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Abstract: The article presents the problem of identification in parametric 

models from an algebraic point of view. We argue that it is not just another 

perspective but the proper one. That is, using our approach we can see the 

very nature of the identification problem, which is slightly different than that 

suggested in the literature. In practice, it means that in many models we can 

unambiguously estimate parameters that have been thought as 

unidentifiable. This is illustrated in the case of Simultaneous Equations 

Model (SEM), where our analysis leads to conclusion that existing 

identification conditions, although correct, are based on the inappropriate 

premise: only the structural parameters that are in one–to–one 

correspondence with the reduced form parameters are identified. We will 

show that this is not true. In fact, there are other structural parameters, 

which are identified, but can not be uniquely recovered from the reduced 

form parameters. Although we apply our theory only to SEM, it can be used 

in many standard econometric models. 

 

 

 

“What we learn from our whole discussion and what has indeed become a guiding 

principle in modern mathematics is this lesson: Whenever you have to do with a 

structure–endowed entity Σ  try to determine its group of automorphisms, the group of 

those element–wise transformations which leave all structural relations undisturbed. 

You can expect to gain a deep insight into the constitution of Σ  in this way”, 

Hermann Weyl (1952), p. 144. 
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I. INTRODUCTION 

Assume we have a parametric model. Being consistent with the classical 

literature on identification, we define a structure as given structural relationships 

(with all parameters assumed to be known) together with probability distribution for 

latent variables (with given parameters characterizing this distribution). Thus, a 

formal description of a model is that it is a set of all possible structures. The 

structural relationships within model are determining relations between endogenous 

and exogenous variables. Since parameters of the probability distribution of latent 

variables are the integral part of a model and this probability distribution induces the 

probability distribution for the endogenous variables we have a first (informal) 

insight into the identification problem: “anything is called identifiable that can be 

determined from a knowledge of the [probability] distribution of the endogenous 

variables”, Koopmans (1953), and “anything not implied in this distribution is not a 

possible object of statistical inference”, Koopmans and Reiersøl (1950). However, 

Koopmans and Hood (1953), p. 126, go further and admit that since the reduced 

form parameters constitute a unique characterization of the distribution for 

observations “they are a useful point of departure in establishing criteria of 

idenifiability”. The remark of Koopmans and Hood (1953) is so rooted in the 

econometric practice that today it sounds like an obvious triviality. In fact, the 

reduced form parameters became not only useful but essentially the only one point of 

departure to establish identification conditions for underlying structural models1. Our 

main practical contribution is to show that this strategy is not always sound. We 

argue that there are good reasons to analyze the identification problem in connection 

with basic structural model (instead of the reduced form). Among these reasons is the 

fact that reduced form models often lose important information about the structural 

model, which may be obtained when we scrutinize the structural model. Roughly 

speaking, we may uniquely estimate more parameters of the underlying structural 

model than the reduced form model allows for. In other words, the reduced form view 

may blur the identification problem and taking the right perspective (i.e. structural 

model) may be rewarded in the sense that there may be more identifiable parameters 

than the reduced form model is able to produce. 

                                                 
1
 This was advocated by Koopmans (1949): “statistical inference, from observations to economic behavior 

parameters, can be made in two steps: inference from the observations to the parameters of the assumed joint 

distribution of the observations, and inference from that distribution to the parameters of the structural equations 

describing economic behavior. The latter problem of inference, described by the term ”identification problem””. 
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Our view of the identification problem draws on its very nature and is 

consistent with informal descriptions mentioned in the beginning, provided that we 

properly understand what the probability distribution of the endogenous variables is. 

We must realize that the latter is connected with the structural model. Thus even 

though, the probability distributions (i.e. data sampling distributions) given the 

structural parameters and reduced form parameters are identical, we can not 

interchange them indifferently in the stage of identification analysis. Our 

understanding of the identification problem is this: we have a definite (structural) 

model which takes a form of the probability distribution for endogenous variables and 

must check whether the design of the model allows us to estimate all parameters 

uniquely. Thus if any structure (which is numerically parameterized structural 

model) within our model may be unambiguously recovered for every data then we are 

free of identification problems. If this is the case, then whatever criterion for the best 

structure we adopt, we are sure that all parameters in this structure may be uniquely 

retrieved.  

The above heuristic description of the identification slightly differs from the 

common one. For example, according to Koopmans and Reiersøl (1950), identification 

is “the problem of drawing inferences from the probability distribution of the observed 

variables to the underlying structure”. Almost identical statement begins the 

Rothenberg (1971) article. This suggests that there is a true structure which 

“generates” the probability distribution for observables2. In fact, this assumption is 

also explicitly adopted by Bowden (1973). Seeing in this light, identification 

conditions are a tool to guarantee that the true structure may be uncovered from the 

probability distribution for observations. We reject the above interpretation of the 

identification problem for two reasons. First of all, even if we consider an economic 

model as a genuine statement about some aspects of economic environment (realist’s 

view), we do know that observations are not produced by some structure within our 

particular model. Secondly, we are leaning towards the view that economic science 

(understood as a condensed description of our sense impressions) has only (more or 

                                                 
2
 Koopmans et al. (1950), p. 63, explicitly state that there is a true structure. They use the term “structural 

equations” to describe “representation according to economic [implicitly, true] structure”. Haavelmo (1944), p. 49, 

claims that “we have to start out by an axiom, postulating that every set of observable variables has associated with 

it one particular “true”, but unknown, probability law” and “our economic theory is indistinguishable from (and 

may even be equivalent to) the statement that the observable variables have the joint probability law”, ibid., p. 88. 
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less) instrumental character3. The model itself is an artificial invention and there is 

no true, hidden structure to be discovered. Of course we are mildly open to the 

realists’ view since an economic model, being idealization, abstraction and theoretical 

isolation, can, in principle, capture “small yet significant truths about the real world”, 

Mäki (2009). In fact, a model may be true (in some sense) thanks to its idealization 

and isolation. It is so because partial representations (about small slices of the 

economic world) may be true about those aspects of the world they are designated to 

represent, see Mäki (2010)4. But the truth–value of economic model is quite different 

from a view implicit in the citation from Koopmans and Reiersøl (1950).  

The position maintained in this paper is that (to paraphrase the frequently cited 

statement of Kadane (1975)) the identification is an algebraic property of the 

underlying, structural model5. We replaced “likelihood” in the original statement of 

Kadane (1975) with a structural model. The latter is equivalent to the likelihood (in 

our framework), yet it emphasizes that we talk about particular presentation of the 

likelihood in terms of the structural equations (not the reduced form). It turns out 

that the language of algebra is very useful to describe properly and succinctly the 

core of identification. To this end, many notions from abstract algebra (particularly, 

the group theory) are introduced that build a self–consistent picture of the algebraic 

identification theory in parametric models.  

The emergence of modern econometric identification theory is closely connected 

with the Simultaneous Equations Model (SEM). As a matter of fact, all econometrics 

textbooks (even those most recent) introduce young economists (and 

econometricians) to the identification problem on the basis of the SEM example. 

Thus, it should not be surprising that our theory is also explained with the help of 

SEM. Although we know why the reduced form SEM is identified, the literature does 

                                                 
3
 To describe this position most effectively we cite from two influential intrumentalists: “In reality, the law always 

contains less than the fact itself, because it does not reproduce the fact as a whole but only in that aspect of it 

which is important for us, the rest being either intentionally or from necessity omitted”, Mach (1898) p. 193, and a 

model “… is not, properly speaking, either true or false, it is, rather, something more or less well selected to stand 

for the reality it represents, and pictures that reality in a more or less precise, a more or less detailed manner”, 

Duhem (1962), p. 168.  
4
 Theoretical assumptions of models (i.e. purposeful or deliberate falsehoods) by neutralizing various peripheral 

factors help us to isolate the fundamental relations (mechanism of interest) which are similar to the real relations 

in reality. Thus for a theory to be true (about isolated major forces, factors, relations etc.) it has to be comprised 

of the unrealistic assumptions. Similar reasoning is contained in Friedman (1953). 
5
 This holds irrespective of whether we take Bayesian or non–Bayesian perspective provided that we define a 

model in appropriate way. However, the present paper confines only to non–Bayesian model. 
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not answer the question: What does the identification of the reduced form SEM have 

to do with the identification of the prime object of inference i.e. the structural SEM? 

As painfully explained by e.g. Marschak (1953), Koopmans (1953), for many 

purposes, the reduced form SEM is useless and it is the structural SEM that 

preservers all theoretical information6. In fact, this is reflected in our position that 

identification conditions must be worked out for the structural not the reduced form 

model. We argue that we unnecessarily lose some information about the structural 

SEM when we rely on the identification of the reduced form SEM. Thus, contrary to 

Koopmans and Hood (1953), we claim that the reduced form model is not so much 

useful starting point to resolve the identification problem, for there are many equally 

or more useful starting points. Indeed, we will show that there are many other forms 

of SEM (except the reduced form) that are also identified. 

 

II. IDENTIFICATION FROM AN ALGEBRA STANDPOINT 

Let Y  denote the sample space, which is a set of all Yy ∈  attainable by at 

least one structure within a model. A (parametric) structural model is a set 

{ ( , ) | , ( ) Y}M p y yθ θ θ= ∈Θ ∈ Μ ⊆ , where, without loss of generality, ( , )p y θ  is a 

probability density function with respect to Lebesgue measure on ( )θΜ  (i.e. for given 

θ , ( , )p y θ  is thought as a data sampling density), ( )θΜ  is a subset of sample space 

that is permissible by a given structure θ ∈ Θ 7. For simplicity we assume ∀ θ ∈ Θ , 

( ) YθΜ = . For (any) fixed Yy ∈ , define a function : { } Im( )p y +×Θ → Θ ⊆ \ , 

( , ) ( )yp y pθ θ θ≡6  (where Im( )Θ  denotes the image of ( )yp Θ ). For reference, ( )yp θ  

(or simply yp ) will be called the likelihood function. By construction, yp  is a 

surjective mapping (i.e. onto). We use the standard notion of identification: θ ∈ Θ  is 

identified if and only if (iff) for every Yy ∈ , ( , ) ( , )p y p yθ θ= ⇒ θ θ= . We find it 

useful to rewrite this as: θ ∈ Θ  is identified iff ( ) ( )y yp pθ θ= ⇒ θ θ= . Strictly 

speaking, the latter is necessary for the original identification condition. However, 

since Yy ∈  is arbitrary, it is “empirically verifiable” that in standard situations 

                                                 
6
 The same insight inspired the Lucas’ critique of the structural SEM. But the point is that, in general, we can 

not dispense with the structural model. It follows that if the identification problem looks different from the 

structural and the reduced form perspective, the structural one is appropriate. 
7
 We characterize our model with the help of density function but not a probability measure for expository 

purposes. Of course doing this we assume that a density (with respect to Lebesgue measure) exists which is 

justified in case of many econometric models. The analysis based on probability measures would involve extra 

technical considerations concerning measurability and instead of the pure group theory we would need the 

topological group theory. This would make the paper less readable and obscure the main idea. 
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there is a full equivalence between the above definitions8. Keeping in mind that ( )yp θ  

is surjective, it means that θ  is identified iff ( )yp θ  is the bijection (one–to–one 

correspondence) from θ  onto ( )yp θ . If θ  is not identified then there is at least one 

other θ ∈ Θ  (θ θ≠ ) such that ( ) ( )y yp pθ θ= . 

The important fact to notice is that any function (not only yp ) gives rise to an 

equivalence relation on its domain. In particular, the function yp  yields the 

equivalence relation on Θ  by setting pθ θ∼  iff ( ) ( )y yp pθ θ= 9, which is easily 

recognized as formal description of the concept of observational equivalence used in 

standard identification theory. In algebra, the equivalence relation “ p∼ ” is sometimes 

called the equivalence kernel of yp . Note that we write “ p∼ ” to emphasize that the 

equivalence relation is associated with yp . In fact, “ p∼ ” induces the equivalence 

relation on Θ  and we say that there is an equivalence relation on Θ  determined by 

yp . Indeed, for given θ ∈ Θ  (and Yy ∈ ) leading to ( )yr p θ= , the equivalence class 

of the element θ ∈ Θ  is the inverse image of Im( )r ∈ Θ  under ()yp ⋅  (so called fiber of 

yp  over r ) i.e. 1 1( ) { | ( ) } ( ( ))y y y yp r p r p pθ θ θ− −= ∈Θ = = . Importantly, the set of all 

fibers is a partition of Θ  i.e. 1
Im( ) ( )r yp r−

∈ ΘΘ = ∪ , where 1{ ( )}yp r−  is a collection of 

nonempty and mutually disjoint subsets of Θ . This means that every θ ∈ Θ  belongs 

to one and only one fiber. The equivalence class of the element θ ∈ Θ  is defined as 
1{ | ( ) ( )} ( ( ))y y y yC p p p pθ θ θ θ θ−= ∈Θ = =  i.e. all elements θ ∈ Θ  that belong to the 

fiber of ( )yp θ  over r . In particular, Cθθ ∈  iff C Cθ θ= . The set of all equivalence 

classes is known as the quotient set of Θ  with respect to p∼  and will be denoted as 

/ pΘ ∼ : { | }Cθ θ= ∈Θ . Let us define the canonical (natural) map : / pπ Θ → Θ ∼ , 

which sends each element θ ∈ Θ  to its equivalence class Cθ  with respect to the 

relation p∼ .  

