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1. Introduction

We focus on problems of variable selection where we have a potentially large amount of
covariates in a linear regression context, and the relevant theory does not offer enough
guidance on how to select the “appropriate” subset, based on a sample of small or mod-
erate size n. This problem naturally occurs in various applications in economics, such as
cross-country growth regression (Brock et al., 2003) or estimating the returns to schooling
(Tobias and Li, 2004). Examples of both of these areas of application will be given. As
they are quite different in terms of the ratio of observations to potential regressors, n/k,
many other econometric scenarios will be covered as intermediate cases.

The use of Bayesian Model Averaging (BMA) provides a natural solution to mod&g—
certainty, based on formal probabilistic reasoning, and it has been shown to lead @ r
predictions than simply selecting and using one model. Discussions of B i limear re-
gression can be found in Raftery et al. (1997), Hoeting et al. (1999) ermandez et

al. (2001a).
We can view the problem of variable selection in regression mod@ne of inducing
sparsity or parsimony and there are two main approaches in the B i terature. One is
through the use of shrinkage priors, which goes back to Strawder 71) in the context
of estimating a multivariate normal mean. These are abs ly continuous priors on all
regression coefficients, but are such that some of the regress@eﬂicients will be “close” to
zero in the posterior, inducing sparsity (although st ng zero has prior Lebesgue
measure zero). The second approach is the one a here, where we assign prior point
mass at zero for each of the regression coefficients, allowing for formal exclusion of
covariates and we have to deal with many mo
typically average over. This was coined
Beauchamp (1988). Even though we usé
will be borrowed from the first literature,

Is that need comparing, which we will

e-and-slab” approach in Mitchell and
approach, some ideas of “shrinkage”

propriately adapted to suit our needs.

In previous studies of variable selec in linear regression using g-priors, it has been
noted that the choice of g is cru@ialNor the behaviour of BMA procedures. In addition,
the prior on the model space important element of the model, particularly in the

probability 6 in the interaction between 6 and g was explored in some detail
in Ley and Steel (% e use of a hierarchical prior on 6 was then recommended as
a way to make t alyBis more robust with respect to prior assumptions on the model

way it penalizes larger % a priori each covariate is included independently with

space.
In this @o one step further and the hierarchical Bayesian model explored here
has a r on # (which leads to an integral to compute prior model probabilities,
i Krtunately be solved analytically) and a hyperprior on g, which leads to an
the marginal likelihood that is solved by adding ¢ into the MCMC procedure
xtra Metropolis-within-Gibbs step.

There have been a number of recent proposals for prior distributions to use on g; the
paper reviews these approaches and compares them in a common framework of priors that
induce a Beta distribution on the shrinkage factor (corresponding to g or to g/n). The
one prior that does not fit in this setting is the prior proposed by Zellner and Siow (1980).
Based on earlier recommendations for fixed values of g, we propose a benchmark Beta class
of priors, and investigate its properties. An added advantage of using random g is that

We are grateful for comments from participants of the first European Seminar on Bayesian Econometrics
held at the Erasmus University, Rotterdam (November 4-5, 2010).



the information paradox of Liang et al. (2008) can be avoided. In addition, we want the
priors to lead to consistency in the sense of Ferndndez et al. (2001a). We also discuss and
propose an estimation method for the marginal information that the sample provides on g.
This leads quite naturally to estimating the Bayes factors between models with different
priors on g or different fixed values of g. We investigate the behaviour of the various priors
in BMA with simulated data and various different sets of real data relating to economic
applications; two sets of macroeconomic growth data and one data set regarding returns to
eduction. We focus mostly on posterior probability on the model that generated the data
and the rate of consistency for the simulated data, while we assess prediction performance
and compute Bayes factors between priors for the real data. On the basis of both theorétical
properties and empirical performance we finally provide recommendations for th &'ed
user. Q

p

Section 2 introduces the Bayesian model, whereas Section 3 discusses riors
on g. The information in the sample regarding g and Bayes factors betsfee odel with
different priors on g are examined in Section 4. Section 5 briefly menti putational
issues. Applications to simulated and real data follow in Section nd ¥, respectively.
Finally, conclusions and recommendations are given in Section 8

2. The Bayesian Model

We adopt a Normal linear regression model for n ob
an intercept, a, and explanatory variables from a s ossible regressors in Z. We allow
for any subset of the (standardized) variables in Z pear in the model. This results
in a model space of 2* possible models, which Will thus be characterized by the selection
of regressors. We call model M; the mode e 0 < kj < k regressors grouped in Z;,
leading to

rouped in a vector y, using

y’a,ﬁj;U;Mj ~ Ln—i_ZjﬁjaO-QI)v (1)

where ¢,, is a vector of n ones,
o € N4 is a scale parameter.

€ R groups the relevant regression coefficients and

For the parameters in a el M;, we follow Fernandez et al. (2001a) and adopt
a combination of a “non ive” improper prior on the common intercept and scale
and a so-called g- ri( r, 1986) on the regression coefficients, leading to the prior
density

1 ok _

By, 0 | M) oo™ fi (8510,0%9(Z;Z;)7), (2)
where f7; , denotes the density function of a g-dimensional Normal distribution
on w a and covariance matrix V. The regression coefficients not appearing in

xaetly zero, represented by a prior point mass at zero (this is the “spike-and-slab”
ourse, we need a proper prior on (3, in (2), as an improper prior would not lead
ningful Bayes factors. The so-called “benchmark” prior structure in (2), sometimes
with Stnall variations, is shared by most of the recent literature on covariate selection in
linear models—see, e.g., Clyde and George (2004) for a survey.

One advantage of this prior is that we only need to choose a single scalar parameter g.!
A large fraction of the literature in this area has dealt with this choice of g, and it is clear
that posterior and predictive inference critically depends on g; see Ley and Steel (2009),
and Eicher et al. (2010) for examples of this in the context of growth regressions. Popular

L There is one difference with respect to the notation in Ferndndez et al. (2001a); in line with most of the
literature, in this paper g denotes a variance factor rather than a precision factor.



values for g in the literature are to take g = n, which corresponds to assigning the same
amount of information to the conditional prior of 3 as is contained in one observation—the
so-called “unit information prior” of Kass and Wasserman (1995), also favoured in Eicher
et al. (2010)—or to take g = k? as suggested by the Risk Inflation Citerion (RIC) of
Foster and George (1994). Fernandez et al. (2001a) recommend the “benchmark” choice
of g = max{n, k?}. To avoid having to choose a particular value, we will put a hyperprior
on g, allowing for the data to influence the inference on the now random ¢. This makes the
analysis more robust with respect to the assumptions on g and has also been used, among
others, in Liang et al. (2008), Bottolo and Richardson (2008), Cui and George (2008), and
Feldkircher and Zeugner (2009).

Thus, denoting by p(g|M;) the prior for g > 0 (which could depend on M) &er
the following prior for all parameters in M; 0
1 ky .
p(avﬂj707g|Mj)O<U lfN (ﬂ]’ovo-Qg(Zg/ZJ) 1)p(g|M (3>

ormal prior in
ails—see Andrews

In other words, we can interpret the prior on g as a way of extendi
(2) to a scale mixture of normals, which has substantially more fl
and Mallows (1974), and Fernandez and Steel (2000).

