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1 Introduction

Classical univariate and multivariate time series models have problems to deal with the
high variability of hourly electricity spot prices. We propose to model alternatively the
daily mean electricity supply functions using a dynamic factor model. And to derive,
subsequently, the hourly electricity spot prices by the evaluation of the estimated supply
functions at the corresponding hourly values of demand for electricity. Supply functions
are price (EUR/MWHh) functions, that increase monotonically with demand for electric-
ity (MW). Apart from this new conceptual approach, that allows us to represent the
auction design of energy exchanges in a most natural way, our main contribution is an
extraordinary simple algorithm to estimate the factor structure of the dynamic factor
model. We decompose the time series into a functional “spherical component” and an
univariate “scaling component”. The elements of the spherical component are all stan-
dardized having unit size such that we can robustly estimate the factor structure. This
algorithm is much simpler than procedures suggested in the literature. In order to use
a parsimonious labeling we will refer to the daily mean supply curves simply as “price
curves”.

The Dynamic Semiparametric Factor Model (DSFM) of [4] and the follow up applica-
tion to electricity spot prices in [3] are close to our approach, but there are two important
differences. Firstly, the authors model the hourly spot prices directly as a multivariate
time series and therein fail to mirror the auction design (i.e. the data generating pro-
cess) at electricity exchanges. As a result, they are able to explain only about 80% of
the variation in hourly spot prices at the European Electricity Exchange while we are
able to explain over 98% of the variation using the same number of factors. Secondly,
they use an iterating optimization algorithm to estimate the factor structure, whereas
we use principal component analysis for sparse functional data [6] to estimate the factor



structure of the spherical component. And we show that the estimated factor structure
of the spherical component is also the factor structure of the original series.

2 Functional Dynamic Factor Model

We model the prices, Y;;, as observations of an underlying smooth price curve, Xy, such
that

YVii = Xi(uw)+teu witht=1,2,...T. (1)

Where X;(.) is a smooth monotone random function of adjusted demand! u € U with
U being a closed and bounded subspace of R. We will set, without loss of generality,
U =10,1]. The index i =1,..., N; in uy; refers to the i-th order statistic of the observed
hourly adjusted demand values, us,. The noise term, &;;, is assumed to be independently
distributed for each ¢ and i, with E(g;;) = 0 and Var(g4;) = 02. An example of some raw
data vectors Yy = (Yi1,...,Y:n,)" can be seen in figure 1. Note that, some prices Yy
have to be treated as outliers, and we use N; to refer to the amount of prices per day ¢,
that is used in the estimation procedure. An example of outlier prices can be seen in the
left panel of figure 3.
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Figure 1: Three consecutive days from two different arbitrary weeks.

Dynamic factor models are a very successful approach to analyze high dimensional
time series data. Our case is a special case of the generalized dynamic factor models con-
sidered in [2] and corresponds to the dynamic factor model in [4]. The factor structure, F,
consists of unknown non parametric functions, f1, ..., fk, that have to be estimated from

! Adjusted demand means: Original demand values minus electricity from wind-power. Because of its
privileged status of renewable energy sources, the market price of electricity is not valid for wind-power.



the data. The K < oo functionals of the estimated factor structure, F= [fl, cee fK},
are required to be mutually orthonormal to each other and to be an optimal empirical
basis such that

K
X~ ZBtkfk = BQF (2)
k=1

More precisely, the factor structure, F' = [ fi,..., fK], shall define the best possible
projection from the space Hr C L?(U) spanned by the sampled functions, X7, ..., X7,
into a K dimensional subspace of Hr, where “best possible” is understood with respect
to the mean squared error sense,

T K T K

E [| X — E ,Btkfkﬂg = min E min || X; — E vtkﬁng, (3)
V1, , VK P1,..,9K

t=1 k=1 t=1 k=1

with respect to all possible ¥y,...,9; € L*(U) and vyy,...,v;x € R. We use ||.||2
to denote the L2-norm, in its functional version ||f|]a = \/fol f(u)23du for functions

f € L*(U), and its euclidean version ||y||a = /3~ 42 for vectors y € RY. Note that

this definition of a factor structure, £, is also fulfilled by any rigid rotations, F*=TF,
where T is any orthonormal K x K-matrix such that TT' = T'T = I.

It is well known that the first K < oo empirical eigenfunctions, let’s say fir, ..., fxT,
of the sample covariance operator,

1
prg = / or(u,v) g(v)dv, for all gGLz(L{),
0

T
where or(u,v) = T_lth(u)Xt(v), with w,v € U,
t=1
can define such a best possible projection from the space Hy = span(Xi,...,Xr) C
L?(U) into a K-dimensional subspace of Hr. In our general setting, where (X1,..., Xr1)

is allowed to be any collection of functional random variables the sample covariance op-
erator, pr g, generally does not converge to a population counterpart and the empirical
eigenfunctions and eigenvalues cannot be interpreted as variance components in the clas-
sical sense. This sample dependence of Fr = [fir,..., fxr] is not different from other
dynamic factor models as in [4].