 

Lemma 1: Let p∼  be an equivalence relation on Θ  determined by yp . If 

: / pπ Θ → Θ ∼  is the canonical map then π  is surjective and ( ) ( )π θ π θ=  iff pθ θ∼  

for ,θ θ ∈ Θ .  

Proof: see e.g. Bourbaki (1968), p. 115, MacLane and Birkhoff (1993), p. 33, 

Steinberger (1993), p. 8. 

                                                 
8
 A good illustrative example is the linear regression model: y eXβ= + . Under the condition that X  is of full 

column rank, if the model is identified for one particular y , X  then it is identified for any other y , X . The non–

identification arises only when X  is not of full column rank. But this is excluded a priori from our considerations. 
9
 One may easily check that this is indeed an equivalence relation which is symmetric, reflexive and transitive. 
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Remark 1: Lemma 1 means that every equivalence relation determined by yp  is the 

same as the equivalence relation determined by the canonical map with respect to 

p∼ . Thus ( ) ( ) ( ) ( )y yp pπ θ π θ θ θ= ⇔ = , and the problem of identification may be 

alternatively stated in terms of the canonical map (instead of yp ). 

 

Lemma 2 (canonical decomposition): Given a surjective map : Im( )yp Θ → Θ  and the 

equivalence relation on Θ  determined by yp , i.e. p∼ , we have a unique decomposition 

yp h π= D , where : / pπ Θ → Θ ∼  is the canonical map and : / ph Θ ∼ → Im( )Θ  

(which is unique and induced by yp ). Moreover, h  is the bijective map.  

Proof: see e.g. Jacobson (1985), pp. 13–14, MacLane and Birkhoff (1993), p. 35, 

Steinberger (1993), p. 9. 

 

From lemma 1 (see also remark 1) we know that the likelihood function and 

canonical map with respect to this likelihood function determine the same equivalence 

relation on Θ . Thus we may consider the original identification problem confining 

ourselves only to the canonical map. The interesting question is whether there are 

other functions (except the canonical map) that determine the same equivalence 

relation as the likelihood function. Moreover, if there are such functions how we can 

construct them. To this end let us introduce a definition: 

 

Definition 1: Two mappings :f YΘ →  and :p XΘ →  determine the same 

equivalence relation on Θ , which we denote as f∼ ≡ p∼ , iff 1 2( ) ( )f fθ θ=  ⇔  

1 2( ) ( )p pθ θ=  (or 1 2 1 2f pθ θ θ θ⇔∼ ∼ ); 1 2,θ θ ∈ Θ . 

 

Proposition 1: Two surjective maps :f YΘ →  and :p XΘ →  determine the same 

equivalence relation on Θ  iff there is a bijection :h X Y→  such that f h p= D . 

Moreover, h f s= D , where s  is a right inverse of p . 

Proof: see appendix 1. 

 

Remark 2: In particular, putting : / pπ Θ → Θ ∼  in place of :p XΘ →  and 

: Im( )yp Θ → Θ  in place of :f YΘ →  in the above proposition we arrive at the 

canonical decomposition (lemma 2). Then p∼ ≡ π∼ ; i.e. lemma 1 follows. However, 
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proposition 1 has more interesting applications and will be crucial in exploring 

identification problem.  

Now, we are in a position to state a definition concerning the core of 

identification: 

 

Definition 2: If the likelihood function : Im( )yp Θ → Θ  may be uniquely decomposed 

as yp h g= D , where : Im( )h X → Θ  is a bijection and :g XΘ →  is a surjection, 

then g  is called the identifying function and X  is said to be identified. Furthermore, 

if :g XΘ →  is also a bijection (i.e. yp  is a bijection), then Θ  is said to be identified. 

 

The definition of the identifying function is exactly the same as in Kadane 

(1975), for if g  is the identifying function then ∀ 1 2,θ θ ∈Θ , 1 2( ) ( )y yp pθ θ=  

⇔ 1 2( ) ( )g gθ θ= . In other words, p∼ ≡ g∼ . Note that in definition 2 what is identified 

is the whole space. In fact, in models where our theory applies there is no need to 

distinguish between local and global identification. When we say that some space is 

identified it means that elements of that space are globally identified. For example, a 

π  function from the canonical decomposition is the identifying function and / pΘ ∼  

is identified. Thus a set of all equivalence classes with respect to the relation p∼  is 

(globally) identified. However we will show that there are many other identified sets. 

 

III. SURVEY OF BASIC GROUP THEORY 

This section contains some basic and more specialized facts from group theory 

(see books on group theory in our reference list for more details). A group G  is a set 

with a binary operation G G G× →  that sends ( , )g h  (for ,g h G∈ ) into g hD , with 

the following properties: 1) g G∀ ∈ , e g g e g= =D D  (e  is an identity element of G ) 

2) g G∀ ∈ , there exists an inverse element 1g G− ∈  satisfying 1 1g g g g e− −= =D D  

and 3) , ,g h u G∀ ∈ , ( ) ( )g h u g h u=D D D D . “D” is a rule of composition of elements 

in G  and will be termed as a binary operation (or, in short, an operation). A subset 

K G⊆  of a group G  is called a subgroup if K  with a binary operation from G  is 

also a group. Each group G  possesses a trivial subgroup, which is one–element set 

consisting only an identity element, and an improper subgroup which is G  itself. If 

K  is a subgroup of G  we denote this fact as K G≤  (K G<  if K  is a proper subset 

of G ). Since elements of G  form a set, all known operations on a set apply e.g. union 

and intersection of sets. In addition, due to group structure of G , we can define one 
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more operation that is fundamental for many notions in group theory. Let H  and K  

be two subsets of elements of a group G  (H  and K  are called complexes), then we 

can define the operation { | ; }HK h k h H k K G= ∈ ∈ ⊆D , which is called the product 

of complexes (or Frobenius product). Implicitly, a product is a group operation in G . 

Thus HK  is the collection of elements in G  that are expressible (in at least one way) 

as a product of an element of H  by an element of K . In general, if H ,K  and D  are 

three subsets of elements (not necessarily groups) then HK D= , means that for 

every ,h H k K∈ ∈  there is some element d D∈  such that h k d=D  and vice versa. 

Thus HK D=  means an equality of sets. Note that K G≤  iff 1KK K K−= =  

( 1 1{ | }K k k K− −= ∈ ). Also if { }K k=  (or { }H h= ), we will write HK Hk=  (or 

HK hK= ). If G  is a group then hG Gh G= =  iff h G∈ . In general if R G⊆  (i.e. 

R  is any subset of elements of a group G ), then RG GR G= = . The sets like Hk  or 

hK  are of special importance. If H K≤  and k K∈ , then { | }Hk h k h H= ∈D  is 

called the right coset of H  in K . Analogously, { | }kH k h h H= ∈D  is called the left 

coset of H  in K . The order of a group G  is its cardinality and will be denoted as 

| |G , which is a common notation in algebra. We hope that such a notation will not 

introduce any confusions (| |G  has nothing to do with an absolute value or 

determinant of G ). For any K G≤ , | |G K: , i.e. the index of a subgroup K  in a 

group G , is the number of distinct left or right cosets of K  in G . Note that 

| |G K: 1=  iff K G=  and | { } |G e: = | |G .  

Let G  be a group and let Θ  be a set. Consider the mapping G ×Θ → Θ  which 

sends ( ,g θ ) into g θD , where “D” is a binary operation. We say that G  acts (or 

operates) on Θ  (or that Θ  is a G –set) if 1) e θ θ=D  for all θ ∈ Θ  (where e  is an 

identity in G ) and 2) 1 2 1 2( ) ( )g g g gθ θ= ∗D D D  for all 1 2,g g G∈  and θ ∈ Θ . The 

binary operation “∗” is an implicit operation in a group G . In general, the G –set 

itself may be the Cartesian product i.e. 1 kΘ = Θ × ×Θ" . In such a case, the action is 

defined as 1 1 1( , , ) ( , , )k k kg g gθ θ θ θ=D … D … D , for all g G∈  and i iθ ∈ Θ . Note that a 

binary operation may be distinct for every iΘ . Actually, this is what is essential to 

develop the theory in our paper. 

A group G  acts transitively on Θ  if for each 1 2,θ θ ∈Θ  there is a g G∈  such 

that 2 1gθ θ= D . In other words, transitivity means that given 0θ ∈ Θ , every θ ∈ Θ  

can be represented as 0gθ θ= D  for some g G∈  (which may be written using the 

set–theoretic equation as 0GθΘ = ). Of course, when 1 kΘ = Θ × ×Θ" , the 

transitivity may be defined in a natural way i.e. G  acts transitively on 1 kΘ × ×Θ"  

if for each (1) (1) (2) (2)
1 1 1( , , ),( , , )k k kθ θ θ θ ∈ Θ × ×Θ… … " , there is a g G∈  such that 



 10 

(1) (1) (2) (2)
1 1( , , ) ( , , )k kgθ θ θ θ=… D … (2) (2)

1 1( , , )k kg gθ θ= D … D . However, in this case the action 

need not be transitive even if G  acts transitively (component–wise) on each iΘ . 

There are two basic notions connected with the theory of G –sets. The first one 

is the orbit. If G  acts on Θ , then the subset Orb { | }g g Gθ θ= ∈ ⊆ΘD  (for given 

θ ∈ Θ) is called the orbit of θ  with respect to G . The basic facts about orbits are 

that Orbθθ ∈  (trivially) and Orb Orb Orbθ θ θθ ∈ ⇔ = . Furthermore, 

gθ θ θ θ⇔ =∼ D  (for some g G∈ ) is the equivalence relation. In general, if 

1 kΘ = Θ × ×Θ"  we can generalize the concept of an orbit as 

1, , 1 1Orb { , , | }
k k kg g g Gθ θ θ θ= ∈… D … D . Note that within each orbit the action of the 

group is transitive (irrespective of whether Θ  is the Cartesian product or not). That 

is why in older literature on groups, the orbits are simply called the transitive sets (or 

sets of transitivity). 

The other notion that occupies central position in the theory of G –sets is the 

point stabilizer. For any given θ ∈ Θ , let us define Stab { | }g G g Gθ θ θ= ∈ = ⊆D  

and call it the point stabilizer of θ . The fundamental fact is that Stabθ  is a subgroup 

of G  (i.e. Stab Gθ ≤ ). Analogously as before, we shall extend the notion of point 

stabilizer to the case when G  operates on 1 kΘ × ×Θ" . To this end, let us define 

1, ,Stab { | ; 1, , }
k i i ig G g i kθ θ θ θ= ∈ = ∀ =… D …  and call it the k –point stabilizer. In 

other words, 
1 1 2, ,Stab Stab Stab Stab

k kθ θ θ θ θ= ∩ ∩ ∩… … . It is clear that k –point 

stabilizer is invariant under the permutations of points e.g. 
1 2 2 1, ,Stab Stabθ θ θ θ= . Since 

Stab
i

Gθ ≤ , for each 1, ,i k= … , and the intersection of subgroups is also a subgroup, 

we have 
1, ,Stab

k
Gθ θ ≤… . Furthermore, if at least one Stab { }

i
eθ = 10, then 

1, ,Stab { }
k

eθ θ =…  (since 
1, ,Stab

kθ θ…  is non–empty as it is a group) and 

1 1 2 1, , ,Stab Stab Stab
kθ θ θ θ θ≥ ≥ ≥ …… . 

Some caution should be reserved for the operation of G  on k –point stabilizers 

space. Since 
1, ,Stab

kθ θ…  is the intersection of groups, we must be sure that 
1, ,Stab

k
g θ θ…  

is a well defined operation11. In general, the product of complexes is not well defined 

in similar situations since we only have an inclusion of the form 

1 1
(Stab Stab ) ( Stab ) ( Stab )

k k
K K Kθ θ θ θ∩ ∩ ⊆ ∩ ∩… … , where K  is a subset of 

elements of G , see e.g. Scott (1987), p. 16. However, the equality holds when K  is a 

single element from G . Thus 
1, ,Stab

k
g θ θ =… 1

(Stab Stab )
k

g θ θ∩ ∩ =…  

                                                 
10

 If Stab { }eθ = , for all θ ∈ Θ , we say that G  acts freely on Θ . 
11

 Since g G∈  and the stabilizer is a subgroup of G , 
1 1, , , ,Stab : { | Stab }

k k
g g h hθ θ θ θ= ∈… …D  “inherits” the 

operation from a group G . 
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1
( Stab ) ( Stab )

k
g gθ θ∩ ∩… , for all g G∈ 12. Note that in contrast to the operation of G  

on k–point orbits, since g G∈  and Stab
i

Gθ < , the operation in 

Stab : { |
i

g g hθ = D Stab }
i

h θ∈  is the same for each i, and it is an implicit operation in 

a group G . Furthermore, Stab
i

g θ  is recognized as the left coset of Stab
iθ
 in G .  