Now we can write the marginal likelihood as the following proportionality constant
that is the same for all models, including the null ;

o n—1—k; _n—1
bt o [T B\ R @
0
where R? is the usual coefficient of de iorpfor model Mj; R} =1 —y'Qx,;y/(y —
Utn)'(y — Ytn), where Qa = [I — A(A'A) , and X; = (¢, Z;) is the design matrix of

model M;, which we assume to be ull column rank. This marginalised likelihood (4)
is simply the sampling density integrated out with the prior, and is of critical importance
as the ratio of marginal likeli of any two models is the Bayes factor between these
models.

Note that the prior o % to be proper, as the null model does not involve g and an
improper prior on % s lead to arbitrary Bayes factors versus the null model. An
important quanti uating the properties of priors on g will be the shrinkage factor,

which is § = g/A(1 . The posterior mean of 3; for each given model will be the OLS
solution ti th rinkage factor.
t1

the prior over model space, we assume that each potential regressor
n y included in the model with probability §. As in Brown et al. (1998),
Kohn (2005) and Ley and Steel (2009), we also consider putting a hyperprior

random 6 approach renders the analysis much more robust with respect to prior
assumptions. They advocate the parameterization

0 ~ Be(1l, (k —m)/m), (5)

where m is then the prior mean model size. The resulting hierarchical prior over model
space is less restrictive than the one with fixed 6 and the choice of m is shown in Ley and
Steel (2009) not to matter too much in practice. The prior on model size induced by (5)
is a Binomial-Beta distribution—see, e.g., Bernardo and Smith (1994, p. 117).



3. Hyperpriors for g
3.1. Zellner-Siow Prior

Inspired by Jeffreys’ (1961) arguments for using Cauchy priors in model comparison prob-
lems related to a univariate normal mean, Zellner and Siow (1980) proposed the use of
multivariate Cauchy priors in regression problems. As is well known, and mentioned in
Liang et al. (2008), Student-t form priors (like the Cauchy) can easily be expressed as scale
mixtures of normals and thus, the Zellner-Siow prior corresponds to a particular choice
of p(g) in (3). In particular, Zellner and Siow implicitly propose an inverted Gamma

distribution with parameters % and 7, leading to

5 n
o) = oo (-1,
This implies the following distribution for the shrinkage factor ¢ 0

I'(3) 29

\/g —3/2 —1/2 n(l—

3.2. Beta Shrinkage Priors &
e, in

A relatively large number of priors in the literat ct, imply a Beta prior distribution
for the shrinkage factor . A Beta(b ¢) prior e shrinkage factor induces the following
prior on g:

p(6) =

Y14 g)~0F, (7)
which is called an inverted Beta ibution in Zellner (1971, p. 375) and is also known

as a Gamma-Gamma distribu ernardo and Smith, 1994, p. 120) in the statistics
literature. This has the fo propertles

= provided ¢ > 1
b Var = Cb(lf)“;(clg) provided ¢ > 2
and has al to (b—1)/ 1) provided b > 1. This inverted Beta prior on g
leads ’& Ing prior on the regressmn coefficients, marginalised over g:

k]
Ny oy = Lo INGZINE (ks k) B2 256
D L(b)T(c)(2m)ki/2cki 27 2 T 202 ’

where ¥ denotes the confluent hypergeometric function (Gradshteyn and Ryzhik, 1994,
p. 1085). Note that these Beta shrinkage priors have a density in the right tail that behaves
like g~ (1*¢) thus leading to very fat tails for small values of c.

The so-called hyper-g prior, proposed by Liang et al. (2008), corresponds to b = 1 and
c = § — 1; with a > 2 to ensure a proper prior. This class includes priors used by
Strawderman (1971) for the normal means problem. Cui and George (2008) propose to
use a = 4 in the context of model selection with known o. Bottolo and Richardson (2008)

adopt a hyper-g prior with a = 2, but make it proper by truncating the right tail at

4



max{n, k?}, which is the benchmark value for g proposed by Ferndndez et al. (2001a).
Feldkircher and Zeugner (2009) propose a hyper-g prior with a value of a that leads to the
same mean shrinkage factor as the unit information prior or the RIC prior. These hyper-g
priors have a finite nonzero limit as g — 0.

Another prior corresponding to a Beta shrinkage prior is the horseshoe prior of Carvalho
et al. (2010), where both b and ¢ are taken to be % The shrinkage factor thus has a U-
shaped prior where the spike around zero corresponds to very strong shrinkage and induces
zero coefficients in their shrinkage prior framework, and the spike around one describes
the signal.

Whereas the horseshoe prior was explicitly developed for a different setting (shr%e
priors rather than our spike-and-slab framework), and the hyper-g has roots in t k-
age literature, the latter prior has been proposed explicitly for problems whe ave
prior point masses to deal with formal exclusion of regressors—in Liang,e 8), Cui
and George (2008), and Bottolo and Richardson (2008). However, in spike-and-slab
case, we do not need to rely on shrinkage to exclude regressors: this ig fo allowed for
by the prior on the model space. Thus, we would expect that we
large prior mass around small values of the shrinkage factor 6. N less, the horseshoe
prior has an accumulation of mass towards zero for both ¢ and n terms of g, both
the horseshoe prior and the hyper-g prior always decreas , and the horseshoe prior
even has an asymptote at zero. A graphical illustrati various priors is provided
in Figure 2, discussed later.

One way to adapt these priors (partly) motivatedyby” the shrinkage literature to our
current setting, is to realize that typically the Shrinkage priors are not used in a g-prior
(where the conditional covariance of the regreSsi oefficients is proportional to the inverse
information matrix) but in a ridge-typeWp tru ure (where this conditional covariance
is proportional to the identity matrix). e g-prior framework used here, we need to
account for the fact that informati crues with sample size and the inverse information
matrix is of order 1/n. Thus, a comparison with a shrinkage ridge-type prior setup
would perhaps be to apply the kage prior to g/n rather than g. Equivalently, we then
use a Beta(b, ¢) prior on g .“Starting from the hyper-g prior, this leads directly to
the hyper-g/n prior of Li al. (2008). Similarly, we shall denote the prior thus derived
from the horseshog pgior orseshoe/n prior. Of course, this does not change the fact
that these priors az@always decreasing in g, but it does move some mass towards larger
values of g, and @ she right tail of the horseshoe/n prior on § much thicker than the
left (see Fi addition, it solves an inconsistency problem. As shown in Liang
et al. (ﬁ)%be ellner-Siow prior and the hyper-g/n prior are consistent in the sense

CX section 3.4. This is also the case for the horseshoe/n prior, but not for
i0k o g that does not depend on n. Subsection 3.4 presents more results in this

ama and George (2010) propose to choose b+ ¢ = (n—k; —1)/2 and ¢ < 1/2 in
(6). This choice is motivated by the fact that the integral in (4) then has a simple analytic
solution and thus Bayes factors can be computed as easily as in the case with fixed g. In
particular, we obtain (up to a common proportionality constant)

_k_l k n—k:j—l
ly(Mj) oc T (nTj —c) r (c+ EJ) 1-R) =,

whenever ¢ < (n — kj; —1)/2. As a default value, Maruyama and George (2010) propose
to take ¢ = 1/4. However, note that this choice implies that the prior on g depends on the

5



model we are considering (through the model size). Formally, this is allowed, but it may
make it slightly harder to interpret the role of g. Maruyama and George (2010) show that
consistency holds with this prior.

