat’s law would be rejected for any sample size. These results 
highlight the extreme sensitivity of conclusions to the geographical unit chosen and to 
sample size.  

Finally, Eeckhout (2004) demonstrates the statistical importance of considering 
the whole sample, not only the larger cities2. The estimated Pareto parameter depends 
on the truncation point, so when all the cities are considered for the period 1990 to 
2000, the empirical city size distribution follows a lognormal rather than a Pareto 
distribution, and the value of Zipf’s parameter is not 1, as earlier works concluded, but 
is slightly above 21 ;  Gibrat’s law holds for the entire sample. Recently, González-Val 
(2010) generalizes this analysis for all of the twentieth century, extracting long term 
conclusions: Gibrat’s law holds (weakly; growth is proportionate on average but not in 
variance, as the smallest cities present a clearly higher variance) and Zipf’s law holds 
only if the sample is sufficiently restricted to the top, not for a larger sample, because 
city size distribution follows a lognormal when we consider all cities with no size 
restriction. 

The nonparametric procedure put forward by Ioannides and Overman (2003) is 
especially relevant because it is based on the statistical explanation of Zipf’s Law for 
cities offered by Gabaix (1999). Gabaix presents a model based on local random 
amenity shocks, independent and identically distributed, which through migrations 

                                                 
1 Although Auerbach had previously observed in 1913 the Pareto pattern of city size distribution. 
2 In the US, to qualify as a metropolitan area a city needs to have 50,000 or more inhabitants, or the 
presence of an urbanised area of at least 50,000 inhabitants, and a total metropolitan population of at least 
100,000 (75,000 in New England), according to the OMB definition. Therefore, data from metropolitan 
areas impose an implicit truncation point. 
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between cities generate Zipf’s Law. The main contribution of the work is to justify the 
fulfilment of Zipf’s Law in that cities in the upper tail of the distribution follow similar 
growth processes, so that the fulfilment of Gibrat’s Law involves Zipf’s Law. 

 In this paper, the methodology proposed by Ioannides and Overman (2003) to 
estimate a local Zipf exponent is applied to a new dataset covering the complete 
distribution of cities in the US (understood as incorporated places) without any size 
restrictions, for the entire twentieth century. Section 2 presents the dataset and 
summarises the nonparametric procedure and its statistical foundations. Section 3 offers 
the results, and Section 4 concludes. 

2. Data and Methodology 

We use the same data set as González-Val (2010). Table 1 presents the number 
of cities for each decade, and the descriptive statistics. Our base, created from the 
original documents of the annual census published by the US Census Bureau, consists 
of the available data of all incorporated places without any size restriction, for each 
decade of the twentieth century (decennial data from 1900 to 2000). The US Census 
Bureau uses the generic term incorporated place to refer to the governmental unit 
incorporated under state law as a city, town (except in the states of New England, New 
York and Wisconsin), borough (except in Alaska and New York), or village, and which 
has legally established limits, powers and functions.  

Two details should be noted3. First, Alaska, Hawaii, and Puerto Rico have not 
been considered due to data limitations. And second, for the same reason we also 
exclude all the unincorporated places (concentrations of population which do not form 
part of any incorporated place, but which are locally identified with a name), which 
began to be taken into account after 1950. However, these settlements did exist earlier, 
so that their inclusion would again present a problem of inconsistency in the sample. 
Also, their elimination is not quantitatively important; in fact there were 1,430 
unincorporated places in 1950, representing 2.36% of the total population of the US, 
which by 2000 would be 5,366 places and 11.27%. 

The empirical strategy commonly used to test Zipf’s Law consists in the 
estimation of log linear regressions of city size (population, P ) against rank ( )R : 

( ) PAPR logloglog ζ−= ,    (1) 

where A  and ζ  are parameters. Zipf’s Law is an empirical regularity, which appears 
when the Pareto exponent is equal to unity, 1=ζ  (see the surveys of Cheshire, 1999, 
and Gabaix and Ioannides, 2004, for further explanation). Results are usually presented 
in double logarithmic graphs of rank compared to population, named Zipf plots, which 
are used extensively in the specialised literature.  

