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Abstract 

This paper develops a novel methodology to study robust stability 

properties of Nash equilibrium points in dynamic games. Small-gain 

techniques in modern mathematical control theory are used for the first 

time to derive conditions guaranteeing uniqueness and global asymptotic 

stability of Nash equilibrium point for economic models described by 

functional difference equations. Specification to a Cournot oligopoly 

game is studied in detail to demonstrate the power of the proposed 

methodology. 
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1. Introduction 
 

Dynamical game-theoretical models have inherent uncertainty in many aspects. The uncertainty is related strongly to 

a number of open questions which cannot be answered a priori: 

 

1. Should the models be formulated in continuous time or discrete time? 

The answer to the above question is crucial: models in discrete time will be described by difference 

equations (see [1,2,3,5,6,11,21,33]) while models in continuous time are generally described by differential 

equations (with or without delays; see [4,31]). The answer to the above question has significant 

consequences: the perception of time for each player in a dynamic game-theoretical model affects her 

behavior.  

 

2. What are the expectation rules that a player has for the other players? 

Again the answer to the above question is crucial: the behavior of a player will heavily rely on the 

expectations for the actions of the rest players. There is a large economic literature on the effect of 

expectation rules (e.g., naïve, backward-looking, rational expectations, see [3,5,10,11] and references 

therein). Moreover, if expectation rules are using delay terms then the consequences on stability can be 

important (see [4,20]).  

 

3. What are the values of the various constants involved in a dynamic game-theoretical model? 

In many dynamic games, the rate of change of the action of one player is assumed to be proportional to 

either the deviation of the action from the best reply (see for example [6,11]) or the gradient of the payoff 

function (see for example [6,31]). The value of the proportionality constant cannot be known a priori. 
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Therefore, the answers to important questions such as the existence of a Nash equilibrium point, the uniqueness of a 

Nash equilibrium point and its stability properties are usually related to the specific assumptions made in order to 

cope with the uncertainty. Consequently, the following question arises: 

 

“Can we extract robust information from an uncertain nonlinear economic model, 

which will hold no matter what the uncertainty is?” 

 

The present work answers it affirmatively. In some cases, we can even show the existence of a Nash equilibrium 

point, its uniqueness and its global asymptotic stability properties for all possible uncertainties. In order to be able to 

do this we propose the following methodology: 

 

• First, we formulate our models in continuous time by means of Functional Difference Equations (see [9,15-

19,32]). By doing so we convert a finite-dimensional problem to an infinite-dimensional problem, which 

seems to be a clear disadvantage at first sight. However, in this way we can obtain all features of continuous 

time and discrete time models. Indeed, we will show that many models appeared in the literature can be 

considered as special cases of our proposed model. 

 

• Second, we do not assume a specific expectation rule: instead, we will only assume that the expectation is 

consistent with the history of the game (consistent backward looking expectation; see Definition 2.1 below). 

 

• In order to be able to extract important information from the uncertain model we use advanced stability 

methods. Indeed, by applying small-gain analysis (see [17,18,19]), we can guarantee that the Nash 

equilibrium point is unique and globally asymptotically stable (see Theorem 3.1 and Theorem 4.2 below).  

 

    To our knowledge, this is the first time that such results are presented for dynamical game-theoretical nonlinear 

models. The only other work, which we have found and can address such questions, is [21]: our results generalize the 

results in [21]. Moreover, the results of [21] are applied in a discrete-time framework and cannot be used for the 

analysis of models in continuous time. As a byproduct of our work, we will also give conditions for uniqueness of a 

fixed point (see Corollary 3.2 and Corollary 3.3 below), which can be used in conjunction with classical fixed-point 

theorems and are different from other uniqueness conditions in the literature (see [8]). 

 

    It should be noticed that the stability/uniqueness conditions obtained by the proposed methodology will be more 

demanding conditions than the ones which can be obtained from the study of a specific model (with specific 

expectation rules, specific values for the constants involved in the model and with a specific perception of time). 

However, this is expected since the stability/uniqueness conditions obtained by the proposed methodology are 

sufficient conditions for global asymptotic stability for an uncertain model, which contains many other models as 

special cases. To this end stability analysis by means of nonlinear small-gain theorems is utilized. Small-Gain results 

have been used frequently in stability studies (see [7,12,13,14,17,18,19]) and are based on variations of the Input-to-

State Stability property introduced by E. D. Sontag in [26] and the Input-to-Output Stability property (see 

[14,16,27,28]).   

 

    The structure of the paper is as follows: in Section 2, we apply the above described methodology to the Cournot 

dynamic oligopoly problem. There is a vast literature on this well-studied problem (see for instance 

[1,3,4,5,6,11,29,31,33]). For this specific problem, we describe in detail our proposed methodology and we show how 

we can obtain results on the stability properties of the Cournot equilibrium, which do not depend on the form of the 

uncertainty. The presentation of the special case of the Cournot game before the general case was preferred for 

tutorial purposes: all issues arising in the general case are present in the Cournot game. In Section 3, we proceed to 

the more general case of dynamic strategic games and in Section 4 we discuss the problem of accommodating the 

rational expectations. Our concluding remarks are given in Section 5. Finally, in the Appendix, we give the proofs of 

certain results of this work.  

 

 
Notations Throughout this paper we adopt the following notations:  

∗  For a vector nx ℜ∈  we denote by x  its usual Euclidean norm.  

∗  +ℜ  denotes the set of non-negative real numbers. For every +ℜ∈t , ][t  denotes the integer part of t , i.e., the 

largest integer being less than or equal to t . 

∗  We say that a non-decreasing continuous function ++ ℜ→ℜ:γ  is of class N  if 0)0( =γ .  

∗  Let nIx ℜ→:  with Iba ⊆],[  and +∞<
∈

)(sup τ
τ

x
I

. We denote by )(sup
],[

τ
τ

xx
ba

ba
≤≤

= .  

∗  Let nU ℜ⊆  be a closed convex set. By )(Pr xU  we denote the projection of nx ℜ∈  on nU ℜ⊆ . 
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∗  The norm of a normed linear space X  will be denoted by 
X

. More specifically, in the present work X   will 

denote the normed linear space of bounded functions nTx ℜ→− ]0,[:  with norm )(sup
0

τ
τ

xx
T ≤≤−

=
X

, for given 

0≥T . If naTx ℜ→− ],[: , where 0≥a , is a bounded mapping then X∈tx  with ],0[ at∈  is defined by 

}:)({ tTtxxt ≤≤−= ττ  as usually in systems with delays (see [9]). 

∗  For a vector nn SSqqq ××∈= …11 ),...,(  we will use the notation (see [30]) 

 

),...,,,...,( 111 niii qqqqq +−− =  for ni <<1  and 3≥n  

 

),...,( 21 nqqq =− , ),...,( 11 −− = nn qqq  for 2≥n  

 

i.e., iq−  is the vector of order 1−n  after deleting the i-th component ii Sq ∈ of the vector 

nn SSqqq ××∈= …11 ),...,( . 

 

 

2. Dynamic Cournot Oligopoly 
 

We consider the case of Cournot oligopoly where n  players produce quantities of a single homogeneous product. The 

payoff function for each player is expressed by: 

 

2

2

1
iiiiii qKqcpq −−=π , ni ,...,1=                                                              (2.1) 

 

where ii cK , , ni ,...,1=  are constants, ],0[ ii Qq ∈ , ni ,...,1=  is the quantity of the commodity produced by the i-th 

player, 0>iQ  is the maximum level of production of the product for the i-th player and 0≥p  is the price of the 

commodity.  

 

Assuming a linear demand function: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

=

n

i

iqabp

1

                                                                                    (2.2) 

 

where 0, >ba  are constants satisfying ∑
=

≥
n

i

iQa

1

 and i
ni

Kb
,..,1

min
2

1

=
−> , we obtain the best reply mapping for each 

one of the players: 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

== ∑
≠

−
ij

j
ii

i
iiii q

Kb

b

Kb

cab
Qqfq

22
,0max,min:)( , ni ,...,1=                              (2.3) 

 

We define: 

 
n

nQQQS ℜ⊂×××= ],0[],0[],0[: 21 …                                                             (2.4) 

 

Sqqq n ∈= ),...,( 1                                                                             (2.5) 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∑

∑

≠

≠

−

−

nj

j
nn

n
n

j

j

nn
q

Kb

b

Kb

cab
Q

q
Kb

b

Kb

cab
Q

qf

qf

qF

22
,0max,min

22
,0max,min

)(

)(

:)(

111

1
1

11

##                                     (2.6) 
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and we notice that the set nS ℜ⊂  as defined by (2.4) is compact and convex and that the map SSF →:  as defined 

by (2.6) is continuous. Consequently, Brouwer’s fixed point theorem guarantees the existence of at least one Nash 

equilibrium Sq ∈∗  with 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

== ∑
≠

∗∗
−

∗

ij

j
ii

i
iiii q

Kb

b

Kb

cab
Qqfq

22
,0max,min)(  for ni ,...,1= . 

