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Abstract

This paper defines and tests a simple passive trading strategy which
involves comparing the price of an asset with its fundamental value. The
fundamental value is computed from the real-time forecasts of dividends,
expected returns and dividend growth rate using simple regression schemes.
By defining a measure of going long in either the equity or the bond mar-
ket, the rule is found to significantly outperform the passive Buy and
Hold strategy with stronger effect in longer horizons. The returns from
the strategy also tend to vary with the forecasting model and the defini-
tion of the discount rate in the present value relation.
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1 Introduction

A classic proposition of equilibrium search in asset pricing requires that agents
attempt to exploit arbitrage opportunities if they exist and happen to be known.
In such a case, the market prices will not reflect the net value of the asset.
Misalignments between the actual price and the corresponding net present value
may offer profit opportunities, which may be arbitraged away as the actual prices
revert to the net present value. For instance, if prices are higher than the net
present value, it would mean that the asset is overpriced and over time, there
should be a downward reversion towards the fundamentals On the other hand, if
prices are lower than the net present value, under the aggregated expectations
of agents in the market, there should be an upward dynamic adjustment. A
simple trading rule in such a circumstance would be to hold the asset when it
is underpriced and sell it if it is overpriced.

While the actual price is observable, the empirical problem lies in computing
the fundamental value. According to standard asset pricing theory, the price
of any asset is the discounted conditional expectations of future payoffs. In
the case of the stock price, usually the fundamental price is translated into the
net present value of the expected future streams of dividends and the terminal
equity price. However at a particular time t, the expected future dividends is
unknown. Similar to the learning literature, the data generating process for
dividends being unknown, agents are assumed to use econometric models to
forecast dividends. Empirically, three simple linear econometric models that an
agent may reckon to be the data generating process, are used to forecast one
step ahead in each period, and the forecast is used to proxy the expected future
dividends. Hence model uncertainty is not tackled in this work. For an inter-
esting overview of model uncertainty in the context of net present value, see
Avramov (2002,2004), Timmermann and Granger (2004), Timmer-
mann (1993,1996), Pesaran and Timmermann(1995,2002), Rey(2005)
The stochastic discount rate and dividend growth rate are computed using the
same approach. The forecast variables are then used to arrive to the rational
expectations net present value.

The trading rule is built up based on the above principle, which assumes
real-time. The real- time construct of the fundamental price (net present value)
implies that the net present value is built up at time t, with data available
only at that point of time. Empirically, adapted information set of agents is
translated through the use of the of expanding and rolling windows. A further
advantage, besides the theoretical nature of informations sets is that rolling and
expanding windows tend to reduce parameter uncertainty and estimation risk in
large samples. Another model to take into account the real-time nature of series
include Rambaccussing (2010) and Koijen and Van Binsbergen(2010).
The rule can be applied to different markets or assets. However, we apply
the study to the S&P 500, where mean reversion and excess volatility have
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been documented (Shiller and Beltratti (1993), Poterba and Summers
(1988)).

2 Related Literature

The trading rule is built in line with equilibrium search theory in asset pric-
ing. The main gist of the rule is to identify periods when the equity market is
mispriced and sequentially decide whether to hold equity or bonds conditional
on the direction of the mispricing. The simple idea is that if the actual price
at time t is higher than the net present value, wealth is held in bonds. The
argument for doing so is simply because of the potential capital losses that will
be made when actual prices revert back to their fundamental values. On the
other hand, if prices are lower than the fundamental price, when asset prices
are rise to the fundamental value, capital gains can be made. The rule is a
market timing mechanism that enables the agent to shift his wealth from bond
to equity assets and vice versa.

Bulkley and Tonks (1989) used a similar version of the rule as a test
of weak form efficiency for the UK market. They also showed that revision
in the parameters of an econometric model of dividends may explain excess
volatility in prices. Improper estimates of the parameters of the dividend model
were found to be strong enough to generate strong effects on the stock index
price. The rule was tested was tested against the Buy and Hold Strategy for the
S&P 500 market with the same outcome as in the UK market (Bulkley and
Tonks (1992)) The rule was also found to have a lower risk than the simple
Buy and Hold Strategy. Taylor and Bulkley (1996) use the same REPV
formulae in a Price conditional VAR model to derive the theoretical price. The
objective however was to test whether underpriced portfolios tend to generate
higher returns than overpriced portfolios over several years horizon going until
10 years.

Unlike earlier studies, our major contribution lies in applying real time con-
cept to the rule. We allow for 3 models as being the data generating process
of dividends which an agent may usually apply, and allow for the update of the
parameters based on the information set through the use of moving estimation
windows. Our rule assumes that agents may actually forecast based on their
information set. We also impose empirical time variation on the discount rate
by computing the expected returns as a simple rolling and recursive mean. We
also use two definitions of the discount rate based on cointegration between
dividend and price (Fama and French 2002).
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3 Model

From basic asset pricing theory, the price of an asset is equal to the Euler
equation or first order conditions from a utility optimizing agent faced with a
set of intertemporal choice problems. The simple empirical construct of the net
present value model or fundamental price for the equity index can be written
as:

P ∗t =
1

Et[rt+1 − gt+1]
Et[Dt+1] (1)

where rt+1 is the stochastic discount rate at time t + 1 and gt+1 is the
dividend growth rate. Et[Dt+1] is the expected future dividend at time t. The
rule posits comparing 1 with the actual price at time t, to determine whether
to go long on bonds:

Pt > P ∗t : Go Long on Bond Market

Pt < P ∗t : Go long on Equity Market

The empirical cornerstone of the model is to estimate the components of
equation 1. The variables are estimated according to different econometric mod-
els based on both rolling and recursive windows. Moving windows, as mentioned
previously allow for two interesting advantages. Firstly, it is in line with real
time market timing decisions. Agents make their decision to shift their wealth
based on the information they have at time t. The other advantage of allowing
parameters to be updated sequentially is that estimates are more robust in the
presence of structural and parameter instability. Recursive windows, allow the
information set to grow with each new observation of the variable of interest in
the market. It is more suited to cases when the parameters of the regression
model do not vary a lot through time. Rolling windows on the other hand, take
into account a fixed block of observations (the information set), for estimat-
ing the models. If window length of the rolling estimate is large and there are
no strong variability in parameter estimates, the difference in forecast between
rolling and recursive windows might be marginal.

3.1 Models for forecasting Dividends

Dividends are forecast in two functional forms, namely in its absolute real form
and its logarithmic form. Since there are potential seasonal effects in dividend
payments and reporting, we use seasonal dummies for our model. Relying on
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seasonal dummies, may have its imperfections; however, the benefits of apply-
ing the rule to a monthly frequency exceeds the effects of marginal seasonality
estimation problems.

The three models that are used to forecast dividends are provided as follows:

Dt+1 = β0(t+1)+

12∑

i=1

βiIi+

p∑

i=0

δiDt−i+γ1

(
D

P

)

t−1

+γ2

(
E

P

)

t−1

+γ3(E−E
∗)t−1+εt+1

(Model 1a)

lnDt+1 = β0(t+1)+

12∑

i=1

βiIi+

p∑

i=0

δi lnDt−i+γ1 ln

(
D

P

)

t−1

+γ2 ln

(
E

P

)

t−1

+γ3 ln(E−E
∗)t−1+εt+1

(Model 1b)

Model 1 is an ARMAX model where the exogenous inputs are the macro-
economic series Dividend - Price Ratio, Earnings- Price Ratio and a measure
of Okun’s gap which is taken to be the deviation of actual earnings from the
trended mean earnings. The model also contains a trend and the seasonal dum-
mies. The optimal number of lags p is chosen by the Akaike criteria on the
differenced form of the equation (due to the presence of unit roots).

Dt+1 = β0(t+ 1) +

12∑

i=1

βiIi +

p∑

i=0

δiDt−i + εt+1 (Model 2a)

lnDt+1 = β0(t+ 1) +

12∑

i=1

βiIi +

p∑

i=0

δi lnDt−i + εt+1 (Model 2b)

Models 2 are a nested form of Model 1, with the corresponding gamma
parameters (γ) set to zero.

Dt+1 = β0(t+ 1) +
12∑

i=1

βiIi + εt+1 (Model 3a)

lnDt+1 = β0(t+ 1) +

12∑

i=1

βi ln Ii + εt+1 (Model 3b)

Models 3 is just a model with a trending mean with seasonal effects.
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3.2 Stochastic Discount Factor and Dividend Growth Rates.

In this section, we describe four simple models to construct of the denominators
for equation 1. The denominators are very important since minor changes may
lead to extremely large changes in the fundamental price, influencing the deci-
sion of whether to go long on bonds or equity. The first two measures simply use
recursive and rolling estimation of the mean of past realized returns. The next
two models may be applied in the presence of cointegration between dividends
and price.

The Rolling Discount rate is the moving average of realized returns over
time for a period of 30 years. For instance the average returns over time at a
particular date t will be average returns over the past 30 years. This is given
by:

E(rt+1) =
1

360

t∑

i=t−360

Rt (2)

where Ri is the realized returns on the market and t is the terminal date.
The recursive discount rate is the average of realized returns from the be-

ginning of the sample(January 1871)until time t.

E(rt+1) =
1

N

t∑

i=t−N

Ri (3)

where N ≥ 360.
Denominators A and B include the Recursive Dividend Growth Rate (g)

which is defined as follows

E(gt+1) =
1

N

t∑

T=t−N

ln(
DT
DT−1

) (4)

Hence the denominators A and B can be rewritten as such :

rt − gt =
1

360

t∑

T=t−360

RT −
1

N

t∑

t=t−N

ln(
DT
DT−1

) (A)

rt − gt =
1

N

t∑

T=t−N

RT −
1

N

t∑

T=t−N

ln(
DT
DT−1

) (B)

Fama and French (2002) show that if the dividend price ratio is station-
ary, the discount rate may be written as the sum of the dividend yield and the
growth rate of dividends. The interesting application for the model is that the
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dividend price ratio has fluctuating periods of stationarity Appendix A.9 offers
a small discussion of the stationarity of the two different variables.

rt =
1

N

t∑

T=t−N

DT
PT−1

+
1

N

t∑

T=i−N

ln(
DT
DT−1

) (5)

As in the case of the Dividend growth rate, the Earnings growth rate can be
used with the dividend price ratio to derive the discount rate.