There is a well known connection between one–point orbits and stabilizers i.e. 

the fundamental orbit–stabilizer theorem: | Stab |G θ: = |Orb |θ . The following lemma 

generalizes this theorem in the case of the group action on the Cartesian product and 

gives a useful result on counting elements in the k –point orbit:  

 

Lemma 3:  

a) 
1 2, , ,| Stab |

k
G θ θ θ: … =

1 2, , ,| Orb |
kθ θ θ… ; (orbit–k–point–stabilizer theorem); 

b) 
1 2, , ,| Stab |

k
G θ θ θ: … =

1 1 1 2 1 12 , 3 , ,| Orb | | Stab | | Stab | | Stab |
k kθ θ θ θ θ θθ θ θ
−

⋅ ⋅ …"  or 

  
1 2, , ,| Orb |

kθ θ θ… =
1 1 1 2 1 12 , 3 , ,| Orb | | Stab | | Stab | | Stab |

k kθ θ θ θ θ θθ θ θ
−

⋅ ⋅ …" ; 

where 
1 1Orb Gθ θ≡ = 1{ | }g g Gθ ∈D  and 

1 1, ,Stab
i iθ θ θ
−

=… 1 1, ,{ | Stab }
iig g θ θθ
−

∈ …D , for 

2, ,i k= … , is the orbit of iθ  with respect to 
1 1, ,Stab

iθ θ −… . 

Proof: see appendix 2. 

 

In order to develop our theory we need the following definition: 

 

Definition 3: The action of G  on 1 kΘ × ×Θ"  is orbit–regular if to any 

(1) (1) (1)
1( , , )kθ θ θ= …  and (2) (2) (2)

1( , , )kθ θ θ= …  belonging to the same orbit there 

corresponds exactly one g G∈  such that (2) (1)gθ θ= D . 

 

Note that in definition 3 the orbit is arbitrary, thus it holds for every orbit.  

 

Proposition 2: The action of G  on 1 kΘ × ×Θ"  is orbit–regular iff 
1, ,Stab { }

k
eθ θ =…  

for every 1 1( , , )k kθ θ ∈Θ × ×Θ… " . 

Proof: see appendix 3. 

 

Proposition 3: If the action of G  on 1 kΘ × ×Θ"  is orbit–regular then 
1, ,| Orb |

kθ θ… =  

| |G ; i.e. each orbit has the same cardinality. 

                                                 
12

 The proof: 
1 1

1 1(Stab Stab ) (Stab Stab ) Stab Stab
k k i i

h g g h g h h gθ θ θ θ θ θ
− −∈ ∩ ∩ ⇔ ∈ ∩ ∩ ⇔ ∈ ⇔ ∈… D … D ; 

1, ,i k∀ = … ; 
1

( Stab ) ( Stab )
k

h g gθ θ⇔ ∈ ∩ ∩… . 
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Proof: see appendix 4. 

 

Remark 3: If the action is not orbit–regular then the appropriate formula for counting 

elements in the orbit is given in lemma 3 b). 

 

From now on, we use the simplified notation: 1: ( , , )kθ θ θ= … , 1: kΘ = Θ × ×Θ" . 

As a consequence, 1 1: ( , , )k kg g gθ θ θ=D D … D , Orbθ :=
1, ,Orb

kθ θ… , Stabθ :=
1, ,Stab

kθ θ… . 

 

IV. RELATIONSHIP BETWEEN EQUIVALENCE CLASS AND ORBIT 

It turns out that there is a close connection between equivalence class and orbit. 

In fact, as the next section demonstrates, in a number of widely used econometric 

models, equivalence classes are simply orbits. This has far reaching consequences. We 

may ignore the characteristics of the likelihood function and concentrate our 

analytical efforts only on orbit properties. Thus when equivalence class is an orbit the 

approach to identification based on checking local properties of the likelihood (i.e. 

information matrix) is rather misplaced.  

The following definition, which is fundamental in statistical invariance theory, is 

also quite important for arguments in the present paper: 

  

Definition 4: A function :f YΘ →  is said to be invariant under some action of a 

group G  on Θ  (in short, G –invariant) if ( ) ( )f f gθ θ= D  for any g G∈ , θ ∈ Θ . 

Moreover, a function :f YΘ →  is called maximal G –invariant if f  is G –invariant 

and for any 1 2,θ θ ∈ Θ , 1 2( ) ( )f fθ θ=  implies 1 2gθ θ= D  for some g G∈  i.e. 1θ  and 2θ  

lie on the same orbit. 

 

The next proposition is a key result in this section: 

 

Proposition 4: Suppose the likelihood function : Im( )yp Θ → Θ  is G –invariant. Then 

the equivalence class { | ( ) ( )}y yC p pθ θ θ θ= ∈ Θ =  is a disjoint union of orbits (one of 

which is Orb { | }g g Gθ θ= ∈D ). If : Im( )yp Θ → Θ  is maximal G –invariant then 

OrbCθ θ= . 

Proof: see appendix 5. 
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Remark 4: Usually the proof that OrbCθ θ=  will proceed in two steps. First we shall 

show that the likelihood is G –invariant. Then we use the proof by reductio ad 

absurdum: we assume OrbCθ θ≠ , which means that Cθ  contains at least two orbits, 

say 
1

Orbθ  and 
2

Orbθ  (
1 2

Orb Orbθ θ≠ ⇒
1 2

Orb Orbθ θ∩ = ∅), and choose some 

11 Orbθθ ∈  and 
22 Orbθθ ∈ . If 1 2( ) ( )y yp pθ θ=  implies 1 2gθ θ= D  for some g G∈ , then 

1 2
Orb Orbθ θ= . The last statement contradicts 

1 2
Orb Orbθ θ≠ , therefore OrbCθ θ= . 

The issue whether 1 2( ) ( )y yp pθ θ=  implies 1 2gθ θ= D  may be addressed with several 

methods. One option is to use theorem 4 in Rothenberg (1971). To this end we 

should no longer treat the data as given and explicitly introduce the sample space Y . 

Thus we work with the data sampling density ( , )p y θ  indexed by the parameter. 

Now, if it happens that ( ) ( ( ))h E f yθ =  for some functions h  and f  (where E  

denotes expectation), then 1 2( ) ( )y yp pθ θ= ≡ 1 2( , ) ( , )p y p yθ θ= ⇒ 1( ) ( , )( )
Y

f y p y dyθ =∫  

2( ) ( , )( )
Y

f y p y dyθ∫ ⇒ 1 2( ) ( )h hθ θ= . If we manage to prove 1 2 1 2( ) ( )h h gθ θ θ θ= ⇒ = D , 

then OrbCθ θ= . Usually, 1 2 1 2( ) ( )h h gθ θ θ θ= ⇒ = D  is easier to demonstrate than the 

original problem (i.e. 1 2( ) ( )y yp pθ θ= ⇒ 1 2gθ θ= D ). A second alternative is to use 

some integral transform of the probability density function e.g. characteristic 

function. That is, we can try to check whether 1 2 1 2( ) ( ) gφ θ φ θ θ θ= ⇒ = D , where ( )φ θ  

is some integral transform of ( )yp θ  e.g. the characteristic function. Again, the latter 

implication may be less difficult to prove than the original problem.  

 

Remark 5: The well known result is that any G –invariant function must be a 

function of some maximal G –invariant, see e.g. Lehmann (1986), p. 285. Since the 

maximal G –invariant takes distinct values on distinct orbits, it provides an orbit 

index. Thus given the G –invariant likelihood : Im( )yp Θ → Θ , there exists a k  

function such that ( ) ( ( ))yp k fθ θ= , where f  is maximal G –invariant. Now, if k  

turns out to be a bijection then ∀ 1 2,θ θ ∈ Θ , 1 2( ) ( )y yp pθ θ= 1 2( ) ( )f fθ θ⇔ =  

1 2gθ θ⇔ = D . Thus the question of whether OrbCθ θ=  leads naturally to the 

question about the existence of the bijective k  mapping between some maximal G –

invariant and the likelihood function. It follows that proposition 4 may be weakened 

to the extent that if yp k f= D  is a function of some maximal G –invariant f  and k  

is a bijection, then OrbCθ θ= . 
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V. EXAMPLES 

This section provides some models in which the equivalence classes are 

generated by the operation of a group on parameter spaces. We selected models on 

the basis of two premises. First, to illustrate the fact that nice algebraic structures 

characterize very popular models and the group theory applies quite naturally and 

commonly. Secondly, to demonstrate that the concept of group action accommodates 

quite large specific operations i.e. from an algebraic perspective many apparently 

distinct models are, in fact, very similar. In all examples the fact that OrbCθ θ=  

may be established by the methods explained in remark 4. Let us begin with a basic, 

pedagogical example: 

 

Example 1 (Artificial but commonly stated to explain the identification problem): 

1 2t ty β β ε= + +           (1) 

where ty  is a one–dimensional endogenous variable, 1 2,β β ∈ \  and 

: (1 1) . . .t i i dε × ∼ 2(0, )N σ . Let 2
1 2( , , )θ β β σ= ∈Θ , then Cθ = Orbθ =  

2
1 1 2 2 3{ , , | }g g g gβ β σ ∈D D D \ , where 1 1 1:g gβ β= +D , 2 2 2:g gβ β= −D  and 

2 2
3 :g σ σ=D 13. Note that the operating group is real numbers with an addition as the 

group operation. Such a group will be denoted as ( , )+\ . It is easily verified that 

( , )+\  acts on Θ  (by checking two conditions that characterize a group action)14.  

 

Example 2 (Multiple indicators and multiple causes of a single latent variable): 

t t ty y uβ ∗= +           (2) 

1 1t t k kt ty x xα α ε∗ = + + +…  

This model was explicitly introduced by Jöreskog and Goldberger (1975). Let ty  be a 

one–dimensional endogenous variable, ty∗  is a scalar latent variable, 

: (1 1) . . .tu i i d× ∼ 2(0, )uN σ , : (1 1) . . .t i i dε × ∼ 2(0, )N εσ , cov( , ) 0t tuε =  and 1 , ,t ktx x…  are 

exogenous causes. Let 2 2
1( , , , , , )k u εθ β α α σ σ= ∈Θ… . Assuming 0β ≠ , then 

2 2
1 2 1 3 4Orb { , ( , , ), , | \ {0}}k uC g g g g gθ θ εβ α α σ σ= = ∈D D … D D \ , where 1

1 : gg β β=D , 

2 1 1( , , ) : ( , , )k kg g gα α α α=D … … , 2 2 2
3 :g gε εσ σ=D  and 2 2

4 :u ug σ σ=D . Note that this time, 

                                                 
13

 The latter action is called the trivial action in which an orbit is one–element subset i.e. Orb { }θ θ=  ( θ∀ ∈ Θ ), 

and we say that θ  is a fixed point with respect to the action of a group. 
14

 In fact this example is not so far from reality. Similar form of non–identification appears in the following model 

(see e.g. Prakasa Rao (1992), p. 159). Suppose 1X  and 2X  are independently distributed with the exponential 

density ( ) exp{ }i ip x xλ λ= −  (for 1,2i =  and 0x > ). Then 1 2max{ , }Y X X=  has density ( ) exp{ }p y yλ λ= − , 

where 1 2λ λ λ= + . Clearly, 1 gλ +  and 2 gλ −  ( g ∈ \ ) result in the same distribution. 
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the operating group is real numbers excluding 0 with a group operation of the usual 

multiplication. Such a group will be denoted as ( , )×\ . It is easily verified that ( , )×\  

acts on Θ . Thus Cθ  is an orbit of 2 2
1( , , , , , )k uεβ α α σ σ… . 

 

Example 3 (Finite Mixture Models (FMM)): 
1 1
2 22 21 1

2 21 1 2 2( ) (2 ) exp{ ( ) } (2 ) exp{ ( ) }t t tpdf y p y p yπ μ π μ− −= ⋅ − − + ⋅ − −   (3) 

where ty  is a one–dimensional endogenous variable, and 0 1ip≤ ≤ , 1 2 1p p+ = , 

1 2,μ μ ∈ \ . Let 1 1 2 2( , , , )p pθ μ μ= ∈Θ , then 1 1 2 2 2Orb { ( , , , ) | }C g p p g Sθ θ μ μ= = ∈D , 

where 2S  denotes the symmetric group of degree 2 (in general, nS  is the group of 

permutations which has !n  elements i.e. | |nS !n= ) and 

1 1 2 2 (1) (1) (2) (2)( , , , ) : ( , , , )g g g gg p p p pμ μ μ μ=D . Clearly, 2S  operates on indices by permuting 

them.  

