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tion uncertainty using historical international data on the monthly CPI. An indicator of inflation
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time-varying parameters by means of Monte Carlo simulations. This indicator is compared to other

uncertainty measures, with the short forecast horizon and based on simpler GARCH-type models.

The analysis convincingly demonstrates that both the longer horizon and changing parameters are
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NON-TECHNICAL SUMMARY

An important question of the monetary theory is whether the rates of inflation are positively cor-

related with uncertainty about the future price level and whether there is a causal link between

inflation and inflation uncertainty. Inflation uncertainty is said to entail major welfare losses (in-

cluding distortion in relative prices, difficulties for decisions concerning long-term contracts and

planning for future in nominal terms), so if inflation cause uncertainty then these losses should be

an important part of the costs of inflationary monetary policy.

A hypothesis that higher inflation is related to greater inflation uncertainty was put forward by

Arthur M. Okun and became well-known when Milton Friedman in his Nobel lecture based his

critique of Phillips curve on the hypothesis. The argument was that at high rates of inflation

macroeconomic policy would become less predictable leading to a greater volatility of price level.

The dependence between inflation and its uncertainty have since become a textbook stylized fact.

No serious discussion of the costs of inflation can escape mentioning of this dependence.

This study makes an advancement in the research on Okun–Friedman hypothesis. The results

obtained in this study have implications not only for hypothesis itself, but also for related research

of inflation modeling and forecasting.

I examine the link between inflation and inflation uncertainty using historical international data

on monthly consumer price index. The research hypothesis is that the link between inflation and

uncertainty may be stronger than it was found previously. The link is stronger if a more appropriate

measure of inflation uncertainty is used. I propose to use uncertainty of two-years-ahead forecasts

of price level which can be considered as a more adequate measure of inflation uncertainty than

the measures used habitually in the previous inflation–uncertainty research.

Policy recommendations are well known and were made many times prior to this study. Institu-

tional arrangements encouraging responsible behavior of the government and monetary authorities

in the area of fiscal and monetary policy play the key role in overcoming inflation. The problem is

that existing empirical evidence on Okun–Friedman hypothesis cannot be considered as fully con-

clusive. Some of the previous research found weak or not very robust links between inflation and

uncertainty about future prices. The goal is to provide a more sound empirical basis for popular

policy recommendations.

The study suggests convincing evidence that there exists a strong positive relation between inflation

and its uncertainty both across countries and in the time series dimension within countries. There

is also time-series evidence that inflation precedes uncertainty.

A longer-horizon inflation uncertainty (at least one year ahead, two years in this study) is more

relevant to the original concerns behind the Okun–Friedman hypothesis. Notable is the fact that

empirically it is also more closely related to the level of inflation than a short-horizon inflation
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uncertainty (one month in this study).

Of course, correlation is not always an evidence of causation and precedence is not an evidence

of the direction of causation. Thus, too confident policy-related judgments cannot be made at the

current stage of the research. However, one can argue that this study is an important step in the

right direction.

Our results show that the old argument by Arthur Okun is valid. High inflation and low inflation

uncertainty are largely incompatible. Using Okun’s words, “the adoption of a public policy de-

signed to yield steady, fully anticipated inflation would commit the government to an impossible

goal”. Some policy implications of the result do not depend on the direction of causation. These

can be stated in terms of the construction of institutions for the economic policy. We do not have a

choice between institutions which encourage low inflation and low inflation uncertainty and insti-

tutions which encourage high inflation and low inflation uncertainty. High inflation always comes

together with high inflation uncertainty. Thus, institutions which encourage high inflation would

lead to inflation uncertainty.



Economics Education and Research Consortium: Russia and CIS 6

1. INTRODUCTION

Okun (1971), Friedman (1977) stated a hypothesis that there is a relationship between rates of

inflation and inflation uncertainty. From an economic policy perspective it is important that it is al-

most never possible to have high average inflation and low inflation uncertainty simultaneously (cf.

Okun (1971)). If a policy-maker seeks to maintain low inflation uncertainty, but at the same time

conducts an expansionary monetary policy then he follows an unachievable goal or “mirage” as

Okun called it. Moreover, if high inflation uncertainty is caused by high inflation then this relation-

ship can be a major source of the costs associated with high inflation, because inflation uncertainty

is said to entail substantial welfare losses (including distortion in relative prices, difficulties for

decisions concerning long-term contracts and planning for future in nominal terms).

In this study I explore the Okun–Friedman hypothesis empirically using historical international

data on the monthly CPI. There are two main challenging problems here which could be attended.

The first one is to verify empirically whether such regularity really exists and measure its strength.

The second one is to find out what could be the mechanisms connecting the inflation level and in-

flation uncertainty. This includes inferring the directions of causal relations and verifying existing

theories.

Although the second problem seems to be the most intriguing one and has the greatest practical

significance, solving it could be an utterly difficult task as it would include disentangling conse-

quences of multiple causes and taking apart theories which are almost observationally equivalent.

At the same time the first problem is simpler and more feasible, while it is not devoid of an impor-

tant policy-related content. Moreover, it implies solving methodological subproblems which can

pave ground for a more sound investigation of the second problem.

This study relates to the first empirical problem. Its solution depends on the definition of inflation

uncertainty. The existing literature suggests several approaches to measuring of inflation uncer-

tainty and most of them have serious drawbacks. Cross-country studies starting from Okun (1971)

use indicators which are only indirectly connected with inflation uncertainty. This raise doubts

about their relevance to the problem. Time-series studies based on modeling of conditional het-

eroskedasticity starting from Engle (1983) use the short-run volatility from a GARCH-type model

which can lead to an underestimation of the strength of inflation–uncertainty links. My contention

is that the links are stronger if a more appropriate measure of inflation uncertainty is used.

Two issues are addressed here. First, a 2-years forecast horizon is chosen for the study. I think that

it is more adequate than the shorter horizon measures used in much of the previous research in the

time dimension. Second, in this study time-series models of inflation with time-varying parameters

(AR or VAR) are utilized for the goal of measuring inflation uncertainty. Such a model can provide

a reliable time-varying indicator of inflation uncertainty. The main idea is that in order to make a

good forecast it is necessary to account for unobservable factors driving inflation. One should not



Economics Education and Research Consortium: Russia and CIS 7

only infer the current state of the unobservable factors, but also take into consideration possible

changes in that state in the future. These changes would have only a small impact on short-term

forecasting, but their contribution to the longer-horizon forecast uncertainty can be large.

I construct an indicator of inflation uncertainty, compare its time-series behavior with the behavior

of inflation and analyze the role of the horizon and changing parameters. I also explore the link in

the cross-country dimension and compare the average levels of inflation and inflation uncertainty in

a sample of countries. It is shown that the length of the forecast horizon and changes in parameters

are important considerations.

In stressing the role of the horizon and changing parameters this study follows Evans (1991).

It can be viewed as a refinement and extension of Evans (1991) relying on some useful recent

econometric techniques, with a more clear and universal definition of inflation uncertainty. Clearly

stated definition based on an explicit forecasting framework is important as it allows to subject the

chosen indicator to a series of procedures in order to verify its validity. In addition, this paper is

based on much broader empirical data and introduces a cross-country dimension to the research

which is absent in Evans (1991) (as well as in GARCH-based studies).

The paper is organized as follows. Section 2 reviews the inflation–uncertainty literature and dis-

cusses the problem of measuring inflation uncertainty. It also introduces the basic univariate model

of inflation. In Section 3 the adequacy of the basic model is checked by assessing forecast calibra-

tion and comparing forecasts with some natural alternatives. Section 4 gives an account of the main

empirical findings both in the time-series and cross-country dimensions. In Section 5 conclusions

are made and some thoughts about the meaning of the results are put forward.

2. RESEARCH BACKGROUND, BASIC MODEL AND DISCUSSION OF

INFLATION UNCERTAINTY

2.1. Inflation–uncertainty literature: theoretical arguments

A hypothesis that higher inflation is related to greater inflation uncertainty was advanced in Okun

(1971) and became well-known when Milton Friedman in his Nobel lecture Friedman (1977) based

a critique of Phillips curve on the hypothesis. The argument was that at the high rates of inflation

macroeconomic policy would become more erratic leading to a greater volatility of the price level.

Both Okun and Friedman provided only informal discussion.

Several theoretical models predicting links between inflation uncertainty and rates of inflation

can be found in the literature. Most of the theories emphasize incentives of policy-makers and

assume that the public understands these incentives (that is, the Barro and Gordon framework with

a time-consistent discretionary monetary policy is employed; Barro and Gordon (1983a), Barro
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and Gordon (1983b)).

In a model due to Cukierman and Meltzer (1986) the public cannot directly observe policy targets

and policy-makers can impair the precision of monetary control which allows to make nominal

surprises a more efficient instrument for stimulating economic activity. Under greater political

instability policy-makers tend to conduct both more erratic and more inflationary monetary policy.