rt =
1

N

t∑

T=t−N

DT
PT−1

+
1

N

t∑

t=T−N

ln(
ET
ET−1

) (6)

The next denominators include the Fama and French definitions of the dis-
count rates with the recursive growth rate as defined in 4. Model G is the Fama
and French discount rate using dividend growth rate while model H is the Fama
and French Model using the Earnings growth rate. Model G can be seen to
revert back to the discount factor definition adopted by Bulkley and Tonks
(1989) but in a time varying context.

rt − gt =
1

N

t∑

t=T−N

DT
PT−1

+
1

N

t∑

t=T−N

ln(
ET
ET−1

)−
1

N

t∑

t=T−N

ln(
ET
ET−1

)

Using the dividend yield framework, the denominator proxies average real-
ized returns and can be seen to revert to :

rt − gt =
1

N

t∑

t=T−N

DT
PT−1

(C)

The denominator using the Earnings yield is given by D, which is more of a
measure of expected returns

rt − gt =
1

N

t∑

t=T−N

DT
PT−1

+
1

N

t∑

t=T−N

ln(
ET
ET−1

)−
1

N

t∑

t=T−N

ln(
DT
DT−1

) (D)

4 Data and Results

4.1 Data

The data used was the monthly S&P 500 Dividend and Price and other macro-
economic indicators for the period January 1871 to December 2007. The data
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used is from Robert Shiller. Forecasts were generated from January 1901 on-
wards on a rolling and a recursive basis to December 2007. The risk free rate of
return was proxied by the long interest rate again provided by Shiller. We use
data from 1871:01 to 1900:12 as the initial estimation sample, and retain the
period from 1901:01 to 2007:12 as the out of sample evaluation period. The first
window approach is the recursive which uses the estimation sample of 1871:01
until one month prior to the one step ahead forecast. For instance the one step
ahead forecast of 1940:01 uses the estimation sample of 1901:01 until 1939:12.
The second rolling window approach uses a fixed length window of the most
recent 30 years of monthly data to estimate the parameters of the model and
then forecasts dividends conditional on these parameter estimates. As such the
significance of the insample parameter estimates are not tested for economic
significance.

4.2 Results

We report the cumulated returns from the initial date of forecast to the terminal
date (1900-2008) and average returns over 12, 24, 36, 48 and 60 months. The
average return under the Buy and Hold and Trading strategy is as follows :

RBH(k) =
1

T − k

T−k∑

h=1

K∏

i=h−k

(1 +Rm,i) (7)

RTR(k) =
1

T − k

T−k∑

h=1

K∏

i=h−k

(1 +Rtr,i) (8)

The following table illustrates the terminal wealth from the trading rule if 100
pounds were invested back in 1900, and allowed to be continously compounded
at the rate the return of the rule.
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Model A B C D
1a Recursive 2,497,853 948,048 40,894 110,373
1a Rolling 2,592,346 859,944 40,894 110,373
2a Recursive 2,592,346 859,944 40,894 110,373
2a Rolling 2,433,092 975,101 35,110 99,249
3a Recursive 59,760 61,690 13,613 40,448
3a Rolling 172,940 144,338 30,435 38,131
1b Recursive 2,334,715 1,171,041 40,414 89,460
1b Rolling 2,334,715 1,171,041 40,414 89,460
2b Recursive 2,311,871 939,973 34,639 89,419
2b Rolling 2,311,871 952,484 34,639 89,460
3b Recursive 81,336 50,010 19,889 40,448
3b Rolling 241,819 195,156 33,703 43,975

Table 1:
Table 1 displays the return on £100 in December 2007 if it were invested back

in January 1900 for the different forecasting models and denominators.

Based on the terminal wealth, each forecasting model have mixed success
with regards to the adoption of wealth. The highest wealth is reached through
denominator A and model 1a Rolling and 2a Recursive. On average forecasting
models 1 and 2 tend to perform very well, irrespective of the functional form.
We also report the total compounded monthly returns for periods of 12, 24, 36,
48 and 60 months in appendix A. The success of the rule tends to vary under the
different forecasting models, definitions of discount rates and to a lesser extent,
the time horizon the rule put to use. The trading rule, when put to use, under
the 12, 24, 36, 48 and 60 months horizons beat the naive buy and hold strategy
50 % , 48% , 58.3 % , 56.25 % and 56.25 % of the time. There is no easily
tractable difference between the recursive and rolling window performance. All
across the different discount rates, it is found that the best ranking definition
of the discount rates are A, B, D and C. There appears to be some uniformity
over time on the better performing forecasting model and discount rates. For
longer periods of adopting the rule, the difference in the cumulated returns tend
to increase within the forecasting models and the denominators.

The compounded annualized return rate under the simple Buy and Hold
strategy is 6.32 % where as the highest annual return under the rule is given by
models 1 and 2 under the denominator A at approximately 11 %. The rule beats
the market 29 times. The best forecasting models are models 1 and 2 where they
actually beat the market under all denominators except C. The denominator
that leads to the highest wealth are A and B. While the trading rule seems to
work in the case of the first four denominators, it does not refer to the obvious
switch towards the bond market during some months when equity returns are
actually negative. Examples are 1964, 1976 and 2003. If the rules had correctly
predicted that the equity market was overpriced during those period,a higher
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wealth level would be achieved by shifting to the bond market. Appendix 2
shows the graphical plot of wealth for the different models and denominators
over time.