 

In the remaining examples the operating group will be either the general linear 

group or its subgroup i.e. an orthogonal group. It is assumed that the group 

operation is always the usual matrix multiplication. We begin with a model which to 

a large extent stimulated the formal identification theory: 

 

Example 4 (Simultaneous Equations Model (SEM)): 

t t tAy Bx u+ =           (4) 

where ty  is an ( 1)m×  vector of endogenous variables, tx  is a ( 1)k ×  vector of 

exogenous variables, : ( 1) . . .tu m i i d× ∼ (0, )N Σ , and the coefficients matrices 

: ( )A m m×  (nonsingular) and : ( )B m k× . Let ( , , )A Bθ = Σ ∈Θ , then 

1 2 3Orb { , , | }mC g A g B g g GLθ θ= = Σ ∈D D D , where 1 :g A gA=D , 2 :g B gB=D  and 

3 :g g g ′Σ = ΣD  and mGL  is the general linear group of m m×  real matrices i.e. 

{ | det( ) 0}m m

mGL g g×= ∈ ≠\ . It is easily verified that mGL  operates on Θ  (by 

checking two conditions that characterize a group action). We note that OrbCθ θ=  

was demonstrated by Koopmans et al. (1950), pp. 74–76. 

 

Example 5 (Structural VAR (SVAR)): 

( )t t tAy Fy ε−+ =           (5) 

where ty  is an ( 1)m×  vector of endogenous variables, ( )ty −  is a ( 1)k ×  vector of 

lagged endogenous variables, : ( 1) . . .t m i i dε × ∼ (0, I )mN , and the coefficients matrices 

: ( )A m m×  (nonsingular) and : ( )F m k× . Let ( , )A Fθ = ∈Θ , then 
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1 2Orb { , | }mC g A g F g Oθ θ= = ∈D D , where 1 :g A gA=D  and 2 :g F gF=D  and mO  is 

the orthogonal group of m m×  matrices i.e. { | I }m m

m m mO g g g gg GL× ′ ′= ∈ = = <\ . 

It is easily verified that mO  operates on Θ .  

 

Example 6 (Error Correction Model (ECM)): 

1 ( )t t t ty y y uαβ − −+ + Γ =+ +         (6) 

where +  is a difference operator, ty  is an ( 1)m×  vector of endogenous variables, 

( )ty −  is a ( 1)k ×  vector of lagged endogenous variables, : ( 1) . . .tu m i i d× ∼ (0, )N Σ , and 

matrices of coefficients : ( )m kΓ × , : ( )m rα × , rank( ) rα =  and : ( )r mβ × , 

rank( ) rβ =  (where r m≤ ). Let us decompose [ ]β λ η= #  and assume : ( )r rλ ×  is 

nonsingular. Let ( , , , )θ α β= Γ Σ ∈Θ , then OrbCθ θ= =  

1 2 3 4{ , , , | }rg g g g g GLα β= Γ Σ ∈D D D D , where 1
1 :g gα α −=D , 2 :g gβ β=D , 

3 :g Γ = ΓD  and 4 :g Σ = ΣD . It is easily verified that rGL  operates on Θ . Thus, in 

fact, Cθ  is an orbit of ( , , , )α β Γ Σ . We note that an analogous group operation 

generates the equivalence class in the observable index models (see Sargent and Sims 

(1977), Sims (1981)), multivariate autoregressive index models (see Reinsel (1983)) 

and nested reduced–rank autoregressive models (see Ahn and Reinsel (1988)).  

 

Example 7 (Factor model): 

t t ty f ε= Λ +            (7) 

where ty  is an ( 1)n×  vector of endogenous variables, : ( )n kΛ ×  is a matrix of factor 

loadings with rank( ) k nΛ = ≤ , : ( 1) . . .tf k i i d× ∼ (0, )N Ω  (common factors) and 

: ( 1) . . .t n i i dε × ∼ (0, )N Σ  ( tf  and tε  independent). Let us decompose [ ]′ ′ ′Λ = Ψ ϒ#  

and assume : ( )k kΨ ×  is nonsingular. Let ( , , )θ = Λ Ω Σ ∈Θ , then OrbCθ θ= =  

1 2 3{ , , | }kg g g g GLΛ Ω Σ ∈D D D , where 1
1 :g g−Λ = ΛD , 2 :g g g ′Ω = ΩD  and 

3 :g Σ = ΣD . It is easily verified that kGL  operates on Θ . Obviously, if IkΩ = , then 

it is kO  (i.e. orthogonal group) that acts on Θ  (in an analogous manner). Hence Cθ  

is an orbit of ( , , )Λ Ω Σ . 

 

Since the above examples constitute well known models, a G –invariance of the 

likelihood function in any case is almost self–evident. In general, this may not be the 

case. However, the necessary and sufficient conditions for the likelihood to be G –

invariant may be obtained using results of Brillinger (1963) and Fraser (1967). In 

addition, Brillinger (1963) gave two methods for constructing the group action (if the 

likelihood is G –invariant). 
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VI. IDENTIFICATION OF THE ORBIT SPACE: A GENERAL VIEW 

If we confine ourselves to examples from section V, we may say that orbit space 

is identified. However, although orbits are point elements in the orbit space they are 

not those points that we are looking for (actually, orbits are subsets of parameter 

space). The “points” that we are interested in, are parameter points in the Euclidean 

spaces. If we manage to isolate one point in every orbit then we obtain an index set 

for the orbits. Using the group theory terminology, those parameter points may be 

called the orbit representatives: 

 

Definition 5: Let Θ  be a G –set. A set of orbit representatives is a subset Λ ⊆Θ  such 

that a) if two distinct 1 2,λ λ ∈ Λ  then 
1 2

Orb Orbλ λ∩ = ∅  and b) Orbλ λ∈ΛΘ = ∪ . 

 

The idea is that if we take one parameter point (i.e. representative) from each 

orbit, we obtain a “catalog of unique names” for all orbits. Since the space of orbits 

forms a partition of the whole parameter space, a “catalog of names” exhausts the 

whole parameter space. Every parameter in the parameter space is cataloged under a 

unique “name” and those “names” are written in terms of parameter points. 

Moreover, there is a one–to–one correspondence between orbits and their 

representatives (i.e. “names”). We no longer have to work with orbits. Their “names” 

are sufficient for us. Thus we arrive at the following definition: 

 

Definition 6: An identifying rule is any rule that allows us to choose a unique 

representative from every orbit.  

 

Such a rule must guarantee that there is one and only one element in every 

orbit that obeys the identifying rule. Of course every element from the given orbit 

may be a representative of that orbit. The point is that we have to provide the rule 

that allows us to pick some element from an orbit in an unambiguous way. Note that 

we talk about the situation when there is a rule that allows for a unique choice of the 

representative but this has nothing to do with imposing any restrictions on the 

parameter space. An identifying rule is not arbitrary if the model is constructed in 

such a way that every orbit is in fact a single–element set (e.g. standard linear 

regression model). Otherwise, an identifying rule is arbitrary and there is necessarily 

more than one rule. We emphasize that any identifying rule that leads to the choice 



 18 

of a unique representative in every orbit serves the purpose i.e. we can not say that 

any identifying rule is better than any other (valid) one. However, some identifying 

rules may be more useful than their alternatives for the particular inferential 

problem. 

Let us formalize the concept of the identifying rule. To this end assume that 

OrbCθ θ= . Every identifying rule will materialize through some function :f Θ → Λ  

(Λ ⊆Θ  denotes the set of orbit representatives) that sends any Orb ( Orb )λ θθ ∈ =  to 

λ  (where λ ∈ Λ ). Note that we must have gλ θ= D  (for some g G∈ ). In other 

words, the function f  is such that for every 1θ  and 2θ  that belong to the same orbit 

i.e. 1 2gθ θ= D  for some g G∈ , we have 1 2( ) ( )f fθ θ=  i.e. f  is G –invariant. Note 

that f  is surjective by construction. For future reference we will simply call 

:f Θ → Λ , an identifying rule. The following lemma gives various properties of f  

and the spaces on which it operates: 

 

Lemma 4: Provided that OrbCθ θ=  and :f Θ → Λ  is an identifying rule, we have: 

a) : Im( )yp Θ → Θ  and :f Θ → Λ  determine the same equivalence relation on Θ  i.e. 

p∼ ≡ f∼ .  

b) the space of orbit representatives i.e. Λ , is identified, and :f Θ → Λ  is the 

identifying function. 

c) f  is maximal G –invariant. 

Proof: see appendix 6. 

 

The above results suggest that given OrbCθ θ= , the application of any 

identifying rule results in the identified space of orbit representatives. Since p∼ ≡ f∼  

(by lemma 4 a)), if :f Θ → Λ  is a bijection, then 1 2 1 2 1 2f pθ θ θ θ θ θ⇔ ⇔ =∼ ∼  i.e. 

we arrive at the identification on the primary space of parameters i.e. Θ . The 

problem is that the mapping f  is only surjective. Evidently, to identify Θ  we should 

impose some restrictions on the parameter space i.e. to work with the restricted 

model rΘ ⊂Θ . Whether we require :f Θ → Λ  to be a bijection depends on the 

inferential problem. In fact, in some cases identification of Λ  will suffice.  
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VII. CONDITIONS FOR IDENTIFICATION OF THE ORBIT 

REPRESENTATIVES SPACE 

In the previous section we introduced the notion of the identifying rule. The 

question of practical interest is when a given rule is identifying. That is, we need a 

condition to check that an application of the given rule will guarantee that in every 

orbit there is one and only one element that is consistent with this rule. To save the 

space, we continue to denote 1: ( , , )kθ θ θ= … , 1: kΘ = Θ × ×Θ…  with all consequences 

for actions, stabilizers, orbits etc.  

Any identifying rule leads to a statement: if you confine yourself to checking the 

particular subset of the original parameter space Θ , it turns out that each orbit 

contains exactly one element that belongs to that subset. Thus, essentially, any 

identifying rule is a kind of restriction of the parameter space. However, we 

emphasize that identifying rule is not a restriction in the strict sense, for to find the 

orbit representative we do not have to impose any restrictions on Θ , at all15. Let us 

denote the subset of the parameter space by rΘ ⊂Θ  (where the subscript r stands 

for a quasi–restriction nature of the orbit representatives space). That is, we simply 

put rΛ = Θ . We must ensure that in every orbit there is one and only one element 

that belongs to rΘ . If this is the case, the given rule is identifying. Otherwise, a rule 

is not identifying. 

Without loss of generality let us focus on any orbit and denote it simply as 

Orbθ . Assume that there is some r rθ ∈Θ  that belongs to Orbθ . In such a case we 

obtain Orbθ = Orb
rθ
(so as there is a g G∈  such that rgθ θ= D ). In fact, all elements 

in Orb
rθ
 are represented as rg θD  for some g G∈ . That is, as g  runs over G , rg θD  

runs over all elements in Orb
rθ
(= Orbθ ). Now, it may happen that in Orb

rθ
 there is 

at least one other r rθ ∈ Θ . If this is the case then the subset rΘ  is not restrictive 

enough to guarantee that in every orbit there is only one element that belongs to rΘ . 

Let us define Orb
rr r θ

∗Θ = Θ ∩  (i.e. a set of those elements in the orbit that also 

belong to rΘ ). By the transitivity of G  in Orb
rθ
, all elements in r

∗Θ  must be 

represented as rg θD  for some g G∈ . Let us define { | }r rS g G g θ ∗= ∈ ∈ ΘD . We 

have the basic result on identification: 

 

                                                 
15

 For example, as will be clear later, the reduced form parameters of SEM are orbit representatives, but they do 

not entail any restrictions on the structural form parameters. 
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Proposition 5: Assume the action of G  on Θ  is orbit–regular, then | |S = | |r

∗Θ . In 

particular, | |S 1= ⇔ { }S e= Orb { }
rr r rθ θ∗⇔ Θ = Θ ∩ =  (where e  is the identity 

element in a group G ). If { }S e= , each orbit may be trivially partitioned into the 

singletons as 1 2 \{ }Orb ( )
r r r r r g G e rg g gθ θ θ θ θ θ∈= ∪ ∪ ∪ = ∪ ∪D D " D . 

Proof: see appendix 7. 

 

Let H  be the smallest subgroup of G  that contains S  (i.e. an intersection of all 

subgroups containing S ). As g  runs over H , rg θD  runs over some subset 

Orb
r

B θ⊆ . Clearly, r B∗Θ ⊆ . Define the subgroup { | }rH g G g B Gθ= ∈ ∈ ≤D . By 

definition, S H⊆ . To proceed further we need a definition: 

 

Definition 7: Let a group G  act transitively on a set Ω . A subset Φ ⊆Ω  is said to be 

a block for the action of G  if, g G∀ ∈  we have gΦ = Φ  or gΦ ∩Φ = ∅ . If Φ  is not 

empty, contains at least two elements and is a proper subset of Ω , then Φ  is called an 

imprimitive block. Whereas, if Φ  is a singleton i.e. { }φΦ = , we will call it the trivial 

block and in such a case ∀ g G∈ , g φ φ=D  or g φ φ≠D . 