A model in Ball (1992) formalizes the arguments by Okun and Friedman. There are different types

of policy-makers which randomly come into power. Nobody wants to increase inflation when it is

low. However, when inflation is high the incentives to disinflate depend on policy-maker’s type.

In Geraats (2006) the Barro and Gordon setup is modified by assuming an asymmetric objective

function for the monetary policy. As a result, when the supply shock is negative it increases both

the level and variability of inflation.

Holland (1993) provides a technical explanation in the context of an econometric model in which

the effect of the monetary policy on economy is uncertain. To some extent the idea applies to the

basic model (2) analyzed below (cf. Holland (1995) where a similar observation is made about the

model of Evans and Wachtel (1993)).

There are also theoretical explanations which are less universally applicable. In Devereux (1989)

the high variance of the real shocks both reinforces incentives to produce nominal surprises (as long

as the degree of wage indexation decreases) and leads to higher inflation uncertainty. Mondino,

Sturzenegger, and Tommasi (1996) formalized political cycles observed in high-inflationary Latin

American countries.

2.2. Inflation–uncertainty literature: empirical evidence

Two main strands dominate in the substantial literature which aims to explore the link between

inflation and inflation uncertainty empirically. The older strand deals with cross-country evidence

and is based on approximating inflation uncertainty by some simple inflation variability. The more

recent strand of literature is based on GARCH-type time-series models and uses the corresponding

conditional variance as a measure of inflation uncertainty.

Studies using cross-country data mostly confirm the existence of the relation between the level and

uncertainty of inflation (for example, see Okun (1971), Logue and Willett (1976), Foster (1978),

Gale (1981), Ram (1985), Hess and Morris (1996), Fang, Miller, and Yeh (2007)). In these studies

simple inflation variability over some fixed period is typically used as a measure of uncertainty in

a country (for example, the sample standard deviation or the mean absolute change). In general

the evidence is that there exists a significant link between the average level of inflation in a country

and inflation variability.

The main objection to this simple cross-country approach is that variable inflation is not necessary

uncertain or unpredictable. (The point was stressed in Driffill, Mizon, and Ulph (1990) among oth-
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ers). There is no one-to-one correspondence between the unconditional variability of a stochastic

process and its predictability. However, the correlation between the two can be quite close for a

narrow class of time-series models. Within such a class the unconditional variability can be akin

to uncertainty. Thus, arguably, the available cross-country evidence provides a serious support

for the Okun–Friedman hypothesis. Moreover, the evidence is robust to the use of more realis-

tic forecasts. For example, Davis and Kanago (1998), Davis and Kanago (2000) used published

professional forecasts and found a significant positive cross-country relationship between average

inflation rates and “standard deviations around the forecasts”.

The same link between inflation and inflation variability is observed to some extent in the time-

series dimension of the data if a long time series of inflation is divided into smaller intervals or

rolling estimation is used (for example, Gale (1981), Ram (1985), Ball and Cecchetti (1990)).

Robert Engle’s seminal paper on the variance of inflation in the United States Engle (1983) initiated

the steadily growing strand of literature in which inflation uncertainty is studied by means of

explicit time-series models of conditional variance. He modeled the first conditional moment of

inflation as an autoregression with additional lagged variables (wages, money, import deflator) and

the second conditional moment as an ARCH process. Engle applied this model to quarterly U.S.

inflation data and used the conditional variance as a proxy for inflation uncertainty. He was not able

to find a significant relation between inflation and the inflation volatility. Although Engle (1983)

obtained negative evidence, further time-series studies of the links between inflation and the short-

run inflation volatility provided empirical results somewhat more favorable to the Okun–Friedman

hypothesis.

Studies of the relation between inflation and its uncertainty using GARCH-type models are numer-

ous and use data for different countries. For example, Brunner and Hess (1993) (who suggested

to take into account the asymmetry in the influence of shocks on the volatility), Baillie, Chung,

and Tieslau (1996) (who used the ARFIMA-GARCH model featuring long memory), Kontonikas

(2004), Fountas, Karanasos, and Kim (2006), Henry, Olekalns, and Suardi (2007). Probably the

most representative study of this kind in terms of the number of countries is Daal, Naka, and

Sanchez (2005). The study used CPI from 23 countries to estimate a model of inflation includ-

ing the asymmetric power GARCH model for conditional variance. The authors obtained results

which strongly suggest that inflation influences inflation uncertainty. Thornton (2007) studied 12

emerging market economies. He also obtained a strong empirical support for the hypothesis that

inflation raises uncertainty.

Two major problems with the GARCH-based approach to the study of the inflation–uncertainty

links are evident. First, the implicit forecast horizon is inadequately short. Typically in a GARCH-

based study var(πt+1|Ωt) (the conditional variance or the volatility) is used as a measure of inflation

uncertainty. (Here Ωt is information available at time t.) The conditional variance var(πt+1|Ωt)

coincides with the one-step-ahead forecast variance. Since the one-step horizon is one quarter for
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quarterly data and only one month for monthly data this does not fit well with the original con-

cerns behind the Okun–Friedman hypothesis. A longer horizon (at least one year) would be more

appropriate. The available empirical evidence also suggests that considering long-term uncertainty

is important; see Ball and Cecchetti (1990), Evans (1991), Evans and Wachtel (1993), Kim (1993).

The second serious shortcoming is that the GARCH-based approach does not fully take into ac-

count that model parameters can be time-varying. Time-varying conditional variance is captured

by the GARCH component. However, other parameters can also change (trend inflation, inflation

persistence, see below).

The importance of time variation in parameters was demonstrated by the studies of the inflation–

uncertainty links based on time-series models with time-varying and switching parameters. For

example, Evans (1991) augmented the GARCH modeling framework by assuming the parameters

of his inflation model to be time-varying. Thus, he was able to distinguish several types of in-

flation uncertainty. He found strong correlation between inflation and the long-term uncertainty

in the United States. Evans and Wachtel (1993) and Kim (1993) introduced a Markov-switching

component into a time-series model of inflation to imitate regime shifts.

A time-series study can also be based on survey and/or professional forecasts measures. See Wach-

tel (1977), Pagan, Hall, and Trivedi (1983), Zarnowitz and Lambros (1987), Ungar and Zilberfarb

(1993), Holland (1995), Davis and Kanago (1998), Davis and Kanago (2000).

An annotated bibliography on inflation–uncertainty links can be found in Davis and Kanago

(2000). Golob (1993) is an older review.

2.3. Inflation forecasting and inflation uncertainty

Inflation uncertainty can be loosely defined as subjective unpredictability of the future price level.

Unpredictability (forecast uncertainty) is some measure of vagueness or spread of the predictive

density.

Different people have different subjective forecast distributions because of unequal possession of

information and differences in forecasting skills. However, to test the Okun–Friedman hypothesis

one needs an integral measure. Inflation uncertainty should be some aggregate of forecast uncer-

tainties among economic agents. It is not obvious which method of aggregation is appropriate

for the Okun–Friedman hypothesis. One approach would be to consider the average uncertainty

among all economic agents who make forecasts, either skillful or not, as an ideal indicator. Another

extreme is to consider the forecasts only of the most skillful forecasters as an ideal indicator.

Another point is that the price level is a subjective notion as the relevant commodity basket is indi-

vidual for each economic agent. This means that the Okun–Friedman hypothesis is not only about

the general price level, but also relates to price dispersion across commodity groups and space.
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However, the current study concentrates on the problem of unpredictability of the general price

level only. The relative price dispersion aspect of the Okun–Friedman hypothesis is an important

problem in its own right and needs a separate thorough investigation.

The approach of this study is to take a reasonably good time-series model and base a measure of

inflation uncertainty on predictive distributions from this model. The idea is that economic agents

can produce good enough forecasts when they are to make important inter-temporal decisions and

that this can be approximated by a good econometric model, however tricky required estimation

and inference could be. (This is similar to the observation that a football player is able to make

a complicated forecast of the ball’s trajectory without consciously resorting to the physical laws

of motion). If we identify inflation uncertainty with a measure of forecast uncertainty of inflation

then we have to choose a model which produces adaptively varying predictive distributions. Point

forecasts are unsuitable for the task as they lack associated uncertainty.

The notion of forecast uncertainty or unpredictability is not something definite.1 One measure is

the variance or standard deviation of predictive distribution. Another natural measure is the width

of the forecast interval. In what follows I take the width of the central 90% forecast interval as

the measure of forecast uncertainty.2 The width of the forecast interval is defined as the distance

between the suitable quantiles of the predictive distribution.

The next important point is that multistep forecasting is needed in order to study the significance

of the length of the forecast horizon. Given information Ωt available at time t the forecast is made

H periods ahead for period t + H. Below the forecasts of the price level based on monthly data

with the horizons of 1, 24 and 14 months are considered.

