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Abstract

The Bayesian solution is a notion of correlated equilibrium proposed by Forges

(1993), and hierarchies of beliefs over conditional beliefs are introduced by Ely and

P¾eski (2006) in their study of interim rationalizability. We study the connection be-

tween the two concepts. We say that two type spaces are equivalent if they represent

the same set of hierarchies of beliefs over conditional beliefs. We show that the correla-

tion embedded in equivalent type spaces can be characterized by partially correlating

devices, which send correlated signals to players in a belief invariant way. Since such

correlating devices also implement the Bayesian solution, we establish that the Bayesian

solution is invariant across equivalent type spaces.
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1 Introduction

Harsanyi (1967-1968) proposes type spaces to model players� beliefs and higher-order beliefs

in games with incomplete information, and later Mertens and Zamir (1985) constructs a

universal type space which incorporates all hierarchies of beliefs. These works provide the

foundations for strategic analysis in games with incomplete information. One phenomenon

that has recently attracts game theorists� attention is that, for a given solution concept, type

spaces and hierarchies of beliefs are not always strategically equivalent. To be more precise,

for any hierarchy of beliefs, there are multiple type spaces that could represent it. These type

spaces, although equivalent in the set of hierarchies of beliefs that they represent, may di¤er

in the amounts of correlations incorporated in the types; and these correlations potentially

matter for the behavioral prediction of various solution concepts.

The characterization of correlations embedded in type spaces with the same set of

Mertens-Zamir (conventional, hereafter) hierarchies of beliefs has been done in Liu (2005).

Liu shows that any redundant type spaces (ones in which multiple types of the same player

have the same hierarchy of beliefs) can be generated by operating a state-dependent corre-

lating mechanism on the non-redundant type space. The correlation provided by a state-

dependent correlating mechanism can be viewed as ex post, because in the mechanism, cor-

related signals are sent to players depending on information in the ex post stage of the

game�both states of nature and players� types.

We focus on hierarchies of beliefs over conditional beliefs, i.e., �-hierarchies of beliefs,

which are introduced by Ely and p ¾eski (2006); and we are interested in interim (stage) corre-

lations among players, i.e., the correlations that depend only on interim stage information�

players� types. We de�ne type spaces with the same set of �-hierarchies of beliefs to be

equivalent, then show that correlations embedded in equivalent type spaces can be char-

acterized by partially correlating devices. Depending on players� type pro�les, partially

2



correlating devices send correlated signals to players in a belief invariant way in the interim

stage.

We use the following example to illustrate the di¤erence between interim and ex post

correlation.

Example 1. Consider a two-player game with payo¤ uncertainties parameterized by � =

f+1;�1g: The action sets of players� are Ai = fai; big for i 2 f1; 2g; and the payo¤s of

players� are given by

a2 b2

a1 1; 1 0; 0

b1 0; 0 1; 1

� = +1

a2 b2

a1 0; 0 1; 1

b1 1; 1 0; 0

� = �1

Figure 1.

From the payo¤s, players would like to match their actions in state � = +1 and to

mismatch in state � = �1. Consider a type space T on � in which the sets of players� types

are described by T1 = T2 = f+1;�1g; and the type pro�les in T1�T2 are equally distributed.

Suppose if t1 = t2; � = +1 and if t1 6= t2; � equals +1 or �1 each with probability
1
2
: With

no correlation in actions, the ex ante payo¤ for each player from playing any strategy is 1
2
:

To implement interim stage correlation, assume there is a mediator who observes both

players� types. When t1 = t2 ; the mediator tosses a coin; if the outcome is head (H), she tells

player 1 to play a1 and player 2 to play a2; and if the outcome is tail (T ), she tells player 1 to

play b1 and player 2 to play b2. Recommendations are privately made to each player. When

t1 6= t2, the mediator�s information on t does not provide her with any extra information on

�, and she does not make recommendations. By following the mediator�s recommendations,

players match their actions perfectly with probability 1
2
. The ex ante expected payo¤ for
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each player is 3
4
.

To implement ex post correlation, assume there is a mediator who observes both players�

types and the true state of nature. At both � = +1 and � = �1 the mediator tosses a coin.

When � = +1, the mediator recommends (a1; a2) at H and (b1; b2) at T ; and when � = �1;

the mediator recommends (a1; b2) at H and (b1; a2) at T . Recommendations are privately

made to each player. By following the mediator�s recommendations, players match their

actions perfectly in both states. The expected payo¤ for each player is 1.