 

Intuitively, if 1 2,φ φ ∈ Φ  then, for all g G∈ , either 1g φ ∈ ΦD  and 2g φ ∈ ΦD  or 

1g φ ∉ ΦD  and 2g φ ∉ ΦD . Thus every g G∈  either permutes the elements of Φ  

within itself or move them all outside Φ . There are always two kinds of primitive 

blocks which are one–element subsets of Ω  and the whole Ω . Moreover, if Φ  is a 

block then gΦ  (for each g G∈ ) is also a block and a finite intersection of blocks is 

also a block. 

 

Lemma 5: Assume Stab
r

H Gθ ≤ ≤ , then { | } { | }rH g G g B g G gB Bθ= ∈ ∈ = ∈ =D  

and B  is a block for the action of G . 

Proof: see appendix 8. 

 

If the action is orbit–regular then the assumption Stab
r

Hθ ≤  in lemma 5 is not 

restrictive at all (since then Stab { }
r

eθ =  and every subgroup of G  contains e ). In 

the literature, H  is often denoted as { }Stab B  and called the global (or setwise) 

stabilizer of B  in G . By lemma 5, { }Stab { | }B g G gB B= ∈ =  is a subgroup of G , 

i.e. { }Stab B G≤ . Furthermore, { }Stab Stabb B≤ , for all b B∈ , see e.g. Rose (1978), p. 

71. If B  is the imprimitive block then { }Stab Stabb B G< < , see e.g. Hall (1959), p. 
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65, and the whole orbit may be partitioned as Orb
r

Bθ τ τ∈Τ= ∪ , where GΤ ⊆  is a 

right transversal of { }Stab B  in G 16. Moreover, | |Τ = { }| Stab |BG : , | |Bτ = | |B =  

{ }| Stab Stab |B b:  and |Orb |
rθ

= | |B ⋅ | |Τ . For the proofs and discussion of the last 

assertions see e.g. Robinson (1982), pp. 190–191, Hall (1959), p. 65, Huppert (1967), 

pp. 145–146, Aschbacher (1988), p. 18. The above results may be important in 

studies on the nature of identification in various models. 

Since H  is the smallest subgroup of G  that contains S , B  is the smallest block 

containing r

∗Θ . Of course there is always one such a (primitive) block i.e. the orbit 

Orb
rθ
. If there is a subgroup W  such that Stab

r
W Gθ < < , then there is also other 

block which is properly contained in Orb
rθ
, see e.g. Robinson (1982), p. 191, or Rose 

(1978), p. 26817. Wielandt (1964), theorem 7.3., provides a method to construct a 

block that contains given element e.g. rθ . The following lemma gives a condition for 

r

∗Θ  not to be a block: 

 

Lemma 6: Let Orb
rr θ

∗Θ ⊂  be nonempty. Assume that for any two distinct 

1 2, Orb
rθ

θ θ ∈  there exists g G∈  such that exactly one of 1g θD  and 2g θD  belongs to 

r

∗Θ . Then, if r

∗Θ  contains at least two elements, r

∗Θ  is not a block, and in this case, 

the only block containing r

∗Θ  is Orb
rθ
. 

Proof: see e.g. Bhattacharjee et al. (1998), pp. 34–35. 

 

Proposition 6: Let the action of G  on Θ  be orbit–regular and B  be the smallest block 

containing r

∗Θ . If { }Stab { }B e= , then Orb { }
rr r rθ θ∗Θ = Θ ∩ = .  

Proof: see appendix 9. 

 

Intuition behind the above propositions is as follows. If rΘ  is chosen so as r

∗Θ  is 

a singleton and because Orb
rr θθ ∈  and r rθ ∈Θ , we must have { }r rθ

∗Θ = . In other 

words, in every orbit there is one and only one element (i.e. rθ ) that belongs to the 

subset rΘ . In such a case { }r rθ
∗Θ =  is readily seen as the trivial block for the action 

                                                 
16

 A subset GΤ ⊆  is called a right transversal for { }Stab B  in G , if it contains exactly one element from each 

right coset of { }Stab B  in G . Thus Τ  is the complete set of representatives from all right cosets. In such a case 

we have the following partition { }Stab BG τ τ∈Τ= ∪ . Compare the analogous definition of orbit representatives (i.e. 

definition 5).  
17

 In many econometric models, such a proper subgroup of G exists. For example, in SEM, mG GL= , and there 

are many proper subgroups e.g. orthogonal group, group of lower triangular matrices with ones on the diagonal 

etc. 
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of G  in Orb
rθ
. If, in addition, the action is orbit–regular then { }r rg g eθ θ= ⇒ =D  

and every \ { }g G e∈  (all g ’s except the identity element) moves rθ  to some 

Orb
rθ

θ ∈  ( rθ θ≠ ), i.e. rgθ θ= D . Of course rθ ∗⊄Θ  since { }r rθ
∗Θ = . Then, rθ  may 

serve as the representative for Orb
rθ
 and the given restriction rΘ ⊂Θ  may be 

thought as an identifying rule. By lemma 5, { }Stab BH ≡ , and H  is the smallest 

group containing S . As a consequence, if H { }e=  then S { }e=  (since S  is 

nonempty). Lastly, by symmetry argument, if the subset rΘ ⊂Θ  is chosen so as the 

given Orb
rθ
 contains exactly one element r rθ ∈ Θ , then every other orbit also 

contains only one element that belongs to rΘ  (since rθ  was arbitrary). 

 

Remark 6: There is a bijection between the set of blocks containing given 

r r Bθ ∗∈Θ ⊆  and the set of subgroups of G  which contain Stab
rθ
(see e.g. Alperin and 

Bell (1995), pp. 32–33). Moreover, if 1B  and 2B  are two blocks containing rθ  and 

such that 1 2B B⊆ , then 
1 2{ } { }Stab StabB B≤ . In particular, to the subgroup { }Stab B  

there corresponds a block { }Stab B rθ  (see Dixon and Mortimer (1996), theorem 1.5A). 

Thus the condition { }Stab { }B e=  implies that there is only one block that contains 

rθ , which is rθ  itself. Moreover, if the block is trivial then the only G –invariant 

equivalence relation18 that may be put on Orb
rθ
 is a relation of equality of elements 

(i.e. 1 2θ θ∼ ⇔ 1 2θ θ= ), see Bhattacharjee et al. (1998), p. 33. 

The above criteria to check if the given rule is identifying relied heavily on the 

group theory. In particular, orbit–regularity played a prominent role. There is also 

one other useful criterion to check the validity of the identifying rule. As explained in 

the preceding section, every identifying rule is essentially some function :f Θ → Λ  

that sends any Orbλθ ∈  to λ  (i.e. an element of orbit representatives space). Lemma 

4 c) shows that every identifying rule must be such that f  is maximal G –invariant. 

Evidently, the converse also holds: 

 

Proposition 7: Assume that OrbCθ θ=  and :f XΘ →  is a maximal G –invariant 

surjective function, where X ⊆Θ . Then X  is an identified space of orbit 

representatives i.e. f  is an identifying rule. 

Proof: see appendix 10. 

 

                                                 
18

 The equivalence relation is G –invariant if 1 2 1 2g gθ θ θ θ⇔∼ D ∼ D ; g G∀ ∈ . 
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Taking into account lemma 4 c) we have a useful defining property of the 

identifying rule: 

 

Corollary 1: Given OrbCθ θ= , a function :f XΘ →  (X ⊆Θ ) is an identifying rule 

iff f  is maximal G –invariant, surjective function. 

 

The above corollary (or proposition 7) constitutes an easy working criterion to 

decide whether the given rule is identifying or not. 

 

VIII. IDENTIFICATION OF THE PARAMETER SPACE: SEM CASE 

Interestingly, the concept of identification on the primary parameter space i.e. 

Θ , is analogous to that presented in the previous section. In general, there is only 

one way to identify Θ . We must impose enough restrictions on Θ , so as the 

likelihood is a bijection. If OrbCθ θ= , this is the same as to require that in every 

orbit there is one and only one element that fulfills all restrictions imposed on Θ . 

But this is simply the requirement for a given rule to be identifying. Now, an analogy 

of the standard method of identification due to restrictions with an application of the 

identifying rule is clear. Indeed, these two approaches lead to choosing the restriction 

rΘ ⊂Θ  such that : Im( )y r rp Θ → Θ  will become a bijection. Thus, the standard 

approach to identify the parameter space (i.e. due to restrictions) is a particular 

choice of the identifying rule. Therefore all results and discussion from the previous 

section apply without any modifications.  

In general, an introduction of restrictions into a model may be direct or indirect. 

The direct method (to introduce restrictions) does not refer to the orbit 

representatives space, whereas in the indirect method the orbit representative space 

play a crucial role. In the direct method we simply choose the restriction rΘ ⊂Θ , 

which implies that in every orbit there is exactly one element that belongs to rΘ . In 

the indirect method we first provide the identifying rule that leads to choosing some 

space of orbit representatives i.e. Λ . Given Λ , it is only in the next step when we 

impose restrictions on Θ . That is, we impose restrictions rΘ ⊂Θ  so as the map 

: rf Θ → Λ  is a bijection. An example of the indirect method is an introduction of 

sufficient number of restrictions in order that the mapping between the reduced form 

and the structural form parameters in SEM is one–to–one correspondence. 
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In fact, our general strategy to identify the parameter space is a creative 

elaboration of the existing methodology (which, for reference, will be called the 

traditional approach). In the traditional approach, we apply only one identifying rule: 

choosing the reduced form parameters which are unique orbit representatives. Our 

algebraic insight into the identification problem suggests that we can use any 

identifying rule, because any such a rule allows us to pick a unique element in every 

orbit. The merits of our approach follow from the fact that, in general, it is the 

parameters space (not the orbit representatives space) that we are interested in. But 

the conditions for a bijection between the parameter space and orbit representatives 

space (i.e. :f Θ → Λ ) depend on the algebraic structure of the latter (i.e. Λ ). In fact, 

as will be clear later, there may be less restrictive identifying rules than the 

traditional identifying rule (i.e. choosing reduced form parameters) in the sense that 

they require smaller number of restrictions imposed on Θ  to have a bijection 

:f Θ → Λ . To explain this issue carefully there is no better option than to resort to 

the familiar SEM example. Needless to say, although our discussion will be confined 

to SEM, the method proper may be applied to all examples in section V (in general, 

in all cases when equivalence classes are equal to orbits). 

It is instructive to begin with a description of the SEM (our example 4) in terms 

of the algebraic language that was introduced earlier. To this end, let us define the 

following spaces: *
m m×\ : the space of m m×  nonsingular matrices, m k×\ : the space of 

m k×  matrices and mℑ : the space of m m×  positive definite symmetric matrices, 

mLT +  ( mUT + ): the space of m m×  lower (upper) triangular matrices with positive 

diagonal elements, 1
mLT  ( 1

mUT ): the space of m m×  lower (upper) triangular matrices 

with ones on the diagonal. Furthermore, mO  and mGL  is the orthogonal and the 

general linear group, respectively (see section V). Note that mLT + , mUT + , 1
mLT , 1

mUT  

and mO  are proper subgroups of mGL . 

As shown in our example 4, the equivalence class of each 

*( , , ) m m m k

mA B × ×Σ ∈ × ×ℑ\ \  is just the orbit of , ,A B Σ  with respect to mGL  i.e. 

, , , ,OrbA B A BC Σ Σ= . Thus the quotient set of *
m m m k

m

× ×× ×ℑ\ \  with respect to p∼  i.e. 

*( )/m m m k

m p

× ×× ×ℑ\ \ ∼ , is just the orbit space. The latter will be denoted as 

*\ ( )m m m k

m mGL × ×× ×ℑ\ \ . Hence the canonical map in our case is the function 

* *: ( ) \ ( )m m m k m m m k

m m mGLπ × × × ×× ×ℑ → × ×ℑ\ \ \ \  defined as 

, ,( , , ) Orb : { , , | }A B mA B gA gB g g g GLπ Σ ′Σ = = Σ ∈ . Moreover, the likelihood function 

()yp ⋅  obeys the following canonical decomposition: 
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( , , ) ( ( , , ))yp A B h A BπΣ = Σ , ,(Orb )A Bh Σ= , where h  is the bijective map. It follows that 

orbit space is identified. Although mGL  operates transitively both on *
m m×\  and mℑ , 

as taken individually, mGL  operates intransitively on m k×\ . In the latter case, the 

orbit is a subspace of m k×\  which may be thought as the set of matrices whose every 

row belongs to the row space of the given m kB ×∈ \  (i.e. all linear combinations of 

the rows of B )19. Needless to say, the action of mGL  on *
m m m k

m

× ×× ×ℑ\ \  is 

intransitive. On the other hand, the action of mGL  on *
m m m k

m

× ×× ×ℑ\ \  is orbit–

regular, thus each orbit , ,OrbA B Σ  for *( , , ) m m m k

mA B × ×Σ ∈ × ×ℑ\ \  has the same 

(infinite) order | |mGL = ∞ . To demonstrate orbit–regularity note that 

Stab { | } {I }A mg G gA A= ∈ = = 20 ( Im  is the identity element in mGL  under the 

operation of matrix multiplication), but , ,Stab {I } Stab {I }A m A B mΣ= ⇒ =  (which 

follows from the properties of stabilizer mentioned in section III).  