 

Next we assume that the dynamics of the game are described in continuous time as follows: 

 

• every player forms an expectation for the behavior of all other players at each time 0≥t : the expectation of 

the i-th player for the production level of the j-th player at time 0≥t  will be denoted by ],0[)(
exp
, jji Qtq ∈  

( ij ≠ , nji ,...,1, = ), 

• every player determines her production level as a convex combination of a past production level and the best 

reply response based on the expectations for the behavior of all other players at each time 0≥t , i.e.,  

 

{ }{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

−+−= ∑
≠ij

ji
ii

i
iiiiiii tq

Kb

b

Kb

cab
QtttqQttq )(

22
,0max,min))(1())((,0max,min)()(

exp
,θτθ , ni ,...,1=  

       (2.7) 

 

where ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ni ,...,1=  are in general unknown functions, 10 <Θ≤ , 

Tr ≤<0   are constants (in general unknown). 

 

    The reader should notice that (2.7) is a model that evolves in continuous time, i.e., +ℜ∈t . If the expectation rules 

)(
exp
, tq ji  ( ij ≠ , nji ,...,1, = ), and the functions ],0[: Θ→ℜ+

iθ , ],[: Tri →ℜ+τ  ( ni ,...,1= ) were known, we 

would have an accurate description of the dynamics of the Cournot oligopoly game. However, we will not assume 

exact knowledge of the expectation rules but a specific consistency condition. First we give the definition for a 

Consistent Backward-looking expectation with respect to the Nash equilibrium point Sq ∈∗ . 

 

Definition 2.1: An expectation rule )(
exp
, tq ji  (where ij ≠ , nji ,...,1, = ) is called a Consistent Backward-looking 

expectation with respect to the Nash equilibrium point Sq ∈∗  if there exist constants Tr ≤<0  such that: 

 

],[

exp
, )(sup)(

rtTt
jjjj

rtTt
jji qqqqqtq

−−

∗∗

−≤≤−

∗ −=−≤− τ
τ

, for all 0≥t                                  (2.8) 

 

In other words the consistency condition (2.8) recognizes that it is not logical for i-th player to expect that the 

production level of the j-th manufacturer will deviate from its equilibrium level more than the highest deviation she 

has experienced in the past. Next we present some examples of Consistent Backward-looking expectation rules: 

 

1) ∗

=

−+−= ∑ jji

m

l

ljijljijiji qtattqtwtatq ))(1())(()()()( ,

1

,,,,,
exp
, τ , where ]1,0[)(, ∈ta ji , 0)(,, >≥≥ rtT ljiτ , 0)(,, ≥tw lji  

with ∑
=

=
m

l

lji tw

1

,, )(1  for all 0≥t  and ml ,...,1= . In discrete-time models the case ][)(,, tlttlji −+=τ , 1)(, ≡ta ji , 

0)( ,,,, ≥≡ ljilji wtw  with ∑
=

=
m

l

ljiw

1

,,1  is the usual backward-looking expectation, which gives 

∑
=

−=
m

l

jljiji lkqwtq

1

,,
exp
, )()(  for )1,[ +∈ kkt .  
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2) ∗
−

−

−++= ∫ jji

r

T

jjijiji qtadsstqshtatq ))(1()()()()( ,,,
exp
, , where Tr <<0 , ]1,0[)(, ∈ta ji  for all 0≥t , 

ℜ→−− ],[:, rTh ji  is a Lebesgue integrable function with 0)(, ≥sh ji  for almost all ],[ rTs −−∈  and ∫
−

−

=
r

T

ji dssh )(1 , . 

Of course, in this case it is required that )(tq j  must be Lebesgue integrable and essentially bounded.  

 

 

We notice the following important fact for consistent backward-looking expectations: 

FACT I: )(
exp
, tq ji  (where ij ≠ , nji ,...,1, = ) is a Consistent Backward-looking expectation with respect to the Nash 

equilibrium point Sq ∈∗  if and only if there exist constants Tr ≤<0  and a function ]1,1[:, −→ℜ+
jid  such that: 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ −+=

−−

∗∗

],[
,

exp
, )(,0max,min)(

rtTt
jjjijjji qqtdqQtq , 0≥∀t                                    (2.9) 

 

Proof of Fact I: Assume first that )(
exp
, tq ji  (where ij ≠ , nji ,...,1, = ) is a Consistent Backward-looking expectation 

with respect to the Nash equilibrium point Sq ∈∗ ,i.e., that (2.8) holds. We distinguish the following cases.  

 

Case 1: If 0)(
exp
, =tq ji , then (2.8) implies that 

],[ rtTt
jjj qqq

−−

∗∗ −≤ . In this case we define 1)(, −=td ji  and equality 

(2.9) holds. 

 

Case 2: If jji Qtq =)(
exp
, , then (2.8) implies that 

],[ rtTt
jjjj qqqQ

−−

∗∗ −≤− . In this case we define 1)(, =td ji  and 

equality (2.9) holds. 

 

Case 3: If ),0()(
exp
, jji Qtq ∈  and 0

],[
>−

−−

∗

rtTt
jj qq  then equality (2.9) holds with 

( )
],[

exp
,exp

,,

)(
)(sgn)(

rtTt
jj

jji

jjiji
qq

qtq
qtqtd

−−

∗

∗
∗

−

−
−= . Inequality (2.8) implies that 1)(, ≤td ji .  

 

Case 4: If ),0()(
exp
, jji Qtq ∈  and 0

],[
=−

−−

∗

rtTt
jj qq  then inequality (2.8) implies that ∗= jji qtq )(

exp
, . In this case 

equality (2.9) holds for arbitrary ]1,1[)(, −∈td ji .  

 

On the other hand, if (2.9) holds then ],0[)(
exp
, jji Qtq ∈  for all 0≥t . Moreover, the reader can verify that inequality 

(2.8) holds. The proof is complete.        �  

  

 

For the dynamical system (2.7) we make the following assumption: 

  

 

(H): All expectation rules )(
exp
, tq ji  ( ij ≠ , nji ,...,1, = ) are Consistent Backward-looking expectations with respect to 

the Nash equilibrium point Sq ∈∗ .  

 

The previous fact shows that hypothesis (H) is equivalent to the existence of constants Tr ≤<0  and functions 

]1,1[:, −→ℜ+
jid  ( ij ≠ , nji ,...,1, = ) such that the following equalities hold for all ni ,...,1= : 
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{ }{ }

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ −+

+
−

+
−

−+

−=

∑
≠

−−

∗∗

ij
rtTt

jjjijj
ii

i
ii

iiiii

qqtdqQ
Kb

b

Kb

cab
Qt

ttqQttq

],[
, )(,0max,min

22
,0max,min))(1(

))((,0max,min)()(

θ

τθ

 

       (2.10) 

 

In general the functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ) as well as the 

constants 10 <Θ≤ , Tr ≤<0  are unknown. Therefore, the dynamical system (2.10) is an uncertain dynamical 

system described by Functional Difference Equations (FDEs) (see [9,15-19,32]). In order to study the behavior of the 

solutions of (2.10) we define the dimensionless deviation variables 
i

ii
i

Q

qtq
tx

∗−
=

)(
)(  ( ni ,...,1= ) and we obtain 

from (2.10) for ni ,...,1= : 

 

{ }{ }

( ) { }{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−−−−+

−−−=

∑
≠

−−
ij

rtTt
jjijjiiiiiii

iiiiii

xtdLgRLMLLt

ttxLLttx

],[
,, )(,0max,1min,max,1min)(1

))((,max,1min)()(

θ

τθ

        (2.11) 

 

where ]1,0[∈=
∗

i

i
i

Q

q
L , 

ii

i
i

QKb

cab
M

)2( +
−

= , 0
2

>
+

=
i

i
Kb

b
R , 0, >=

i

j

ji
Q

Q
g  for ij ≠ , ni ,...,1=  are constants 

which satisfy 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= ∑
≠ij

jjiiii LgRML ,,0max,1min  for all ni ,...,1= . 