Here the mediator�s role is exactly implementor of a partially correlating device and a

state-dependent correlating mechanism. Moreover, it is not di¢cult to check that in the

interim stage correlation, the signals (recommendations) from the mediator do not change

players� �-hierarchies of beliefs1; and in the ex post correlation, the signals do not change

players� conventional hierarchies of beliefs. Further more, we can also see from the example

that signals from the ex post correlation change the set of conditional beliefs, and hence

change the set of �-hierarchies of beliefs: prior to receiving signals, at t1 = +1, player 1�s

belief over � conditional on player 2�s type t2 = �1 is
1
2
f� = +1g + 1

2
f� = �1g; however,

after receiving signals, player 1�s belief over � at type (+1; a1) conditional on player 2�s type

(�1; a2); for example, becomes certainty of f� = +1g.

For any type space and a partially correlating device, we can generate a larger type space

when we incorporate signals from the correlating device into players� private information; and

when signals are recommendations of actions, these newly generated type spaces are exactly

the epistemic models used by Forges (1993) in her de�nition of the Bayesian solution. A

partially correlating device is canonical if the set of signals a player could receive is exactly her

action set. Forges (2006) uses canonical partially correlating devices to explicitly implement

the Bayesian solution. Based on the characterization of correlations, we establish that the set

of Bayesian solution payo¤s on a type space is the union of Bayesian Nash equilibria payo¤s

1Please refer to Section 2.2 for explicit formulations of �-hierarchies of beliefs.

4



in its equivalent type spaces; and in an immediate corollary, we show that the Bayesian

solution is invariant across equivalent type spaces.

This paper relates most closely to Liu (2005), which characterizes the correlation embed-

ded in type spaces equivalent with respect to conventional hierarchies of beliefs and based on

that de�nes a notion of correlated equilibrium. Lehrer, Rosenberg and Shmaya (2006) studies

the relationship between type spaces that induce equivalent payo¤s under the Bayesian solu-

tion; the non-communicating garblings they use have similar features as partially correlating

devices.

This paper is organized as follows. We present notations and formulations of hierarchies

of beliefs in Section 2, and derive the characterization of correlations embedded in equivalent

type spaces in Section 3. Section 4 presents that the Bayesian solution is invariant across

equivalent type spaces. Section 5 discusses and concludes.

2 Model

2.1 Notations

We begin with some notations. For any metric space X; let �X denote the space of prob-

ability measures on the Borel �-algebra of X endowed with the weak�-topology. Let the

product of two metric spaces be endowed with the product Borel �-algebra. For any prob-

ability measure � 2 �X; denote supp� the support of �; for any measure � 2 �(X � Y );

denote margX � the marginal distribution of � on X.

We study games with incomplete information with n players. The set of players is

N = f1; 2; :::; ng: For each i 2 N; let �i denote the set of i�s opponents. Players play a game

in which the payo¤s are uncertain and parameterized by a �nite set �: Each element � 2 �

is called a state of nature. For each i 2 N; denote Ai the set of actions for player i, and
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A � �i2NAi the set of action pro�les: A (strategic form) game is a pro�le G = (gi; Ai)i2N .

For each i 2 N; we assume the payo¤ function is bounded: gi : A��! [�M;M ]; for some

positive real number M . The set of �nite bounded games is denoted by G.

A type space over � is de�ned as T = (Ti; �i)i2N ; where for each i; Ti is a �nite set of

types for player i and �i : Ti ! �(T�i � �) is a mapping such that �i(ti)[(t�i; �)] describes

player i�s belief on the event that the others� type pro�le is t�i and the state of nature is �:

Throughout, given arbitrary x 2 X and y 2 Y; we use the notation �i(x)[y] to denote

player i�s belief about y conditional on x. More precisely, the object in the round bracket

always denotes the object player i conditions on, and the object in the square bracket always

denotes the object player i assigns probability to.

2.2 Formulations of hierarchies of beliefs

We �rst present Mertens and Zamir�s standard formulation of hierarchies of beliefs (see also

Brandenburger and Dekel (1993)), and based on that present Ely and P¾eski�s construction

of �-hierarchies of beliefs. For convenience, we call Mertens-Zamir hierarchy of beliefs the

conventional hierarchy of beliefs.