Before we account for our general approach to identify parameters space, we 

shall outline the traditional approach with a group–theoretic flavor. The orbit 

containing any *( , , ) m m m k

mA B × ×Σ ∈ × ×ℑ\ \  may be written as: 

 

, ,Orb : { , , | }A B mgA gB g g g GLΣ ′= Σ ∈ =  

1 1 1 1{( ) ,( ) ,( ) ( ) | }mgA A A gA A B gA A A gA g GL− − − −′ ′= Σ ∈    (8) 

 

Since m mGL A GL=  (because mA GL∈ ) we have: 

 
1 1 1 1

, ,Orb : { , , | }A B mgA A gA B gA A g g GL− − − −
Σ ′ ′= Σ ∈ =  

1 1 1{ I , , | }m mg gA B gA A g g GL− − −′ ′= Σ ∈      (9) 

 

The above equality means that the orbit containing the given structural coefficients 

( , , )A B Σ  also contains the reduced form coefficients 1 1 1(I , , )m A B A A− − −′Σ . Thus from 

section III we know that 1 1 1, , I , ,
Orb Orb

m
A B A B A A− − −Σ ′Σ

= . Using the notation from section 

VII, let us denote the reduced form representative as 1 1 1(I , , )r m A B A Aθ − − −′= Σ . 

Evidently, {I } m k

r m m

×Θ = × ×ℑ\ . Then Orb {I } ( )
rr r m mBθ

∗Θ = Θ ∩ = ×ℜ ×ℑ , where 

( )Bℜ  denotes the space of all ( )m k×  matrices in which every row belongs to the row 

space of B . It is easy to check 1 1 1{ | ( I , , ) } {I }m m r mS g GL g gA B gA A g− − − ∗′ ′= ∈ Σ ∈ Θ = . 

It is so because I I Im m mg g= ⇒ = . Thus by proposition 5, an action of any Img ≠  

                                                 
19

 Such a space will be denoted as ( )Bℜ . 
20

 
1 1 I Stab {I }m A mgA A gAA AA g− −= ⇒ = ⇒ = ⇒ =  
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moves 1 1 1(I , , )m A B A A− − −′Σ  to an element of , ,OrbA B Σ  that certainly does not have Im  

in the first component position. Hence, the reduced form coefficients may serve well 

as the representative for every orbit i.e. the rule that we choose the reduced form 

parameters in every orbit is identifying. By lemma 4, the likelihood ( , , )yp A B Σ  and 

the identifying (surjective) function 1 1 1 1( , , ) ( , , ) : (I , , )mf A B A A B A B A A− − − −′Σ = Σ = ΣD  

determine the same equivalence relation on *
m m m k

m

× ×× ×ℑ\ \  and the space of 

reduced form parameters is identified. However, it suggests that from the group–

theoretic point of view the reduced form parameters are identified because they 

represent every orbit uniquely. In contrast, the traditional perspective on this issue is 

that the reduced form coefficients are identified since they are population moments. 

That is, the identification is equalized to the complete characterization of the 

sampling probability distribution. Our attitude is that this traditional perspective is 

very narrow and imposes artificial restraints on how we can deal with econometric 

models to avoid the identification problems. Of course the conditions for 

identification of the space *
m m m k

m

× ×× ×ℑ\ \  (to have a bijection 
1 1 1( , , ) (I , , )mA B A B A A− − −′Σ Σ6 ) are well known and constitute the solution of the 

identification problem within the traditional approach.  

Now we are in a position to explain some generalization of the traditional 

approach. The reduced form representative i.e. 1 1 1(I , , )m A B A A− − −′Σ , was derived 

using the fact that each A  possesses a unique inverse (since *
m mA ×∈ \ ). Interestingly, 

this strategy can be used in a number of variants. For example, by analogy, let us 

exploit the fact that every mΣ ∈ ℑ  also possesses an inverse, which is unique if we 

decide a priori about its particular structure. For example, using the Choleski 

decomposition of Σ  we have 1 1 ImR R− −′Σ =  (where RR′Σ =  and m mR LT GL+∈ < ). 

Then: 

 

, ,Orb : { , , | } { , , I | }A B m m mgA gB g g g GL gA gB gR R g g GLΣ ′ ′ ′= Σ ∈ = ∈ =  

  1 1{( ) ,( ) ,( ) I ( ) | }m mgR R A gR R B gR gR g GL− − ′= ∈     (10) 

 

From the fact that m mGL R GL=  (since m mR LT GL+∈ < ), it follows: 

 

1 1

1 1
, , , ,I

Orb : { , , | } Orb
m

A B m R A R B
gR A gR B gg g GL − −

− −
Σ ′= ∈ =     (11) 
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We argue that 1 1( , , I )mR A R B− −  is a valid orbit representative. Using notation from 

section VII, let us denote 1 1( , , I )r mR A R Bθ − −= . It follows that the structure of our 

representative is 1 1 1
*{ , , I | , , }m m m k

r m mR A R B R LT A B− − − + × ×Θ = ∈ ∈ ∈\ \ . In other 

words, we could write * {I }m m m k

r m

× ×Θ = × ×\ \  plus an extra condition that 
1

mR LT− +∈  (because mR LT +∈ ). Let us signify this by expanding the parameter space 

so as 1 1 1( , , , I )r mR R A R Bθ − − −=  and * {I }m m m k

r m mLT + × ×Θ = × × ×\ \ . Analogously, we 

can write 1 1 1

1 1 1

, , ,I
Orb Orb : { , , , | }

r m
mR R A R B

gR gR A gR B gg g GLθ − − −
− − − ′= = ∈ . Note that the 

action of mGL  on mLT +  is implicit in the action of mGL  on *
m m×\  i.e. 1gR A− . 

Ultimately, with this parameter space augmentation, we have 

*Orb ( ) {I }
r

m m

r r m mLT Bθ
∗ + ×Θ = Θ ∩ = × ×ℜ ×\  In appendix 11 we show that 

1 1 1{ | ( , , , ) } {I }m r mS g GL gR gR A gR B gg− − − ∗′= ∈ ∈ Θ = . Consequently, by proposition 5, 

though the orbit , ,OrbA B Σ  contains | |mGL  elements, there is exactly one element that 

admits the structure of 1 1( , , I )mR A R B− − . This element is just 1 1( , , I )mR A R B− − . The 

latter is equally good representative for the orbit as the reduced form parameters21.  

Alternatively, the proof that 1 1( , , I )mR A R B− −  is valid orbit representative may 

rely on proposition 7 (or corollary 1). Let us define the function 

( , , ) ( ) ( , , ) :f A B A BτΣ = Σ Σ =D 1 1( , , I )mR A R B− − . Where 1( ) Rτ −Σ = , RR′Σ =  and 

mR LT +∈ . Note that the group action is preserved (as required). Surjection of 

( , , )f A B Σ  trivially holds. We must show that ( , , )f A B Σ  is maximal G –invariant. 

Assume we have two elements in the orbit , ,OrbA B Σ : ( , ,A B Σ ) and 

1 1 1 1( , , ) ( , , )A B g A g B g g ′Σ = Σ  for some 1 mg GL∈ . To prove that ( , , )f A B Σ  is G –

invariant we have to show that ( , , ) ( ) ( , , ) :f A B A BτΣ = Σ Σ =D 1 1( , , I )mR A R B− − =  

( , , )f A B Σ . Obviously 1( ) Rτ −Σ =  where RR′Σ =  and mR LT +∈ . Since RR′Σ =  we 

have 1 1RR g RR g′ ′ ′Σ = = . By Vinograd’s theorem it follows 1R g RQ=  for some 

mQ O∈ . Now it should be noted that 1R g RQ=  can not hold for arbitrary 1 mg GL∈ . 

To see this write 1R g RQ=  equivalently as m m mLT GL LT W+ +⊇ , where W  is some 

subset of mO . But m m m mGL LT W GL W GL+ = = , thus we arrive at the contradiction 

m mLT GL+ ⊇ . In fact we can prove that 1R g RQ=  for every 1 mg GL∈  implies 

1 mg LT +∈  and ImQ = . By contradiction assume 1 mg LT +∈  but ImQ ≠ , then 
1 1

1R g R Q− − =  and 1 1
1 mR g R LT− − +∈ , thus ( ) {I }m m mQ O LT +∈ ∩ =  (a contradiction). 

                                                 
21

 Note that although the representative 1 1( , , I )mR A R B− −  has identity matrix in a position attributed to the 

covariance matrix (and it looks like the SVAR model), it does not mean that the restriction is really imposed. It 

happens so only by applying the algebraic manipulations on the orbit, but, in fact, the covariance is not restricted 

at all (i.e. is still “there”). That is, provided that 1R−  in 1 1( , , I )mR A R B− −  is unique we can get the covariance 

back using the Choleski decomposition i.e. RR′Σ = . Conditions for uniqueness of 1R−  are given right below. 
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Similar reasoning applies assuming ImQ =  but 1 mg LT +∉ . Lastly when 1 mg LT +∉  and 

ImQ ≠ , then it is easily to show that mRQ LT +∉  and for every 1 mg LT +∉  the 

product 1g RQ  can not belong to mLT +  (a contradiction). Thus 1 1R g RQ g R= = , 

where 1 mg LT +∈ . Inserting 1R g R= , 1A g A=  and 1B g B=  into the function f  we 

get 1 1 1 1 1 1 1 1
1 1 1 1( , , ) ( , , I ) ( , , I ) ( , , I )m m mf A B R A R B R g g A R g g B R A R B− − − − − − − −Σ = = = . Hence 

f  is G –invariant. On the other hand, assume ( , , ) ( ) ( , , ) ( , , )f A B A B f A BτΣ = Σ Σ = ΣD  

( ) ( , , )A Bτ= Σ ΣD . Then 1( , , ) ( ( )) ( ) ( , , )A B A Bτ τ−Σ = Σ Σ ΣD D . Since 1( ( )) ( )τ τ−Σ Σ =D  
1

mRR GL− ∈ , we showed that ( , , )A B Σ  and ( , , )A B Σ  lie on the same orbit. Therefore, 

f  is maximal G –invariant, which proves that 1 1( , , I )mR A R B− −  is the orbit 

representative. 

Of course, having the representative 1 1( , , I )mR A R B− −  of , ,OrbA B Σ  we can not 

obtain uniquely , ,R A B . This is analogous to the problem of deriving , ,A B Σ  from the 

traditional representative of the orbit i.e. reduced form coefficients. In order to do so 

we should impose some restrictions on , ,A B Σ  (which was earlier termed as the 

indirect method to identify the parameter space). Note however that in order to 

obtain unique , ,R A B  from the representative 1 1( , , I )mR A R B− −  it suffices to impose 

only 1
2 ( 1)m m +  restrictions, for we have the following lemma: 

 

Lemma 7: Assume 1
1 2, mA A UT∈ ; 1 1

1 2, mR R LT− − +∈  and 1 2, m kB B ×∈ \ , then we have:  

1 1
1 1 1 1( , , I )mR A R B− − = 1 1

2 2 2 2( , , I )mR A R B− − ⇒ 1 2R R= , 1 2A A=  and 1 2B B= . 

Proof: see appendix 12. 

 

Therefore, if we restrict 1
mA UT∈ , then we can uniquely get , ,R A B  from the 

representative 1 1( , , I )mR A R B− − . Moreover, since R  matrix is connected with the 

unique Choleski decomposition of Σ , we obtain the latter as RR′Σ = . 

To recapitulate the above results concerning the orbit representative 
1 1( , , I )mR A R B− −  from a slightly different perspective, assume we have two elements 
1 1

1 1 1 1( , , I )mR A R B− −  and 1 1
2 2 2 2( , , I )mR A R B− −  in the given orbit that fulfill the assumptions 

from lemma 7. Since each orbit is transitive there must be some g G∈  such that 
1 1

1 1 1 1( , , I )mR A R B− − = 1 1
2 2 2 2( , , )gR A gR B gg− − ′  (in fact, by orbit–regularity there is only one 

such a g ). Using the proof technique of lemma 7, we obtain that 
1 1

1 1 1 1( , , I )mR A R B− − = 1 1
2 2 2 2( , , )gR A gR B gg− − ′  implies Img = , 1 2R R= , 1 2A A= , 1 2B B= .  