 

 

Remarks and Examples about systems (2.10), (2.11): 

 

a) The reader should notice that system (2.11) is an infinite-dimensional dynamical system with state space X   being 

the normed linear space of bounded functions nTx ℜ→− ]0,[:  with norm )(sup
0

τ
τ

xx
T ≤≤−

=
X

. Indeed, by using the 

method of steps, given an initial condition X∈0x  and functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , 

]1,1[:, −→ℜ+
jid  ( ij ≠ , nji ,...,1, = ) then one can in principle determine from (2.11) the solution 

n
n txtxtx ℜ∈′= ))(),...,(()( 1  for ],0( rt∈  with )())(),...,(()( 01 ττττ xxxx n =′=  for all ]0,[ T−∈τ . Then we can 

determine from (2.11) the solution n
n txtxtx ℜ∈′= ))(),...,(()( 1  for ]2,( rrt∈ . Continuing this way, we can 

determine from (2.11) the solution n
n txtxtx ℜ∈′= ))(),...,(()( 1  for ])1(,( rkkrt +∈ , where k  is a positive integer. 

The solution is indeed bounded and exists for all 0≥t , since (2.11) guarantees that ]1,[)( iii LLtx −−∈  for all 0≥t , 

ni ,...,1= . The state of system (2.11) will be denoted by X∈≤≤−= }:)({ tTtxxt ττ  as usually in systems with 

delays (see [9]) and the components of the state by }:)({, tTtxx iti ≤≤−= ττ  for ni ,...,1= . 

 

b) The reader should also notice that X∈0  is an equilibrium point for system (2.11). Indeed, for every functions 

],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ), X∈= 0
0t

x  implies X∈= 0tx  for all 

0tt ≥ . This equilibrium point corresponds to the Nash equilibrium point Sq ∈∗  (the deviation variables have been 

defined by 
i

ii
i

Q

qtq
tx

∗−
=

)(
)(  for ni ,...,1= ).  

 

c) All discrete-time models of the form: 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
+

−
+
−

−+=+ ∑
≠ij

ji
ii

i
iiiii kq

Kb

b

Kb

cab
Qkkqkkq )1(

22
,0max,min))(1()()()1(

exp
,θθ , ni ,...,1=            (2.12) 

with 
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∗

=

−+−=+ ∑ jji

m

l

jljijiji qkalkqkwkakq ))(1()()()()1( ,

0

,,,
exp
,                                               (2.13) 

 

where mk,  are non-negative integers, ]1,0[)(, ∈ka ji  ( nji ,...,1, = ), ],0[)( Θ∈kiθ  ( ni ,...,1= ) with )1,0[∈Θ , 

0)(,, ≥kw lji  with ∑
=

=
m

l

lji kw

0

,, )(1  for all 0≥k  and ml ,...,0=  ( nji ,...,1, = ), are included in the uncertain model 

(2.10) and its equivalent expression (2.11) in the sense that for every model of the form (2.12), (2.13) one can give 

functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ) such that the solution of (2.10) 

coincides with the solution obtained by the discrete-time model (2.12), (2.13).  

 

d) All continuous-time models of the form:  

 

)()(
22

,0max,min)(
exp
, tqtq

Kb

b

Kb

cab
Qtq ii

ij

ji
ii

i
iii μμ −

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

= ∑
≠

� , ni ,...,1=                     (2.14) 

 

where 0>iμ  are constants and  )(
exp
, tq ji  ( ij ≠ , nji ,...,1, = ) are Consistent Backward-looking expectations with 

respect to the Nash equilibrium point Sq ∈∗ , are included in the uncertain model (2.10). Indeed, for 0>≥ rt  the 

solution of (2.14) implies the following integral equations: 

 

( )∫ ∑
− ≠ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

−−+−−=
t

rt ij

ji
ii

i
iiiii dq

Kb

b

Kb

cab
Qtrtqrtq τττμμ )(

22
,0max,min)(exp)()exp()(

exp
, , ni ,...,1=  

 

From the above expression under the assumption that the mappings )(
exp
, tqt ji→  ( ij ≠ , nji ,...,1, = ) are continuous, 

we can conclude that for all rt ≥  and ni ,...,1= , there exists ],[)( trttg i −∈ , ni ,...,1=  such that 

 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

−−+−−= ∑
≠ij

iji
ii

i
iiiii tgq

Kb

b

Kb

cab
Qrrtqrtq ))((

22
,0max,min)exp(1)()exp()(

exp
,μμ , ni ,...,1=  

 

The reader may verify that for Consistent Backward-looking expectations with respect to the Nash equilibrium point 

Sq ∈∗ , the above model can be described by the uncertain model (2.10) with )exp()( rt ii μθ −≡ , rti ≡)(τ , 

ni ,...,1=  and 1)exp(max:
,...,1

<−=Θ
=

ri
ni

μ .  

 

    The crucial question that can be posed is the question of robust asymptotic stability of the Nash equilibrium 

Sq ∈∗  for system (2.10) or equivalently the question of robust asymptotic stability X∈0  for system (2.11). The 

reader can obtain rigorous definitions for robust global asymptotic stability in [15-19]. The following theorem is the 

main result of the present section and shows that for certain values of the parameters involved, the Nash equilibrium 

Sq ∈∗  is robustly globally asymptotically stable for system (2.10) in the sense that for every initial condition and for 

every set of functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ), the solution 

n
n tqtqtq ℜ∈′= ))(),...,(()( 1  of system (2.10) satisfies ∗

+∞→
= qtq

t
)(lim . 

 

 

Theorem 2.2: X∈0  is Robustly Globally Asymptotically Stable for system (2.11), if the following set of conditions 

holds for each np ,...,2= : 

 

1)1(
1

<− p
ii nRR

p
…                                                                        (2.15) 

for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ . 
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In other words, if conditions (2.15) hold then the Nash equilibrium point Sq ∈∗  is robustly Globally Asymptotically 

Stable with respect to all possible Consistent Backward-looking expectation rules with respect to the Nash 

equilibrium point Sq ∈∗ , )(
exp
, tq ji , nji ,...,1, = , ji ≠ . It should be noticed that conditions (2.15) are more 

demanding inequalities than other stability conditions in the literature. However, this is expected since conditions 

(2.15) are sufficient conditions for global asymptotic stability for the uncertain model (2.10) which contains many 

models studied in the literature as special cases. 

 

Conditions (2.15) are termed as small-gain conditions in Mathematical Control Theory (see [17,18,19]). For 2=n  

conditions (2.15) are equivalent to the inequality: 

 

121 <RR  

 

For 3=n , conditions (2.15) are equivalent to the following four inequalities: 

 

14 21 <RR , 14 31 <RR , 14 32 <RR , 18 321 <RRR                                            (2.16) 

 

For 4=n , conditions (2.15) are equivalent to the following eleven inequalities: 

 

19 21 <RR , 19 31 <RR , 19 41 <RR , 19 32 <RR , 19 42 <RR , 19 43 <RR  

 

127 321 <RRR , 127 421 <RRR , 127 431 <RRR , 127 432 <RRR  

 

181 4321 <RRRR  

 

The proof of Theorem 2.2 relies heavily on recent results on dynamical systems (see [19]) and techniques developed 

for delay systems (see [18,19]) and is provided at the Appendix. An interesting corollary for the Cournot oligopoly 

game is given next. 

 

Corollary 2.3: If conditions (2.15) hold for each np ,...,2=  and for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠  then the Nash 

equilibrium point Sq ∈∗  is unique for the game described by (2.3), (2.4) and (2.5). 

 

 

The reader should notice that Brouwer’s fixed point theorem guarantees the existence of the Nash equilibrium 

Sq ∈∗  but does not guarantee uniqueness. 