Let X0 = �; and for k � 1; Xk = Xk�1 � �j 6=i�(Xk�1): Let h
1(ti) = marg� �i(ti);

which is player i�s belief over � at type ti: For each k � 1; let hk(ti)[S] = �i(ti)[f(�; t�i) :

(�; (hl(t�i))1�l�k�1) 2 Sg]; for any measurable subset S � Xk. In the construction, h
k(ti) 2

�(Xk�1) represents player i�s k-th order belief at ti. The pro�le h(ti) = (h
1(ti); :::; h

k(ti); :::) 2

�1k=0�Xk is called player i�s conventional hierarchy of beliefs at type ti:

A �-hierarchy of beliefs describes a player�s belief and higher-order beliefs about con-

ditional beliefs on states of nature. The concept was introduced by Ely and P¾eski (2006)

in their study of interim independent rationalizability. We begin with de�ning conditional

beliefs. Given belief �i(ti) 2 �(T�i��); the conditional belief of type ti over �; conditioning
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on the others� types being t�i; is �i(ti)(t�i) 2 ��, also written as �i(ti; t�i): For any type

space T , denote the set of all possible conditional beliefs at ti as Bi(ti) = f�i(ti; t�i) 2 �� :

t�i 2 T�ig: Type ti�s belief over T�i then induces a belief over �� : for any measurable

subset S � ��; �i(ti)[S] = �i(ti)[ft�i : �i(ti; t�i) 2 Sg]:

Now we can de�ne �-hierarchy of beliefs at ti by treating the set of possible conditional

beliefs, i.e., ��; as the set of basic uncertainties. Let the �rst-order belief of a player be her

belief over the set of conditional beliefs, the second-order belief be her belief over the others�

beliefs over the set of conditional beliefs, and so on.

Formally, for any type space T = (Ti; �i)i2N on �, we can transform it into a type

space T� = (Ti; �
�
i )i2N on ��. In the new type space, players� types are unchanged, and

��i (ti) 2 �(T�i ���) is given by

��i (ti)[S] = �i(ti)[ft�i : (t�i; �i(ti; t�i)) 2 Sg];

for any measurable subset S � �(T�i ���):

Denote the conventional hierarchy of beliefs at ti in the type space T
� as h(tijT

�).

De�nition 1. For any type space T , for any k � 1; let the k-th order �-hierarchy of beliefs

at ti 2 Ti be h
k(tijT

�) and denote it as �k(ti). Also, denote the �-hierarchy of beliefs at ti

as �(ti) = (�
1(ti); :::; �

k(ti); :::).

By de�nition, �(ti) = h(tijT
�). For player i, we use ��i to denote the pro�le of the others�

�-hierarchies of beliefs.
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3 Characterization of correlations

3.1 Equivalence of type spaces

For any type space T , denote the set of all �-hierarchies of beliefs that T has as �(T ) =

f�(ti) : ti 2 Ti; i 2 Ng. However, the set of �-hierarchies of beliefs does not uniquely pin

down the type space, instead, multiple type spaces may induce the same set of �-hierarchies

of beliefs.

De�nition 2. Two type spaces T and T 0 are equivalent, write as T � T 0; if they have the

same set of �-hierarchies of beliefs, that is, if

�(T ) = �(T 0):

A type space in which di¤erent types of a player always have di¤erent hierarchies of

beliefs is called a reduced type space (Aumann, 1998), or a non-redundant type space (Liu,

2005). For any conventional hierarchy of beliefs, we are able to construct such a type space

that generates it, but this is not true for �-hierarchies of beliefs. We illustrate this with a

simple type space taken from Ely and P¾eski (2006).

Example 2. Consider a type space T in which � = T1 = T2 = f+1;�1g, and players�

beliefs are updated from a common prior � 2 �(�� T1 � T2) such that

�(t1; t2; �) =

8

>

<

>

:

1
4
if ti � t2 = �;

0 otherwise.

In this type space, the set of conditional beliefs for each type contain point mass on

� = +1 and point mass on � = �1, and at each type of both players�, the �-hierarchy of

beliefs is common certainty of equal probability of the point masses. Moreover, type space
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T is the most compact one that supports this �-hierarchy beliefs.

Although we can alternatively de�ne the most compact type space that generates a �-

hierarchy of beliefs as non-redundant, we prefer not to do that here. Without distinguishing

non-redundant and redundant type spaces, we can achieve a partial characterization of the

correlation embedded in equivalent type spaces, which is su¢cient for proving our result in

the next section.

De�nition 3. For any type space T , a partially correlating device on T is a pro�le Q =

(qi; Si)i2N ; where for each i 2 N;Si is a �nite set of signals and qi : T ! �S; S = �i2NSi,

such that

1. player i believes that when players� type pro�le is t 2 T , the device selects a signal

pro�le s 2 S according to the distribution qi(t) 2 �S, and for each j 2 N; sj is

reported by a mediator to player j:

2. For any i 6= j; t 2 T; supp qi(t) = supp qj(t):

3. belief invariance is satis�ed. Formally, at di¤erent types t�i; t
0
�i of the others�, player

i receives si with the same probability, i.e.,

X

fs02S:s0
i
=sig

qi(ti; t�i)[s
0] =

X

fs02S:s0
i
=sig

qi(ti; t
0
�i)[s

0];8i; ti; si:

If 8i 2 N;Si = Ai; then Q is a canonical partially correlating device.