Extending the prior for robust estimation of Berger (1985), Forte et al. (2010) effectively
propose the use of a truncated version of (7) with b = 1 and ¢ = 1/2, while truncating ¢
to be greater than (n + 1)/(k; + 3) — 1. They prove consistency of the resulting model
choice procedure and provide a closed-form expression for the Bayes factor. Through the
truncation point, the prior on g, again, becomes model-specific.

that rather large values of g could be preferable. In particular, values like ¢ = n o n

From fixed g analyses with growth data (Eicher et al., 2010; Ley and Steel, 2009) it sgems
ve
g = k? are the most used in this literature. With the hyper-g we can only a@h&?e

prior mass to regions with high g by taking a very close to 2, which gives us for
g, but does not really change the shape of the prior. In order to propgsetan rnative
class of priors in the next subsection, we initially focus on the shrinka, tom, 0.

3.3. A Benchmark Beta Prior
If we start from a Beta(b,c) prior on the shrinkage factor d = 1 + g), we can base

our proposal on ensuring that prior moments are reasonaey always exist, as we are
dealing with a finite support). In particular, let us sgt edn shrinkage factor equal to
the one that corresponds to the Ferndndez et al. ( @mmendaﬁon g = max{n, k?}.
This fixes one parameter as a function of the other, a b/c = max{n, k?}. The second
parameter can then be chosen by considering the spread around this mean:

where Q
N max{n, k?}
1+ max{n, k2}

is the chosen prior mean ©f, hrinkage factor, and thus larger ¢ corresponds to a tighter
prior around this &

cross-country growth data used in Ferndndez et al. (2001b) with

shrinkage .0006 (approximately equal to 1 — d) and the corresponding b = 1681.
For ¢ e obtain a prior standard deviation of 0.015 (approximately 25 times
1— 1S corresponds to b = 1.681. For likely choices of ¢ (say, ¢ = 1,0.1,0.01) and

ma > 100 (as for typical datasets in econometrics) we have no prior moments for
) we do have an interior mode equal to

max{n, k?} —1/c
1+1/c ’

Mode [g] =

which is approximately max{n, k?}/2 for ¢ = 1 and is a lot smaller for the smaller values
of c.

Figure 1 shows three prior densities (expressed in logs to make matters easier to visualize)
of g and ¢ from this class of benchmark priors. The figure illustrates the effect of ¢: For
¢ = 1 the density is most concentrated while for the smallest ¢ the prior assigns a lot of the

6



Benchmark priors for ¢ = 1 (solid), ¢ = 0.1 (dashed), and ¢ = 0.01 (dotted)
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g 0=g/(1+g)
Fig. 1. Beta Benchmark Priors for g and § (n = 72, k = 41)
(Vertical lines correspond to g = max{n, k?})
mass to the far right tail of g (for example, P(g > 5,000) = 0.95 for ¢,=%.0%. Notably,

all priors for g have an interior mode. As ¢ — oo the benchmark Beta peior tends in the
limit to the case with fixed g = max{n, k?}.

As a special case of the benchmark Beta class, we can get a hyper-g prior by

choosing ¢ = 1/ max{n, k?}. This would lead to a hyper-g r wi

In fact, this would effectively correspond to taking the prior setting with the smallest a

of the two proposals in Feldkircher and Ze 009). Note that even though the mean
shrinkage factor is the same, this is a iffepent prior, where we achieve the mean
shrinkage by a very small ¢ (with fixed b = ather than the benchmark choice of a very
large b (with fixed ¢, chosen to giv asonable prior spread of ¢).

Figure 2 helps us understand t ifferences. It plots the log densities of g and § for all
the priors discussed here (usin 72 and k = 41 as in the first growth dataset in Section

the Zellner-Siow, Maruyama-George, Forte et al.? and
benchmark priors. All iors tend to a positive constant or infinity® as ¢ — 0. In
order to get the safue Theammshrinkage factor as the benchmark Beta prior, the Feldkircher-
Zeugner priors th edbto decrease very rapidly with ¢ in order to compensate for the
mass close to gei then have a very fat far right tail (almost of the order 1/g). As
a conseq %prior probability assigned by the Feldkircher-Zeugner priors to § > d
is lar 9 when a = 2 + 2/n and 0.9986 for a = 2 + 2/k?). For the benchmark

i "& ility decreases from 0.96 to 0.63 as ¢ ranges from 0.01 to 1. Particularly
r probabilities for large values of § are associated with the Bottolo-Richardson
where it is 0 due to the truncation) and the hyper-g (a = 3,4) and horseshoe priors,
ave relatively thin right tails for g. The Zellner-Siow prior for g has the same
right tail behaviour as the hyper-g with a = 3 and the horseshoe prior and also leads to
relatively small mass on § > d (0.16). The Maruyama-George and Forte et al. priors are
intermediate cases in this respect. Remember also that the latter two priors depend on

7). Interior modes for g

2 Note also that the Forte et al. prior for g is truncated away from zero, in that g > (n+1)/(k+3))—1.
In addition, this prior, computed as in (8), is multimodal, with the truncation leading to a saw-tooth effect
for small and moderate values of g (the last discontinuity is at g = (n — 2)/3).

3 For the horseshoe and horseshoe/n priors.



the model M; through its model size, k;. Thus, denoting model size by W, we compute
the marginal prior for g as follows:

k

p(9) =Y plg|w)P(W = w), (8)

w=0

where P(W = w) is the probability mass function of the Binomial(k, ) (for fixed 6) or
Binomial-Beta distribution (for random 6, and as given in Ley and Steel, 2009). Figure 2
presents the marginal Maruyama-George and Forte et al. priors in the situation whefie we
use m = 7 for the random 6 case.

Table 1 summarizes the definition and some of the main properties of the rior
distributions. The names of the priors are as in the text, except for “F-Z,"\whi enotes
the Feldkircher-Zeugner prior. The numbers refer to prior numbers as& ter in the
empirical sections. The column “truncated” indicates any truncation of'$he%tupport for g

and the column “model spec.” indicates whether the prior is specific
In the column “mean” we report whether the prior mean exist
conditions). The availability of analytical expressions for the Bal
in “BF”, while the last column “cons.” refers to consis as discussed in the next
subsection. Finally, note that if the prior mean of ot exist, neither will the
posterior mean. The reason for that is simply that pOsterior equals the prior for the
null model (since that model does not involve g)&l ven if the null model has only a
very small posterior probability, the latter is nog zero @nd the overall posterior mean of g
will be infinite.

given model.
so, under which
factors is indicated

Table 1. Summary ior ‘distributions on g

Beta shrinkage priors, § ~ Be(b, ¢)

truncated model spec. | mean | BF | cons.

1-3 Benchmark c no no c>1 no yes
Maruyama-George <1/2 no yes no yes yes

5 Bottolo-Richardson 0 g < max{n, k?} no yes no yes
6-7 Hyper-g (a/2) —1 no no a>4| no no
8 F-Z,a=2+2/n 1 1/n no no no no yes

9 F-Z,a=2+2/ 1 1/k? no no no no no
1/2 1/2 no no no no no

1 1/2 g > ,?74_',’_13 -1 yes no yes yes

Beta shrinkage/n priors, —Z— ~ Be(b, c)

’ ntg

b c truncated model spec. | mean | anal. | cons.
1 (a/2) -1 no no a>4 1| no yes
1/2 1/2 no no no no yes

Inverted Gamma priors, g ~ IG(b, ¢)

C

truncated

model spec.

mean

anal.

cons.