 

Proof of Corollary 2.3: Suppose that there exists Sq ∈∗∗  with 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

= ∑
≠

∗∗∗∗

ij

j
ii

i
ii q

Kb

b

Kb

cab
Qq

22
,0max,min  for ni ,...,1=  and ∗∗∗ ≠ qq . This implies that 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−−−=
−

= ∑
≠

∗∗∗

ij

jjjiiiiii
i

ii
i yLgRLMLL

Q

qq
y )(,max,1min: ,  for ni ,...,1= . Using the previous 

equalities, the reader can verify that the solution of (2.11) with initial condition Pyx =0 , where 

X∈≤≤−= }0:{: τTyPy , ),...,( 1 ′= nyyy , corresponding to the constant inputs  

 

0)( ≡tiθ , 
⎪
⎩

⎪
⎨

⎧

<−
=
>

==
01

00

01

)sgn(:)(,

j

j

j

jji

yif

yif

yif

ytd , ij ≠ , nji ,...,1, =  

 

satisfies Pyxt =  for all 0≥t  ( ],[: Tri →ℜ+τ , ni ,...,1=  are irrelevant) and consequently we cannot have 

0)(lim =
+∞→

tx
t

. This is impossible according to Theorem 2.2. The proof is complete.         �  
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3. Extension to the General Case of Dynamic Games 
 

The approach described in the previous section for the Cournot oligopoly game can be extended to any strategic 

game.  

 

Consider a strategic game with n  players and ik
iS ℜ⊆  ( ni ,...,1= ) being the action space for each one of the 

players. We assume that the best reply mapping for each one of the players is a function 

iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3≥n  and 121 ...: SSSf n →×× , nnn SSSf →×× −11 ...: , 

satisfying the following inequalities: 

 

)),((),( iiiiiii qqfqq −−− < ππ , for all ii Sq ∈  with )( iii qfq −≠ , ni ,...,1=                  (3.1) 

 

where ),( iii qq −π  is the payoff function of the i-th player. 

 

We assume the existence of a Nash equilibrium Sq ∈∗  for the game, where nSSS ××= …1:  is the outcome space 

for the game, i.e., there exists Sqqq n ∈= ∗∗∗ ),...,( 1  such that 

 

)( ∗
−

∗ = iii qfq , ni ,...,1=                                                                      (3.2) 

 

The existence of a Nash equilibrium can be guaranteed by Brouwer’s fixed point theorem when all action spaces 

ik
iS ℜ⊆  ( ni ,...,1= ) are compact and convex and when all the best reply mappings 

iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3≥n  and 121 ...: SSSf n →×× , nnn SSSf →×× −11 ...:  are 

continuous mappings. 

 

Next we assume that ik
iS ℜ⊆  ( ni ,...,1= ) are closed convex sets and that the dynamics of the game are described in 

continuous time as follows: 

 

• every player forms an expectation for the behavior of all other players at each time 0≥t : the expectation of 

the i-th player for the production level of the j-th player at time 0≥t  will be denoted by jji Stq ∈)(
exp
,  

( ij ≠ , nji ,...,1, = ), 

 

• every player determines her action as a convex combination of a past action and the best reply response 

based on the expectations for the behavior of all other players at each time 0≥t , i.e.,  

 

( )

( )

( ) ))(),...,(())(1())((Pr)()(

))(),...,(),(),...(())(1())((Pr)()(

))(),...,(())(1())((Pr)()(

exp
1,

exp
1,

exp
,

exp
1,

exp
1,

exp
1,

exp
,1

exp
2,1111111 1

tqtqftttqttq

tqtqtqtqftttqttq

tqtqftttqttq

nnnnnnnSnn

niiiiiiiiiiSii

nS

n

i

−

+−

−+−=

−+−=

−+−=

θτθ

θτθ

θτθ

#

#

                 (3.3) 

 

where ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ni ,...,1=  are in general unknown functions, 10 <Θ≤ , 

Tr ≤<0   are constants (in general unknown), 

 

• all expectation rules jji Stq ∈)(
exp
,  ( ij ≠ , ni ,...,1= ), are Consistent Backward-looking expectations with 

respect to the Nash equilibrium point Sq ∈∗ , i.e., there exist constants Tr ≤<0  such that: 

 

],[

exp
, )(sup)(

rtTt
jjjj

rtTt
jji qqqqqtq

−−

∗∗

−≤≤−

∗ −=−≤− τ
τ

, for all 0≥t                            (3.4) 

 

We notice the following fact for consistent backward-looking expectations: 
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FACT II: Suppose that jk

jS ℜ⊆  is a closed convex set. )(
exp
, tq ji  ( ij ≠ , nji ,...,1, = ) is a Consistent Backward-

looking expectation with respect to the Nash equilibrium point Sq ∈∗  if and only if there exist constants Tr ≤<0  

and a function { }1::, ≤ℜ∈→ℜ+ ddd jk

ji   such that: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −+=

−−

∗∗

],[
,

exp
, )(Pr)(

rtTt
jjjijSji qqtdqtq

j
, 0≥∀t                                    (3.5) 

 

Proof of Fact II: Indeed, using the fact that yxyx UU −≤− )(Pr)(Pr  for every nyx ℜ∈, , where nU ℜ⊆  is a 

closed convex set, one can verify that for every { }1::, ≤ℜ∈→ℜ+ ddd jk

ji   the function )(
exp
, tq ji   defined by 

(3.5)  satisfies (3.4) and jji Stq ∈)(
exp
,  for all 0≥t . Hence it is a Consistent Backward-looking expectation with 

respect to the Nash equilibrium point Sq ∈∗ . On the other hand, if jji Stq ∈)(
exp
,  is a Consistent Backward-looking 

expectation with respect to the Nash equilibrium point Sq ∈∗  satisfying (3.4) for all 0≥t  then the function defined 

by: 

 

( )∗
−−

∗
−

−
= jji

rtTt
jj

ji qtq
qq

td )(
1

)(
exp
,

],[

, , if 0
],[
>−

−−

∗

rtTt
jj qq  

 

0)(, =td ji , if 0
],[
=−

−−

∗

rtTt
jj qq  

 

satisfies { }1:)(, ≤ℜ∈∈ ddtd jk

ji . Moreover, (3.5) holds for all 0≥t . The proof is complete.      �  

 

Fact II shows that if all action spaces jk

jS ℜ⊆  ( nj ,...,1= ) are closed convex sets then there exist constants 

Tr ≤<0 , 10 <Θ≤  and functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , 

nji ,...,1, = ) such that: 

 

( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+−+−=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+−+−=

−−

∗
−−−

∗
−−−

∗∗

−−

∗∗

−−

∗∗

− ],[
111,1

],[
111,1

],[
,1

],[
222,12111111

)(Pr,...,)(Pr))(1())((Pr)()(

,)(Pr,...,)(Pr))(1())((Pr)()(

11

21

rtTt
nnnnnS

rtTt
nSnnnnSnn

rtTt
nnnnS

rtTt
SS

qqtdqqqtdqftttqttq

qqtdqqqtdqftttqttq

nn

n

θτθ

θτθ

#  

      (3.6) 

 

In general, the constants Tr ≤<0 , 10 <Θ≤  and the functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , 

{ }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ) are unknown. Therefore, the dynamical system (3.6) is an 

uncertain dynamical system described by Functional Difference Equations (FDEs) (see [9,15-19,32]). In order to 

study the behavior of the solutions of (3.6) we define the deviation variables ∗−= iii qtqtx )()(  ( ni ,...,1= ) and we 

obtain from (3.6): 

 

( )( )
( ) ( )( )( )

( )( )
( ) ( )( )( ) .)(Pr,...,)(Pr))(1(

))((Pr)()(

,)(Pr,...,)(Pr))(1(

))((Pr)()(

],[11,1],[11,1

1],[,1],[22,1211

111111

11

2

1

∗
−−−−

∗
−−−

∗

∗∗

∗
−−

∗
−−

∗

∗∗

−++−+

−+−=

−++−+

−+−=

− nrtTtnnnnSrtTtnSnn

nnnnSnn

rtTtnnnSrtTtS

S

qxtdqxtdqft

qqttxttx

qxtdqxtdqft

qqttxttx

n

n

n

θ

τθ

θ

τθ

#                (3.7) 
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Finally, we assume that there exist functions N∈ji,
~γ  ( ij ≠ , nji ,...,1, = ) such that the following inequalities hold 

for all Sq∈ : 

 

( )∗

≠

∗
− −≤− jjji

ij
iii qqqqf ,

~max)( γ , ni ,...,1=                                                  (3.8) 

 

Using again the fact that yxyx UU −≤− )(Pr)(Pr  for every nyx ℜ∈, , where nU ℜ⊆  is a closed convex set and 

inequalities (3.8), we obtain from (3.7) for all 0≥t  and Θ>μ : 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

Θ−
Θ−

≤
−−≠−− ],[

,],[

~max,max)(
rtTt

jji
ijrtTtii xxtx γ

μ
μμ

μ , ni ,...,1=                             (3.9) 

 

 

 

Remarks and Examples about systems (3.7), (3.8): 

 

a) The reader should notice that system (3.7) is an infinite-dimensional dynamical system with state space X   being 

the normed linear space of bounded functions 
NTx ℜ→− ]0,[: , where nkkN ++= ...1  with norm 

)(sup
0

τ
τ

xx
T ≤≤−

=
X

. Indeed, by using the method of steps, given an initial condition X∈0x  and functions 

],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ) then one can in principle 

determine from (3.8) the solution m
n txtxtx ℜ∈′= ))(),...,(()( 1  for ],0( rt∈  with )())(),...,(()( 01 ττττ xxxx n =′=  

for all ]0,[ T−∈τ . Then we can determine from (3.8) the solution 
N

n txtxtx ℜ∈′= ))(),...,(()( 1  for ]2,( rrt∈ . 