Moreover, it is necessary to draw attention to the fact that in an econometric model the inflation

rate3 πt = ln Pt − ln Pt−1 would be modeled rather than the price level Pt (or ln Pt) which is clearly

non-stationary. In producing H-step-ahead forecasts we are not concerned with the forecasts about

πt+H which is the rate of change of the price level from time t + H − 1 to time t + H, but rather

with the forecasts about
∑︀H

i=1 πt+i = ln Pt+H − ln Pt which is the rate of change of the price level H

periods ahead or (equivalently) with the forecasts about 1
H

∑︀H
i=1 πt+i which is the average inflation

rate H periods ahead.

In measuring uncertainty parameter estimation errors and uncertainty about the form of the model

(for example, see Garratt, Lee, Pesaran, and Shin (2003), Wallis (2008)) are not taken into account

in this study. However, the basic model used here allows to capture structural shifts in the economy

(cf. Cogley and Sargent (2001)).

1 Various ways of reporting forecast uncertainty are discussed in Wallis (2008).

2 The term central interval means that tail probabilities are taken to be equal. For an interval with the 90% confidence

level this attributes 5% probability to each tail.

3 Below actually ln Pt − ln Pt−1 multiplied by 100 is used as πt.
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Fig. 1. Rolling AR(1) estimates for the United States, 1921:01–2009:01; (a) c, (b) lnσ, (c) ϕ.

In summary, I estimate a model of inflation, assume that the estimated parameters are true pa-

rameters and measure inflation uncertainty as the width of the central 90% forecast interval for
1
H

∑︀H
i=1 πt+i |Ωt where Ωt is information used for forecasting at time t.

2.4. TV-AR model of inflation

Varying or switching coefficients are frequently mentioned in the literature on inflation modeling.

For example, changing autoregressive coefficients is a phenomenon mentioned in Stock and Wat-

son (2007). This can be interpreted as changing inflation persistence. Following Evans (1991) I

expect that this can be an important source of long-run inflation uncertainty and that not taking this

into account can lead to a distortion and underestimation of Okun–Friedman effect.

The phenomenon of time-varying parameters can be illustrated by a simple AR(1) model

πt = c + ϕπt−1 + εt, var(εt) = σ
2. (1)

fitted to inflation series over rolling intervals. Here πt = ∆pt = ∆ ln Pt is the inflation rate obtained

from price index Pt. Rolling first-order autoregressions are fitted to the monthly inflation data for

the United States for the period 1921:01–2009:01 (Appendix B, Series A). The length of the rolling

interval is chosen to be 35 months. That is, the autoregression (1) is estimated for the moment τ by

OLS using only observations t = τ−17, . . . , τ+17. The estimates ĉ = ĉ(τ), σ̂ = σ̂(τ) and ϕ̂ = ϕ̂(τ)

are attributed to moment τ.

Figure 1 records the estimated coefficients. The estimates show that all three parameters change

appreciably over time. The autoregressive coefficient is visibly negative in 1957–1967. The pre-

WWII inflation data show a considerably higher volatility. Also notable are the negative constant

term estimates corresponding to the disinflation episode of the early 1930s.

Ball and Cecchetti (1990) used a similar non-parametric approach to the task of estimation of

changing parameters. They divided quarterly time series into five-year intervals which can be

viewed as a kind of regressogram estimation (bin smoothing).

The phenomenon of parameter instability is important for studying inflation–uncertainty links. The
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reason for this is that not only changing variance (σ2), but also time variations of other underlying

parameters can contribute to the behavior of the long-horizon uncertainty (cf. Evans (1991), Lend-

vai (2006)). Cogley and Sargent (2001) note that “the well-known positive correlation between the

mean and variance of inflation reflects an even stronger correlation between the mean and degree

of persistence”.

These observations motivate the choice of the basic model for this study. The simple first-order

autoregression (1) can be modified by assuming that each of its three parameters is governed by

its own AR(1) process. Positivity of “variance” variable σ2 is ensured by taking logarithms. This

leads to the following AR(1) model with time-varying parameters (TV-AR):

πt = ct + ϕtπt−1 + εt, εt = eht/2ξt, ξt ∼ sktν,λ,

Λl,t = (1 − δl)ωl + δlΛl,t−1 + σl

√︁

1 − δ2
l
ηl,t, ηl,t ∼ N(0, 1), (2)

where Λl,t = ct, ht, ϕt for l = 1, 2, 3.

Here ct can be interpreted as the trend contribution to inflation, ϕt as the inflation persistence, and

ht as the short-run volatility. The disturbances ξt, ηl,t are assumed to be independent white noise

series. I employ asymmetric and fat-tailed disturbances ξt distributed according to the skewed

Student’s t distribution with ν degrees of freedom and asymmetry parameter λ ∈ (0, 1). The

distribution is parametrized in such a way that E ξt = 0 and var ξt = 1 (see Hansen (1994)).

Two papers which used similar approaches to the inflation–uncertainty links were sources of in-

spiration for the basic model. First, the approach of this study is close to that of Ball and Cecchetti

(1990). However, Ball and Cecchetti used a very basic time-series model of inflation, that is,

IMA(1) model. By using a simple IMA(1) model Ball and Cecchetti were able to readily de-

compose inflation into two components, a permanent (random-walk) component and a transitory

(white-noise) component. The variance of random-walk error can be viewed as a measure of long-

term uncertainty as it is the dominant component of long-term forecast error variance.

An important difference with the current study is that Ball and Cecchetti were interested in the

error variance of long-term forecasts of one-period (quarterly) inflation while the unpredictability

of average inflation H periods ahead is a more relevant indicator.

Ball and Cecchetti (1990) only partially took into account the fact that model parameters are time-

varying. For the cross-country regressions they used the IMA(1) with fixed parameters for the

whole data period. Then they divided inflation series into 5-year periods, fitted the IMA(1) with

fixed parameters for these shorter series and used the results in panel regressions. However, grad-

ually changing parameters can provide a very important contribution to the long-term inflation

uncertainty. Most importantly, variances can change over time. Thus, Ball and Cecchetti (1990)

provide very rough approximations to the desired uncertainty measure.
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Another essential example of a previous research which considers the difference between the short-

and long-run inflation–uncertainty links is Evans (1991). Evans allowed for both time-varying

error variance (changing short-run volatility) and time-varying model coefficients. His model is

an autoregression in which the autoregression coefficients are modeled as random walks and the

disturbances are represented as an ARCH process. The study was confined to the United States

data, so it is not clear whether the findings relate to other countries.

The long-horizon measure of inflation uncertainty in Evans (1991) assumes the infinite horizon and

is based on heuristic considerations. In terms of the model (2) it would correspond to var(ct/(1 −

ϕt)|Ωt).

Other sources of ideas for this study belong to a more general literature on inflation modeling and

forecasting. Most important are the papers by Stock and Watson on inflation forecasting and Cog-

ley and Sargent (2001). In particular, Stock and Watson (2007) used an unobserved components

model with stochastic volatility to forecast inflation. Cogley and Sargent (2001) modeled the joint

movement of inflation and other macroeconomic series by means of time-varying VAR.

The model (2) is a kind of nonlinear state space model. Such a model includes observed series

Y = (Y1, . . . ,YT ) and unobserved state series Λ = (Λ1, . . . ,ΛT ). For a given vector of param-

eters θ a state space model determines the transition density f (Λt |Λt−1, θ) and the measurement

(observation) density f (Yt |Yt−1,Λt, θ). These components make up the joint density of Y and Λ,

the density of the complete data. However, for the maximum likelihood estimation one needs the

marginal density f (Y |θ) rather than the density of the complete data f (Y,Λ|θ). In general the

former density is not known in a closed form. Consequently both estimation of a nonlinear state

space model and obtaining density forecasts from it require computer-intensive algorithms like

Monte Carlo integration. Most popular methods for nonlinear state space models are based on

approximating the unknown conditional (“posterior”) distribution with density

f (Λ|Y, θ) = f (Y,Λ|θ)/ f (Y |θ)

by a simpler Gaussian distribution g(Λ|θ).

There are many ways to estimate the model (2). The results in this study were obtained by means of

efficient importance sampling (EIS) algorithm with 100 simulations and 10 iterations (see details

in Appendix A).

Table 1 reports the estimates for the United States for the period 1921:01–2009:01. Also the

estimates were obtained for the main data-set. The source of the data is International Financial

Statistics database from IMF (Appendix B, Series B).4 The inflation rates were calculated from the

4 The sample does not include Brazil, Argentina and Peru. CPI series for these countries exhibit an abrupt behavior

due to outbursts of very high inflation rates and monetary reforms. The algorithms used failed to converge for the

countries. A more complicated model with jumps could be needed to describe inflation in these countries. Moreover,
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Fig. 2. Model estimates for the United States, 1921:01–2009:01, posterior mode; (a) ĉt, (b) ĥt, (c) ϕ̂t

monthly CPI series for the period 1957:02–2009:01. (For some countries the series are shorter.).