From the de�nition, partially correlating devices are subjective; for each i 2 N; t 2 T;

player i holds a subjective belief qi(t) over the signals. Belief invariance ensures that from

the signals that the players receive, they cannot infer any extra information about the others�

types. Also note that the correlated signals depend only on players� types, not on states of
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nature. There is a key distinction between the partially correlating device and Liu (2005)�s

state-dependent correlating mechanism. The latter assumes that correlated signals depend

on both players� types and states of nature, i.e., on states of the world. One can also view

the distinction as that between interim stage correlation and ex post stage correlation. A

canonical correlating device uses actions as signals, and thus the signals can be viewed as

direct recommendations of play.

Denote qi(ti; t�i)[s�ijsi] as player i�s belief on the others� receiving the signal pro�le s�i;

given that her own signal is si.

De�nition 4. For any type space T = (Ti; �i)i2N and any partially correlating device Q =

(qi; Si)i2N ; denote T
Q as the type space generated from T through operating Q on T . More

precisely, TQ = (TQi ; �
Q
i )i2N such that

TQi = f(ti; si) : ti 2 Ti; qi(t)[si] > 0; for some t�i 2 T�ig;

and for all (t�i; s�i) 2 T
Q
�i; � 2 � and (ti; si) 2 T

Q
i ;

�Qi ((ti; si))[((t�i; s�i); �)] = �i(ti)[(t�i; �)] � qi(ti; t�i)[s�ijsi]:

3.2 The characterization

The following theorem provides a partial characterization of the correlation embedded in

equivalent type spaces.

Proposition 1. We have

1. for any type space T and partially correlating device Q, TQ � T ; more speci�cally, for

any (ti; si) 2 T
Q
i ; �((ti; si)) = �(ti).
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2. for any pair of type spaces T and T̂ with T � T̂ , there exist partially correlating devices

Q and Q̂ such that TQ = T̂ Q̂:

Proof. Part I. We use induction to show that for any (ti; si) 2 T
Q
i ; �((ti; si)) = �(ti). First

note that for any (ti; si) 2 T
Q
i ; (t�i; s�i) 2 T

Q
�i; and � 2 �;

�Qi ((ti; si); (t�i; s�i))[�] =
�Qi ((ti; si))[(t�i; s�i); �]

�Qi ((ti; si))[(t�i; s�i)]

=
�i(ti)[(t�i; �)] � qi(ti; t�i)[(si; s�i)]

�i(ti)[t�i] � qi(ti; t�i)[(si; s�i)]

= �i(ti; t�i)[�]:

Therefore, for any (ti; si) 2 T
Q
i , the set of conditional beliefs at (ti; si) is the same as that

at ti. Furthermore, for any conditional belief � 2 Bi(ti);

�Qi ((ti; si))[�] = �
Q
i ((ti; si))[f(t�i; s�i) : �

Q
i ((ti; si); (t�i; s�i)) = �g]

= �Qi ((ti; si))[f(t�i; s�i) : �i(ti; t�i) = �g]

= �Qi ((ti; si))[ft�i : �i(ti; t�i) = �g]

= �i(ti)[ft�i : �i(ti; t�i) = �g]

= �i(ti)[�]:

The fourth equation above comes from belief invariance. We have proved that for all

(ti; si) 2 TQi ; �
1((ti; si)) = �1(ti): For higher-order beliefs, we prove by induction. Now

suppose for all 0 < l � k and (ti; si) 2 T
Q
i ; �

l((ti; si)) = �
l(ti); we show that for all (ti; si) 2

TQi ; �
k+1((ti; si)) = �

k+1(ti): Denote the support of the l-th order belief at type ti as B
l
i(ti).

As a result, the set of conditional beliefs is relabeled as B1i (ti). By the premises of induction,

for all (ti; si) 2 TQi and 0 < l � k;Bli((ti; si)) = Bli(ti): Indeed, for any (�; �
1; :::; �k) 2

11



�0<l�kB
l
i(ti);

�k+1((ti; si))[(�; �
1; :::; �k)]

= �Qi ((ti; si))[f(t�i; s�i) : �
Q
i ((ti; si); (t�i; s�i)) = �; �

1((t�i; s�i)) = �
1; :::; �k((t�i; s�i)) = �

kg]

= �Qi ((ti; si))[f(t�i; s�i) : �i(ti; t�i) = �; �
1(t�i) = �

1; :::; �k(t�i) = �
kg]

= �i(ti)[ft�i : �i(ti; t�i) = �; �
1(t�i) = �

1; :::; �k(t�i) = �
kg]

= �k+1(ti)[(�; �
1; :::; �k)]:

By induction, for all (ti; si) 2 T
Q
i ; �((ti; si)) = �(ti). Naturally, T

Q and T have the same

set of �-hierarchies of beliefs, TQ � T .