Historically, model 3 postulates a long position in the equity market until
1914. Afterwards, the rule suggests going long on bond markets until 1927and
also during 1932- 1936. Interestingly, it takes advantage of the growth of the
equity market during the period 1949-1974. The shocks of 73/74 are predicted
after the shock and this leads to the rule postulating going long on the bond
market. Models 1 and 2 tend to switch more often and the switches appear to be
independent over time. This may be explained by the forecasting success of the
models where by the forecasting error tends to be more normally distributed
with the mean zero. In a random year, switching may occur 3-5 times, as
opposed to only once in the model 1. The rule postulates that going long on
bond from 1917 to 1927. The rule posits going long on equity from 1927-1931,
and in bonds from 1932 till 1936, taking a late advantage of the great depression.
Again the rule exploits the growth of the equity markets during the 50’s and
60’s. However, it is a late predictor of the 73/74 shocks where the rule postulates
going long on the equity market. However, it later involves investing in the bond
market during 75-76. and 80-84. Afterwards, it postulates going long on the
equity market.

Generally, the definition of the discount rate based on the fundamentals
tends to advise ‘going long’ more often. An interesting phenomenon that is
encountered, especially when using the Fama and French discount rates, models
1 and 2 do not switch as often in a particular year. They tend to exhibit periods
of dependence. The discount rate based on the fundamentals is so small that
it offsets the serially uncorrelated forecast error. In other words, although the
forecast from models 1 and 2 are more accurate (and hence more proned to
under or over forecast realized dividends), the discount rate is sufficiently low
such that the accuracy of the forecast vis a vis the true data generating process,
does not matter. It is worth noting that there is an improvement in the accuracy
of the forecast models at that time. Better forecasting leads to higher wealth,
at least for denominators A and B.

4.2.1 Reliability of the Rule

A simple test to check whether the wealth is being driven by the number of
switches, is to simply regress the number of switches on the accumulated wealth
based on the sample of 48 models. The result (not reported) showed that a
positive statistically significant value. In appendix 3, we report the test of the
correlated means with a view to note whether the trading strategy significantly
outperforms the Buy and Hold strategy. For the one period horizon, market
return is higher than the trading rule return, with the rule beating the market
16 times compared to 20 times, the opposite happening. For higher horizons,
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the rule starts dominating the Buy and Hold strategy. Two types of risks are
involved in the trading strategy. Over the holding period, riskiness may emanate
from the variations in both the equity and bond market. In appendix 4,we report
the Sweeney statistic which is designed to account for the time an asset is held
in stocks and in bonds. The Sweeney statistic demonstrates that the strategy
works better conditional on the denominator adopted.

When transaction costs were accounted for, the number of models beating
the market returns fall drastically. In the worst case scenario, when a monthly
transaction cost of 0.5 % is implicitly assumed, only eight models beat the
market return, mostly from denominators A and B. The Fama and French de-
nominators do not yield a favorable outcome in any of the transaction cost. The
results are derived by netting the trading rule returns with the transaction costs
and computing the Sweeney Z statistic (Appendix 4).

Potential data mining problems are dealt in this study by performing a
Monte Carlo simulation of different times when the rule is put to use. The Monte
Carlo simulation involves picking out random dates from the period 1900 to an
end date which is conditional on the performance horizon we want to investi-
gate. The selection of the random dates is derived from a uniform probability
distribution. A vector of dates is generated using a random number generator
where an equally size vector between zero and one is randomly chosen from the
uniform probability distribution. This vector is then multiplied with n-k where
n is the end date of the sample and k is the length of horizon we are looking
at, for example k = 12, 24. . . ..60. Subtraction of k ensures that returns under
the passive Buy and Hold can be calculated for horizon k, especially if the draw
is near the end of the sample. The results (Appenix 8) from the Monte Carlo
simulation are not different from those of the Trading Rule. Models 1 and 2
are the best performers, when coupled with denominators A and B. In the one
year horizon, the rule beats the passive buy and Hold only 41 % of the times.
However it is worth noting that in the one year period, there are many instances
when the rule is equal to the Buy and Hold market return. As the holding pe-
riod is increased, the number of times the rule beats the market return tends to
increase as well. The rule is better for years 3,4 and 5.

5 Conclusion

The empirical findings of this paper is that higher cumulated returns may be
earned by applying a rule which arbitrages away any opportunity offered by the
mispricing of equity returns. The dividend forecasting process is just a naive
procedure, which may be implemented outside the spheres of academia in real
time. The rule tends to work better for the longer horizons. The rule is found
to be sensitive to the forecasting model and the discount rate. The autore-
gressive forecasting model tends to be better for forecasting dividends, while

10



empirical definitions of the discount rate seem to be better fitted in computing
the theoretical price. Both transaction costs and risk tend to reduce the costs.

The strategy put forward also ensures that there are lower risks.than the
Buy and Hold Strategy since wealth is at times kept in the bond market which
exhibits lower volatility. The only problem with the model which tends to switch
the asset more often yields higher transaction costs. The present study may be
amended and refined in various ways. Various linear and non linear models may
be used to forecast dividends in the present framework. A more robust analysis
might be conducted to see whether more switches, from the different models
might lead to higher wealth.