14  Zellner-Siow

n/2

no

no

no

no

yes




Bottolo-Richardson (solid), Benchmark: ¢ = 0.1 (dashed), Hyper-g: a = 3 (dotted)
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Fig. 2. Priors for g and § (n =72, k = 41)

3.4. Consistency and Information Paradox

As stressed in Liang et al. (2008), the limiting behaviour of the Bayes factors can be
an interesting guideline for the choice of priors on g. They mention the “information
paradox,” which occurs if a model M; gets overwhelming data support (so that RJ2- — 1)
and if then the Bayes factor of M; with respect to the null model does not go to infinity.
It is clear from (4) that this Bayes factor would tend to [(1+ g)"~17ki)/2p(g)dg. Liang
et al. (2008) show that the Zellner-Siow prior and the hyper-g prior with a <n —k; +1

9



avoid the paradox, whereas no fixed g would do so. If we adopt the general Beta shrinkage
prior, we obtain the result that the paradox is removed if and only if ¢ < (n — 1 — k;)/2,
which exactly corresponds to the findings of Liang et al. (2008). Typical values of ¢ chosen
in the benchmark Beta prior would certainly comply with this condition.

Consistency implies that all posterior mass tends to be allocated to the true model (i.e.,
the model that generated the data) if the latter is in the model space as the number of
observations goes to infinity. This was introduced in Fernédndez et al. (2001a) and is called
“model selection consistency” in Liang et al. (2008). The latter paper remarks that the
Zellner-Siow and hyper-g/n priors are consistent, but the hyper-g prior is not consistent
when the null model is the true model. In contrast, the benchmark Beta prior does lead
to consistency in this case:

Proposition 1. If data are generated by the null model and we adopt g in
(7), the Bayes factor for any other model M; versus the null model ten&

T(b+c)  T(c+ (k/2)) 0
T(b+c+ (k/2) T(0)

as the number of observations n tends to infinity. Thus, i take the benchmark Beta
prior settings in Subsection 3.3 (where b — oo withn and ¢ d), we achieve consistency
under the null model.

Actually, Proposition 1 can also be used to show tha hyper-g proposal by Feldkircher
and Zeugner (2009) where a = 2 4+ w(n) where w(n) tends to zero with n is consistent, as

also mentioned in their paper. With this prior; Bayes factor for any model versus the
null model is w(n)/(w(n) + k;) and Wi%@ﬂ 0 Zero.

The Bottolo-Richardson prior has a hypersg form but depends on n through the trun-
cation and this can be shown to ﬁ consistency. However, the Bayes factor for any

model M, versus the true n@ is or the order 1/1In(n) and the rate of convergence

is thus quite slow.

4. Sample informatind Bayes factors

When we move fr sing a fixed value for g towards the treatment of g as a random

quantity with different possible priors, it makes sense to consider what exactly

we can expe@fl todgarn from the sample about g. Clearly, if g is close to unidentified, we
N0

move away substantially from the prior and the choice of prior is going
it f course, that does not preclude inference with a proper prior on g but it
e should choose the prior carefully.

n—1—=k;

Ly(g: M) oc (1+9) = [L+g(1—-R})] "7, (9)
from which we can write the likelihood marginalized with everything except for g as

() o S (14 9) 71+ g(1 — R2)|~*7 P(M;]g). (10)

j=1
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A plot of [,(g) as a function of g describes the marginal information that is present in
the sample about g. With the exception of the priors in Maruyama and George (2010)
and Forte et al. (2010), the priors on model space do not depend on g and easy analytical
expressions for P(M;) exist, in the case of fixed and random prior covariate inclusion
probabilities (Ley and Steel, 2009). The problem in evaluating (10), however, is the huge
amount of terms in the sum, which makes this seemingly simple calculation infeasible for
k > 20 or so.*

A feasible way of calculating l,/(g) is to simply start from Bayes rule to realise that

o) =0 I@

where we have indicated dependence on the prior used for g by a subscript z. N
does not depend on the prior chosen for g. For the evaluation of the sa
the proportionality constant in (11) does not matter, as we are really
the profile of the (unnormalized) integrated likelihood I, (g) as a functi

The posterior density needs to be computed numerically on the@ MCMC chain

terested in

(as described in the next subsection), but this simple equation co y characterizes the
information about g contained in the sample. In principle, it sho give the same result
(up to an additive constant) for any prior on g, but as it i d to be less precise when
both densities tend to zero, an average of (11) will d over the different priors
used on g, where we discard the influence of a prio of g where this prior has very
small density values. To neutralise the effect of the t values of ¢; in this average, we
normalise the profiles by choosing ¢; = p;(g0)/pilgo|y) for a central value of gy for which all
priors and posteriors have nonnegligible mass* more peaked this information measure,
the more information the sample conta’ % t ghand the less important prior choice on
g becomes.

The expression in (11) is also regiitigcent of the so-called Savage-Dickey density ratio
(Verdinelli and Wasserman 199 ndéed, if we make explicit that the proportionality
constant ¢; = I, (priori) = [, g)dg, then it becomes clear that the ratio p;(gly)/pi(g)
evaluated at a Value go is yes factor of the model with fixed gy versus the model
with prior p;(g

Another thmg t asily done is to compare the data support for different fixed
values of g given of prior p;(g). In particular, if we consider two values, say ¢;
and g¢s, the is given by

ly(91) _ pi(91ly) pi(g2)
ly(92)  pilgaly) pilg1)

or which the posterior density value is higher relative to the prior density are
trongly supported by the data, in line with intuition. Perhaps even more interesting
is the“direct comparison of different priors on g, which can be done immediately through
the Bayes factors. From (11) the Bayes factor for the model with prior [ versus the one
with prior m can be computed as

Va

ly(priorl) _ pm(goly) pi(g0)
Ly(priorm) — pi(goly) Pm(g0)’

(12)

4 Note that the sum in (10) is weighted with the prior distribution on model space, so we can not simply
approximate it by a sum over the (small subset of) models visited in the MCMC chain used for posterior
model inference (see Section 5), but we would typically need complete enumeration.
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where we choose a value gy such that none of the density values on the right hand side are
very small.® Note that the data will tend to support models with priors that take relatively
high density values at gy compared to the posterior. As the marginal likelihood is the
likelihood [, (g) integrated out with the prior p;(g), it is not surprising that Bayes factors
between models that differ in the prior on g will favour those models that concentrate the
prior weight on g around values with very high likelihood support.