The series were seasonally adjusted by means of Census X12 automatic adjustment. Table 1 reports

the estimates for the U.S., Japan, Greece and Egypt. The estimates of deltas for the model are

close to unity, which explains the wide use of random walk in inflation modeling. For a sizable

proportion of the countries some of the three deltas degenerate, tending from 1 towards 0 during

iterations, while the corresponding sigmas can tend towards 0. For such factors δl was fixed at 0.99

(and some σl at a negligibly small level 10−5) so that the factor remained practically constant. In

Table 1 this is the case for Japan (fixed parameters are marked with F), for which the autoregressive

coefficient is almost constant around 0.021.

Table 1. Estimates of the TV-AR model (2) for CPI inflation in four countries

U.S. U.S. Japan Greece Egypt

Parameter 1921:01–2009:01 1957:02–2009:01

ωc 0.149 0.200 0.183 0.416 0.494

δc 0.993 0.983 0.994 0.995 0.995

σc 0.131 0.071 0.237 0.412 0.377

ωh -1.660 -3.590 -1.895 -1.990 -0.443

δh 0.995 0.933 0.996 0.925 0.991

σh 1.260 0.947 1.000 0.909 1.524

ωϕ 0.233 0.292 0.021 0.060 0.013

δϕ 0.981 0.986 0.99 F 0.981 0.728

σϕ 0.241 0.184 10−5 F 0.178 0.206

ν 7.892 10.28 4.730 4.462 3.089

λ 0.135 0.058 0.156 0.125 0.134

The three graphs in Figure 2 show estimates of the three unobserved factors (time-varying parame-

ters) from the model (2) for the United States for the period 1921:01–2009:01. The estimates were

obtained as the mode of the posterior distribution. These are similar to the rolling estimates above.

The estimates of uncertainty used below are based on forecasts. All the forecasts here (including

those used in forecast comparisons and diagnostics) are quasi out-of-sample ones because future

observations are used in the estimation of the model parameters. Truly out-of-sample forecasts

calculated on the basis of available observations only are not used in this study because obtaining

it is necessary to take into account anticipated monetary reforms to estimate inflation uncertainty adequately.
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them is very time-consuming.

For complicated enough models such as (2) it is impossible to find closed-form expressions for

characteristics of the predictive distribution. Non-linearity of the model, time-varying parameters

and non-Gaussian disturbances all add to this difficulty. Additionally, forecasts of the average

inflation rate during H periods rather than of the monthly inflation H periods ahead are needed.

Thus, it is necessary to resort to a numerical approximation by some Monte Carlo method.

The forecast distribution is approximated by a discrete distribution of future trajectories with cor-

responding importance weights. Below the EIS method was used with 1000 simulations and 10

iterations to fit a proposal distribution. For filtering 100000 initial Monte Carlo trajectories were

used, which were then reduced to 1000 trajectories with equal importance weights via systematic

resampling. The methods are described in Appendix A.

3. FORECAST VERIFICATION

3.1. Discussion of forecast verification

It is important that the model used for evaluating uncertainty provides high-quality density fore-

casts. There are two principal ways to verify forecast quality. One way is to conduct diagnostics

and assess forecast calibration. Another way is to compare the forecast procedure with alternative

procedures in terms of forecast accuracy. Discussion of these quality verification methods can be

found in Diebold, Gunther, and Tay (1998), Wallis (2008) and Gneiting, Balabdaoui, and Raftery

(2007).

As discussed in Gneiting, Balabdaoui, and Raftery (2007) a high-quality density forecast must

possess two important features: calibration and sharpness. Calibration refers to the property of a

forecast to adequately capture the behavior of the data under consideration. Sharpness refers to a

high concentration of the forecast density. A good density forecast should have small uncertainty

associated with it (be sharp). On the other hand, it should be in agreement with the observed data

(be properly calibrated), in particular, it should not be misleading with respect to the associated

uncertainty and should not be biased.

One way to judge the adequacy of calibration is to use the cumulative distribution function of the

predictive distribution to transform the actual observations to U[0, 1] distributed variables. This is

called the probability integral transform (PIT) and is discussed below.

Sharpness can be measured roughly by the average forecast uncertainty, for example, by the av-

erage width of forecast intervals. However, one should be cautious as too sharp a forecast can be

badly calibrated due to under-reported uncertainty. Thus, it is better to have indicators which com-

bine both sharpness and calibration when comparing density forecasts. Such indicators are called
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scoring rules. A comprehensive discussion of scoring rules can be found in Gneiting and Raftery

(2007).

One such integral measure of forecast quality for density forecasts is the continuous ranked proba-

bility score (CRPS). It is known to be a strictly proper scoring rule, which means that it stimulates

truthful forecasts statement (or penalizes any tweaking in the statement of one’s forecast density).

Among other things, it penalizes biased forecasts, or too sharp or too fuzzy forecasts. CRPS is

not the only strictly proper scoring rule, but it is one of the most appealing. It is not that popular,

the reason for which can be that it is not readily available for a complicated forecast distribution.

However, if one has a Monte Carlo sample from the forecast distribution one can obtain a sam-

ple estimate of CRPS by replacing theoretical expectations by the corresponding sample means.

Suppose there is a random sample qs, s = 1, . . . , S from predictive density f̃ with associated nor-

malized importance weights ws. In terms of the ordered sample q(1) ≤ q(2) ≤ · · · ≤ q(S ) CRPS can

be estimated as

CRPS ( f̃ , q) ≈

S
∑︁

s=1

w(s)|q(s) − q| −

S
∑︁

s=1

w(s)
(︁

2

s
∑︁

r=1

w(r) − 1 − w(s)
)︁

q(s).

CRPS is used here in the negatively oriented form; this is convenient, as negatively oriented CRPS

is positive and specializes to the popular absolute error criterion function for a degenerate single-

point forecast distribution. To compare different forecasting techniques one should use average

values of CRPS for some period t = T1, . . . ,T2:

CRPS =
1

T2 − T1 + 1

T2
∑︁

t=T1

CRPS ( f̃t, qt).

Below the following procedures are conducted to verify forecasts from the basic model. First, the

behavior of the TV-AR model is compared with the Livingston survey for the U.S. case. Second,

it is checked whether addition of other macroeconomic indicators can seriously influence the pro-

posed measure of uncertainty by comparing forecasts from the basic model with forecasts from a

more complicated time-varying vector autoregressive model. Third, the basic model is compared

with a simpler time-series model (ARMA-GARCH). Forth, PIT-based diagnostics for the density

forecasts from the basic model are inspected.

3.2. Comparison with Livingston survey for the U.S.

It is important to compare the proposed measure of inflation uncertainty with alternatives. One

rough check can be performed by comparing it with surveys of inflation forecasts. Figure 3 com-

pares the uncertainty estimates for the United States from the model (2) with the 1-year-ahead CPI

predictions from the semi-annual Livingston survey for the period 1948:06–2009:01 (Appendix B,
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Fig. 3. Measures of uncertainty based on the TV-AR model (2) and on Livingston Survey, H = 14, U.S., 1948:06–

2009:01: (a) with initial survey measure, (b) with recalibrated survey measure.

Series C). The two uncertainty indicators were made comparable. The fourteen-month horizon

(H = 14) was used for the model-based indicator. This length of the forecast horizon is an approx-

imation; see Carlson (1977) on the horizon implicit in the 1-year-ahead CPI forecasts and on other

problems of the Livingston survey data. For the Livingston Survey data I considered samples of

survey forecasts at different times periods as forecast distributions and computed the differences

between sample 95 % and 5 % quantiles. (On average there were about 47 participants). The

survey-based indicator is sharper (except for the starting years) as evident from Figure 3(a). The

similarity between the two indicators is noticeable, although there is a huge discrepancy at the end

of the period.

Forecasters’ disagreement is not the same as inflation uncertainty. It is clear that such an indicator

does not reflect the full forecast uncertainty as each forecaster provides only some plausible point

value without attaching his intrinsic subjective ambiguity to the value. Although logically inflation

uncertainty is not the same thing as disagreement of inflation forecasts, empirically these indicators

can behave similarly. For more in-depth discussion of the issues see Zarnowitz and Lambros (1987)

and Bomberger (1996).

It can be conjectured that there was a gradual decline in forecasters’ disagreement relative to infla-

tion uncertainty. To test the conjecture a recalibrated version of the survey measure of uncertainty

was computed by minimizing CRPS. For each time period the distribution of forecasts was scaled

around the median. The logarithm of the scaling factor was assumed to change according to a lin-

ear trend. The coefficients of the trend were chosen by minimizing average (negatively oriented)

CRPS. Figure 3(b) shows the result. The greatest difference is at the end of the period. The survey

measure is much lower since 2004 or 2005. During the last years of the period inflation rates show

a high short-run volatility with a not so high average rate (≈ 0.2 % monthly inflation) and an in-

creased agreement between the forecasters. However, in general it is striking that two uncertainty

measures obtained by very different methods can be so similar.