Part II. Fix a pair of type spaces T = (Ti; �i)i2N and T̂ = (T̂i; �̂i)i2N : Suppose T � T̂ ;

we now construct Q and Q̂ such that TQ = T̂ Q̂: To do that, we manipulate the type space

T̂ into a partially correlating device Q and manipulate T into a partially correlating device

Q̂. We then show that the generated type spaces TQ and T̂ Q̂ are the same.

Step 1. Before we start, we need a few intermediate results.

Lemma 1. Fix type spaces T and T 0. If ti 2 Ti; t
0
i 2 T

0
i and �(ti) = �(t

0
i); then �i(ti)[(�; ��i)] =

�0i(t
0
i)[(�; ��i)];8�; ��i.
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Proof. With the basic property of probability measures,

�i(ti)[(�; ��i)] = �i(ti)[ft�i : �i(ti; t�i) = �; �
1(t�i) = �

1
�i; :::; �

n(t�i) = �
n
�i; :::g]

= �i(ti)[\nft�i : �i(ti; t�i) = �; �
1(t�i) = �

1
�i; :::; �

n(t�i) = �
n
�ig]

= lim
n
�i(ti)[ft�i : �i(ti; t�i) = �; �

1(t�i) = �
1
�i; :::; �

n(t�i) = �
n
�ig]

= lim
n
�n+1(ti)[(�; �

1; :::; �n)]

= lim
n
�n+1(t0i)[(�; �

1; :::; �n)]

= �0i(t
0
i)[(�; ��i)]:

Lemma 2. Fix type spaces T and T 0. Suppose ti 2 Ti; t
0
i 2 T

0
i and �(ti) = �(t

0
i). Then for

any t�i 2 T�i that satis�es �i(ti)[t�i] > 0; there exists t
0
�i 2 T

0
�i that satis�es �(t

0
�i) = �(t�i)

and �0i(t
0
i)[t

0
�i] > 0; such that �i(ti; t�i) = �

0
i(t

0
i; t

0
�i):

Proof. We prove by contradiction. Suppose it is not the case. Then there exists a t�i that

satis�es �i(ti)[t�i] > 0 and �i(ti; t�i) = �; such that for all t0�i that satis�es �
0
i(t

0
i; t

0
�i) =

�; �0i(t
0
i)[t

0
�i] > 0; it must be that �(t0�i) 6= �(t�i): As a result, �

0
i(t

0
i)[(�; ��i(t�i))] = 0:

However, �i(ti)[(�; ��i(t�i))] � �i(ti)[t�i] > 0. Given Lemma 1, this is in contradiction with

�(ti) = �(t
0
i):

Step 2. Using information in type space T̂ , we now construct a partially correlating

device Q = (qi; Si)i2N which is to be operated on type space T . For each i 2 N; let the set

of signals for player i be Si = T̂i; and de�ne S � �i2NSi. De�ne

Si(ti) � ft̂i 2 T̂i : �(t̂i) = �(ti)g
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and

S�i(ti; t�ijt̂i)) � ft̂�i 2 T̂�i : �(t̂�i) = �(t�i) and �̂i(t̂i; t̂�i) = �i(ti; t�i)g:

Intuitively, we are going to construct qi : T ! �S in a way such that the set of signals

that player i could possibly receive when her type is ti is restricted to be Si(ti); which is the

set of ti�s equivalent types in T̂i. Similarly, S�i(ti; t�ijt̂i)) will be the restricted set of signals

that the others may receive at type pro�le t�i from player i�s view, when her own type is ti

and she receives signal t̂i:

We need the following corollary, which is immediate from Lemma 1 and Lemma 2, in the

construction of qi:

Corollary 1. If t̂i; ûi 2 Si(ti); then �̂i(t̂i)[S�i(ti; t�ijt̂i))] = �̂i(ûi)[S�i(ti; t�ijûi)]:

De�ne on the type space T̂ a prior p̂i 2 �(T̂i � T̂�i ��) for player i as follows:

p̂i[(t̂i; t̂�i; �)] =
1

jT̂ij
�̂i(t̂i)[(t̂�i; �)];8(t̂i; t̂�i; �) 2 T̂i � T̂�i ��:

From player i�s view, the partially correlating device operates only in states of the world

(t̂i; t̂�i; �) such that p̂i(t̂i; t̂�i; �) > 0: For each i 2 N; we can construct the belief system

qi : T ! �S as follows:

qi(ti; t�i)[(t̂i; t̂�i)] =

8

>

<

>

:

p̂i[(t̂i;t̂�i)]

p̂i[Si(ti)�S�i(ti;t�ijt̂i)]
; if (t̂i; t̂�i) 2 Si(ti)� S�i(ti; t�ijt̂i);

0; otherwise.