5. Computational Issues

the model space is impossible to evaluate exhaustively.® So even if Bayes factors bé
different models can be computed analytically, we still need some sort of numeric
to conduct inference over models. A convenient way to do this is throu

In typical applications in economics, the number of potential covariates k is so larg %ﬂ

d

Monte Carlo, in particular the MC? algorithm of Madigan and Yor 5) has been
used in this context with success (Ferndndez et al., 2001a; and Ley. el, 2009).
Eicher et al. (2010) experiment with various algorithms and find tg works quite

ch as Bayesian

Adaptive Sampling by Clyde et al. (2010) and Evolutionary Sto Search by Bottolo
and Richardson (2010), which is designed to work for situation$®where k is orders of
magnitude larger than n. We retain the simple MC? algo which works well for the
types of problems we focus on here.

well in this context. Recently, other alternative methods were pr@

Except for the prior of Maruyama and George 10), and Forte et al. (2010), we need

to deal with the fact that the integral in (4) does n e a straightforward closed-form
solution. Liang et al. (2008) approximate this inegral in g with a Laplace approximation,
but we will opt for a Gibbs sampler appro model space and g. In the latter, the
Bayes factor between any two models g
_n=1
1 +g9(1-R2)\ ° (13)
M | 9) 1 1+g(1—R?) ’
The conditional poster ven M; is simply”

& (149) 7 [1+g(1 — R~ plg| M;). (14)

The adv using the Gibbs sampler on (g, M;) is that it does not rely on approx-
&m

imations t hard to control and makes prediction quite straightforward: for every g

pler we predict as with a fixed g (Ferndndez et al., 2001a), and predic-
ly mixed over values of ¢ in the sampler. With Lapla,ce approximations this
mueh less straightforward and the quality of these approximations is not that easy
s. Also, truncation, as in the Bottolo-Richardson and Forte et al. priors, can be
dealt with easily in a Gibbs sampling framework.

® The use of the basic identity as in (11) evaluated at fixed parameter values to estimate marginal likeli-
hoods also underlies the proposal of Chib (1995).

5 For example, the applications to growth data discussed in Section 7 involve model spaces with, respec-
tively, 241 = 2.2 x 1012 and 267 = 1.5 x 1020 different models.

7 Indeed, if we take the null model for M; we get k; = 0 and R? = 0 and we get exactly the prior on g
back, as we should (since the null model does not involve g).
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We use a simple random walk Metropolis-Hastings step for g with a log-Normal proposal
centred over the previous value. Finally, we control the acceptance probability for g by
making the Metropolis-Hastings step adaptive.

Throughout, we use MCMC chains of length 1,000,000 after a burn-in of 500,000, which
was found to be more than sufficient for convergence. The Fortran code used for this paper
is available from the authors upon request.®

6. Simulations

First, we examine simulated datasets to mimic the kinds of situations typical for gtany
applications in econometrics (and in other areas as well). We generate datasets fr ee
different model structures, which closely correspond to those in Fernandez et a@l )

For Models 1 and 2 we generate an n x k matrix R for k£ = 15 regressor first
ten columns (7(1),...,7(10)) are drawn from independent standard now&st utions,

and the next five columns are constructed as

(T(ll)a ce ,7‘(15)) = (7"(1), cee ,7’(5)) . (0.3, 0.5, 0.7, OQ,Q/ : S,
where £ denotes an n X 5 matrix drawn from independent mal dom variables. This
induces correlations between the first five and the last fiv essors ranging from 0.153
to 0.74. The demeaned version of R is then the magri essors Z = (2(1), . ,2(15))

used to generate the data according to: \

Model 1: y = 4¢,, + 22(1) — Z(5) T+ 1.52’(7) Z(11) 0.52’(13) +oe,

Model 2: y = 1, + o€,
where ¢ is a vector of iid standard norma @' riables and we take o = 2.5. In Model
1 we use n = 50, 100 and for Model 2 we usegé= 50, 100, 1000, 10, 000 in order to illustrate
consistency.

The remaining model structure in the simulations uses regressors with pairwise corre-
lations of 0.5, generated as r; +e where each r7,, and e are vectors of n independent

where now we use alues of k used are 20, 40 and 80, while we adopt n = 50 and
100.?

We anal i ated data sets for each model and value of k& and n mentioned above.

he different priors for g discussed above have been used, as well as two
alues¥or g (g =n and g = k?). For the hyper-g/n prior we take a = 3.

an provide exhaustive results from these simulations, we merely highlight the
portant findings here. The different priors do lead to rather different posterior
distributions for g. Broadly speaking, the hyper-g priors lead to the smallest median

8 Fortran code for the fixed g case as described in Ley and Steel (2009) is available online in the Jour-
nal of Applied Econometrics archive corresponding to the latter paper. Code in R is available from
http://bms.zeugner.eu/.

9 The situation with n = 50 and k = 80 means that we need to exclude models with kj > n —1, as the
posterior for such a model would no longer be well-defined. This is simply done by imposing a prior on
model space that limits the model size to n — 2. The sampler then rejects any proposed model for which
kj > n —2. In the analysis of these simulated data, the sampler never even gets close to models that large.
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posterior median'® for g, while the benchmark prior with ¢ = 1 often leads to the largest.
From (13) we can see that if two models, say M; and M, fit equally well, the Bayes factor
in favour of M, given g is approximately ¢(¥i =%i)/2 5o that if M, has one more regressor
than M;, M; is penalized by g~'/2. Thus a larger g induces a higher model size penalty
and this is immediately reflected in the results.

The average number of regressors in the visited models is the first thing we focus on
here. Tables 2 and 3 record the median over the 100 samples of the average model size.
As expected, average model sizes are smaller for the priors leading to higher values of g,
in particular the benchmark prior with ¢ = 1 and the case with fixed ¢ = k2. On the
other hand, the hyper-g priors and the Bottolo-Richardson and horseshoe priors favour
larger models. This is a serious drawback in the case of Model 2, where data are d
from the null model. Here the hyper-g and horseshoe priors (and to a sli @sser
extent the Bottolo-Richardson prior) are choosing models that are far too%afrges rginal
inclusion probabilities of all 15 regressors (none of which are used in th& model) are
typically over 0.4 with these priors. In contrast, the probability of errGmeously including
the regressors tends to be under 1% for the benchmark priors with ¢% 1 @nd ¢ = 0.1 and
the case with ¢ = k2. The priors of Maruyama-George, Forte etfal ellner-Siow and
the case with g = n typically lead to marginal inclusion probabili nder 2.5%.

of the true model. These
Bottolo-Richardson prior
ue model are typically found

Tables 2 and 3 also present the median posterior proba
tend to be smallest for the hyper-g priors throughout a
in the case of Model 3. The highest probabilitiesyo
for the benchmark prior with ¢ = 1 and ¢ = 0.1, theWlarfuyama-George prior and the case
with fixed g = k2. For Models 1 and 3 differendes in tHe posterior probability of the true
model are not huge (covered by a factor of a ), but for Model 2 these differences are

very substantial indeed, ranging from 0.9Q for n = 50 and from 0.08 to 0.99 for
n = 10,000. Table 2 also illustrates the re n Consistency, as dealt with in Proposition
iors

1 and summarized in Table 1. Th ot leading to consistency (hyper-g, F-Z with
d
'Q‘i

a = a+2/k? and horseshoe prior case with g = k?) lead to posterior probabilities
on the true model that are vigtuall ffected by sample size n. The consistent priors
(benchmark, Maruyama-Ge ttolo-Richardson, F-Z with a = 2 + 2/n, Forte et al.,

hyper-g/n, horseshoe/n, r-Siow and the case with g = n) see this probability increase
to unity with n, altho convergence seems relatively slow for the horseshoe/n and
t -

very slow for the ichardson prior and the F-Z prior with a = 2 + 2/n.!1

Another conseq different model size penalties is the number of models that are
actually vis chain. If we make the prior on model space adaptive to the data by
using abi&'ca prior on 6, the model size penalty mainly stems from ¢ (Ley and Steel,
K would expect the number of models visited by the chain to be affected by

prior on g. Indeed, that is the case, with the hyper-g and horseshoe priors
ading to large number of models visited and the benchmark prior with ¢ = 1
case with ¢ = k? often resulting in much less model visits. The differences can
be quite substantial—e.g., in Model 1 with n = 50 the hyper-g and horseshoe priors lead
to a median of over 10,000 model visits whereas the chains for the benchmark prior with

10" Here and in the subsequent discussion we often focus on the median over the 100 samples we generated.
We do not consider the median of the posterior means of g, since the posterior mean of g does not exist
for all but the Bottolo-Richardson prior (see the discussion in Subsection 3.3).