References

[1] Doron Avramov, Stock return predictability and model uncertainty, Journal
of Financial Economics 64 (2002), no. 3, 423 — 458.

[2] Doron Avramov, Stock return predictability and asset pricing models, The
Review of Financial Studies 17 (2004), no. 3, 699—738.

[3] George Bulkley and Nick Taylor, A cross-section test of the present value

model, Journal of Empirical Finance 2 (1996), no. 4, 295 — 306.

[4] George Bulkley and Ian Tonks, Are uk stock prices excessively volatile?
trading rules and variance bound tests, The Economic Journal 99 (1989),
no. 398, 1083—1098.

[5] George Bulkley and Ian Tonks, Trading rules and excess volatility, The
Journal of Financial and Quantitative Analysis 27 (1992), no. 3, 365—382.

[6] Francis X. Diebold and Roberto S. Mariano, Comparing predictive accu-
racy, Journal of Business and Economic Statistics 13 (1995), no. 3, 253—
263.

[7] Eugene F. Fama and Kenneth R. French, The equity premium, The Journal
of Finance 57 (2002), no. 2, 637—659.

[8] Hashem Pesaran, Davide Pettenuzzo, and Allan Timmermann, Learning,
structural instability, and present value calculations., Econometric Reviews
26 (2007), no. 2-4, 253 — 288.

[9] James M. Poterba and Lawrence H. Summers, Mean reversion in stock
prices : Evidence and implications, Journal of Financial Economics 22
(1988), no. 1, 27 — 59.

[10] David Rey, Market timing and model uncertainty: An exploratory study for
the swiss stock market, Financial Markets and Portfolio Management 19
(2005), no. 3, 239—260.

11



[11] Robert J. Shiller and Andrea E. Beltratti, Stock prices and bond yields:
Can their comovements be explained in terms of present value models?,
(1993).

[12] Richard J. Sweeney, Beating the foreign exchange market, The Journal of
Finance 41 (1986), no. 1, 163—182.

[13] A. Timmermann, Elusive return predictability, International Journal of
Forecasting 24 (2008), no. 1, 1—18.

[14] Allan Timmermann and Clive W. J. Granger, Efficient market hypothesis
and forecasting, International Journal of Forecasting 20 (2004), no. 1, 15 —
27.

[15] Allan G. Timmermann, How learning in financial markets generates ex-
cess volatility and predictability in stock prices, The Quarterly Journal of
Economics 108 (1993), no. 4, 1135—1145.

[16] Jules H. Van Binsbergen and Ralph S. Koijen, Predictive Regressions: A
Present-Value Approach, SSRN eLibrary (2009) (English).

12



A Appendix

A.1 Cumulated Monthly Returns

12 Months 24 Months 36 Months 48 Months 60 Months
Model A B C D A B C D A B C D A B C D A B C D

1a Recursive 11.2 10.1 6.9 8.5 23.6 21 14.4 17.7 37.5 33.2 22.2 27.5 53.6 46.9 30.7 38.5 71 61.4 39.6 50
1a Rolling 11.2 10 6.9 8.5 23.7 20.8 14.4 17.7 37.7 32.9 22.2 27.5 53.8 46.5 30.7 38.5 71.3 60.9 39.6 50
2a Recursive 11.2 10 6.9 8.5 23.7 20.8 14.4 17.7 37.7 32.9 22.2 27.5 53.8 46.5 30.7 38.5 71.3 60.9 39.6 50
2a Rolling 11.1 10.1 6.7 8.4 23.5 21.1 14.1 17.5 37.4 33.4 21.7 27.1 53.2 47.2 29.9 38.0 70.4 61.9 38.6 49.3
3a Recursive 7.4 7.4 5.8 7.4 15.5 15.4 12.1 15.5 24.2 23.9 18.6 24 33.6 33.0 25.5 33.3 43.9 43 32.6 42.9
3a Rolling 8.3 8.3 6.6 7.4 17.4 17.1 14.0 15.5 27.4 26.8 21.7 24.2 38.1 37.2 29.9 33.5 49.7 48.3 38.6 43.1
1b Recursive 11.1 10.3 6.9 8.3 23.4 21.6 14.4 17.2 37.2 34.3 22.2 26.8 52.9 48.4 30.6 37.5 70.2 63.6 39.5 48.6
1b Rolling 11.1 10.3 6.9 8.3 23.4 21.6 14.4 17.2 37.2 34.3 22.2 26.8 52.9 48.4 30.6 37.5 70.2 63.6 39.5 48.6
2b Recursive 11.1 10 6.7 8.3 23.4 21.1 14.1 17.2 37.3 33.4 21.7 26.8 53.2 47.1 29.9 37.5 70.5 61.9 38.5 48.6
2b Rolling 11.1 10.1 6.7 8.3 23.4 21.1 14.1 17.2 37.3 33.4 21.7 26.8 53.2 47.2 29.9 37.5 70.5 62 38.5 48.6
3b Recursive 11.1 10.3 6.9 8.3 15.8 14.9 12.8 15.5 24.6 23.1 19.8 24.0 34 31.9 27.1 33.3 44.3 41.6 34.8 42.9
3b Rolling 11.1 10.3 6.9 8.3 18.3 18. 14.2 15.8 28.6 28.1 22 24.6 39.7 38.9 30.3 34.2 51.6 50.4 39 43.9

Table 2:
The table shows the cumulated returns (in percentage) over the different periods: 1, 2, 3, 4 and 5 years for the different

forecasting models and the different denominators.