With Corollary 1, for any (t̂i; t̂�i) 2 Si(ti)� S�i(ti; t�ijt̂i);

qi(ti; t�i)[(t̂i; t̂�i)] =
p̂i[t̂i]�̂i(t̂i)[(t̂�i; �)]

P

ûi2Si(ti)
p̂i[ûi]�̂i(ûi)[S�i(ti; t�i)jûi]

=
1=jT̂ij

1=jT̂ij � jSi(ti)j
�

�̂i(t̂i)[(t̂�i; �)]

�̂i(t̂i)[S�i(ti; t�i)jt̂i]
:
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The expression of qi can be rewritten as

qi(ti; t�i)[(t̂i; t̂�i)] =

8

>

<

>

:

1
jSi(ti)j

� �̂i(t̂i)[t̂�i]

�̂i(t̂i)[S�i(ti;t�ijt̂i)]
; if (t̂i; t̂�i) 2 Si(ti)� S�i(ti; t�ijt̂i);

0; otherwise.

Now we prove that the Q de�ned above is indeed a partially correlating device. First,

for any i 6= j; t 2 T;

supp qi(t) = supp qj(t) = �k2NSk(tk):

This is because from player i�s view, each t̂i 2 Si(ti) is sent to her with probability
1

jSi(ti)j
;

and that for each t̂�i 2 �k2NnfigSk(tk); there must be t̂i 2 Si(ti) such that t̂�i 2 S�i(ti; t�ijt̂i)

and �̂i(t̂i)[t̂�i] > 0; due to Lemma 2:

Second, belief invariance is satis�ed: for any (ti; t�i) 2 Ti and any ûi 2 Si(ti); the

probability that player i will receive signal ûi is

X

ft̂2T̂ :t̂i=ûig

qi(ti; t�i)[(ûi; t̂�i)] =
X

ft̂�i:t̂�i2S�i(ti;t�ijûi)g

1

jSi(ti)j
�

�̂i(ûi)[t̂�i]

�̂i(ûi)[S�i(ti; t�ijûi)]

=
1

jSi(ti)j

P

ft̂�i:t̂�i2S�i(ti;t�ijûi)g
�̂i(ûi)[t̂�i]

�̂i(ûi)[S�i(ti; t�ijûi)]

=
1

jSi(ti)j

�̂i(ûi)[S�i(ti; t�ijûi)]

�̂i(ûi)[S�i(ti; t�ijûi)]

=
1

jSi(ti)j
;

which is independent of t�i; and thus the signal does not provide extra information on

the others� types.

Step 3. Given the partially correlating device Q constructed using information in T̂ ;

we can generate a new type space TQ = (TQi ; �
Q
i )i2N from the type space T . In TQ; TQi =
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f(ti; t̂i) : ti 2 Ti; t̂i 2 Si(ti)g; and for any (t̂i; t̂�i) 2 Si(ti)� S�i(ti; t�ijt̂i);

�Qi ((ti; t̂i))[((t�i; t̂�i); �)] = �i(ti)[(t�i; �)] �
�̂i(t̂i)[t̂�i]

�̂i(t̂i)[S�i(ti; t�ijt̂i)]
:

Similarly, we can construct another partially correlating device Q̂ using information in

the type space T; and generate a new type space T̂ Q̂ from T̂ . In T̂ Q̂; T̂ Q̂i = f(t̂i; ti) : t̂i 2

T̂i; ti 2 Si(t̂i)g; and for any (ti; t�i) 2 Si(t̂i)� S�i(t̂i; t̂�ijti);

�Q̂i ((t̂i; ti))[((t̂�i; t�i); �)] = �̂i(t̂i)[(t̂�i; �)] �
�i(ti)[t�i]

�i(ti)[S�i(t̂i; t̂�ijti)]
:

It is straightforward that TQi = T̂ Q̂i ;8i 2 N: Now we show �
Q
i ((ti; t̂i)) = �

Q̂
i ((t̂i; ti)): By

the de�nition; for any (ti; t�i) and (t̂i; t̂�i) 2 Si(ti)�S�i(ti; t�ijt̂i); we know that �i(ti; t�i) =

