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Abstract

If prices of assets are not aligned to their net present value, a trading
strategy may be implemented when actual prices revert to fundamentals.
A real-time trading strategy is introduced based on the assumption that
reversion occurs in later periods. The fundamental price is constructed in
real time using the net present value approach which requires the series
for expected dividends, expected returns and expected dividend growth
rate. These series, typically unobservable, are derived from a structural
state space model. A battery of tests comparing the rule to the passive
Buy and Hold Strategy illustrates that the rule is marginally better for
shorter horizons.
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1 Introduction

If an asset is overpriced or underpriced relative to its true valuation, mean re-
version towards its true value should be anticipated in subsequent periods. This
statement emanates from a property of the Efficient Markets where rational
agents will arbitrage this riskless gain so that the price is aligned with the value
of the asset. In the context of an equity market, if it is possible to identify
whether the market is underpriced or overpriced relative to the fundamental
value, a simple strategy would be to go long on equity or bonds (depending on
the direction of the mispricing). The trading rule is developed in line with real
time varying expected returns and expected dividend growth. As mentioned in
previous literature, the stock market is excessively too volatile to be justified
by the rational expectations model (Shiller and Beltratti (1993), Poterba
and Summers (1988)). The rule that we develop attempts to take advan-
tage of the volatile nature of stock markets, while resting on the assumption
of Efficient Markets (as defined in Timmermann and Granger (2004)) and
Rational Expectations. We construct the theoretical price ( net present value)
of the market index using values of dividends and expected returns and dividend
growth optimized from a net present value state space model. The theoretical
price is then compared to the actual price. Such comparison will identify buying
the index or the risk free asset before the mean reversion takes place.

Since the net present value is calculated in real time, the expected returns
and expected dividend growth are also derived by a time varying procedure. I
make use of Koijen and Van Birsbergen (2010) model to derive the ex-
pected returns and expected dividends component in a state space, where the
Kalman Filter is used to derive the log likelihood function. The intuition be-
hind this methodology is that expected returns and expected dividend growth
are unobservable to the econometrician. However we do observe the realized
values The Expected Returns and Expected Dividend Growth series are filtered
from realized observations based on the Kalman procedure, where expectations
are updated as a new observation of the realized value. The most common way
to derive the series for these variables is to use a latent variables approach. I
derive the law of motion for the price dividend ratio from the Campbell and
Shiller(1988) identity, assuming that the expected returns and the dividend
growth rate follow an autoregressive process. The state space model is derived
from the net present value relationship between Price Dividend ratio, expected
returns and expected dividend growth. The Kalman Filter is applied to the
model parameters which are optimized using the conditional Maximum Likeli-
hood procedure.

Consistent with rational expectations and the Efficient Markets Hypothesis,
the structural decomposition of the expected returns and expected dividend
growth rate rely on the Price -Dividend Ratio as being the key variable governing
the law of motion and having theoretical links with the two components we want
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to derive. As such, the build of the state space model involves the Price Dividend
Ratio and realized dividend growths as being the measurement equation with
the expected returns and expected dividend growth processes forming the state
equation. The interesting aspect of such a model, just as in the recursive and
rolling model, is that it is robust to structural breaks and does not require the
estimation of a large number of parameters (Rytchkov 2007).

Having derived the expected returns and expected dividend growth series,
the rational present value (fundamental price) of the index may be easily com-
puted. The fundamental price is compared to the realised price to decide
whether to go long on equity or treasury bills. If the theoretical price is higher
than the actual price, implying the market is underpriced, the proper strategy
would be to go long on equity, assuming that actual price revert to the fun-
damental price. On the other hand if the market price is high relative to the
theoretical price, this will lead to a capital loss and hence the proper strategy
would be to shift the assets from equity to bonds.

2 Literature review

In this section we look at related studies on the trading rule, the net present
value model as applied in the financial markets, and the state space models
application in the derivation of the expected returns and expected dividend
growth.