L 1y the case of the latter prior, Proposition 1 tells us that the Bayes factor in favour of the (true) null

model against any other model M is 1 4 nk;/2, which seems to be sizeable for n = 10,000, but we need
to keep in mind that there are many alternative models.
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¢ = 1 visit a median of 4128 different models, and if we fix g = k? this is only 2132 models.
For Model 2 we observe even larger differences, with the number of models visited ranging
from around 200 for the benchmark prior with ¢ = 1, Maruyama-George, Forte et al. and
g = n to about 33,000 for the hyper-g and the horseshoe priors if we take n = 1000. As
expected, for Model 3 with £ = 80 we observe most visits in the chains, ranging from a
median visit count of 3280 for the case with g = k? to around 60,000 for the hyper-g priors.

An interesting aspect that is suggested by Table 3 is the effect of different values of
k and n. One would expect that the challenge of finding the model that generated the
data is harder as the model space (and thus k) grows. Indeed, if we have only n = 50
observations, the posterior probability assigned to the true model decreases by und

an order of magnitude each time we double the value of k. However, if we 0
observations to conduct inference with, we see that the posterior probability o rue
model is almost unaffected by the changes in k. There is a slight downwar with
k, but the median is never even halved by going from k = 20 to k = is seems to
suggest there is a critical level of n, which allows us to identify a relagi small area
in model space and above which we are not too much led astray helintroduction of
further unrelated regressors. Interestingly, the marginal posteriér sion probabilities
of the irrelevant regressors is not much smaller for the case with 100, but clearly the
entire posterior distribution on model space is quite diﬁer%
Table 2. Simulated Data, Models 1 and 2 (null —tesults for model size and
inclusion probability of the true model. er of regressors k = 15.
Model 1 Model 2
True model size 5 0 0 0 0
Prior mean model size 7.5 5 7.5 7.5 7.5 7.5
n 50 50 100 1000 10,000

median average posterior model size: n

ian posterior prob. true model (in %): v

n ’Y n_° n_° n_° n_"
52 31101 8 |01 87|01 94|00 98

2 Benchmark ¢ = 0559 25|01 901 8|00 95|00 99

3 Benchmark ¢ . . 05|61 23|11 56|08 45|02 89|00 097
4 Maruya: % 55 05|57 2503 8|01 8 |00 97| 0.0 99
Bottolo n [ 64 05|62 22|48 18|42 20|39 28|32 31

Prior on g

1 Benchmark c=1

5
6 74 03|69 17|66 9|64 9|64 9|63 9
7 77 03|72 15|68 8|66 8|67 8|66 8
® 63 04|61 22|22 41|20 40|20 40|22 44
63 04|62 23|25 40|21 37|20 42|21 43
Horseshoe 68 04|65 21|65 10|62 11|63 11 |6.3 11
11 ™ Forte et al. 6.0 05|60 24|03 7802 8 (0.0 96|00 99
2 Hyper-g/n 58 0.5 |58 24|12 44|07 53|01 91| 0.0 098
13 Horseshoe/n 6.1 04|60 24|39 29|31 35|17 54|06 66
14 Zellner-Siow 56 05|59 24|04 7302 8|01 94|00 98
15 g=n 48 06|51 31|04 7102 8 |01 94|00 98
16 g=k? 36 03|46 36|02 87|02 8 |02 86|01 87

Combining the results on consistency with those of the posterior probability assigned to
the true model, we conclude from this section that the best performing priors seem to be
the benchmark, Maruyama-George, Forte et al. and the Zellner-Siow priors.
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Table 3. Simulated Data, Model 3—results for model size
and inclusion probability of the true model.

Model 3
k=20 k=40 k=80
True model size 7 7 7 7 7 7
Prior mean model size 10 10 20 20 40 40
n 50 100 50 100 50 100
median average posterior model size: n
median posterior prob. true model (in %): ~
Prior on g n_ Yl m Yl m vl m | N Yl om
1 Benchmark ¢ =1 6.7 1.1 (81 23|53 01|76 29|41 0.00| 7.1
2 Benchmark ¢ = 0.1 70 10|82 21163 0.1]81 20|53 0.01
3 Benchmark ¢=0.01 |71 10|82 20|66 0.1 |82 18| 6.1
4 Maruyama-George 71 10|82 20|67 01]83 18| 6.2
5 Bottolo-Richardson | 7.9 05 9.1 10| 7.3 0.1 ] 9.0 916.7
6 Hyper-g,a =3 75 08|85 16| 7.0 0.1 |85 15 | 6¢
7 Hyper-g,a =4 76 08|86 15|71 0.1 |86 14
8 F-Z,a=2+ Q/k2 71 1082 20|67 01|83 1
9 F-Z,a=24+2/n 71 10|82 20| 6.7 0.1 ]8. 18 .
10 Horseshoe 73 10|83 18|68 0.1 7| 6.4
11  Forte et al. 7.3 0.9 |83 18| 6.840 7164
12 Hyper-g/n 7.1 1.1 |82 20| 6. 18 | 6.1
13 Horseshoe/n 72 10|82 19 | 6. 18 | 6.3
14 Zellner-Siow 7.2 1.0 | 83 18 | 6.3
15 g=n 7.5 0.8 |87 13 | 6.6
16 g=k2 6.2 0.9 36 | 3.8

7. Applications to Real Data

In the context of real applicatign will further examine all the different priors, and will
also investigate the predicti mance as well as Bayes factors. For each application,
e

we will randomly partitio, ple in an estimation sample and a prediction sample, of
a fixed size. We do thi and this allows us to assess predictive performance based
on the log predicti ﬁg@, breviated to LPS (Fernandez et al., 2001a,b).'? In addition,
analyzing the 50 n subsamples allows us to get a certain amount of robustness
with respect t unusual data points, partly addressing some of the concerns voiced
in Ci Jareciniski (2010)'3 with respect to data sensitivity. Bayes factors between
ent priors will be computed on the basis of the full sample. We consider
riors on the model space: fixed # and random 6 as in (5), both with prior
el sizes of m =7 and m = k/2.

7.1. Cross-country growth regressions

The context of cross-country growth regressions is one of the first areas within economics
where the use of BMA has become popular. This area of macroeconomics is characterized
by a particularly large number of potential drivers for growth and a scarcity of observations,

12" Alternative proper scoring rules are discussed in Gneiting and Raftery (2007).

13 However, also see the comment in Feldkircher and Zeugner (2010).
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so this is an ideal candidate for BMA. We consider below two datasets which have been
used in many studies on this topic.