�̂i(t̂i; t̂�i) = �; �(t�i) = �(t̂�i) = ��i; for some � and ��i. We can decompose the belief �
Q
i as

follows:

�Qi ((ti; t̂i))[((t�i; t̂�i); �)]

= �i(ti; t�i)[�] � �i(ti)[t�i] �
�̂i(t̂i)[t̂�i]

�̂i(t̂i)[ft̂0�i : �(t̂
0
�i) = �(t�i); �̂i(t̂i; t̂

0
�i) = �i(ti; t�i)g]

= �i(ti; t�i)[�] �
�i(ti)[t�i] � �̂i(t̂i)[t̂�i]

�i(ti)[(�; ��i)]
:

Similarly, �Q̂i ((t̂i; ti))[((t̂�i; t�i); �)] can also be decomposed:

�Q̂i ((t̂i; ti))[((t̂�i; t�i); �)] = �̂i(t̂i; t̂�i)[�] �
�̂i(t̂i)[t̂�i] � �i(ti)[t�i]

�̂i(t̂i)[(�; ��i)]
:

We compare �Qi and �
Q̂
i term by term. First, �i(ti; t�i)[�] = �̂i(t̂i; t̂�i)[�]: Second, �i(ti)[t�i] �

�̂i(t̂i)[t̂�i] = �̂i(t̂i)[t̂�i] � �i(ti)[t�i]: Third, from Lemma 1, �i(ti)[(�; ��i)] = �̂i(t̂i)[(�; ��i)]:

Since for any i 2 N; (ti; t̂i) 2 T
Q
i = T̂

Q̂
i ; �

Q
i ((ti; t̂i)) = �

Q̂
i ((t̂i; ti)); we have T

Q = T̂ Q̂.
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4 The Bayesian solution

4.1 De�nition

The Bayesian solution is a notion of correlated equilibrium for games with incomplete in-

formation proposed by Forges (1993). Its de�nition is inspired by Aumann�s Bayesian view

and aims at capturing Bayesian rationality.

Following Forges (2006), the de�nition of the Bayesian solution involves the use of an

epistemic model Y = (Y; #; (Si; �i; �i; pi)i2N) into which the type space T = (Ti; �i)i2N can

be embedded2. In the epistemic model, Y is the set of states of the world which is large

enough to characterize uncertainties in states of nature, agents� types, and agents� actions, Si

denotes player i�s informational partition, and pi is player i�s subjective prior. The mapping

# : Y ! � indicates the state of nature, �i : Y ! Ti indicates player i�s type, and �i : Y ! Ai

indicates i�s action. Both �i and �i are assumed to be Si measurable, thus given any state,

player i knows both her type and action. The consistency in probabilities requires that for

any measurable subset S � T�i �� and S
0 � T�i;

pi[(��i; #)
�1(S)jSi] = �i[Sj�i]; (4.1)

pi[��i
�1(S 0)jSi] = pi[��i

�1(S 0)j�i];8i 2 N:

The �rst condition requires that the epistemic model does not give players more infor-

mation on the joint distribution of the others� types and states of nature, and the second

2Forges�s de�nition of the Bayesian solution is restricted to two-player games for type spaces with common
priors; what we present here is the n-player non-common prior anaologue of her de�nition.
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condition further requires it does not give more information on the others� types. The two

conditions together, guarantees belief invariance (the invariance of conditional beliefs). Given

the epistemic model, we can de�ne Bayesian rationality for player i: player i is Bayesian

rational if

E[gi(�i; ��i; #)jSi] � E[gi(ai; ��i; #)jSi];8ai 2 Ai;

where the expectation is taken over T�i and �.

De�nition 5. Given a game G and a type space T , a Bayesian solution for the game is an

epistemic model Y = (Y; #; (Si; �i; �i; pi)i2N) constructed as above that satis�es the Bayesian

rationality of every player.

For any Bayesian solution Y , let �i(y) 2 �(� � A�i) be player i�s belief over states of

nature and the others� actions in the state of the world y, and �(y) = (�i(y))i2N be a pro�le

of players� beliefs. Denote the set of payo¤s of player i in a Bayesian solution Y as

Bi(Y ) = fgi = max
ai2Ai

gi(ai; �i(y)) : y 2 Y g;

and let B(Y ) � (Bi(Y ))i2N 2 R
N . From a point of view analogous to the "revelation

principle" in the mechanism literature, Forges (2006) characterizes Bayesian solutions with

partially correlating devices.