2.1 Trading Rule

The theoretical underpinning of the rule involves the comparison of the Actual
Price with the Efficient Markets Price (fundamental value) in order to define
whether it is profitable to go long or short on it. Theoretically, the EMH price
is determined by the expectations of agents and the type of process they used to
model the data generating process of dividends (Timmermann 1993). Any
difference between the EMH and the actual price, will lead agents to revise their
expectations and their own behavior will move the market back to equilibrium.
Hence a profitable opportunity might arise during the adjustment of the market
price towards the fundamental value. For instance if the stock market price is
higher than the one postulated by EMH, implying that the market is overpriced,
reversion to the EMH market price implies that the price will move downwards,
hence leading to a capital loss. On the other hand if the stock market price
is underpriced relative to the market, we should expect that the price will rise
then reaping a capital gain.

The model was put to use in Bulkley and Tonks (1989) where the expost
rational price was compared with the net present value. The rule involves
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choosing to invest in either the market index or in the risk free asset. If the
market is overpriced, the trading rule posits going long on the risk free asset and
invest zero weight on the equity market. When the stock market is underpriced,
the investor should shift his assets from bonds to equity. The rule makes out
the best of the movement of assets. They also showed how the revision in the
parameters in an estimated model of dividends is likely to explain the excess
volatility in the UK stock market, as an overall objective of testing whether
the stock market can be efficient in the weak form. Another variant of the
paper (Bulkley & Tonks, 1992) was used to compare the Buy and Hold
Strategy and Trading Rules in the S&P 500 market with the same outcome
as in the UK market. The study extends on further implications on the rule’s
returns when risks and transaction costs are included are accounted for.Taylor
and Bulkley (1996) who use the same REPV formulae in a Price conditional
VAR model to derive the theoretical price. The objective however was to test
whether underpriced portfolios tend to generate higher returns than overpriced
portfolios over several years horizon going until 10 years. Rambaccussing
(2009) tests the rule in a real time context by assuming that agents have an
econometric model from which they can forecast dividends.The expected returns
and dividend growth rate are generated in the same way. He finds that the rule
works better for longer holding horizons.

2.2 Net Present Value Approach for Deriving EMH price

The Net Present Value approach to deriving the theoretical price involves the
assumption of a general equilibrium economy where any riskless return may
be arbitraged away. An interesting derivation of the model may be found in
Cochrane (2002). The basic premise of the net present value is that the theo-
retical price is derived by the infinitely discounted payoffs from the asset. The
theoretical price ( or NPV) is given by :

P ∗t = Et

∞∑

i=1

[rt,t+jDt+j ] (1)

where Et is the expectations operator at time t, rt,t+j is the return from

time t to t+j and Dt+j relates to the dividend at time t+j.
If dividends are growing at a rate gt+1 and Et [rt+1] is greater than gt+1,

equation 14 can be written as:

P ∗t =
1

Et[rt+1 − gt+1]
Et[Dt+1] (2)

Equation 16 is used to compute the REPV price. The rational valuation for-
mulae has been extensively to derive the Efficient Markets Hypothesis price.For
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applications, see (Cuthbertson & Hyde, 2002), (Kanas, 2005), (Rangvid,
2006), (Shiller & Beltratti, 1993), (Allen & Yang, 2004) , (Caporale &
Gil-Alana, 2004) (Strauss & Yigit, 2001) (Bohl & Siklos, 2004) (Mills,
1993)

2.3 Time Varying Expected returns and Dividend Growth

The asset pricing model applies state space modeling to the derived present
value of Price Dividend ratio. We review papers that apply the The objective
of applying the state space model is to derive expected returns and expected
dividend growth which are both latent variables but which are linked through the
Price Dividend ratio identity. Decomposing the Price Dividend Ratio between
expected growth and returns hence is theoretically sound since it is in line
with the net present value approach and is formed with rational expectations
foundations. According to theory, if prices and dividends are cointegrated, then
all the variation in the dividend -price ratio must come from the variation of
expected returns and dividend growth. Past empiricism has found the latter
to be unpredictable, hence in this sense, all the variation in the price dividend
ratio comes from the changes in expected returns.