However, this approach has pitfalls, highlighted in the recent literature, and 
different estimators have been proposed. Gabaix and Ioannides (2004) show that the 
Hill (Maximum Likelihood) Estimator is more efficient if the underlying stochastic 
process is really a Pareto distribution, but when the size distribution of cities does not 
follow a Pareto distribution the Hill estimator may be biased (Soo, 2005). At the same 
time, the OLS estimate also has some problems, see Goldstein et al. (2004) and 

Nishiyama et al. (2008). Finally, Gabaix and Ibragimov (2007) proposed subtracting 
2

1
 

                                                 
3 More details about data sources and definitions are given in González-Val (2010). 
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from the rank to obtain an unbiased estimation of the Pareto exponent using an OLS 
regression. 

In this paper we apply the nonparametric procedure put forward by Ioannides 
and Overman (2003). This is a completely different empirical strategy, relying on the 
statistical foundation of Zipf’s Law offered by Gabaix (1999). The exposition follows 
closely Ioannides and Overman (2003); see also Gabaix (1999) and Gabaix and 
Ioannides (2004) for more details4.  

Let iS  denote the normalised size of city i , that is, the population of city i  

divided by the total urban population. Following Gabaix (1999), city sizes are said to 
satisfy Zipf’s Law if the countercumulative distribution function, ( )SG , of normalised 
city sizes, S , tends to  

( ) ζ
S

a
SG = ,     (2) 

where a  is a positive constant and 1=ζ . If Gibrat’s Law holds for city growth 
processes, cities grow randomly, with the same expected growth rate and the same 
standard deviation: then the limit distribution will converge to ( )SG , given by Eq. (2)5.  

Gabaix also considers the case where cities grow randomly with expected 
growth rates and standard deviations that depend on their sizes (a weak Gibrat’s Law). 
That is, the size of city i  at time t  varies according to:  

( ) ( ) ttt

t

t dBSdtS
S

dS
σμ += ,    (3) 

where ( )Sμ  and ( )S
2σ  denote, respectively, the instantaneous mean and variance of 

the growth rate of a size S  city, and tB  is a geometric Brownian motion. In this case, 

the limit distribution of city sizes will converge to a law with a local Zipf exponent,  

( ) ( )
( )

dS

Sdp

Sp

S
S ⋅−=ζ , 

where ( )Sp  denotes the invariant distribution of S . Starting from the forward 
Kolmogorov equation associated with Eq. (3), the local Zipf exponent, associated with 
the limit distribution, can be derived and is given by 

( ) ( )
( )

( ) ( )
SS

SS

S

S
S

∂
∂

+⋅−=
22

2
21

σσ
σ
μζ ,   (4) 

where ( )Sμ  is relative to the overall mean for all city sizes. Eq. (4) identifies two 
possible causes of deviations from Zipf’s Law: the means and the standard deviations. If 

1<ζ  then the distribution has neither finite mean nor finite variance, and if 21 << ζ  it 
has finite mean but not finite variance.  

3. Results 

First, we use kernel regression techniques that establish a functional form-free 
relationship between the mean and the variance of city growth rates and city size for the 

                                                 
4 Eqs. (3) and (4) replicate, respectively, Eq. (11), p. 756, and Eq. (13), p. 757, in Gabaix (1999).  
5 See Gabaix (1999), p. 744. 
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entire distribution. This allows us to test whether Gibrat’s Law holds. Second, we use 
Eq. (4) to directly estimate the local Zipf exponents. 

In order to analyse the entire twentieth century, all the growth rates are taken 
between consecutive periods. There are 162,698 population-growth rate pairs in that 
pool. City size is defined as the normalised size of the city ( )S , that is, the population of 

city divided by the total urban population6, and the growth rate ( )Sμ  is defined as the 
difference between each city’s growth rate and the contemporary average growth rate, 
as in Ioannides and Overman (2003). To calculate the conditional mean and variance on 
city size, we apply the Nadaraya-Watson method7, exactly as it appears in Härdle 
(1990). The estimator is very sensitive, both in mean and in variance, to atypical values. 
Thus, we decided to eliminate the 5% of the smallest distribution observations for each 
decade, as they are characterised by very high dispersion in mean and in variance, and 
they distort the results. Therefore, the sample size is reduced to 154,563 observations. 
Finally, we also eliminate 1,079 observations with a growth rate ( )Sμ  greater than two. 
The reason is that we cannot control for change in city boundaries; there are more than 
twenty thousand different cities in the sample, and information on boundaries is only 
available for the largest cities in some decades. Then, we decide to eliminate cities with 
the greatest growth rates to control the most extreme cases, relying on the huge sample 
size to make the spurious growth produced by change in boundaries irrelevant. Final 
sample size is 153,484 observations (94.34% of total sample). 