 

Remark 7: To obtain unique , ,A B Σ  from the representative 1 1( , , I )mR A R B− −  it 

suffices to impose only 1
2 ( 1)m m +  restrictions. In contrast, to make a unique 
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transformation from the reduced form coefficients representative to , ,A BΣ  we must 

provide 2m  restrictions (including normalization), which is the necessary condition 

for identification. It is clear that what the necessary identification condition is 

depends on the particular orbit representatives structure. As a matter of fact, 

different structures of orbit representatives may entail different “necessary 

conditions” for identification (i.e. to make a unique transformation from the 

representative to the coefficients in a basic space Θ), which may be less demanding 

than those connected with the traditional approach. Thus the crucial point is that 

the representative should be chosen purposely: different representatives may be useful 

in different inferential problems22.  

Indeed, there are many other valid orbit representatives for SEM. For example, 

instead of finding inverses of some parameters matrices, we may simply apply some 

matrix decompositions to certain parameters matrices. To this end let us use the so–

called LU  factorization in the context of A  matrix i.e. A LU= , where mL LT +∈ , 
1

mU UT∈ . Since *
m mA ×∈ \  is subject to the unique LU  factorization23, we obtain: 

 

, ,Orb { , , | }A B mgA gB g g g GLΣ ′= Σ ∈ = { , , | }mgLU gB g g g GL′Σ ∈ =  

1 1 1{( ) ,( ) ,( ) ( ) | }mgL U gL L B gL L L gL g GL− − −′ ′= Σ ∈    (12) 

 

As before we get m mGL L GL=  ( m mL LT GL+∈ < ), hence: 

 

1 1 1

1 1 1
, , , ,

Orb { , , | } OrbA B m U L B L L
gU gL B gL L g g GL − − −

− − −
Σ ′Σ

′ ′= Σ ∈ =    (13) 

 

It is easily to demonstrate that the orbit , ,OrbA B Σ  contains only one element that 

preserves the structure of 1 1 1( , , )U L B L L− − −′Σ . By application of the notation from 

section VII, we have 1 1 1( , , )r U L B L Lθ − − −′= Σ  and 
1 1 1 1 1{ , , | , , , }m k

r m m mU L B L L U UT L LT B− − − − + ×′Θ = Σ ∈ ∈ ∈ Σ ∈ ℑ\ . The latter may be 

written as 1 m k

r m mUT ×Θ = × ×ℑ\  together with an extra condition 1
mL LT− +∈  (since 

                                                 
22

 In fact, it is possible that in some cases there may exist a structure of the orbit representatives such that Θ  is 

identified without any restrictions imposed on the latter (i.e. :f Θ → Λ  is a bijection). 
23

 In fact, for uniqueness of LU  decomposition (besides *
m mA ×∈ \ ) we shall also assume that all the leading 

principal submatrices of A  are nonsingular, see e.g. Harville (1997), pp. 227–228. However, this restriction is 

immaterial for us since our point is only to demonstrate our approach. Actually any other (and less demanding) 

matrix decomposition applied to A  would serve the purpose. For example, the discussion to follow may be based 

on QR  decomposition i.e. A QR= , where mQ O∈  and mR UT +∈ . 
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mL LT +∈ ). As before, we rewrite our problem with the help of the parameter space 

augmentation: 1 1 1 1( , , , )r L U L B L Lθ − − − −′= Σ , 1 m k

r m m mLT UT+ ×Θ = × × ×ℑ\  and Orb
rθ
=  

1 1 1 1

1 1 1 1

, , ,
Orb { , , , | }mL U L B L L

gL gU gL B gL L g g GL− − − −
− − − −

′Σ
′ ′= Σ ∈ . Note that the operation of 

mGL  on mLT +  is implicit in the operation of mGL  on m k×\  i.e. 1gL B− . We easily find 
1Orb ( )

rr r m m mLT UT Bθ
∗ +Θ = Θ ∩ = × ×ℜ ×ℑ . It can be shown that 

1 1 1 1{ | ( , , , ) } {I }m r mS g GL gL gU gL B gL L g− − − − ∗′ ′= ∈ Σ ∈ Θ = 24. Thus 1 1 1( , , )U L B L L− − −′Σ  is 

an unambiguous representative of the orbit containing ( , , )A B Σ  (as is the reduced 

form parameters). Of course, to obtain ( , , )A B Σ  from the orbit representative 
1 1 1( , , )U L B L L− − −′Σ  we shall impose some restrictions on the latter. But contrary to 

the reduced form parameters representative we shall introduce only 1
2 ( 1)m m +  

restrictions. For example, if 1 2[ ]B B B= #  and 1
1 mB UT∈ , then we can uniquely 

retrieve , , ,U L B Σ  (thus , ,A B Σ ) from the orbit representative 1 1 1( , , )U L B L L− − −′Σ  (the 

proof proceeds analogously as in lemma 7).  

 We showed that application of LU  decomposition of A  and Choleski 

decomposition of Σ  result in the unique orbit representatives. We further 

demonstrated that these two types of orbit representatives require only 1
2 ( 1)m m +  

restrictions to identify the original parameter space. However, it is evident that those 

restrictions were “very special”. In fact, they conform to some group structure of 

matrices (e.g. triangular matrices). These kinds of restrictions allow for an easy and 

direct proof of identifiability. In general, there is a need to develop necessary and 

sufficient conditions in the situation when restrictions are introduced more freely. 

That is, the analogous results to those that provide the conditions to obtain unique 

structural parameters from the reduced form parameters subject to some restrictions 

on the structural parameters. Note however that such conditions are to be specialized 

for the given structure of orbit representatives. Since our article has been focused on 

fundamentals of our idea, we postpone a derivation of those results to another study. 

 

IX. CONCLUDING REMARKS 

We showed that in many econometric models the underlying (observational) 

equivalence class (i.e. a set of those parameters that imply the same probability 

distribution for observables) has certain algebraic structure. That is, the equivalence 

class is generated by some group operation on parameter space. We exploited this 

fact to propose an algebraic insight into the identification problem. Careful analysis 

                                                 
24

 To this end note that by lemma A1, 1 1
m mgU UT g UT∈ ⇒ ∈ , 1

m mgL LT g LT− + +∈ ⇒ ∈  and 1 {I }m m mUT LT +∩ = . 
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provided many fresh results and remarks on the nature of the identification in 

parametric models. We think that an algebraic perspective sheds new light on the 

true nature of the identification problem. 

Although the leading example was SEM, it is obvious that our approach applies 

to many other econometric models. Some of them were explicitly mentioned in 

section V, but the list could be easily broadened.  

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

Appendix 1 (proof of proposition 1): 

The “if” part: 1 2fθ θ∼ 1 2( ) ( )f fθ θ⇔ = 1 2( ( )) ( ( ))h p h pθ θ⇔ = 1 2( ) ( )p pθ θ⇔ =  (h  is 

a bijection) 1 2pθ θ⇔ ∼ . The “only if” part: We need to show that for any θ ∈ Θ  we 

may construct ( ) ( ( ))f h pθ θ= . Choose 1( )p xθ −∈ , then ( ) ( )f h xθ = . Note that h  

depends on θ  only through x . In order that the mapping is well defined we have to 

show that for any 1
1 2, ( )p xθ θ −∈  we do have 1 2( ) ( )f fθ θ= . But 1

1 2, ( )p xθ θ −∈  means 

1 2pθ θ∼  which is equivalent to 1 2fθ θ∼  by hypothesis, thus 1 2( ) ( )f fθ θ= . We should 

only demonstrate that h  is a bijection. Since f  is surjecitve then for each y Y∈  

there is θ ∈ Θ  such that ( ) ( ( ))y f h pθ θ= = , thus to each y Y∈  there corresponds 

( )p Xθ ∈  and h  is surjective. To prove that h  is also injective, let us choose 
1

1 2, ( )p xθ θ −∈  (for some x X∈ ), then 1 1 2 2( ) ( ( )) ( ( )) ( )f h p h p fθ θ θ θ= = = . But since p  

and f  determine the same equivalence relation then 1 2 1 2( ) ( ) ( ) ( )f f p pθ θ θ θ= ⇔ = , 

thus 1 2 1 2( ( )) ( ( )) ( ) ( )h p h p p pθ θ θ θ= ⇔ = . The last assertion proves that h  is injective. 

Lastly, to prove the expression for h , first note that since p  is surjective it possesses 

a right inverse, which we denote as s . Then ( ) ( )h h p s h p s f s= = =D D D D D . 
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Appendix 2 (proof of lemma 3): 

Proof of a) The proof is almost standard and amounts to demonstrating that 

there is a bijection between the set of left cosets of 
1 2, , ,Stab

kθ θ θ…  in G  and elements in 

1 2, , ,Orb
kθ θ θ…  i.e. the map 

1, , 1: Stab ( , , )
k kg gθ θμ θ θ… 6 D …  (for all g G∈ ) is a well defined 

bijection. It is understood that the operation is component–wise i.e. 

1 1 1( , , ) ( , , )k k kg g gθ θ θ θ=D … D … D  and as argued in section III, 

1 1, ,Stab ( Stab ) ( Stab )
k k

g g gθ θ θ θ= ∩ ∩… … . We sketch the proof and focus only on its 

nonstandard elements. If 1 2,g g G∈  belong to the same left coset of 
1, ,Stab

kθ θ…  in G , 

then there is a 
1, ,Stab

k
h θ θ∈ …  such that 1 2g g h= D , thus 

1 1 2 1 2 1( , , ) ( , , ) ( , , )k k kg g h gθ θ θ θ θ θ= =D … D D … D … . Hence the map μ  is well defined. 

It is also surjective, which follows from the definition of the map. The map μ  is 

injective since for any 1 2,g g G∈ , 1 1 2 1( , , ) ( , , )k kg gθ θ θ θ=D … D …  implies 
1

2 1 1 1( , , ) ( , , )k kg g θ θ θ θ− =D D … … , therefore 
1

1
2 1 , ,Stab

k
g g θ θ
− ∈ …D  and 

11 2 , ,Stab
k

g g θ θ∈ … . 

The last result implies 1 2Stab
i

g g θ∈ , for all i , and from the properties of cosets we 

have 1 2Stab Stab
i i

g gθ θ= . Thus ultimately we obtain 
1 11 , , 2 , ,Stab Stab

k k
g gθ θ θ θ=… … . 

Proof of b) For the case of two–point stabilizer (i.e. 
1 2,Stabθ θ ), see e.g. Wielandt 

(1964), proposition 3.3. The proof for the three–point stabilizer is as follows. Using 

the similar reasoning as in the proof a) we can demonstrate that there is a bijection 

between the left cosets of 
1 2,Stabθ θ  in 

1
Stabθ  and the elements in the orbit of 2θ  with 

respect to 
1

Stabθ  i.e. the map 
1 2, 2: Stabg gθ θμ θ6 D  (for all 

1
Stabg θ∈ ) is a well 

defined bijection. Therefore 
1 1 2,|Stab Stab |θ θ θ: =

1 2|Stab |θ θ . By the same sort of 

argument we also obtain 
1 2 1 2 3, , ,|Stab Stab |θ θ θ θ θ: =

1 2, 3|Stab |θ θ θ . Since 

1 1 2 3, ,|Stab Stab |θ θ θ θ: =
1 1 2,|Stab Stab |θ θ θ: ⋅

1 2 1 2 3, , ,|Stab Stab |θ θ θ θ θ: , see e.g. Hall (1959), p. 

12, we get 
1 1 2 3, ,|Stab Stab |θ θ θ θ: =

1 2|Stab |θ θ ⋅
1 2, 3|Stab |θ θ θ . By the standard orbit–one–

point–stabilizer theorem we get 
1

| Stab |G θ: =
1

| Orb |θ . Lastly, from 

1
| Stab |G θ: ⋅

1 1 2 3, ,|Stab Stab |θ θ θ θ: =
1 2 3, ,| Stab |G θ θ θ:  (again, see e.g. Hall (1959), p. 12) 

we arrive at 
1 2 3, ,| Stab |G θ θ θ: =

1
| Orb |θ ⋅

1 2|Stab |θ θ ⋅
1 2, 3|Stab |θ θ θ , which is the formula in 

the case of three–point stabilizer. The result for general (finite) k –point stabilizer 

follows by mathematical induction. 

 

Appendix 3 (proof of proposition 2): 

Setting (1) (2)
1( , , )kθ θ θ θ θ= = =…  in definition 3, we have gθ θ= D  i.e. 