13



A.2 Appendix B : Graphical Plots of AccumulatedWealth
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Figure 1: Cummulated Wealth from January 1901 to December 2007 for de-
nominator A and forecasting models class A
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Figure 2: Cummulated Wealth from January 1901 to December 2007 for de-
nominator A and forecasting models class B
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Figure 3: Cummulated Wealth from January 1901 to December 2007 for de-
nominator B and forecasting models class A
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Figure 4: Cummulated Wealth from January 1901 to December 2007 for de-
nominator B and forecasting models class B
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Figure 5: Cummulated Wealth from January 1901 to December 2007 for de-
nominator C and forecasting models class A
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Figure 6: Cummulated Wealth from January 1901 to December 2007 for de-
nominator C and forecasting models class B
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Figure 7: Cummulated Wealth from January 1901 to December 2007 for de-
nominator D and forecasting models class A
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Figure 8: Cummulated Wealth from January 1901 to December 2007 for de-
nominator D and forecasting models class B
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A.3 Test of Correlated Means

12 Months 24 Months 36 Months 48 Months 60 Months
Rtr > Rm 16 19 22 21 21
Rtr < Rm 20 20 20 20 20
Rtr = Rm 12 9 6 7 7

Table 3:
The table summarizes the results from table 4 and defines the number of times one of the three different scenarios were

witnessed. Rtr < Rm is the number of times that the accumulated return is higher than the trading rule. This proportion is a
litte high due to the adoption of denominator C,
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Model 1a Rec 1a Rol 2a Rec 2a Rol 3a Rec 3a Rol 1b Rec 1b Rol 2b Rec 2b Rol 3b Rec 3b Rol
1 year :A -10.29 -10.43 -10.43 -10.27 2.81 0.18 -9.99 -9.99 -10.14 -10.14 2.22 -1.06

B -5.96 -5.56 -5.56 -6.05 2.76 0.58 -6.87 -6.87 -5.85 -5.92 3.22 -0.59
C 4.12 4.12 4.12 4.33 6.76 4.52 4.16 4.16 4.36 4.36 5.75 4.20
D -1.08 -1.08 -1.08 -0.25 3.79 3.97 0.53 0.53 0.53 0.53 3.79 3.59

2 year :A -14.33 -14.51 -14.51 -14.20 3.41 -0.25 -14.13 -14.13 -14.39 -14.39 2.75 -1.90
B -8.45 -7.97 -7.97 -8.71 3.63 0.34 -9.76 -9.76 -8.49 -8.56 4.43 -1.31
C 6.03 6.03 6.03 6.41 10.32 6.44 6.07 6.07 6.46 6.46 8.72 5.90
D -3.00 -3.00 -3.00 -1.36 5.57 5.36 0.08 0.08 0.09 0.08 5.57 4.84

3 year :A -18.67 -18.92 -18.92 -18.24 3.57 -1.00 -18.60 -18.60 -18.99 -18.99 2.97 -2.84
B -11.13 -10.65 -10.65 -11.69 4.03 -0.16 -12.94 -12.94 -11.43 -11.49 4.90 -2.07
C 7.26 7.26 7.26 7.86 12.36 7.59 7.31 7.31 7.91 7.91 10.35 6.94
D -4.53 -4.53 -4.53 -2.51 7.07 6.56 -0.45 -0.45 -0.44 -0.45 7.07 5.80

4 year :A -21.84 -22.08 -22.08 -21.03 4.07 -0.75 -21.87 -21.87 -22.33 -22.33 3.50 -2.60
B -12.19 -11.71 -11.71 -12.92 4.67 0.21 -14.46 -14.46 -12.77 -12.84 5.49 -1.66
C 8.14 8.14 8.14 8.73 13.31 8.41 8.19 8.19 8.78 8.78 11.27 7.81
D -4.45 -4.45 -4.45 -2.23 7.83 7.48 -0.16 -0.16 -0.15 -0.16 7.83 6.80

5 year :A -23.41 -23.63 -23.63 -22.58 3.87 -1.20 -24.16 -24.16 -24.28 -24.28 3.44 -3.13
B -13.66 -13.15 -13.15 -14.57 4.73 0.02 -16.36 -16.36 -14.49 -14.55 5.74 -1.90
C 8.40 8.40 8.40 9.21 14.62 9.25 8.45 8.45 9.26 9.26 12.43 8.56
D -5.97 -5.97 -5.97 -3.22 8.96 8.56 -0.85 -0.85 -0.84 -0.85 8.96 7.89

Table 4:
The table shows the computed Zl,d(k) statistic.for different k The Zl,d(k) follows a normal distribution. The null hypothesis
is that both the the market and trading rule return are equal in each period. A negative statistic implies that the atrading

rule yields a higher market return. The statistic Zl,d(k) is computed as
Rm(k)−Rl,d(k)