Continuing this way, we can determine from (3.8) the solution N
n txtxtx ℜ∈′= ))(),...,(()( 1  for ])1(,( rkkrt +∈ , 

where k  is a positive integer. The state of system (3.8) will be denoted by X∈≤≤−= }:)({ tTtxxt ττ  as usually in 

systems with delays (see [9]) and the components of the state by }:)({, tTtxx iti ≤≤−= ττ  for ni ,...,1= . The 

solution exists for all 0≥t  and satisfies X∈≤≤−= }:)({ tTtxxt ττ  for all 0≥t . To see this, notice that (3.9) 

implies the existence of a function N∈G  such that: 

 

( )
]0,[],0[

],0[

)(sup
Tr

rt

xGxtx
−

∈
≤=                                                               (3.10) 

 

Without loss of generality we may assume that ssG ≥)(  for all 0≥s . Inequality (3.10) implies that  

 

( )
]0,[],[ TtTt

xGx
−−

≤ , for all ],0[ rt∈  and ( )
]0,[],[ TrTr

xGx
−−

≤                                 (3.11) 

 

Working in this way and using induction we may establish that for every positive integer 0>k  it holds that 

 

( )
]0,[

)(

],[ T

k

tTt
xGx

−−
≤ , for all ],0[ krt∈                                                   (3.12) 

 

where )(...:)(
)(

sGGsG

timesk

k
�
�	� DD= . Therefore (3.12) implies that  

 
[ ]( ) ( ) [ ]( ) ( )

XX 0
/1

]0,[

/1

],[
xGxGxx rt

T

rt

tTtt
+

−
+

−
=≤= , for all 0≥t                           (3.13) 

 

where [ ]rt /  denotes the integer part of rt / . 

 

b) The reader should also notice that X∈0  is an equilibrium point for system (3.7). Indeed, for any functions 

],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ), X∈= 0
0t

x  implies 

X∈= 0tx  for all 0tt ≥ . This equilibrium point corresponds to the Nash equilibrium point Sq ∈∗  (noting that the 

deviation variables have been defined by 
∗−= iii qtqtx )()(  for ni ,...,1= ).  
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c) All discrete-time models of the form: 

 

))1(),...,1(())(1()()()1(

))1(),...,1(),1(),...1(())(1()()()1(

))1(),...,1(())(1()()()1(

exp
1,

exp
1,

exp
,

exp
1,

exp
1,

exp
1,

exp
,1

exp
2,111111

++−+=+

++++−+=+

++−+=+

−

+−

kqkqfkkqkkq

kqkqkqkqfkkqkkq

kqkqfkkqkkq

nnnnnnnn

niiiiiiiiiii

n

θθ

θθ

θθ

#

#

            (3.14) 

 

with )1(
exp
, +kq ji  given by (2.13), where mk,  are non-negative integers, ]1,0[)(, ∈ka ji  ( nji ,...,1, = ), ],0[)( Θ∈kiθ  

( ni ,...,1= ) with )1,0[∈Θ , 0)(,, ≥kw lji  with ∑
=

=
m

l

lji kw

0

,, )(1  for all 0≥k  and ml ,...,0=  ( nji ,...,1, = ), are 

included in the uncertain model (3.6) and its equivalent expression (3.7) in the sense that for every model of the form 

(3.14), (2.13), one can give functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , 

nji ,...,1, = ) such that the solution of (3.6) coincides with the solution obtained by the discrete-time model (3.14), 

(2.13).  

 

d) Similarly, as shown in previous section, if ),0[ +∞⊆jS  for all nj ,...,1=  and if all expectation rules  )(
exp
, tq ji  

( ij ≠ , nji ,...,1, = ) are Consistent Backward-looking expectations with respect to the Nash equilibrium point Sq ∈∗
 

and all mappings )(
exp
, tqt ji→  ( ij ≠ , nji ,...,1, = ) are continuous, then all continuous-time models of the form: 

 

( )

( ))())(),...,(()(

)())(),...,(()(

exp
1,

exp
1,

1
exp
,1

exp
2,1111

tqtqtqftq

tqtqtqftq

nnnnnnn

n

−=

−=

−μ

μ

�

#

�

 

 

where 0>iμ  are constants, are included in the uncertain model (3.6). 

 

e) The reader should notice that no continuity assumption is made for the best reply mappings of the players 

iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3≥n  and 121 ...: SSSf n →×× , nnn SSSf →×× −11 ...: . 

Moreover, we have not assumed that the action spaces jk

jS ℜ⊆  ( nj ,...,1= ) are compact sets: we simply require 

that the action spaces are closed, convex sets. However, we have assumed the existence of a Nash equilibrium point 

Sq ∈∗  and the existence of functions N∈ji,
~γ  ( ij ≠ , ni ,...,1= ) satisfying (3.8).  

 

The crucial question that can be posed is the question of robust asymptotic stability of the Nash equilibrium Sq ∈∗  

for system (3.6) or equivalently the question of robust asymptotic stability X∈0  for system (3.7). The following 

theorem is the main result of this section and shows that robust global stability can be determined by the functions 

N∈ji,
~γ  ( ij ≠ , ni ,...,1= ) satisfying (3.8). 

 

Theorem 3.1: X∈0  is Robustly Globally Asymptotically Stable for system (3.7), if there exists 1>ω  such that the 

following set of conditions holds for each np ,...,2= :  

 

( ) ssiiiiii p
<)(...

13221 ,,, γγγ DDD , 0>∀s                                                    (3.15) 

 

for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ , where )(~:)( ,, ss jiji ωγωγ = . 
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In other words, if conditions (3.15) hold then the Nash equilibrium point Sq ∈∗  is robustly Globally Asymptotically 

Stable with respect to all possible Consistent Backward-looking expectation rules with respect to the Nash 

equilibrium point Sq ∈∗ , )(
exp
, tq ji , nji ,...,1, = , ji ≠ . 

 

Conditions (3.15) are termed as cyclic small-gain conditions in Mathematical Control Theory (see [17,18,19]). For 

2=n  conditions (3.15) are equivalent to the inequalities: 

 

( ) ss <)(1,22,1 γγ  and ( ) ss <)(2,11,2 γγ , 0>∀s  

 

For 3=n , conditions (3.15) are equivalent to the following twelve inequalities for all 0>s : 

 

( ) ss <)(1,22,1 γγ , ( ) ss <)(2,11,2 γγ  

 

( ) ss <)(1,33,1 γγ , ( ) ss <)(3,11,3 γγ  

 

( ) ss <)(2,33,2 γγ , ( ) ss <)(3,22,3 γγ  

 

( )( ) ss <)(1,33,22,1 γγγ , ( )( ) ss <)(3,22,11,3 γγγ , ( )( ) ss <)(2,11,33,2 γγγ  

 

( )( ) ss <)(2,33,11,2 γγγ , ( )( ) ss <)(1,22,33,1 γγγ , ( )( ) ss <)(3,11,22,3 γγγ  

 

The reader should notice that many of the above inequalities are equivalent. For example, for 2=n  the inequality 

( ) ss <)(1,22,1 γγ , for all 0>s  implies the inequality ( ) ss <)(2,11,2 γγ  for all 0>s . Similarly, for the case 3=n  the 

following five inequalities ( ) ss <)(1,22,1 γγ , ( ) ss <)(1,33,1 γγ , ( ) ss <)(2,33,2 γγ , ( )( ) ss <)(1,33,22,1 γγγ , 

( )( ) ss <)(2,33,11,2 γγγ  for all 0>s , imply all twelve inequalities which express conditions (3.15) in this case. 