1, ,Stab
k

g θ θ∈ … . One particular g  that solves the equation is e , and from definition of 
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orbit–regularity there is only one such a g , thus g e=  i.e. 
1, ,Stab { }

k
eθ θ =… . On the 

other hand, let us choose any 
11 , ,( , , ) Orb

kk θ θθ θ θ= ∈ ……  then 

2 1g gθ θ=D D 1
2 1g gθ θ−⇔ = D D

1

1
2 1 , ,Stab

k
g g θ θ
−⇔ ∈ …D . But 

1, ,Stab { }
k

eθ θ =… , thus 

2 1g g= . It remains to show that if 
1, ,Stab { }

k
eθ θ =…  for some 

11 , ,( , , ) Orb
kk θ θθ θ θ= ∈ …… , 

then 
1, ,

Stab { }
k

eθ θ =…  for all 
11 , ,( , , ) Orb

kk θ θθ θ θ= ∈ …… . To this end note that any 

1, ,Orb
kθ θθ ∈ …  may be represented as gθ θ= D . Using the fact that k–point stabilizers 

of θ  and θ  are conjugate, which means 
11

1
, ,, ,

Stab Stab
kk

g gθ θθ θ
−= ……

25, we obtain 

1

1

, ,
Stab

k
g e gθ θ

−=… D D 1g g e−= =D . Since the choice of the particular orbit was 

arbitrary, the result holds for all 1 1( , , )k kθ θ ∈ Θ × ×Θ… " . 

 

Appendix 4 (proof of proposition 3): 

By the orbit–k–point–stabilizer theorem (see lemma 3 a) ), we get 

1, ,| Stab |
k

G θ θ: … =
1, ,| Orb |

kθ θ… . But the action is orbit–regular, hence 
1, ,Stab { }

k
eθ θ =… . 

Since 1( , , )kθ θ…  is arbitrary, we have | |G =
1, ,| Orb |

kθ θ… , for every 

1 1( , , )k kθ θ ∈ Θ × ×Θ… " . 

 

Appendix 5 (proof of proposition 4): 

We have 1 1( ( )) ( ( ))y y y y gC p p p p g Cθ θθ θ− −= = = DD . If follows g Cθθ ∈D  for each 

g G∈ , hence Orb Cθ θ⊆ . As a next step we will show that Cθ  is G –stable subset of 

Θ  (i.e. C g Cθ θθ θ∈ ⇒ ∈D , for every g G∈ ). If Cθθ ∈  then C Cθθ =  and 

g
C Cθ θ= D . Thus we obtain Cθθ ∈ g Cθθ⇒ ∈D  for every g G∈ . Thus for any 

Cθθ ∈ , Orb C θθ ⊆ , hence Orb
C

C
θ θθ θ∈∪ ⊆ . On the other hand, if Cθθ ∈  then 

Orbθθ ∈  by definition, hence Orb
C

C
θθ θ θ∈⊆ ∪ . As a consequence 

Orb Orb
C

C
θθ θ θ θ θ∈ ∈Δ= ∪ = ∪  (where Δ  denotes the index set of distinct orbits 

contained in Cθ  i.e. for all 1 2,θ θ ∈ Δ  and 1 2θ θ≠  we have 
1 2

Orb Orbθ θ∩ = ∅ ). Thus, 

any G –stable subset of Θ  is a disjoint union of orbits. Suppose that yp  is maximal 

G –invariant, then by definition { | ( ) ( )}y yC p pθθ θ θ θ∗ ∈ = ∈ Θ =  

{ | , }g g Gθ θ θ θ∗⇒ ∈ ∈Θ = ∈D . But the latter set is recognized as Orbθ . Therefore 

OrbCθ θ⊆ . Since we have already established that Orb Cθ θ⊆ , it follows OrbCθ θ= . 

 

 

                                                 
25 This is a standard result when Θ  is not a Cartesian product (see e.g. Alperin and Bell (1995), p. 29). It may be 

shown that it holds also for the Cartesian product case. 
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Appendix 6 (proof of lemma 4): 

Proof of a) By the canonical decomposition there exists a factorization 

yp h π∗ ∗= D , where : / ph∗ Θ ∼ → Im( )Θ  (a bijection) and : / pπ∗ Θ → Θ ∼  is the 

canonical map (a surjection). Since by assumption OrbCθ θ= , in the canonical map, 

we can replace the quotient set / pΘ ∼  with the orbit space \G Θ . Thus 

: \Gπ∗ Θ → Θ  (i.e. ( ) Orbθπ θ∗ = ) and : \h G∗ Θ → Im( )Θ . Let us define the map 

: \k G Θ → Λ  (i.e. (Orb )k θ λ= ). Clearly, k  is a bijection because in every orbit 

there is exactly one orbit representative, thus we may write the canonical 

decomposition as follows 1
yp h k k π∗ − ∗= D D D . Let us denote f k π∗= D  and 

1h h k∗ −= D . Note that f k π∗= D  is just the canonical decomposition of :f Θ → Λ . 

Thus we arrive at the decomposition yp h f= D , where :f Θ → Λ  (which is 

surjective). Furthermore, since h∗  and 1k−  are bijections, : Im( )h Λ → Θ  is a 

bijection, too. Hence by proposition 1, p∼ ≡ f∼ .  

Proof of b) Since h  in yp h f= D  is bijective it follows by definition 2 that Λ  is 

identified and :f Θ → Λ  is the identifying function. 

Proof of c) Having a unique decomposition f k π∗= D , where k  is a bijection, we 

obtain 1 2,θ θ∀ ∈ Θ , 1 1 2 2( ) ( ( )) ( ( )) ( )f k k fθ π θ π θ θ∗ ∗= = = ⇔ 1 2( ) ( )π θ π θ∗ ∗=  (k  is a 

bijection) ⇔ 1 2gθ θ= D  for some g G∈  ( : \Gπ∗ Θ → Θ  is maximal G –invariant). 

 

Appendix 7 (proof of proposition 5): 

Define the mapping : rS Sη θ→  i.e. : rg gη θ6 D  for every g S∈  (and fixed rθ ). 

Then η  is surjective by construction. Assume 1 2r rg gθ θ=D D ; 1 2,g g S∈ . It follows 
1

2 1 r rg g θ θ− =D D  1
2 1 Stab

r
g g θ
−⇒ ∈D . But by the orbit–regularity (see proposition 2), 

we have Stab { }
r

eθ = , hence 1
2 1 1 2g g e g g− = ⇒ =D  (i.e. η  is injective). Thus η  is the 

bijection. Noting that r rSθ ∗= Θ , we get | |S = | |r

∗Θ . By definition, Orb
rr θθ ∈  and 

r rθ ∈ Θ  hence Orb
rr r θθ ∈ Θ ∩ . Obviously, | |S 1= { }r rθ

∗⇔ Θ =  and 

{ }S e= ⇒ | |S 1= . Moreover, if | |S 1=  then { }S g∗=  and we must have 

r rg θ θ∗ =D . By proposition 2, it follows, r rg θ θ∗ =D g e∗⇒ =  (i.e. { }S e= ). As each 

orbit is the set of transitivity and by orbit–regularity, every element in the orbit, say 

θ , must be represented as rgθ θ= D  for unique g G∈  (i.e. given 1 2,g g G∈  such 

that 1 2g g≠  we have 1 2r rg gθ θ≠D D ). It follows that all elements of G , except the 

identity element, move rθ  to distinct elements in the orbit. Thus Orbθ  may be 

trivially partitioned into the singletons, one of which is rθ . Of course, by proposition 

3, |Orb |θ = | |G . 
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Appendix 8 (proof of lemma 5): 

By definition { | }r rB g g H Hθ θ= ∈ =D  (i.e. B  is the orbit of rθ  with respect to 

H ). For the proof that B  is a block see e.g. Alperin and Bell (1995), p. 32, or 

Wielandt (1964), p. 14. We note that this proof requires the condition Stab
r

Hθ ≤ . 

Denote { | }U g G gB B= ∈ = . Let g U∗ ∈ . Since g B B∗ =  and r Bθ ∈  (H G≤ , thus 

H  contains the identity element of G , hence r re Bθ θ= ∈D ) rg g B Bθ∗ ∗∈ =D . 

Thus g H∗ ∈  (i.e. U H⊆ ). Next assume g H∗ ∈ . Then rg B gBθ∗ ∈ =D  for any 

g U∈  (where the last equality follows since B  is a block). Thus 1( )r g g Bθ ∗−∈ D . 

Since r Bθ ∈ , we have 1( )r B g g Bθ ∗−∈ ∩ D . As B  is a block, it means 
1( )B g g B∗−= D , hence 1g g U∗− ∈D . We use the fact that U  is a subgroup of G  (see 

e.g. Rose (1978), p. 71). Then 1 1 1g g U g Ug U∗− ∗− −∈ ⇒ ∈ =D  (the last equality is 

obtained because U G≤  and 1g U− ∈ ). Since U G≤ , 1g U∗− ∈ ⇒ g U∗ ∈  (i.e. 

H U⊆ ). Ultimately, H U= . 

 

Appendix 9 (proof of proposition 6): 

We have { }| Stab Stab |B b: = | |B , for all b B∈ , see Robinson (1982), p. 191. 

Taking any r r Bθ∗ ∗∈ Θ ⊆ , we obtain by orbit–regularity Stab { }
r

eθ∗ = . Then 

{ }| Stab { } |B e: = { }| Stab |B = | |B . Moreover, if { }Stab { }B e=  it follows B  is a 

singleton i.e. | |B 1= . Since r Bθ ∈  (see appendix 8), we have { }rB θ= . By 

definition, Orb
rr θθ ∈  and r rθ ∈Θ  hence Orb

rr r rθθ ∗∈ Θ ∩ = Θ  and rB ∗⊆Θ . Since 

r B∗Θ ⊆  (i.e. r B∗Θ = ), we obtain { }r rθ
∗Θ = . 

 

Appendix 10 (proof of proposition 7): 

The proof is similar to that of lemma 4. Since we assume OrbCθ θ= , by the 

canonical decomposition, there exists a factorization yp h π∗ ∗= D , where 

: \h G∗ Θ → Im( )Θ  (a bijection) and : \Gπ∗ Θ → Θ  (i.e. ( ) Orbθπ θ∗ = ) (a 

surjection). As a next step, we show that equivalence class of :f XΘ →  is equal to 

orbit. By the maximal G –invariance property of f  we have 

{ | ( ) ( )}C f fθ θ θ θ= ∈Θ = = { | , } Orbg g G θθ θ θ∈ Θ = ∈ =D . Thus in the context of 

f  we can also apply the canonical decomposition replacing equivalence class with the 

orbit. This results in the factorization f k π∗= D , where : \Gπ∗ Θ → Θ  is surjective 

(recall that \G Θ  denotes the orbit space) and : \k G Θ → X  (a bijection). Note 

that : \Gπ∗ Θ → Θ  is the same in the canonical decomposition of yp  and f . 
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Combining these two canonical decompositions we obtain 1 :yp h k k π∗ − ∗= =D D D  

1h k f∗ −D D . Denoting 1h h k∗ −= D , we arrive at the decomposition yp h f= D . 

Clearly, h  is bijective ( f  is surjective by hypothesis). Then, using definition 2 it 

follows that X  is identified and :f XΘ →  is the identifying function. Since an 

equivalence class of yp  is equal to orbit, it implies that for every θ ∈ Θ , 

| Orb |X θ∩ 1= . The last equation is an alternative definition of the orbit 

representative space i.e. X  is a space of orbit representatives. 

 

Appendix 11: 

In order to prove 1 1 1{ | ( , , , ) } {I }m r mS g GL gR gR A gR B gg− − − ∗′= ∈ ∈ Θ = , where 

* ( ) {I }m m

r m mLT B∗ + ×Θ = × ×ℜ ×\ , we need the following instrumental result: 

 

Lemma A1: Let G  be a group, then g G∈ ⇒ h g G∈D  iff h G∈ . 

Proof: Given g G∈ , if h g G∈D , then there is 1g G∈  such that 
1

1 1h g g h g g G−= ⇒ = ∈D D  (the last assertion follows since G  is a group). On the 

other hand if h G∈  and g G∈  then h g G∈D  trivially. 

 

If 1 1 1( , , , ) rgR gR A gR B gg− − − ∗′ ∈ Θ , we evidently must have Im mgg g O′ = ⇒ ∈  and 
1

m mgR LT g LT− + +∈ ⇒ ∈  (by lemma A1). Since {I }m m mO LT +∩ = , the needed result 

follows. 

 

Appendix 12 (Proof of lemma 7): 

Assume 1
mA UT∈  and 1 1

1 1 1 1( , , I )mR A R B− − = 1 1
2 2 2 2( , , I )mR A R B− − . Then 1

1 1R A− = 1
2 2R A−  

⇒ 1 1
2 1 2 1R R A A− −= . Since 1

2 1 mR R LT− +∈  and 1 1
2 1 mA A UT− ∈  (because 1,m m mUT LT GL+ < ) 

we have 1 1
2 1 m mR R UT LT− +∈ ∩ , 1 1

2 1 m mA A UT LT− +∈ ∩ . But 1 {I }m m mUT LT +∩ = , thus we 

must have 1
2 1 ImR R− =  and 1

2 1 ImA A− = . Thus ultimately, 1 2R R= , 1 2A A=  and 
1 1 1

1 1 2 2 1 2 1 2R B R B R B B B− − −= = ⇒ = . 
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