S2
Rm

+S2
Rl,d

−2rS
Rm

S
Rl,d

.
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A.4 Sweeney X Statistic

One of the measures to account for the fact that wealth is held in both the stock market and in the bond market during the
period of interest is given by the Sweeney(1989) statistic. The X statistic is given by:

X = Rtr − (1− f)RBH

σx = σ[f(1− f)/N ]
1

2

1a Rec 1a Rol 2a Rec 2a Rol 3a Rec 3a Rol 1b Rec 1b Rol 2b Rec 2b Rol 3b Rec 3b Rol
A 7.67 7.734 7.734 7.641 2.532 4.624 7.578 7.578 7.554 7.554 3.321 5.148
B 6.425 6.291 6.291 6.462 2.578 4.351 6.706 6.706 6.406 6.427 2.626 4.798
C 1.765 1.765 1.765 1.545 0.327 1.534 1.735 1.735 1.519 1.519 1.013 1.716
D 1.725 1.725 1.725 1.277 -0.382 -0.608 0.852 0.852 0.862 0.852 -0.382 -0.346

Table 5:
The table shows Sweeney’s statistic (X/σx) over the whole sample period for the different models. Inference can be made

from the Normal distribution.
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1a Rec 1a Rol 2a Rec 2a Rol 3a Rec 3a Rol 1b Rec 1b Rol 2b Rec 2b Rol 3b Rec 3b Rol
A -2.603 -2.533 -2.533 -2.627 -6.781 -3.932 -2.669 -2.669 -2.705 -2.718 -5.704 -3.451
B -4.155 -4.289 -4.289 -4.091 -6.741 -4.154 -3.757 -3.757 -4.146 -4.142 -6.373 -3.714
C -9.323 -9.301 -9.301 -9.560 -9.110 -6.334 -9.275 -9.275 -9.581 -9.604 -7.834 -6.204
D -7.158 -7.138 -7.138 -7.315 -7.165 -5.626 -7.448 -7.448 -7.488 -7.507 -6.435 -5.391

Table 6:
The Sweeney’s statistic is computed in this case assuming a worst case scenario of 0.5 % in terms of transaction costs. In this

case, 0.5 % is subtracted from the trading rule returns.

1a Rec 1a Rol 2a Rec 2a Rol 3a Rec 3a Rol 1b Rec 1b Rol 2b Rec 2b Rol 3b Rec 3b Rol
A 5.466 5.525 5.525 5.525 0.487 2.810 5.367 5.367 5.354 5.351 1.287 3.293
B 3.914 3.769 3.769 3.769 0.528 2.588 4.280 4.280 3.912 3.927 0.618 3.030
C -1.254 -1.242 -1.242 -1.242 -1.842 0.408 -1.238 -1.238 -1.523 -1.534 -0.843 0.540
D 0.912 0.920 0.920 0.744 0.104 1.116 0.589 0.589 0.571 0.563 0.556 1.353

Table 7:
The Sweeney’s statistic is computed assuming a monthly rate of 0.25 % in terms of transaction costs.
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1a Rec 1a Rol 2a Rec 2a Rol 3a Rec 3a Rol 1b Rec 1b Rol 2b Rec 2b Rol 3b Rec 3b Rol
A 2.440 2.503 2.503 2.409 -2.238 0.282 2.354 2.354 2.332 2.325 -1.335 0.764
B 0.888 0.747 0.747 0.945 -2.198 0.060 1.266 1.266 0.890 0.901 -2.004 0.501
C -4.280 -4.264 -4.264 -4.523 -4.568 -2.121 -4.252 -4.252 -4.544 -4.560 -3.465 -1.989
D 2.114 -2.102 -2.102 -2.278 -2.622 -1.412 -2.425 -2.425 -2.451 -2.463 -2.066 -1.176

Table 8:
The Sweeney’s statistic is computed assuming a monthly rate of 0.1 % in terms of transaction costs.
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A.5 Switching

A B C D
1a Recursive 883 857 884 1250
1a Rolling 881 858 884 1250
2a Recursive 881 858 884 1250
2a Rolling 884 858 883 1249
3a Recursive 882 881 874 1167
3a Rolling 766 774 863 1179
1b Recursive 885 863 886 1248
1b Rolling 885 863 886 1248
2b Recursive 890 860 884 1247
2b Rolling 890 859 884 1248
3b Recursive 817 823 847 1167
3b Rolling 760 774 858 1190

Table 9:
The table illustrates the number of times that the rule postulates going long
on the market in the different models. It is interesting to note that there is no
considerable difference between denominator C as compared to the A and B.

The worse performance may be due an improper timing.