Long enough surveys of inflation forecasts are not available for most of the countries so it is not

possible to use them systematically. Moreover, this subject deserves a separate study. For the

current study a rough check is enough. From the comparison it can be concluded that the proposed
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measure of inflation uncertainty is not completely amiss and that it captures some important aspects

of inflation uncertainty in the U.S.

3.3. Comparison with TV-VAR models

The main concern about the basic model (2) is not that it is purely technical and unrelated to the

macroeconomic theory. Actually, it is able to capture regime shifts in monetary policy which are

considered as an important feature in the recent theoretical and empirical literature on inflation.

The main concern is that it is univariate. It does not take into account all information which is rel-

evant to inflation forecasting and can be available to a forecaster at the time he makes his forecast.

Of course, some additional information other than historical records of CPI can improve forecast-

ing of the future CPI. Thus, a forecast interval from a univariate model is a rough approximation

to some imaginary ideal measure of unpredictability.

In view of potential distortions it is necessary to check whether my measure based on a univariate

time-series model is appropriate and whether additional macro variables can change the behavior

of the model-based forecast uncertainty considerably. It can be that multivariate models of infla-

tion are only marginally better than a good univariate model; see Atkeson and Ohanian (2001),

Stock and Watson (2007), Stock and Watson (2008), Ang, Bekaert, and Wei (2005), Doyle (2006).

Below I examine whether this is indeed the case. A forecast uncertainty measure which takes

into account information on several variables is obtained from a vector autoregression with time-

varying parameters (TV-VAR). It is similar to the model of inflation in Cogley and Sargent (2005)

which extends the model in Cogley and Sargent (2001) by including stochastic volatility.

Consider the following TV-VAR model:

Yt = Mt +

p
∑︁

j=1

Yt− jΠ j,t + Ut DtCt, Ut ∼ 𝒩(0k, Ik). (3)

Here Yt is a row vector of modeled variables at time t, Mt is a time-varying vector of constant

terms, Π jt are matrices of autoregressive coefficients,

Ct =
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is a lower triangular matrix which determines correlations between disturbances,

Dt = diag(exp(h1,t/2), . . . , exp(hk,t/2))
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Table 2. Comparison of the basic TV-AR model (2) with bivariate TV-VAR models, H = 24

TV-AR Ump TBR IP IP gap M2

U.S., 1959:01–2008:12

CRPS 1.79 1.77 1.76 1.78 1.67 1.82

rs 0.94 0.86 0.95 0.94 0.92

Japan, 1959:01–2008:11

CRPS 2.55 2.24 2.49 2.66 2.44

rs 0.93 0.95 0.9 0.93

Korea, 1983:02–2009:01

CRPS 1.95 1.58 1.90 1.87 1.9

rs 0.88 0.96 0.95 0.95

is a diagonal matrix of volatilities. It is assumed that all of the time-varying parameters follow

independent stationary Gaussian AR(1) processes. Denote Λt a row vector of all time-varying

parameters: Mi,t, Πis, j,t, hi,t, cis,t. It is assumed that each of the elements of Λt is described by

Λl,t = (1 − δl)ωl + δlΛl,t−1 + σl

√︁

1 − δ2
l
ηl,t, (4)

where the disturbances ηl,t are independent𝒩(0, 1). The parameters vector for the TV-VAR model

is θ = (ω, δ,σ).

Similarly to the basic model (2) this is a nonlinear state-space model. Estimation and forecast-

ing methods are similar (Appendix A). TV-VAR was estimated using the Laplace’s method to

approximate the likelihood function (simulated maximum likelihood methods proved to be too

time-consuming).5 As was done before for the basic TV-AR model for degenerating factors Λl,t

coefficients δl were fixed at the level 0.99 (while some coefficients σl were fixed at the level

10−5). Bivariate models for U.S., Japan and Korea were fitted with monthly series. Unemploy-

ment (“Ump”), Treasury Bills rate (“TBR”), growth rate of industrial production index (“IP”),

output gap based on industrial production (“IP gap”) and growth rate of M2 monetary aggregate

were used in addition to inflation.6

The 24-months-ahead dynamic quasi out-of sample forecasts of monthly inflation from bivariate

TV-VAR models (3)–(4) and from the univariate model (2) were compared on the basis of the

continuous ranked probability score. Table 2 presents the average values of CRPS.

It should be taken into account that the CRPS measure contains a component which is inherently

unpredictable and cannot be captured by any forecasting technique. That is why the levels of

5 Estimation based on the EIS approximation for likelihood function with 300 simulations and 10 iterations was about

700 times slower.

6 All of the series except Korean and Japanese unemployment are from International Financial Statistics database (Ap-

pendix B, Series B, E, F). Seasonally unadjusted series were adjusted prior to estimation. Kalman filtering procedure

in the state-space model yt = y
*
t + εt, ∆

2y*t = ζt with var εt/ var ζt = λ = 1.5 · 106 was employed to obtain the output

gap series. This is the one-sided counterpart of the Hodrick–Prescott filter.



Economics Education and Research Consortium: Russia and CIS 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1960:01 1970:01 1980:01 1990:01 2000:01

Basic model
TV-VAR

Fig. 4. Measures of uncertainty based on the basic TV-AR model (2) and the TV-VAR with output gap, H = 24, U.S.,

1957:01–2008:12.

average CRPS do not differ markedly.

One conclusion from Table 2 is that indicators other than inflation itself (unemployment, output

gap) can considerably improve inflation forecasts. Table 2 additionally shows Spearman’s rank

correlations between uncertainty measures based on (2) and uncertainty measures based on TV-

VAR models. All uncertainty series were smoothed prior to computation of rank correlations

(details are in subsection 4.2). The correlations are quite high and demonstrate that although

unemployment and output gap are useful for predicting inflation, their inclusion would not lead to

substantial change in the uncertainty measure.

Figure 4 compares uncertainty as measured by the basic model and uncertainty as measured by

the TV-VAR with unemployment for the United States. It can be concluded that although unem-

ployment proved to be important for predicting inflation it produces a very similar measure of

uncertainty. The discrepancy is small relative to the ambiguity in deciding what is the relevant

measure of uncertainty for the Okun–Friedman hypothesis.

A bivariate TV-VAR is much harder to estimate and unemployment or industrial production series

are not available, too short or unreliable for most of the countries. So I choose to use the basic

univariate TV-AR model (2) for the current study.

3.4. Comparison with ARMA-GARCH

The basic model (2) needs a lot of computer time for estimation, obtaining uncertainty series and

diagnostics. Therefore it is desirable to compare it with less computer-intensive models. If it

does not provide better forecasts then the additional effort is not worth paying. The TV-AR model

(2) was compared with ARMA(2,1)-GARCH(1,1) with skewed t disturbances. The comparison

was made for 38 countries from the IFS data-set (Series B) for the period 1957:02–1998:12 and

for the H = 24 forecast horizon. For 32 countries TV-AR gives lower CRPS. On average CRPS

for ARMA-GARCH is 6% higher. The mean value of Spearman’s rank correlation between the

two uncertainty series is 0.71. (The CRPS values and uncertainty series for the two models were
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obtained by simulation. Both uncertainty series were smoothed prior to computation of the rank

correlations; details on smoothing are in subsection 4.2). The conclusion is that there is a good

reason to use TV-AR rather than the less cumbersome ARMA-GARCH.

3.5. PIT-based assessment of forecast calibration

One way to verify the underlying model is to check forecast calibration. Some aspects of cali-

bration can be tested on the basis of so-called probability integral transform (PIT), e.g. Diebold,

Gunther, and Tay (1998), Gneiting, Balabdaoui, and Raftery (2007), Wallis (2008). It is a very

popular diagnostic tool in the context of time-series modeling. If y1, y2, . . . are observed data and

forecast is calibrated so that the c.d.f. of the forecast distribution F(yt+H |y1, . . . , yt) (which is called

PIT) adequately represents the data generating process then vt,H = F(yt+H |y1, . . . , yt) is uniformly

distributed U[0, 1]. For H = 1 the series of vt,1 should be i.i.d. For H > 1 a series of vt,H would in

general be dependent. It is useful to convert vt,H to a standard normal form zt,H = Φ
−1(vt,H) were

Φ(·) is the standard normal c.d.f. Also useful is “folded” PIT v′t,H =
⃒

⃒

⃒2vt,H − 1
⃒

⃒

⃒ and corresponding

z′t,H = Φ
−1(v′t,H) which should be distributed as U[0, 1] and 𝒩(0, 1) respectively.