 

It should be noticed that for the Cournot oligopoly game studied in the previous section, the best reply mappings if  

( ni ,...,1= ) are defined by (2.3). Consequently, using the convexity of the sets ],0[ ii QS =  ( ni ,...,1= ), we obtain the 

following inequalities for ni ,...,1= : 

   

∗

≠
≠

∗∗
− −−

+
≤−

+
≤− ∑ jj

ijiij

jj
i

iii qqn
Kb

b
qq

Kb

b
qqf max)1(

22
)(  

 

The above inequalities imply that inequalities (3.8) hold with snRs iji )1(:)(~
, −=γ , where 

i
i

Kb

b
R

+
=

2
: . Theorem 

3.1 and the above definitions guarantee robust global asymptotic stability of the Nash equilibrium provided that there 

exists 1>ω  such that the following set of conditions holds for each np ,...,2= :  

 

1)1(... 2

21
<− pp

iii nRRR
p

ω  

 

for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ . Conditions (2.15) are necessary and sufficient conditions for the existence of a 

(sufficiently small) constant 1>ω  satisfying the above inequalities for each np ,...,2=  and for all },...,1{ ni j ∈ , 

kj ii ≠  if kj ≠ . Therefore, we conclude that Theorem 2.2 is a special case of Theorem 3.1. A more careful analysis 

similar to the above analysis reveals that the Nash equilibrium for the Cournot oligopoly game described in Section 2 

will be asymptotically stable provided that there exist n  sets of positive real numbers { }ijaA jii ≠= ,,  ( ni ,...,1= ) 

with ( )jji
ij

ij

j xax ,max
≠

≠

≤∑  for all n
nxxx )(),...,( 1

+ℜ∈′=  and ni ,...,1=  such that the following set of conditions 

holds for each np ,...,2= :  

 

1......
2113221 ,,, <

pp iiiiiiiii RRRaaa  
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for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ . The above conditions are less restrictive than conditions (2.15); indeed, 

conditions (2.15) are implied by the above conditions for the special case 1, −= na ji  for all nji ,...,1, =  with ij ≠ . 

For example, for 3=n , the above small-gain conditions are equivalent to the existence of 0,, 321 >εεε  such that: 

 

1)1)(1)(1(

1)1)(1)(1(

1)1)(1(

1)1)(1(

1)1)(1(

1
32

1
1321

3
1

21321

1
3

1
232

3
1

131

2121

<+++

<+++

<++

<++

<++

−−

−

−−

−

εεε

εεε

εε

εε

εε

RRR

RRR

RR

RR

RR

 

 

For the above inequalities we have used 12,1 1 ε+=a , 1
13,1 1 −+= εa , 21,2 1 ε+=a , 1

23,2 1 −+= εa , 31,3 1 ε+=a  and 

1
32,3 1 −+= εa . By selecting 1321 === εεε , we obtain inequalities (2.16). 

 

 

It should be emphasized that the parameters 0>≥ rT  which are involved in the definition of the Consistent 

Backward-looking expectation (Definition 2.1), play no role in the small-gain conditions. Consequently, the small-

gain conditions can help us to decide whether the Nash equilibrium point is robustly stable without any knowledge 

of the expectation rules. The small-gain conditions (3.15) demand knowledge of the Nash equilibrium point Sq ∈∗  

and the best reply mappings iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3≥n  and 121 ...: SSSf n →×× , 

nnn SSSf →×× −11 ...:  for which inequalities (3.8) hold. 

 

The proof of Theorem 3.1 relies heavily on recent results on dynamical systems (see [19]) and techniques developed 

for time-delay systems (see [18,19]) and is provided in the Appendix. An interesting corollary is given next. 

 

Corollary 3.2: If there exists 1>ω  such that conditions (3.15) hold for each np ,...,2=  and for all },...,1{ ni j ∈ , 

kj ii ≠  if kj ≠  then the Nash equilibrium point Sq ∈∗  is unique. 

 

The proof of Corollary 3.2 is exactly the same with the proof of Corollary 2.3: we show that the existence of an 

additional Nash equilibrium Sq ∈∗∗
 contradicts robust global asymptotic stability of X∈0  for system (3.7). Details 

are left to the reader. 

 

Using Corollary 3.2 we may obtain conditions for uniqueness for a fixed point. Indeed, we have: 

 

Corollary 3.3: Let ik
iS ℜ⊆  ( ni ,...,1= ) be closed, convex sets and let functions 

iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3≥n  and 121 ...: SSSf n →×× , nnn SSSf →×× −11 ...:  for 

which there exists Sqqq n ∈= ∗∗∗ ),...,( 1 , where nSSS ××= …1:  satisfying (3.3). Furthermore, suppose that there 

exist functions N∈ji,
~γ  ( ij ≠ , nji ,...,1, = ) such that inequalities (3.8) hold for all Sq∈  and that there exists 

1>ω  such that conditions (3.15) hold for each np ,...,2=  and for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ . Then 

Sqqq n ∈= ∗∗∗ ),...,( 1  is the unique fixed point of the mapping SqfqfqFqS nn ∈=→∋ −− ))(),...,((:)( 11 .  

 

 

The reader should notice that Corollary 3.3 does not guarantee the existence of a fixed point for the mapping 

SqfqfqFqS nn ∈=→∋ −− ))(),...,((:)( 11 . Corollary 3.3 can be used in conjunction with classical fixed-point 

theorems (e.g., Brouwer’s fixed point theorem when all action spaces ik
iS ℜ⊆  ( ni ,...,1= ) are compact and convex 

and when the mapping SqfqfqFqS nn ∈=→∋ −− ))(),...,((:)( 11  is continuous) in order to guarantee uniqueness of 

the fixed point. 
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4. Remarks on the Rational Expectation Case 
 

It is clear from Definition 2.1 that rational expectations )()(
exp
, tqtq jji =  are not necessarily consistent backward-

looking expectations with respect to the Nash equilibrium point Sq ∈∗ . Therefore, the case of rational expectations 

is not necessarily covered by the results of the previous sections. This point motivates the following definition for the 

strategic game described in the previous section. 

 

Definition 4.1: An expectation rule )(
exp
, tq ji   ( ij ≠ , nji ,...,1, = ) is called a Rational-Consistent Backward-looking 

expectation with respect to the Nash equilibrium point Sq ∈∗  if there exists a constant T<0  such that: 

 

],[

exp
, )(sup)(

tTt
jjjj

tTt
jji qqqqqtq

−

∗∗

≤≤−

∗ −=−≤− τ
τ

, for all 0≥t                                  (4.1) 

 

Clearly, rational expectations are Rational-Consistent Backward-looking expectations with respect to the Nash 

equilibrium point Sq ∈∗ . Moreover, a Consistent Backward-looking expectation (in the sense of Definition 2.1) is a 

Rational-Consistent Backward-looking expectation with respect to the Nash equilibrium point Sq ∈∗ . 

 

Can we consider system (3.3) where all expectation rules jji Stq ∈)(
exp
,  ( ij ≠ , nji ,...,1, = ), are Rational-Consistent 

Backward-looking expectations with respect to the Nash equilibrium point Sq ∈∗ ? The key mathematical problem 

that arises in this case is whether we can obtain a well-defined dynamical system: Remark (a) in previous section does 

not apply. However, we can extend the analysis of the previous section under the following hypothesis: 

 

 

(H’) There exist m  index sets },...,1{ nJ l ⊆ , ml ,...,1=  with ∅=∩ kl JJ  for kl ≠  and },...,1{
,...,1

nJ l
ml

=∪
=

 such 

that: 

 

All players with mJi∈  are using Consistent Backward-looking expectations with respect to the Nash equilibrium 

point Sq ∈∗ . 

 

Moreover, for every 1,...,1 −= mk , the following statement  holds: 

 

All players with kJi∈  are using Rational-Consistent Backward-looking expectations, jji Stq ∈)(
exp
,  if lJj∈   with 

kl >  and Consistent Backward-looking expectations, jji Stq ∈)(
exp
,  if otherwise. 