The methods for deriving the expected returns and expected dividend growth
rate can include various classifications such as the simple trend, predictive Or-
dinary Least Squares,. Bayesian models and State Space models. State space
models of expected returns provide more robust estimates with respect to struc-
tural breaks in the data (Rytchkov 2007). Since both expected returns and
expected dividend growth rate are unobservable, the state space model can be
used to provide most efficient estimates of these two variables given observed
data. The filtering technique used to uncover expected returns has been used
widely in the literature. Conrad and Kaul (1988) apply the Kalman Filter
to extract expected returns from the history of realized returns. Brandt and
Kang (2004) model conditional mean and volatility as unobservable variables
which follow a latent VAR model and filter them from observed returns. In
the same line of thinking, Cochrane (2008) shows that the VAR model can be
represented in state space form. Pastor and Stambaugh (2006) make use of
the fact that imperfect exogenous predictors imply that there is no errors in
variables. and hence may be used to uncover the unobservable expected returns
from realized returns. Koijen and Van Binsbergen (2010) use the state
space model to model cash invested and market invested dividends.
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3 Methodology

3.1 Net Present Value Model

In this section, we derive the net present value relationship between the Price
Dividend Ratio and expected returns and expected dividend growth. Interest-
ingly the series is developed from a theoretical assumption that both expected
returns and dividend growth rate follows an autoregressive process of order 1.
We start by defining some standard equations in the literature and then we
derive the Campbell and Shiller (1988) log linearized model:

The rate of return is defined as

rt = log(
Pt+1 +Dt+1

Pt
) (3)

The Price Dividend ratio is defined as

PDt =
Pt
Dt

(4)

The Dividend Growth rate is defined as

∆dt+1 = log(
Dt+1
Dt

) (5)

One of the important assumptions that we put forward for the process of
expected returns and dividend growth concerns the order of the process. The
intuitive idea concerning the functional form of the process is that there should
be in theory near to the data generating process. However, this endeavour of
finding a best model is hectic and involves a lot of data mining. We shall assume
our own functional form of the model. The mean adjusted conditional expected
returns and dividend growth rate are modelled as an autoregressive process as
in equations 6 and 7 respectively :

µt+1 − δ0 = δ1(µt − δ0) + ε
µ
t+1 (6)

gt+1 − γ0 = γ1(gt − γ0) + ε
g
t+1 (7)

where µt = Et(rt+1) and gt = Et(gt+1)

Equation 6 and 7 relates to the mean deviation of the expected returns and
expected dividend growth rate where δ0 and γ0 represents the unconditional
mean of the expected returns and dividend growth respectively. δ1 and γ1
represents the autoregressive parameters. εµt+1 and ε

g
t+1 represents the shocks
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to the expected returns and the dividend growth rate processes. εµt+1 ∼ N(0, σ
2
µ)

and εgt+1 ∼ N(0, σ2g). However, we do not implement any restrictions between
the covariance of εµt+1and ε

g
t+1because a shock to the expected return process

might actually affect the dividend growth process as well.

The realized dividend growth rate are defined as the expected dividend
growth rate and expected returns and the unobserved shock εdt+1, where by
:

∆dt+1 = gt + ε
d
t+1 (8)

εdt+1 and gt are assumed to be orthogonal to each other. E(ε
d
t+1, gt) = 0.

The Campbell and Shiller (1988) log linearized return equation (derived in
appendix 1) may be written as :

rt+1 = κ+ ρpdt+1 +∆dt+1 − pdt (9)

where pdt = E[log(PDt)], κ is an arbitrary constant defined as log(1 +

exp(pd))− ρpd and ρ = exp(pd)

1+exp(pd)

The equation can be further be reduced to :

rt+1 = κ+ ρpdt+1 +∆dt+1 − pdt (10)

To study the dynamics of the price dividend ratio, the process may be written
with pdt being the subject of the formula:

pdt = κ+ ρpdt+1 +∆dt+1 − rt+1

The full derivation of the of the price dividend ratio model is explained in
appendix 1.