Figure 1 shows the nonparametric estimates for the entire twentieth century of 
the mean growth rate and variance of growth rate conditional on city size, and the local 
Zipf exponent calculated applying Eq. (4). Graphs also displays bootstrapped 95% 
confidence bands, calculated using 500 random samples with replacement. Results are 
shown until city sizes of 0.01; the reason is that there is one technical problem with this 
procedure, the sparsity of data at the upper tail of the distribution, which produces 
extreme values of the estimations. This means that, as Ioannides and Overman (2003), 
we exclude the 76 observations corresponding to the largest cities with shares greater 
than 0.01.  

Results show a very slight increasing behaviour of city growth (observe the very 
small scale of growth graph), and a negative relationship between variance and city size 
(although the differences are not significant). Thus, small cities exhibit lower growth 
rates and higher variances than larger cities, indicating that Gibrat’s Law does not hold 
exactly. Part of this could be explained by the appearance of new cities that enter with 
small sizes8. Moreover, the local estimate of the Zipf exponent is also decreasing with 
city size, mainly as a consequence of the decreasing variance. Results reject Zipf’s Law 
from this long term perspective, as the estimated values are close to zero.   

The variation in the estimates is very small, as a consequence of the huge sample 
size of the pool. Moreover, most of the observations are concentrated at the lower end 
of the distribution. So, we have repeated the exercise for each decade, with lower 
sample sizes. One advantage is that the influence of new entrant cities is lower from one 
decade to another than in the whole twentieth century. Also, short term estimations 
could reveal interesting behaviours.   

                                                 
6 US urban population data from 1900 to 1990 come from Table 1 in Overman and Ioannides (2001). 
Data for the year 2000 is taken from US Census Bureau (http://www.census.gov). 
7 We use an Epanechnikov kernel and Silverman's kernel bandwidth. 
8 See González-Val (2010) for an analysis of new entrants. 
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Figure 2 shows the results for four representative decades9: 1900-1910 (9,892 
observations), 1930-1940 (15,367 observations), 1970-1980 (17,277 observations) and 
1980-1990 (17,808 observations). We can observe that decade by decade the estimates 
of the Zipf exponent are greater than when considering all the twentieth century, 
probably as a consequence of the lower sample size. In this case we find evidence in 
favour of Zipf’s Law as value one falls within the confidence bands for most of the 
distribution in most of the decades. We also see how periods in which the Zipf exponent 
grows with city size are interspersed with others in which relationship between the 
exponent and city shares is negative. As the variance of growth rate presents a 
decreasing pattern for almost all decades, the differentiated behaviours of local 
exponents must be a consequence of differences in the mean growth rates. 

4. Conclusions 

In this paper, the methodology proposed by Ioannides and Overman (2003) to 
estimate a local Zipf exponent is applied to a new dataset covering the complete 
distribution of cities in the US (understood as incorporated places) without any size 
restrictions for all the twentieth century.  

Results reject Zipf’s Law from a long term perspective, as the estimated values 
are close to zero. We also find that small cities exhibit lower growth rates and higher 
variance than larger cities, indicating that Gibrat’s Law does not hold exactly. Part of 
this could be explained by the appearance of new cities that enter with small sizes. In 
the short term, decade by decade, we find evidence in favour of Zipf’s Law for most of 
the distribution in most of the decades. We also observe differentiated behaviours: 
periods in which the Zipf exponent grows with city size are interspersed with others in 
which relationship between the exponent and city shares is negative. 
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Table 1. Number of cities and descriptive statistics 

 

Year Cities Mean 
Standard 
deviation Minimum Maximum 

1900 10,596 3,376.04 42,323.90 7 3,437,202 
1910 14,135 3,560.92 49,351.24 4 4,766,883 
1920 15,481 4,014.81 56,781.65 3 5,620,048 
1930 16,475 4,642.02 67,853.65 1 6,930,446 
1940 16,729 4,975.67 71,299.37 1 7,454,995 
1950 17,113 5,613.42 76,064.40 1 7,891,957 
1960 18,051 6,408.75 74,737.62 1 7,781,984 
1970 18,488 7,094.29 75,319.59 3 7,894,862 
1980 18,923 7,395.64 69,167.91 2 7,071,639 
1990 19,120 7,977.63 71,873.91 2 7,322,564 
2000 19,296 8,968.44 78,014.75 1 8,008,278 
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Figure 1. Nonparametric estimates for all the twentieth century (a pool of 153,484 
observations) 
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Figure 2. Nonparametric estimates by decade 
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