Proposition 2. For any game G and type space T , the set of payo¤s B(Y ) from a Bayesian

solution Y can be achieved by a canonical partially correlating device, Q = (qi; Ai)i2N ; that

is incentive compatible, i.e., such that each player does not have incentive to deviate from

the mediator�s recommendation.

We can also view B(Y ) as the set of players� payo¤s from the set of Bayesian Nash equi-

libria in the game G with type space TQ. Alternatively, any incentive compatible canonical

partially correlating device Q is itself a Bayesian solution.
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4.2 Invariance of the Bayesian solution

It is not a coincidence that both the characterization of correlations embedded in equiv-

alent type spaces and the implementation of the Bayesian solution involve using partially

correlating devices.

For any game G and any type space T , denote the set of players� all possible payo¤s from

Bayesian solutions as

B(G; T ) = fg = (gi)i2N 2 R
N : g 2 B(Y ) for some Bayesian solution Y of Gg:

Denote players� all possible interim payo¤s from Bayesian Nash equilibria of the game G

with type space T as NE(G; T ). The result below states that the set of players� payo¤s from

Bayesian solutions at a type space is exactly the union of Bayesian Nash equilibria payo¤s

in equivalent type spaces.

Proposition 3. B(G; T ) = [fT̂ :T̂�TgNE(G; T̂ ):

Proof. First, notice that each Bayesian solution Y corresponds to a partially correlating

device and the payo¤s from Y can be implemented by a canonical partially correlating

device. Therefore, B(G; T ) is equivalent to the union of Bayesian Nash equilibria payo¤s in

type spaces generated from T by partially correlating devices. Denote the set of partially

correlating devices on T as Q; then

Lemma 3. B(G; T ) = [fQ:Q2QgNE(G; T
Q):

Now we only need to show that for any T̂ � T , there exists Q 2 Q, such thatNE(G; T̂ ) �

NE(G; TQ). Suppose T̂ � T , Proposition 1 ensures that there exists partially correlating

devices Q̂ and Q such that T̂ Q̂ = TQ.

Lemma 4. For any partially correlating devices Q̂ on T̂ ; NE(G; T̂ ) � NE(G; T̂ Q̂):
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Proof of this lemma is straightforward in that any Bayesian Nash equilibrium in (G; T̂ )

can be replicated in (G; T̂ Q̂), provided that when facing type space T̂ Q̂; all players choose to

use only information in T̂ and ignore the signals sending from Q̂.

As a result, [fT̂ :T̂�TgNE(G; T̂ ) � [fQ:Q2QgNE(G; T
Q); and since TQ � T for each Q,

they must be equal.

It is immediate from Proposition 3 that if two type spaces represent the same set of

�-hierarchies of beliefs, they must induce the same set of Bayesian solution payo¤s in any

game. In other words, the Bayesian solution is invariant on the equivalent class of type

spaces.

Corollary 2. If two type spaces T̂ and T are equivalent in �-hierarchies of beliefs, i.e.,

T̂ � T; then B(G; T ) = B(G; T̂ ):

Proof. Notice that if T̂ � T , then the expressions in Proposition 3 for B(G; T̂ ) and B(G; T̂ )

are the same.

Remark 1. Both the characterization of interim-stage correlations and the invariance result

above parallel with Liu (2005). Liu characterizes ex-post correlations with state-dependent

correlating mechanisms and based on that de�nes another notion of correlated equilibrium,

which turns out to be equivalent with the universal Bayesian solution proposed by Forges

(1993).

5 Conclusion

We study the correlations embedded in type spaces with the same set of hierarchies of beliefs

over conditional beliefs, it turns out that such correlations can be expressed explicitly with
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partially correlating devices, which operate in the interim stage of the game.

With these results, we compare two closely related literatures side by side. Partially

correlating devices characterize correlations embedded in type spaces with the same set

of �-hierarchies of beliefs, and implement the Bayesian solution. Tang (2010) shows that

�-hierarchies of beliefs fully identify interim partially correlated rationalizability and that

interim partially correlated rationalizability and the Bayesian solution are payo¤ equivalent.

State-dependent correlating mechanisms characterize correlations embedded in type spaces

with the same set of conventional hierarchies of beliefs, and implement the universal Bayesian

solution (Liu, 2005). Dekel, Fudenberg and Morris (2007) show that conventional hierar-

chies of beliefs fully identify interim correlated rationalizability and also discuss that interim

correlated rationalizability and the universal Bayesian solution are payo¤ equivalent.

As we have argued in the introduction of Tang (2010), the distinction between the two

literatures is purely methodological, in that in modeling incomplete information, the former

adopts Harsanyi�s principle while the latter adopts Aumann�s Bayesian view.
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