By replacing lagged iterated values of pdt+1in the equation, the process may
be written as :

pdt =

∞∑

i=0

ρiκ+ ρ∞pd∞ +

∞∑

i=1

ρi−1(∆dt+i − rt+i)

pdt =
κ

1− ρ
+ ρ∞pd∞ +

∞∑

i=1

ρi−1(∆dt+i − rt+i)
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3.2 State Space Model

The state space model makes use of a transition equation and a measurement
equation. The Kalman Filter best illustrates the dynamics of the estimates of
µtand gt.The model parameters are estimated before making the forecasts. The
maximum likelihood estimator is used to obtain the parameters of the Kalman
filter. The Maximum likelihood is optimized using the MaxBFGS procedure.

There are two transition equations, one governing the dividend growth rate
and the other one governing the mean return:

ĝt+1 = γ1ĝt + ε
g
t+1 (11)

µ̂t+1 = δ1µ̂t + ε
µ
t+1 (12)

the two measurement equations are given by :

∆dt+1 = γ0 + ĝt + ε
d
t+1 (13)

pdt = A−Bµ̂t +Bĝt (14)

Equation 12 can be rearranged into 14 such that there are only two mea-
surement equations and only one state space model.

ĝt+1 = γ1ĝt + ε
g
t+1 (15)

∆dt+1 = γ0 + ĝt + ε
d
t+1 (16)

pdt+1 = (1− δ1)A−B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1 (17)

Equation 15 defines the transition (state) equation. The measurement equa-
tion relates the obsevable variable to theunobserved variables. In our case this is
given by equation 16 and 17. A is equal to κ

1−ρ+
γ0−δ0
1−ρ , B1 =

1
1−ρδ1

, B2 =
1

1−ργ1
.

Equation 16 and 17 relate to the measurement equation. This can be put into
a state space form as shown in appendix. Since all the equations are linear, we
can implement the Kalman Filter and obtain the likelihood which is maximized
over the following vector of parameters.

Θ = (γ0, δ0, γ1, δ1, σg, σµ, σD, ρgµ, ρgD, ρµD)

The individual elements of the state and measurement vectors are given in
appendix 2.

7



The filtered series for the expected dividend growth is just taken to be the
first element for the state vector Xt (Refer to appendix 2 for a more detailed
explanation). The state vector is derived according to the following update :

Xt|t−1 = FXt−1|t−1 (18)

In the case of the demeaned expected returns, the expected returns is defined
as :

µ̂t−1|t−1 = B
−1
1 (pdt −A−B2ĝt−1|t−1) (19)

3.3 Expected Future Dividends

In this section, we look at the performance of a trading rule using the expected
returns and expected dividend growth rate we derived in the earlier section.
The theoretical price or net present value of the market equity is derived by
using the net present value approach to returns. This is given by equation 20

P ∗t =
1

µt − gt
Et[Dt+1] (20)

where Et[rt+1] and Et[gt+1] are the expected returns and growth series that
we derive using the state space model.

Et[Dt+1] is a real time valuation of expected dividends, which is computed
as :

Et[Dt+1] = Dt(1 + gt)

The expected future dividend based on expectations at time t is made up of
the realized dividend compounded with the expected growth rate. It should be
noted that at time t, the realized value of the dividends is known.

The trading rule option can be summarized as follows:

1) Go long on the equity index if

P ∗t
Pt

> 1
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2) Go long on the risk free asset if :

P ∗t
Pt

< 1

where P∗t is the theoretical price or the net present at time t, whose compu-
tation will be set out in the next section. Pt is the actual price
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4 Data and Results

The monthly series of treasury bill rates, realized market returns, dividend and
price is retrieved from Shiller’s website for the period 1899 to 2008. The indica-
tors and returns variables are controlled for inflationary tendencies. The state
space model is optimized using data from December 1899 to December 2008. .