Unfortunately, given the unrestrictive assumptions on the series (X;), the spectral
decomposition of the empirical covariance operator, pr g, generally cannot be used to
estimate a factor structure, Frr. As long as the process (X;) is not stationary, its elements
are likely to be of very different orders of magnitude, which will have a dramatic distortion
effect on the sample covariance function, op. But, contrary to the claim of the authors
in [4], we do not need stationarity in order to use spectral decomposition of the sample
covariance operator to estimate a factor structure for the functions Xy, ..., Xp.



Proposition 2.1 Given the model in (2), if a factor structure I3 defines the best projec-
tion from the space Hr = span(Xy,...,Xr) into a K dimensional subspace Hjiw( C Hr,
then it also defines the best projection from the space Hj. = span( H))f(lll\z ey ||))<(7T||2) into

the same K dimensional subspace HI .

This proposition is trivially true, because Hr = span(Xy,..., Xr) is a vector space and
therefore is closed under scalar multiplication, such that H; = #H%. Different scales
Xi ¢y, with ¢; # 0, will simply cause reciprocal scales of B/ct in the minimization (3).
As a consequence from proposition 2.1 we can also estimate a factor structure for the
original series, (X3), from the standardized series (H));ﬁ)

3 The Algorithm

The idea is to decompose the time series, (Y;), into its “spherical” component that can
be used to estimate the K-dimensional factor structure F' and its “scaling” component
that can be used to rescale the approximated spherical process to its original size.

Definition The spherical component of the factor model in equation (2) is given by the

multivariate series,
( Yt - NT(Ut) > (4)
[[Ye — pr ()2 t=1,...T

With u; = (w1, . ..,un,1) and pp = T3 Zthl X; being the sample mean function.

Definition The scaling component is given by the univariate series,

(INYe = pr (wi)ll2) s, 7 - (5)

From a mathematical perspective, it is not necessary to subtract the sample mean,
pr € Hr = span(Xy,..., Xr), from the discretization vectors, Yr. This simply sub-
tracts the constant vector § = (T~ ZtT Bet,..., T71 ZtT Bix ) from the process (5;) =
(Btl, e B“{)'. But, from a practical perspective, the subtraction of the sample mean,
T, helps to avoid rounding errors caused by floating point computation. Particularly,
when the sizes of different vectors Y; are of very different orders of magnitude, as in our
application.

By construction, the elements of the spherical component, (%), are all of
the same order of magnitude, such that the factor structure, F', can be estimated by the
spectral decomposition of the spherical sample covariance operator,

1
pro = [ rwogid. forall g€ L),
0

pr(w)  Yi(v) = pr(v)
pr(w)l2 [[Ye(v) = pr(v)ll2’

without distortion effects. This estimation algorithm is by far less costly with respect to
computation time and much simpler to implement than the iterative procedure in [4].

where &r(u,v) = 1ZHY
(



4 Application

The estimation of a factor structure, F', for the daily mean electricity supply functions,
X, is made a bit more difficult by the sparseness of the data. The observed discretization
points, Y, of the price functions, X;, are not uniformly distributed over the whole domain
U = [0, 1], but over sub parts of /. This is a slightly different form of sparseness as it
is discussed in [5] and [6], where sparseness is referred to the situation with only a few
discretization points per function. Nevertheless the smoothing approaches suggested by
[5], to estimate the mean function and the covariance operator, as well as the PACE
estimation procedure of [6], to estimate the loadings parameters, are directly applicable
to our situation of sparse data. The empirical covariance function, &1, and the first four
factors, fir,..., far, can be seen in figure 2. The estimated factor structure explains
about 98.5% of the total variance of the price curves, such that we can reduce the high
dimensional problem to a K = 3-dimensional problem without much loss of generality.
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Figure 2: LEFT PANEL Empirical covariance function, &7, of the spherical component.
Ri1GHT PANEL First four functionals of the estimated factor structure.

In the left panel of figure 3 we plot one estimated price function, X, of an arbitrary
day, t, with its corresponding raw data vector, Y, as well as two outlier prices, that are
excluded from the estimation procedure. In the right panel of figure 3 we show hourly
electricity spot prices of one arbitrary week. The hourly fitted prices are determined by
the evaluation of the estimated price functions, Xt, at the corresponding hourly values of
adjusted demand, u;p, for electricity. Note, that the proposed dynamic factor model may
be easily combined with already developed approaches to model and forecast demand for
electricity such as in [1].
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Figure 3: LErFT PANEL Single fitted price curve with observed raw prices (circle points)
and outlier prices (triangle points). RIGHT PANEL Hourly fitted prices and original
prices.
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