 

 

Indeed, if hypothesis (H’) holds then system (3.3) is expressed in deviation variables 
∗−= iii qtqtx )()(  ( ni ,...,1= ) by 

the following equations: 

 

( )( )
( ) ( )( )( )

( )( )
( ) ( )( )( )

klwithJjandJiifxts

klwithJjandJiifxts

qtstdqtstdqft

qqttxttx

qtstdqtstdqft

qqttxttx

lkrtTtji

lk
tTt

jji

nnnnnnSnnSnn

nnnnSnn

nnnSS

S

n

n

n

≤∈∈=

>∈∈=

−++−+

−+−=

−++−+

−+−=

−−

−

∗
−−

∗
−

∗

∗∗

∗∗∗

∗∗

−

],[2,

],[
,

1,1,11,1,1

1,1,12,12,1211

111111

:)(

:)(

,)()(Pr,...,)()(Pr))(1(

))((Pr)()(

,)()(Pr,...,)()(Pr))(1(

))((Pr)()(

11

2

1

θ

τθ

θ

τθ

#

                     (4.2) 

 

where ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ).  
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Let us explain next why system (4.2) is an infinite-dimensional dynamical system with state space X   being the 

normed linear space of bounded functions NTx ℜ→− ]0,[: , where nkkN ++= ...1  with norm )(sup
0

τ
τ

xx
T ≤≤−

=
X

. 

Indeed, by using the method of steps, given an initial condition X∈0x  and functions ],0[: Θ→ℜ+
iθ , 

],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ) then one can in principle determine from (4.2) 

the solution m
n txtxtx ℜ∈′= ))(),...,(()( 1  for ],0( rt∈  with )())(),...,(()( 01 ττττ xxxx n =′=  for all ]0,[ T−∈τ  using 

the following procedure: 

 

Step 1:  

 

First determine the solution )(txi  for ],0( rt∈  and for all players with mJi∈  who are using Consistent Backward-

looking expectations with respect to the Nash equilibrium point Sq ∈∗ . In this case, we are in a position to 

determine the components of the solution )(tx j  for mJj∈  and ],0( rt∈  by means of (4.2). Furthermore, in this 

case inequality (3.9) holds for ],0( rt∈ , mJi∈  and consequently there exists function N∈mG  such that: 

 

( )
]0,[

],0[

)(sup
Tmi

rt

xGtx
−

∈
≤ , for mJi∈                                                            (4.3) 

Step 2:  

 

Next determine the solution )(txi  for ],0( rt∈  and for all players with 1−∈ mJi  who are using Rational-Consistent 

Backward-looking expectations, jji Stq ∈)(
exp
,  if mJj∈  and Consistent Backward-looking expectations, 

jji Stq ∈)(
exp
,  if otherwise. In this case, (3.8) implies that the following inequality holds for all ],0( rt∈ : 

 

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛≤

−
∈
≠−−

∉
≠ ],[

,
],[

,
~max~max)(

tTt
jji

Jj
ijrtTt

jji

Jj
ij

i xxtx

mm

γγ                                                  (4.4) 

However, the components of the solution )(tx j  for mJj∈  and ],0( rt∈  have been determined by Step 1. 

Therefore, we are in a position to determine the components of the solution )(tx j  for 1−∈ mJj  and ],0( rt∈  by 

means of (4.2). Using (4.3) and (4.4) we obtain the existence of a function N∈−1mG  such that: 

 

( )
]0,[1

],0[

)(sup
Tmi

rt

xGtx
−−

∈
≤ , for 1−∪∈ mm JJi                                                 (4.5) 

 

Step k  ( mk ≤≤3 ):  

 

We determine the solution )(txi  for ],0( rt∈  and for all players with kmJi −+∈ 1  who are using Rational-Consistent 

Backward-looking expectations, jji Stq ∈)(
exp
,  if lJj∈  with kml −+> 1  and Consistent Backward-looking 

expectations, jji Stq ∈)(
exp
,  if otherwise. In this case, (3.8) implies that the following inequality holds for all ],0( rt∈ : 

 

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛≤

−

−+>
∈
≠−−

−+≤
∈
≠ ],[

,

1

],[
,

1

~max~max)(
tTt

jji

kml
Jj
ijrtTt

jji

kml
Jj
ij

i xxtx

ll

γγ                                           (4.6) 

 

However, the components of the solution )(tx j  for lJj∈  with kml −+> 1  and ],0( rt∈  have been determined by 

previous steps. Therefore, we are in a position to determine the components of the solution )(tx j  for kmJj −+∈ 1  and 

],0( rt∈  by means of (4.2). Moreover, by virtue of previous steps there exists there exists function N∈−+ kmG 2  such 

that: 

 

( )
]0,[2

],0[

)(sup
Tkmi

rt

xGtx
−−+

∈
≤ , for l

mkml
Ji

,...,2−+=
∪∈                                            (4.7) 
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Using (4.6) and (4.7) we obtain the existence of a function N∈−+ kmG 1  such that: 

 

( )
]0,[1

],0[

)(sup
Tkmi

rt

xGtx
−−+

∈
≤ , for l

mkml
Ji

,...,1−+=
∪∈                                            (4.8) 

 

After the completion of the m  steps we have determined all components of the solution )(tx j  for nj ,...,1=  and 

],0( rt∈ . Moreover, we have also constructed a function N∈G  such that: 

 

( )
]0,[

],0[

)(sup
T

rt

xGtx
−

∈
≤                                                                      (4.9) 

 

Without loss of generality we may assume that ssG ≥)(  for all 0≥s . Moreover, by using (4.9) we may conclude 

exactly as in the previous section that estimates (3.11), (3.12) and (3.13) hold. 

 

The proof of the following theorem is exactly the same with the proof of the Theorem 3.1 and therefore is omitted. 

 

Theorem 4.2: X∈0  is Robustly Globally Asymptotically Stable for system (4.2) under hypothesis (H’), if there exists 

1>ω  such that the set of conditions (3.15) holds for each np ,...,2=  and for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ , 

where )(~:)( ,, ss jiji ωγωγ = . 

 

It should be emphasized that the parameters 0>≥ rT , which are involved in the definition of the Consistent 

Backward-looking expectation (Definition 2.1), play no role in the small-gain conditions. Moreover, the number m  

of the index sets },...,1{ nJ l ⊆  involved in hypothesis (H’) or the particular members of each index set play 

absolutely no role in the small-gain conditions (3.15). Furthermore, all these parameters are allowed to change with 

time: there is no need to assume that these parameters remain constant. Consequently, the small-gain conditions can 

help us to decide whether the Nash equilibrium point is robustly stable without any knowledge of the expectation 

rules. Again, the small-gain conditions (3.15) demand knowledge of the Nash equilibrium point Sq ∈∗
 and the best 

reply mappings iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3>n  and 121 ...: SSSf n →×× , 

nnn SSSf →×× −11 ...:  for which inequalities (3.8) hold. 

 

    Finally, it should be noted that for a specific strategic game, even less demanding hypotheses than hypothesis (H’) 

can be used in order to guarantee that system (3.3) gives an infinite-dimensional dynamical system with state space 

X   being the normed linear space of bounded functions NTx ℜ→− ]0,[: , where nkkN ++= ...1  with norm 

)(sup
0

τ
τ

xx
T ≤≤−

=
X

. This can be done by exploiting special properties of the best reply mappings 

iniii SSSSSf →××××× +− ......: 111  for ni <<1 , 3>n  and 121 ...: SSSf n →×× , nnn SSSf →×× −11 ...:  (e.g., if 

some of the functions are independent of certain arguments).  

 

 

 

 

 

5. Conclusions 
 

   In this work, advanced stability methods have been used in order to provide sufficient conditions, called cyclic 

small gain conditions, which guarantee robust global asymptotic stability of the Nash equilibrium in dynamic games. 

The obtained results are powerful because they can be applied to uncertain models for which the players form 

consistent expectations based on the history of the game. In addition, by formulating dynamic game-theoretical 

models by means of Functional Difference Equations, it is possible to obtain all features of continuous-time and 

discrete-time models. A Cournot oligopoly game has been used in order to illustrate the theoretical results. 