The FLS data

The first dataset we use contains k = 41 potential regressors for modelling average per
capita growth over the period 1960-1992 for a sample of n = 72 countries. It was used in
Fernandez et al. (2001b) (FLS), which presents more details.

First, we consider the analysis of the 50 subsamples which each consist of 62 observations.
In line with the higher model size penalty implicit in the benchmark Beta prior with @= 1
and the case with fixed ¢ = k2, we note that marginal posterior inclusion probabi &‘
the regressors tend to be (sometimes much) smaller for these cases. In keeping

higher g values induced by these priors, the posterior mean of 3; for 1 be
larger in absolute value (less shrinkage to the prior mean of zero), but th ically be
means of

the regression coefficients can be smaller or larger than those for the riors on g. For

counteracted by more mass on smaller models. The resulting marginal oS
O
the other priors posterior inclusion probabilities and posterior in the regression
coefficients are quite similar, even though the posterior inferen% can be somewhat
different. Figure 3 presents boxplots over the 50 subsampl
g (on a log scale), the number of visited models and the
with the simulated data, posterior medians of g a
largest for the benchmark prior with ¢ = 1 and ith fixed g = k2. This leads
to most models visited in the chain for the hyper-g s and least models in the chain
for the benchmark with ¢ = 1 and g = k? case§. Posterior model sizes are lower for the
latter two cases, but not that different betwe e other priors. Note also that the prior
assumptions on model space have almo ecf) on posterior inference on g, but prior
mean model size m does substantially affectgh€ number of visited models and the posterior

mean model size when we use a fix pproach. In line with the results in Ley and Steel
(2009), however, this dependencs m> virtually disappears when we use the random 6

or tli€ posterior medians of
ior mean model size. As
or the hyper-g priors and

prior in (5). Thus, for the re the section we will only present results for random 6
with m = 7.

Prediction based on L %0 observations in each prediction subsample) is summarized
in the top panel of & i% ere we present boxplots of the LPS values for BMA over the
50 prediction subgdimp As lower values of LPS are associated with better predictions,
this suggests t the Bénchmark prior with ¢ = 1 and the fixed g = k? case tend to predict
n the rest. The other priors are quite close in predictive performance.
with these priors leading to quite similar posterior inclusion probabilities

sSion variables, and rather different from those obtained with the priors that
worse predictions. BMA predicts best (compared with the highest posterior
model, the null model and the full model) in most of the subsamples (in between
52% and 62%, depending on which prior we choose for g) and is never beaten by the null
model, except for a few cases (up to 6%) with the benchmark priors with ¢ =1 and ¢ = 0.1
and the fixed g specifications.

This ig €o

The information contained in the data regarding g is summarized by the marginal likeli-
hood [, (g) in (10). Figure 5 plots an estimate computed as in Section 4. Clearly, the data
do possess some information on g, and particularly favour values in the region 15 to 50.

Bayes factors of the models with different priors over g can be computed as described
in (12) in Section 4. The particular value gy at which we evaluate this expression is not
very critical to the outcome. Here we use the mode of 1,(g) as a reasonable value for gy.
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log(g): Fixed 6, m =7 Number of Models: Fixed 6, m=7 Model Size: Fixed 0, m =7
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Fig. 3. FLS data: log posterior medians of g, number of models visited and posterior mean model size
The different priors on g are ordered as in Tables 2 and 3. The top two rows correspond to fixed 0

(with different m), while the bottom two rows are for random 6 priors on model space

Table 4 lists the Bayes factors for the models with different priors for g versus the one with
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Fig. 4. Log Predictive Score: FLS, SDM and Tobias-Li data (random 6, m = 7)

arginal likelihood [, (g): FLS (solid), SDM (dashed) and Tobias-Li (dotted) data
(random 6, m = 7)

the benchmark Beta prior with ¢ = 0.01 (Prior 3), computed over the full sample. The
benchmark prior with ¢ = 1 (Prior 1) leads to very small prior and posterior density values
at go, so that the ratio can really not be computed with any accuracy. However, given that
this is indicative of a very small prior density in the region of the mode of [, (g), it is safe to
assume the associated Bayes factor would be quite small. The same problem affects other
models with the other two datasets (indicated with —in Table 4). As commented in Section
4, the priors that put a lot of weight on regions of g with high /,(¢) do particularly well
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in this respect. Thus, the Forte et al., Zellner-Siow, Bottolo-Richardson, hyper-g/n and
horseshoe/n priors lead to the highest Bayes factors while the F-Z, hyper-¢g and benchmark
priors do worse. This is in line with the prior density functions in Figures 1 and 2 and the
marginal likelihood in Figure 5. In Table 4 we also include the models where we choose a
fixed value of g, in which case we can compute the Bayes factor as the ratio ps(g|vy)/p3(9)
evaluated at the fixed value of g (as explained in Section 4). Some entries in the table are
missing, as they correspond to p3(g|y) = 0 for the fixed value of g; again, this can be taken
as a sign that this value is associated with a very small Bayes factor. So, whereas the data
do support choosing g = n, the case g = k? does not receive much support in terms of
Bayes factors.

Table 4. Bayes Factors of Different Priors vs Benchmark with ¢ = 0.01 (P

(Random 6, m =7)
i Prioron g FLS SDM | Tobias-Li Q
2  Benchmark ¢ = 0.1 0.3 - . &
4  Maruyama-George 16.3 10.1
5 Bottolo-Richardson 23.6 57.2 .
6 Hyper-g, a =3 2.3 8.7 .
7 Hyper-g,a=4 0.7 1.0
8 F-Z,a=2+2/k? 0.1 @ 0.3
9 F-Z a=2+2/n 2.4 : 0.1
10 Horseshoe 11. 34.6 11.9
11 Forte et al. 53.2 23.2 n.a.
12 Hyper-g/n .8 50.8 1.7
13  Horseshoe/n 68.5 7.6
14 Zellner-Siow 29. 60.1 -
9 25.5 19.5 19.5
15 g=n 19.7 37.1 —
16 g =k> - 0.1 -

The SDM data
Another popular grow& t was introduced by Sala-i-Martin et al. (2004) (SDM), who

s,

model annual GDP th per capita between 1960 and 1996 for n = 88 countries using
k = 67 potential OTS.

The 50 ra clected estimation subsamples each have 75 observations, and lead to
the boxplot§ iyFigure 6. The results are mostly in line with those for the FLS data, but
rences between the priors in terms of posterior model size.

ndom 6, m=7 Number of Models: Random 6, m =7 Model Size: Random 6, m =7
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Fig. 6. SDM data: log posterior medians of g, number of models visited and posterior mean model size.
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Predictions for these data seem to be quite similar for all priors, as judged by the LPS
boxplots in Figure 4. Here we have used prediction subsets of 13 observations each. In-
terestingly, these comparable prediction accuracies are obtained with regression models
that are rather different, since the posterior inclusion probabilities corresponding to the
benchmark priors with ¢ = 1 and ¢ = 0.1 and to the choice of g = k? (i.e., the models
leading to the highest values for g) are quite different from those using the other priors.
BMA predicts best in 76% to 92% of the subsamples, with the exception of the benchmark
priors with ¢ = 1 and ¢ = 0.1 and the case with ¢ = k2, where BMA outperforms the
highest posterior probability model, the null model and the full model in roughly half the
subsamples. BMA is only beaten by the null model in up to 8% of the cases,'* excegt for
the benchmark priors with ¢ = 1 and ¢ = 0.1 and the fixed-g specifications, wher %H
model outperforms BMA in 10% or 12% of the cases.