In order to verify the inflation forecasts from the model (2) the series of zt,1, z′
t,1

, zt,24 and z′
t,24

were

calculated for 38 countries for the period 1957:02–1998:12. Inspection of these series reveals

several problems with the model. There are signs of seasonal autocorrelation (the twelfth-order

autocorrelation of zt,1 series is −0.156 on average) and unmodeled volatility clustering (the first-

order autocorrelation of z′
t,1

series is 0.025 on average). The forecast distributions are often biased

upwards (the mean of zt,1 is 0.029 and the mean of zt,24 is 0.135). Also notable is the fact that

in most of the countries outliers are more frequent than the model suggests, especially positive

outliers corresponding to outbursts of higher inflation (skewness of zt,24 is 0.220 on average). More

detailed statistics are available from the author.

These diagnostics for forecast calibration should not be considered as ordinary tests for model

specification. Even a “wrong” model can provide good forecasts. The purpose is to detect de-

partures from model properties which suggest potential sizable improvements in the accuracy of

forecasts. The conclusion from the PIT-based diagnostics is that although the departures are statis-

tically significant, there is no serious indication that the basic model is unusable for an approximate

measurement of inflation uncertainty. (Here the well-known disparity between statistical signifi-

cance and practical importance comes into play). It is not clear what could be a better model which

would account for the detected problems. My belief is that the task of developing such a model is

excessively difficult. So the decision here is to be satisfied with the current not very ideal model

until the arrival of a better one.
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Fig. 5. The mean inflation and mean inflation uncertainty, 75 countries: (a) TV-AR, H = 24, (b) TV-AR, H = 1,

1994:01–1998:12 (c) ARMA-GARCH, H = 24

4. EMPIRICAL FINDINGS FOR INFLATION–UNCERTAINTY LINKS

4.1. Cross-country links

First I explore the cross-country links between inflation and its uncertainty. The inflation uncer-

tainty indicator was obtained from the basic TV-AR model (2). The cross-country evidence is

presented in Figure 5(a), (b), where the average inflation uncertainty is plotted against the average

inflation for the period 1994:01–1998:12 for 75 countries. Ranks rather than the original variables

are used to make the evidence more robust to fat tails and non-linearity. That inflation rates are

characterized by the distributions with fat tails is evident from the estimates of both the TV-AR and

ARMA-GARCH models. Robustness to non-linearity is important because the functional form of

the relationship is not known.

The cross-country links are rather strong. For the longer-horizon uncertainty (H = 24) Spearman’s

rank correlation is rs = 0.88 and is higher than rs = 0.78 for the short-horizon uncertainty (H = 1).

Figure 5(c) presents a similar scatterplot for the ARMA-GARCH model discussed above for H =

24. Rank correlation is rs = 0.83. For H = 1 and ARMA-GARCH the scatterplot (not shown)

is very similar to Figure 5(b) and rank correlation is rs = 0.78. These correlation coefficients

demonstrate the effect of a longer horizon and the effect of using TV-AR rather than ARMA-

GARCH.

With this ranks-based approach information on the quantitative aspect of the inflation–uncertainty

link is lost. However, the scatterplots for ranks such as those shown in Figure 5 are tightly related to

the copula modeling. (An introductory exposition of copulas can be found in Trivedi and Zimmer

(2006)). Assuming some parametric marginal distributions and some specific copula function
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allows to make quantitative statements about the link. Moreover, it can be observed from the

scatterplots that for high-inflation countries the dependence is more pronounced. A quantitative

measure of this phenomenon is provided by the tail dependence coefficient known from the copula

analysis literature.

Here we have two variables, mean inflation xi and mean uncertainty yi. In order to model their joint

bivariate distribution using a copula first the marginal distributions of the two variables are modeled

by continuous distributions. The corresponding marginal cumulative distribution functions are

used to transform the initial variables to uniformly distributed U[0; 1] variables. Second, a joint

distribution on the unit square with uniform marginals is fit (the distribution is called copula).

Suppose that the variables xi and yi can be transformed to (approximately) normal variates by

taking logarithms with shift: ln(x − x0) ∼ 𝒩(µx, σ
2
x) and ln(y − y0) ∼ 𝒩(µy, σ

2
y). Then the two

variables after normalization and applying the standard normal c.d.f.

u = Φ

(︃

ln(x − x0) − µx

σx

)︃

, v = Φ

(︃

ln(y − y0) − µy

σy

)︃

are approximately uniformly distributed as U[0; 1].

A popular simple copula which allows for upper tail dependence, the rotated Clayton copula, is

used. The copula function is

C(u, v) = u + v − 1 + (1 − u)(1 − v)D(u, v)−1/δ,

where

D(u, v) = (1 − u)δ + (1 − v)δ − (1 − u)δ(1 − v)δ,

and the corresponding density function is

c(u, v) = (1 + δ)(1 − u)δ(1 − v)δD(u, v)−2−1/δ.

The copula does not exhibit lower tail dependence (λL = 0), while the upper tail dependence

coefficient is λU = 2−1/δ.

The model was fitted to the data on the mean inflation and mean uncertainty (H = 24) from the TV-

AR model. The estimation was done by the maximum likelihood method in one stage (the copula

parameter δ and parameters of the marginal distributions µx, σx, µy, σy were estimated jointly).

The shift parameters were fixed at x0 = 0.01 and y0 = 0.15 levels which ensure approximate

normality after taking logarithms. The ML estimate of the copula parameter is δ̂ = 2.83, which

corresponds to the upper tail dependence coefficient of λ̂U = 0.78. The coefficient is defined as

λU = lim
ε↓0

Pr(v > 1 − ε|u > 1 − ε) = lim
ε↓0

Pr(u > 1 − ε; v > 1 − ε)

1 − ε
.
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Fig. 6. The 90% region for the mean inflation and mean inflation uncertainty, H = 24, 1994:01–1998:12, 75 countries.

It can be interpreted as follows: for a country with mean inflation in the upper 10% tail it shows

(approximately) what is the conditional probability that mean uncertainty is also in the 10% tail.

The estimate shows that the probability is around 78%, which is rather high. Of course, the sample

is too small for the estimate to be precise enough. A reliable inference on tail events requires a

much larger sample.

Once the estimates of the copula and the marginals are obtained, some other useful indicators can

be inferred.

First, one can obtain a confidence region for the joint distribution of the mean inflation and mean

uncertainty. The purpose is to visualize this joint distribution. A confidence region is not something

definite. I have chosen the 90% confidence region bordered by the contour of constant density for

the joint distribution with standard normal marginals Φ−1(u), Φ−1(v) linked with the estimated

copula function Ĉ(u, v). The result in terms of the initial variables

x = exp(µx + σxΦ
−1(u)) + x0, y = exp(µy + σyΦ

−1(v)) + y0

is shown in Figure 6.

Second, the estimated copula can be used to produce a regression line. Note that thus far I avoided

causal interpretations. The copula analysis does not imply a definite direction of causality. How-

ever, if one is willing to assume that inflation causes uncertainty then a regression where inflation

uncertainty is the dependent variable can be of interest.

It is natural to use median regression based on estimated copula. It is readily obtained from copula

function due to invariance of median under monotone transformations. A formula of the theoretical

median regression function for the rotated Clayton copula is

vmed(u) = 1 − (1 − u)(2δ/(1+δ) + (1 − u)δ − 1)−1/δ.

Pairs (x, ymed(x)) are obtained from pairs (u, vmed(u)). The median regression is drawn in Figure 6
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as a dotted line. According to the estimated regression function an increase in average monthly

inflation rate from 0.5% to 1% is associated with widening of the inflation forecast interval by a

factor of 2.7

As argued in Ram (1985), Driffill, Mizon, and Ulph (1990) and Davis and Kanago (1996) a cross-

country analysis may be not very relevant to the Okun–Friedman hypothesis. Time-series evidence

is more important for assessing potential welfare losses due to high inflation as it represents within-

country point of view. However, there is a difference between everyday macroeconomic policy

and construction of institutions for such policy. For the later cross-country evidence can be more

relevant.

4.2. Time-series links

To explore time-series links smoothed series of both inflation and estimated inflation uncertainty

were used for 38 countries for the period 1957:02–1998:12. Full series (including data beyond

1998) were used for estimation of the model parameters. The series were smoothed using standard

kernel regression on the time trend

ŷt =

∑︀T
τ=1 K((t − τ)/h)yτ

∑︀T
τ=1 K((t − τ)/h)

with Epanechnikov canonical kernel defined as

K(z) = 0.75(1 − z2/σ2)I(|z| ≤ σ)/σ, σ = 151/5

and bandwidth parameter h = 4. Such smoothing implements a low-pass filter which filters out

high-frequency noise in inflation and uncertainty and allows to estimate the long-run dependence.

Of course, smoothing leads to some distortion and a loss of degrees of freedom. Hence, the corre-

lations between the series should not be assessed at the face value.

The uncertainty indicator was computed from 24-months-ahead (H = 24) and 1-month-ahead

(H = 1) forecasts to explore the dependence of the inflation–uncertainty links on the length of the

forecast horizon. The uncertainty for H = 1 is similar to the conditional variance from the ARMA-

GARCH model for monthly inflation series, but it additionally contains the effect of changing

persistence. Figure 7 shows the graphs of inflation and uncertainty for 4 countries. The uncertainty

series were scaled to be comparable with inflation.