 

   Future research can address the economic meaning of small-gain conditions to other games used in economic 

research (e.g., the study of the stability properties of the Walrasian equilibrium of an abstract economy). A step 

towards this research direction is the fact that the results presented in this work can be directly extended to the case 

where the best reply mappings are set-valued maps instead of functions, i.e., iii Sqf ⊆− )( . However, in this case 

inequalities (3.8) must be modified in the following way: 
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( )∗

≠

∗ −≤− jjji
ij

i qqqp ,
~max γ , for all )( ii qfp −∈  and ni ,...,1=                                  (3.8’) 

 

The above set of inequalities directly implies that the Nash equilibrium point satisfies }{)( ∗∗
− = iii qqf  for all 

ni ,...,1= . With this modification, Theorem 3.1, Corollary 3.2, Corollary 3.3 and Theorem 4.2 hold in this case as 

well. Future research can also address the issue of studying dynamic game-theoretical models by means of recent 

results in hybrid systems theory (see [24,25]) or the issue of stabilization of Nash equilibria for dynamic game-

theoretical models by means of nonlinear feedback laws, using recently proposed methodologies (see for example 

[22,23]). 
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Appendix 
 

Proof of Theorem 2.2: Notice that (2.10) implies that the followings equations hold for all 0≥t : 
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  , ni ,...,1=            (A.1) 

 

 

Using the fact that yxyx UU −≤− )(Pr)(Pr  for every 
nyx ℜ∈, , where nU ℜ⊆  is a closed convex set, in 

conjunction with ⎟
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Combining (A.2) with (2.8) and using definitions 0
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ni ,...,1= ) , we conclude that for every X∈0x  and for every set of functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , 
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]1,1[:, −→ℜ+
jid  ( ij ≠ , nji ,...,1, = ), the solution X∈tx  of (2.11) with initial condition X∈= 00

xxt  

corresponding to inputs ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ) satisfies:  
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))(1()()( θθ  for all 0tt ≥                                   (A.3) 

 

We notice that system (2.11) is an autonomous uncertain dynamical system in the sense described in [15,16,17]. Next 

we show that X∈0  is a robust equilibrium point for system (2.11) in the sense described in [15,16,17], i.e., for every 

0>ε , 0>T  there exists 0),(: >= Tεδδ  such that if δ≤
X0x  then for every set of functions ],0[: Θ→ℜ+

iθ , 

],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+
jid  ( ij ≠ , nji ,...,1, = ), the solution X∈tx  of (2.11) with initial condition 

X∈0x  corresponding to inputs ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ) satisfies 

ε≤=
− ],[ tTtt xx

X
 for all ],0[ Tt∈ . To see this, notice that (A.3) implies the existence of a constant 0≥G  such 

that: 
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Without loss of generality we may assume that 1≥G . Inequality (A.4) implies that  
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Working in this way and using induction we may establish that for every positive integer 0>k  it holds that 
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where [ ]rt /  denotes the integer part of rt / . Consequently, (A.7) implies that for every 0>ε , 0>T  there exists 
[ ]

0),(: /1 >== −− rTGT εεδδ  such that if δ≤
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jid  ( ij ≠ , nji ,...,1, = ), the solution X∈tx  of (2.11) with initial condition 

X∈0x  corresponding to inputs ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , ]1,1[:, −→ℜ+

jid  ( ij ≠ , nji ,...,1, = ) satisfies 

ε≤=
− ],[ tTtt xx

X
 for all ],0[ Tt∈ . Therefore X∈0  is a robust equilibrium point for system (2.11) in the sense 

described in [15,16,17]. 

 

The reader should notice that inequality (A.3) implies the following inequality for all ni ,...,1=  and Θ>μ : 
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Let 0>σ  and consider the family of functionals +ℜ→X:iV , ni ,...,1=  defined by: 
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Let ),0( rh∈  and 0≥t  be arbitrary. Definition (A.9) and inequality (A.8) imply that: 
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Consequently, for every ni ,...,1= , Θ>μ , 0>σ , ),0( rh∈  and 0≥t  it holds that: 

 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−
Θ−
Θ−

−≤
+≤≤≠+≤≤

+ )(supmax)exp()1(,)(sup)exp(,)(expmax)( sj
htstij

isi
htst

tihti xVTnRxVTxVhxV σ
μ

μμ
σμσ  (A.10) 

 

Using induction and (A.10), we can show that for every ni ,...,1= , Θ>μ , 0>σ , ),0( rh∈ , 0≥t  and for every 

non-negative integer 0≥k , it holds that: 
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Therefore, (A.11) implies that for every ni ,...,1= , Θ>μ , 0>σ  and 0≥t  the following inequality holds:  
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where 
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xxL =:)(  and i
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= . It follows from (A.13), (A.14), (A.15) and Theorem 3.1 in [19] that X∈0  is 

Robustly Globally Asymptotically Stable for system (2.11), provided that the following set of conditions holds for 

each np ,...,2= : 
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for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠  and 

 

1)exp( <Tσμ                                                                    (A.17) 

 

Notice that if conditions (2.15) hold for each np ,...,2=  and for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠  then the conditions 

(A.16), (A.17) hold for each np ,...,2=  and for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠  for sufficiently small 0>σ  and 

for )1,(Θ∈μ  sufficiently close to 1. The proof is complete.     �  

 

 

Proof of Theorem 3.1: We first notice that system (3.7) is an autonomous dynamical system in the sense described in 

[15,16,17]. Next we show that X∈0  is a robust equilibrium point for system (3.7) in the sense described in 

[15,16,17], i.e., for every 0>ε , 0>T  there exists 0),(: >= Tεδδ  such that if δ≤
X0x  then for every set of 

functions ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ), the solution 

X∈tx  of (3.7) with initial condition X∈0x  corresponding to inputs ],0[: Θ→ℜ+
iθ , ],[: Tri →ℜ+τ , 

{ }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ) satisfies ε≤=
− ],[ tTtt xx

X
 for all ],0[ Tt∈ . Without loss of 

generality we may assume that the function N∈G  involved in (3.13) is a strictly increasing function. Define 
[ ]( ) ( )sGs rT /1:)( +=κ  for every 0>T , which is a strictly increasing, continuous function with 0)0( =κ  and 

+∞=
+∞→

)(lim s
s

κ  (recall that ssG ≥)(  for all 0≥s ) and define ++− ℜ→ℜ:1κ  to be the inverse function of κ  on 

+ℜ . Indeed, (3.13) implies that for every 0>ε , 0>T  there exists 0)(),(: 1 >== − εκεδδ T  such that if δ≤
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ji  ( ij ≠ , 

nji ,...,1, = ), the solution X∈tx  of (3.7) with initial condition X∈0x  corresponding to inputs ],0[: Θ→ℜ+
iθ , 

],[: Tri →ℜ+τ , { }1::, ≤ℜ∈→ℜ+ ddd jk

ji  ( ij ≠ , nji ,...,1, = ) satisfies ε≤=
− ],[ tTtt xx

X
 for all 

],0[ Tt∈ . Therefore X∈0  is a robust equilibrium point for system (3.7) in the sense described in [15,16,17]. 

 

Let 0>σ  and consider the family of functionals +ℜ→X:iV , ni ,...,1=  defined by: 
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Using definition (A.18) and (3.9) we obtain for every ),0( Th∈ , ni ,...,1= , Θ>μ  and 0≥t : 
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Consequently, for every ni ,...,1= , 0>σ , ),0( Th∈ , Θ>μ  and 0≥t  it holds that: 
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Using induction and (A.19), we can show that for every ni ,...,1= , 0>σ , ),0( Th∈ , Θ>μ , 0≥t  and for every 

non-negative integer 0≥k , it holds that: 
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Therefore, (A.20) implies that for every ni ,...,1= , Θ>μ , 0>σ  and 0≥t  the following inequality holds:  
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The reader should notice that definition (A.18) implies that )(sup)(2
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Without loss of generality we may assume 0>Θ . Define 
Θ+−

Θ
=

1
:
ω
ω

μ  and let the constant 0>σ  satisfy the 

inequalities: )2ln(1−≤ Tσ , )ln(1 ωσ −≤ T  and ⎟⎟
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ln1T , where 1>ω  is the constant involved in the 

hypotheses of the theorem. Notice that the hypothesis 1<Θ  and previous definitions imply that 1)exp( <Tσμ , 
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where 
X

xxL =:)(  and 1)exp(: <= TB σμ . It follows from (A.22), (A.23), (A.24) and Theorem 3.1 in [19] that 

X∈0  is Robustly Globally Asymptotically Stable for system (3.7), provided that the set of conditions (3.15) holds 

for each np ,...,2=  and for all },...,1{ ni j ∈ , kj ii ≠  if kj ≠ . The proof is complete.     �  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