A B C D
1a Recursive 420 402 42 10
1a Rolling 418 404 42 10
2a Recursive 418 404 42 10
2a Rolling 416 394 42 10
3a Recursive 92 78 40 10
3a Rolling 54 48 32 12
1b Recursive 422 392 42 10
1b Rolling 422 392 42 10
2b Recursive 412 392 42 12
2b Rolling 412 392 42 10
3b Recursive 102 82 34 10
3b Rolling 50 42 30 16

Table 10:
The table shows the number of times that the rule postulates switching assets
in the case of the different models. Given the initial results previously, it may
be noted that the models which has the highest accumulated wealth have more

switching.
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A.6 Tests on Forecasting Accuracy

AD test Kolgomorov Smirnov Doornik Hansen test
1a Recursive 20.82 0.09 690.13
1a Rolling 20.92 0.09 688.13
2a Recursive 20.92 0.09 688.13
2a Rolling 20.71 0.09 692.11
3a Recursive 6.08 0.05 3.73
3a Rolling 14.55 0.09 87.69
1b Recursive 12.63 0.07 456.59
1b Rolling 12.63 0.07 456.59
2b Recursive 13.36 0.06 469.29
2b Rolling 13.97 0.07 475.81
3b Recursive 3.88 0.04 4.13
3b Rolling 14.11 0.9 113.27

Table 11:
The table does a test of normality of the forecasting error. The Anderson -
Darling , Kolgomorov -Smirnov and Doornik Hansen test are reported. Most

of the tests show that the forecast errors are far from normal.

Model Sample Loss T-Statistic
MAE MSE MAE MSE MAE MSE

Most Significant 2a Rol 2a Rol 0.065 0.009 -26.57 -10.6
Best 2a Rec 2a Rec 0.064 0.009 -26.6 -10.68
Model 25 % 2a Rol 2a Rol 0.065 0.009 -26.57 -10.6
Median 1b Rec 1b Rec 0.071 0.01 -29.4 -11.9
Model 75 % 3b Redc 3a Rec 1.758 4.59 -27.87 -19.51
Worst 3b Rol 3a Rol 2.967 5.84 -32.92 -13.98

Table 12:
The table shows the cummulated returns (in percentage) over the different
periods: 1, 2, 3, 4 and 5 years for the different forecasting models and the

different denominators.
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A.7 Summary statistics

Dividends Log Dividends
Series Detrended Differenced Series Detrended Differenced

Mean 12.83 12.83 0.02 2.48 2.48 0.00
Std. Dev 4.66 2.27 0.13 0.37 0.20 0.01
Skewness 0.46 0.11 -0.48 -0.13 -0.59 -0.94
Kurtosis 2.50 2.71 7.12 2.00 2.71 10.25
Jarque-Bera 57.78 6.88 959.95 56.95 78.63 2996.31
ADF test -0.70 -1.27 -12.43 -0.86 -2.79 -12.12
PP test 1.04 -1.80 -18.34 -0.98 -2.89 -19.16
KPSS test 1.14 0.39 0.20 0.08 0.29 0.06
Lo’s Test 1.62 2.02 0.85 0.44 2.10 0.75
Robinson’s d 0.49 0.50 0.34 0.50 0.50 0.31

Table 13:
The table illustrates the descriptive statistics of dividends and the logarithm
of dividends. Tests of non stationarity are provided by the ADF and PP test.
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A.8 Simulation Results

12 Months 24 Months 36 Months 48 Months 60 Months
Model A B C D A B C D A B C D A B C D A B C D

1a Recursive 67 55 23 5 93 79 34 12 104 91 38 16 119 101 36 21 127 101 36 21
1a Rolling 67 55 23 5 93 76 34 12 107 89 38 16 120 100 36 21 127 100 36 21
2a Recursive 67 55 23 5 93 76 34 12 107 89 38 16 120 100 36 21 127 100 36 21
2a Rolling 67 55 23 5 91 77 33 12 106 90 37 16 119 100 36 20 126 100 36 20
3a Recursive 37 37 14 6 41 42 24 10 44 45 25 10 46 45 22 8 50 45 22 8
3a Rolling 36 37 24 5 53 52 36 9 61 61 37 10 68 65 33 8 71 65 33 8
1b Recursive 67 55 23 5 93 76 34 11 102 92 38 15 118 101 34 17 127 101 34 17
1b Rolling 67 55 23 5 93 76 34 11 102 92 38 15 118 101 34 17 127 101 34 17
2b Recursive 69 53 23 5 92 77 33 11 100 91 37 15 118 100 34 17 127 100 34 17
2b Rolling 69 53 23 5 92 77 33 11 100 91 37 15 118 100 34 17 127 100 34 17
3b Recursive 39 35 21 6 46 39 30 10 54 43 30 10 56 48 29 8 61 48 29 8
3b Rolling 39 39 26 5 57 56 38 9 64 62 42 10 70 65 37 8 75 65 37 8

Table 14:
The table illustrates the number of times, the rule strictly beats the Passive Buy and Hold strategy for the respective

forecasting model and denominator The simulation was attempted 160 times.
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A.9 Fama and French’s Expected Returns

The Fama and French (2002) factors assume that if Price and Dividends are
cointegrated, the sum of the dividend price ratio and dividend growth would
yield expected returns measures. The ADF test on the residual term in the
dividend and price relationship was -4.10 while that with earnings and price
was -4.33.

For real time purposes, tested for the stationarity of D
P
and E

P
using both

rolling and recursive ADF tests. The results tend to differ as to which criterion
is used to select the residual term in the ADF equation. The various criteria
used are Akaike Information Criteria, Bayesian Information Criteria, Schwartz
Information Critera, Hannan Quinn and the Modified Information criteria. We
report the Bayesian Information Criteria. (The other plots are available upon
request)
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