As is evident from the graphs, there is a pronounced similarity in the behavior of inflation and

the longer-horizon uncertainty in all four countries. This visual impression of a strong connec-

tion is confirmed by the rank correlation coefficients in Table 3. Links between inflation and the

7 When interpreting this number one should remember that it relates to forecasting of the logarithm of the price level.
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Fig. 7. Inflation and uncertainty for the United States, Japan, Greece and Egypt, 1957:02–1998:12 (longer-horizon,

H = 24, and short-horizon, H = 1).

Table 3. Spearman’s rank correlations of inflation with uncertainty and ARMA-GARCH volatility, 1957:02–1998:12

U.S. U.S., core Japan Greece Egypt

TV-AR uncertainty, H = 24 0.81 0.89 0.73 0.79 0.81

TV-AR uncertainty, H = 1 0.32 0.27 0.76 0.56 0.81

ARMA-GARCH volatility 0.37 0.25 0.77 0.54 0.76

ARMA-GARCH uncertainty, H = 24 0.39 0.25 0.78 0.56 0.79

ARMA-GARCH uncertainty, H = 1 0.37 0.26 0.77 0.56 0.79

GARCH volatility (as well as the short-horizon uncertainty) are weak for the U.S which explains

the negative results in Engle (1983).

An additional column for the U.S. in Table 3 was computed from the “core inflation” index which

does not include food and energy (Appendix B, Series D). The link between inflation and the

longer-horizon uncertainty is stronger for this series.

Figures 8(a) and (b) present the cross-country distributions of Spearman’s rank correlation coef-

ficients of inflation and its uncertainty based on the TV-AR model (2). For the longer-horizon

uncertainty (H = 24) the links are much stronger with median correlation 0.60 for H = 24 and

0.34 for H = 1. Figure 8(c) presents a similar distribution for the inflation uncertainty indicator

from the ARMA-GARCH model for H = 24. The median correlation is 0.37. For the short-

horizon ARMA-GARCH uncertainty (H = 1) and for the ARMA-GARCH conditional variance

the distributions are very similar.

Another aspect of the inflation–uncertainty link is the question of the temporal order. The concept

of Granger causality is not quite applicable without formulation of a joint model of the links be-

tween inflation and its uncertainty. However a simpler technique can still be used. It is based on ex-

amination of empirical cross-correlations between ranks of two smoothed series (with the H = 24

horizon for uncertainty). Table 4 shows the number of countries for which the given lag corre-

sponds to the largest value of rank correlation. “Lag” corresponds to the lag of inflation (for pos-

itive values inflation precedes uncertainty). No country has the maximum in the range −20, . . . , 0
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Fig. 8. Time-series rank correlations between inflation and uncertainty, 1957:02–1998:12, 38 countries, kernel density

estimates: (a) TV-AR, H = 24, (b) TV-AR, H = 1, (c) ARMA-GARCH, H = 24.

Table 4. Lag for which cross-correlation of inflation and uncertainty is at maximum, 1957:02–1998:12, 38 countries

Lag 1 2 3 4 5 6 7 8 9 10 11–15 16–20

# of countries 1 5 5 4 3 3 2 2 1 1 2 2

(not shown in the table). Seven countries have the maximum outside the range −20, . . . , 20. The

median corresponds to the lag of 4 months. In addition, for 6 of the 7 countries with maximum

outside the range −20, . . . , 20 there exists also a local maximum in the range 1, . . . , 20.

The comparison of cross-correlations provides evidence that inflation precedes uncertainty. (Of

course, one should be extremely cautious with causal interpretation of such evidence). Note too

that in all of the countries zero lag does not correspond to the highest cross-correlation. Hence,

the links between inflation and inflation uncertainty are in fact stronger than can be deduced from

Figure 8(a).

5. DISCUSSION AND CONCLUSIONS

This study makes advancement in the research on the Okun–Friedman hypothesis. The results

obtained have implications not only for the hypothesis itself, but also for a related research on

inflation modeling and forecasting. The significance of time variation in the processes which drive

inflation and of the length of the forecast horizon was explored. Both aspects are shown to be

essential for the Okun–Friedman hypothesis.

One important finding of this study is that a TV-AR model with three latent factors can be a useful
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instrument of modeling and forecasting inflation. The measure of uncertainty derived from the

TV-AR model proved to be comparable to a measure based on forecasters’ disagreement in the

Livingston Survey. Also it was shown for the U.S., Japan and Korea that adding other macroeco-

nomic indicators can improve forecast quality compared to the univariate TV-AR model, but does

not considerably change the measure on inflation uncertainty. At the same time a simpler ARMA-

GARCH model of inflation cannot fully capture the behavior of uncertainty in many countries.

The method of obtaining time-varying estimates of inflation uncertainty developed in this paper can

be used in other relevant contexts. The possibilities in the area of analyzing the effects of inflation

uncertainty are numerous. One example is examining the links between inflation uncertainty and

labor contract durations (see Rich and Tracy (2004)).

The study suggests convincing evidence that there exists a strong positive relation between inflation

and its uncertainty both across countries and in the time series dimension within countries. There

is also time-series evidence that inflation precedes uncertainty.

A longer-horizon inflation uncertainty (at least one year ahead, two years in this study) is more

relevant to the original concerns behind the Okun–Friedman hypothesis. Notable is the fact that

empirically it is also more closely related to the level of inflation than a short-horizon inflation

uncertainty (one month in this study).

The results obtained conform to the theoretical model by Ball (1992). A more technical argument

by Holland (1995) stressing the role of uncertainty about functioning of inflation process is also

compatible with the evidence as long as the TV-AR model provides a good enough description of

inflation. For the models by Cukierman and Meltzer (1986), Devereux (1989) and Geraats (2006)

it is not clear how to explain the observed patterns of cross-correlations between inflation and

inflation uncertainty. The models by Devereux (1989) and Mondino, Sturzenegger, and Tommasi

(1996) use very specific mechanisms (based on wage indexation and political cycles respectively)

and are not universally applicable. They cannot explain the links for a substantial portion of the

countries in which wage indexation and monetary reforms are not common. Models by Devereux

(1989) and Geraats (2006) are based on shocks which can be of short-run nature, so the observed

strong links for the long-horizon uncertainty are not fully explained. Moreover, for the U.S. the

evidence is that when some of the shocks are removed by using a core inflation series the link is

even stronger.

Of course, correlation is not always an evidence of causation and precedence is not an evidence

of the direction of causation. Thus, too confident policy-related judgments cannot be made at the

current stage of the research. However, one can argue that this study is an important step in the

right direction.

To conclude: it was demonstrated by applying modern non-linear state-space modeling to exten-

sive empirical data that the old argument by Okun (1971) is valid. High inflation and low inflation
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uncertainty are largely incompatible. Using Okun’s words, “the adoption of a public policy de-

signed to yield steady, fully anticipated inflation would commit the government to an impossible

goal” (p. 488). Some policy implications of the result do not depend on the direction of causation.

These can be stated in terms of the construction of institutions for the economic policy. We do not

have a choice between institutions which encourage low inflation and low inflation uncertainty and

institutions which encourage high inflation and low inflation uncertainty. High inflation always

comes together with high inflation uncertainty. Thus, institutions which encourage high inflation

would lead to inflation uncertainty.
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A. ESTIMATION AND FORECASTING FOR NON-LINEAR STATE-SPACE

MODELS

A.1. Estimation using the Laplace’s approximation and simulated maximum

likelihood methods

Let Y = (Y1, . . . ,YT ) be an observed series. A typical observation Yt is a 1 × k state vector at time

t. The model for the series is stated in terms of the state variables Λ = (Λ1, . . . ,ΛT ). A typical

observation Λt is a 1 × m vector of state variables. The joint (complete data) density of Y and

Λ is known up to some vector of parameters θ: f (Y,Λ) = f (Y,Λ|θ). The maximum likelihood

estimates of θ are given by

θ̂ = arg max
θ

f (Y |θ),

where f (Y |θ) is the marginal distribution of the observed data, which is called the likelihood

function in this context. The marginal distribution of Y is given by a multidimensional integral

f (Y |θ) =
∫︀

f (Y,Λ|θ)dΛ and is not known in a closed form. Below the dependence on the vector

of parameters θ is ignored for notation simplicity.

In popular methods “posterior density” f (Λ|Y) is approximated with some appropriate density

g(Λ) to get an estimate of this integral. The approximating density g(Λ) should be close enough

to f (Λ|Y) and should be chosen adaptively given the vector of parameters θ. (So actually this is a



Economics Education and Research Consortium: Russia and CIS 34

family of distributions g(Λ|Y; θ) indexed by θ and depending on Y.)