The marginal information in the data on g, as presented in Figure 5,"sfq 1milar
to that for the LPS data, with a slight shift to smaller values and a % taill. As a
consequence, the pattern of Bayes factors between the models with di niypriors on g is
rather similar to what they were for the FLS data.

7.2. Returns to Schooling

Here we investigate the area of returns to educatio%@ain many potential model
u

specifications have been proposed, and BMA was i ced in this context by Tobias and
Li (2004). As these are microeconomic data, the n er%f potential observations is much
larger. We will focus on the log of hourly wagés of n = 1190 white males in the U.S. in
1990, which we model as a function of k£ = 2 ible regressors. In order to simplify the
computations, Tobias and Li (2004) al udékseven of these regressors in each model
and restrict themselves to a smaller mo ace characterized by 18 possibly included
regressors, but we allow for inclusi r exclusion of all regressors. In addition, we have
added the local unemployment r @h only appears in Tobias and Li, 2004, through an

interaction term with educati a¥potential regressor, giving us a total of 26 candidate
regressors. More details on ication can be found in Tobias and Li (2004).
On the basis of 50 sub of 1012 observations, we get the results for g, numbers of

maedel presented in Figure 7. Results are now a bit different from
ications, as a result of the much larger value of n. In particular,
the Maruyama-Ge Forte et al. and Zellner-Siow priors as well as the case with fixed
g =n lea igher posterior medians of g, a smaller number of models visited in
the chain aller mean model size than in the previous applications. Of course, all of
K nd on n, but it is interesting that the F-Z prior with a = 2+ 2/n and the

aftd horseshoe/n priors are less affected. Of course, the benchmark priors and
-Richardson prior depend on n through max{n, k*}, which is here of the same
f magnitude as for the FLS data.

Prediction based on prediction subsamples of 178 observations each is summarized in
the lower panel of Figure 4. Even though there is some variability in the posterior inclu-
sion probabilities of the regressors over the different priors, we observe virtually identical
predictive performance. This is related to the fact that the full model here predicts very
similarly to using BMA. This is not surprising as the number of observations n is much
larger than the number of potential regressors, so we can hardly overfit and for prediction

models visited and
those in the growth

14 For the hyper-g prior with a = 4, BMA is actually never beaten by the null model.
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not much is lost by including all k£ regressors. In the full model, the O‘RQ}HH the

prior for g has on prediction is the different shrinkage of the coefficie

nts;u

the shrink-

age coeflicient is very close to one anyway, that will make very little differgmce. Of course,

BMA still has an important role in identifying the important d

is not that critical for prediction. In line with this, the null mo
and never beats BMA or the full model. BMA predicts

samples, with the lowest percentages occurring for the be
and the fixed-g cases. BMA is beaten by the full m

random g¢. For the two specifications with fixed

the subsamples, while the best model also beats BM

Figure 5 tells us that the likelihood margi

rather similar to that of the growth d

number of observations n is quite a lot larg

behaviour of the Bayes factors as fi
Maruyama-George and Zellner-Si
F-Z with a = 2 4 2/n, the hy
a consequence of the very diffe
truncation induced by th@t

the chosen value of g
this prior less appropr

are both zero at ¢

o

Let us su

datasetg i
altho K i
NTh

g=n)
large n.

&

ts of wages, but
oes very badly here

20% to 46% of the sub-
rk Beta priors with ¢ =1
b to 48% of the cases with

héyfull model beats BMA in 52% of

ere in over a third of the cases.

d with the prior of everything but g is
is is perhaps surprising, given that the
this case. This leads to somewhat similar
the two growth datasets, with the exception of the

s (leading to a zero posterior density at gg), the

nd horseshoe-n priors and the case with g = n, as
alue of n for this application. In this application, the
t al. prior means that the prior support does not include
truncated quite a bit above that), which certainly makes
e large values of n/k. Thus, prior and posterior density values
e Bayes factor can not be computed for this case.

15

ehe information that these applications to a variety of real economic
ng us with. Predictive performance seems quite similar across priors,
a bit worse for the benchmark prior with ¢ = 1 and the case with

e is more variation in the Bayes factors, with most consistent data support
r the Bottolo-Richardson, horseshoe, hyper-g/n and horseshoe/n priors, and
ruyama-George, Forte et al. and Zellner-Siow priors (as well as the case with fixed
doing quite well in two of the three applications, but rather badly in the one with

15 Using a much larger value of go (go > 40) it would be possible, in principle, to compute a Bayes factor,
but we can safely assume the Tobias-Li data do not support this prior at all, as it puts no mass whatsoever
on areas with large values for the marginal likelihood Iy (g).
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8. Concluding Remarks and Recommendations

Combining the properties listed in Table 1 with the evidence from both simulated and
real data, we can now come up with a recommendation for practitioners. We assume
that users will want their priors to be consistent, to avoid the information paradox and
to perform well in a wide variety of situations. The Bottolo-Richardson and horseshoe-n
priors are consistent (albeit at a slow rate) and do well on real data, but underperform on
the simulated data. The truncation of the Forte et al.. prior makes it hard to recommend
for situations where n is appreciably larger than k. The benchmark Beta prior with ¢ =1
does not fare well in prediction for one application, and the benchmark prior with ¢ = Land
¢ = 0.1 does not do well in terms of Bayes factors. The Zellner-Siow and Maruyama—%ge
priors do quite well, except for the last application (with large n), where they get le
support from the data. Nevertheless, we feel they do deserve a place in the eco
toolbox, especially if n is relatively small (comparable to k, say). In additi
to avoid numerical methods to compute Bayes factors between models ifferent sets
of regressors, the Maruyama-George prior should be recommended, although this comes
at the (small) cost of making the prior model-specific, which mayna slightly harder
to interpret the prior on g.

In our view, the two priors that stand out by not having dis ed truly bad behaviour
in our experiments are the benchmark Beta prior with ¢ and the hyper-g/n prior
(with @ = 3).16 Thus, these priors provide an intengs romise and would be our

general recommendations to practitioners

The hierarchical Bayesian model explored in this % as a hyperprior on prior variable
inclusion probabilities and a hyperprior on g ich leads to an integral for the marginal
likelihood that is solved by running th mpler over models and ¢ jointly. The
advantage of these hyperpriors is to ma sis more robust with respect to often
arbitrary prior assumptions. We now allo e data to inform us on variable inclusion
probabilities and the appropriate régiom for g. The latter will have an effect on both the
model size penalty and on shrinkdge¥or each given model. Putting a prior on g makes these

things naturally adaptive and s the information paradox (Liang et al., 2008), which
affects analyses with fixedgg. eel the model used here with the recommended priors
on g can be considered e “automatic” prior for use in Bayesian Model Averaging

in the types of linear@egréssion problems that typically arise in a variety of econometric
settings.

O

16 For the hyper-g prior we find (as do Feldkircher and Zeugner, 2009) that the choice between a = 3 and
a = 4 makes little difference. As a consequence, we would also expect the hyper-g/n prior with a = 4 to
perform very similarly.
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