One crude estimate to the log-likelihood is given by applying the Laplace’s approximation to the

integral (e.g. Shimada and Tsukuda (2005); in Davis and Rodriguez-Yam (2005) it is called the

approximate likelihood method). It is based on the quadratic expansion of ln f (Y,Λ) around Λ̂(Y)

defined as the argument of the maximum of f (Y,Λ) with respect to Λ. (The point Λ̂ = Λ̂(Y) is also

the mode of the posterior density f (Λ|Y)). Suppose ln fa(Y,Λ) is such a quadratic approximation.

Then fa(Y,Λ) can be integrated analytically with respect to Λ to give an approximate likelihood

function

fLA(Y) = fa(Y,Λ)/g(Λ).

Here g(Λ) corresponds to the multivariate normal distribution and is obtained by matching the

first and second derivatives of ln g(Λ) at Λ̂ to those of ln f (Y,Λ). The approximation fLA(Y) is

maximized with respect to θ to obtain an estimate of θ.

A better approximation (e.g. Jungbacker and Koopman (2007)) can be obtained (at a price of more

extensive computations) by Monte Carlo integration. The integral for f (Y) is represented as

f (Y) =

∫︁

f (Y,Λ)

g(Λ)
g(Λ)dΛ

which can be approximated by a sample mean given a Monte Carlo sample Λs, s = 1, . . . , S from

the proposal distribution g(Λ):

f (Y) ≈ fMC(Y) =
1

S

S
∑︁

s=1

f (Y,Λs)

g(Λs)
.

A proposal distribution can, for example, be obtained from the same quadratic approximation at

the mode as above. The so called simulated maximum likelihood method (also known as the Monte

Carlo maximum likelihood method) maximizes fMC(Y) = fMC(Y |θ) with respect to θ to obtain an

estimate of θ. The estimator is asymptotically equivalent to the exact maximum likelihood one

provided S tends to infinity at suitable pace as T is increased.

When f (Y,Λ) can be represented as a product of T components with t-th component depending

only on Λt and Λt−1 it is convenient to specify the multi-period normal distribution corresponding

to g(·) recursively as a chain of conditional single-period normal distributions:

Λt |Λt−1 ∼ N(Kt + Λt−1Lt,Mt). (5)

This factorization allows to take advantage of the block tridiagonal structure of the Hessian of

ln f (Y,Λ) with respect to Λ and thus to devise efficient algorithms for finding the mode Λ̂ and for

Monte Carlo simulation. The details are available from the author upon request.
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A.2. Efficient importance sampling

Monte Carlo integration can give unreliable results if the proposal distribution is poor. A good

proposal distribution can be very important for obtaining good Monte Carlo approximations to

filtering and forecasting distributions (see below). Richard and Zhang (2007) propose a piecemeal

approach to optimal fitting of a proposal distribution to be used in Monte Carlo integration in high-

dimensional models. The method is called the efficient importance sampling (EIS). The goal is to

obtain an “efficient” Gaussian proposal distribution g(Λ) represented as (5).

Define a “stopgap” function µ̃t which for period t captures dependence on Λt−1 such that logarithm

of stopgap, ln µ̃t, is a quadratic function of Λt−1. Then the basic EIS regression can be rewritten for

t = 2, . . . ,T as

ln φt + ln µ̃t+1 = Dt + Λt D
0
t + Λt−1 D

1
t + Λt D

00
t Λ

⊺

t + Λt D
01
t Λ

⊺

t−1 + Λt−1 D
11
t Λ

⊺

t−1 + Rt. (6)

For t = 1 the terms with Λt−1 are missing. Matrices D
00
t and D

11
t are assumed to be symmetric

here. The EIS regressions are estimated from S observations Λs, s = 1, . . . , S generated from a

proposal distribution g(Λ) based on a current approximation for Kt, Lt, Mt. New parameters Kt,

Lt and Mt can be recovered from coefficients of the EIS regressions:

Mt = −
1

2
(D

00
t )−1, Kt = (D

0
t )
⊺

Mt, Lt = (D
01
t )

⊺

Mt.

The stopgap function is obtained after estimation of period t regression as

ln µ̃t = ln φt + ln µ̃t+1 − ln g(Λt,Λ<t) − Rt,

where Rt are the residuals from the regression. Several iterations of the method are made. New

Kt, Lt and Mt give proposal distribution, from which new Λs
t are taken. New Λs

t are used as data

in the EIS regressions leading to new Kt, Lt and Mt and so on. Finally, Monte Carlo likelihood

fMC(Y) = fMC(Y |θ) for given θ is obtained as described above. The problem of finding a good

approximation to f (Λ|Y, θ) should be solved anew for each value of parameters vector θ.

A.3. Filtering and on-line forecasting

Filtering refers to exploring characteristics of a series of conditional distribution Λ≤t |Y≤t, where

t = 1, 2, . . ., given some vector of parameters θ. (The following shortcut notation is used here:

X≤t = (X1, . . . , Xt)). Filtering imitates inference in the situation of a sequential flow of information.

If we know observable variable up to time t, Y≤t, we can explore Λ≤t |Y≤t. With the arrival of the

next observation Yt+1 we can explore Λ≤t+1 |Y≤t+1, and so on. The results of filtering can be used to

implement quasi out-of-sample forecasting, that is, to (partially) imitate on-line forecasting.
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Filtering distributions Λ≤t |Y≤t are not known, but their densities f (Λ≤t |y≤t) are proportional to

the known densities f (y≤t,Λ≤t). Monte Carlo simulations can be used to approximate them with

discrete distributions based on a set of generated trajectories. A single proposal distribution

g(Λ|Y) = g(Λ≤T |Y≤T ) is used in the paper. It approximates posterior (smoothing) distribution

f (Λ|Y) for the full time series available at time T . The quality of proposal distribution is cru-

cial for good Monte Carlo so EIS is used to fit g(Λ|Y). A set of trajectories Λs, s = 1, . . . , S is

generated according to g(Λ|Y).

For time t there is a set of S trajectories Λs
≤t obtained by truncating trajectories Λs. Approximate

filtering distribution is a discrete distribution assigning to each trajectory a probability ws
t . This

probability is the normalized importance weight

ws
t =

vst
∑︀S

k=1 v
k
t

which is calculated from unnormalized weights

vst = f (y≤t,Λ
s
≤t)/g(Λ

s
≤t |Y).

The weights can be computed recursively following obvious factorization of the densities

f (y≤t,Λ≤t) and g(Λ≤t |Y).

On-line forecasting for the model can also be implemented by means of Monte Carlo simulation.

Assume that distributions Yt |Yt−1,Λt and Λt |Λt−1 are determined by the model and there is an

algorithm for generating random variables from these distributions. Then given Yt and Λs
t one can

generate future values Y
s
t+1, Λs

t+1, Y
s
t+2, Λs

t+2, . . . recursively, where s is an index of a Monte Carlo

experiment. These trajectories have the associated importance weights ws
t based on Monte Carlo

filtering step. For a sample of future trajectories Y
s
≥t, s = 1, . . . , S with associated importance

weights one can estimate various forecast statistics like point forecasts, interval forecasts and so

on. For example, to get an interval forecast for q =
∑︀H

h=1 Yi,t+h, one simulates a sample of qs and

calculates the relevant sample quantiles.

To reduce the size of Monte Carlo samples where some trajectories can have negligible weights

one can obtain a smaller set of trajectories with equal weights by using resampling. (This can

provide a dramatic increase in the speed of computations when one needs Monte Carlo sample to

be sorted). For resampling a simple method called systematic sampling is used. To obtain a sample

of size M one selects initial trajectories with indices s j such that

s j−1
∑︁

k=1

wk
t <

j − 1 + u

M
≤

s j
∑︁

k=1

wk
t

for j = 1, . . . ,M where u ∼ U[0, 1] is a random offset.
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B. DATA SOURCES

Series A U.S. Bureau of Labor Statistics, CPIAUCNS — consumer price index for all urban

consumers: all items, monthly, not seasonally adjusted. Retrieved on 2009-11-09 from

http://research.stlouisfed.org/fred2/categories/9.

Series B International Financial Statistics database, International Monetary Fund. Retrieved on

2009-04-21 from http://www.imfstatistics.org.

Series C Livingston survey. Retrieved on 2009-11-09 from http://www.philadelphiafed.

org/research-and-data/real-time-center/livingston-survey/.

Series D U.S. Bureau of Labor Statistics, CPILFESL — consumer price index for all urban con-

sumers: all items less food & energy, monthly, seasonally adjusted. Retrieved on 2009-11-09

from http://research.stlouisfed.org/fred2/categories/9.

Series E Japan Statistics Bureau, Labour Force Survey, unemployment rate, seasonally adjusted,

both sexes, total. Retrieved on 2010-05-03 from http://www.stat.go.jp/english/

data/roudou/lngindex.htm.

Series F International Labour Organization, LABORSTA — Labour Statistics Database, Table:

B4 Unemployment, Korea, general level, total. Retrieved on 2010-05-13 form http://

laborsta.ilo.org/.