Parameter Coefficient Std error
γ0 0.0012 0.001
δ0 0.0405 0.0503
γ1 0.8056 0.0246
δ1 0.9988 0.0032
σg 0.0066 0.0005
σd 0.0023 0.0002
σµ 0.0071 0.0003
ρgµ 0.6006 0.0326

ρµD 0.1013 0.0321

Table 1:
Optimization of State Space Model.The optimal values of the various pa-
rameters are given in the second colomn. The associated standard errors are
computed analytically from the Hessian Matrix.

The interesting features represented from the table is that unconditional
mean of expected dividend growth is vert low. The unconditional expected
returns is low at 4 %, which is approximately the same actual returns. The
standard errors are quite low in both cases. There is high persistence in both
expected returns and dividend growth. Expected Returns tend to be exhibit
near unit root behavior. There is also a higher level of variability in the expected
returns than in the case of dividend growth. There is also a high positive
correlation between the expected returns and dividend growth rate. However
expected dividend returns and expected returns tend to exhibit a low correlation.

4.1 Properties of Expected Returns and Dividend Growth

We plot the realized and expected returns and dividend growth series in figures
1 and 2 and report the summary statistics in table 2.
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Rt µt ∆dt gt

Mean 0.0036 0.0035 9.4 x 10−4 0.001

Std. Deviation 0.044 0.017 0.013 0.008

Skewness 0.202 -0.812 -0.926 -0.859

Kurtosis 14.41 3.563 9.97 0.11

Jarque-Bera 7105 161 2788 2918

Table 2:
Summary Statistics. The mean, standard deviation,and other moments are
reported for the realized and expected values for returns and dividend growth.

Both the mean relaized and expected returns tend to be the same. The
volatility tends to be roughly the same. Dividend growth tend to be highly
negatively skewed. The kurtosis and Jarque Bera statistic rejects the fact that
the distribution could be normal. Stationarity tests and correlation across time
for the different series are presented in tables 7,8 and 9. With respect to the
stationarity tests, The null hypothesis of stationarity is not rejected by all tests
in the realized and expected dividend growth series. However, in the case of
expected returns, the results are mixed. The possibility of a non stationary
expected returns series is further reinforced by the non stationarity tests. All
of the tests do not reject the possibility of a unit root in the series. However,
all the other processes are found to be stationary. In terms of correlatedness,
both the expected divvidend growth and realised returns have diminishing cor-
relation with their past lags. There is a high contemporaneous relationship
between expected and realized dividend growth, which tends to disappear as
time increases.

4.2 Results from the trading Rule

In this section, we report the results from applying the trading rule. Before
probing deeper, we would like the reader to understand the important role
played by the horizon involved. The cumulated returns from the rule may
perform worse or as good as the equity market for some periods of time but still
may overtake the equity market return for the next period. A good switch in
assets when the equity market return is going down or the treasury bill returns is
going up may increase the cumulated returns at the terminal horizon. However,
in shorter horizons, for instance one month, less number of switches may be
made because of market trends. However, over longer horizons, there are more
possibilities for the market to be undervalued or overvalued, hence giving rise
to arbitrage opportunities.
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Figure 4.2 shows the cumulated returns over time.
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Figure 4.2. Cumulated Returns The graphical plot illustrates the
cumulative returns over the horizon 1900-2008 from the Buy and Hold

Strategy and the Rule.

The rule tends to beat the equity index at the end date of the horizon.
However for a long time, the equity index turns out to perform better. Passive
investment in the equity index. The plot shows that the market tends to perform
better than the trading rule index. However the rule tends to perform better
only during the period 1975 to 1990’s. Interestingly, the success of the rule
might come from the fact that there might have been some shocks during those
periods that might have reduced the share prices but with a high net present
value of and hence according to the rule required the investor to invest in the
market in subsequent periods.

Figure 3 in the appendix D supports the earlier claims. The Trading rule
return is plotted against the best return, which is defined as the maximum of
the equity and risk free return rate in a particular date. The rule tends to
perform badly back in the 1940’s, witnessing drops in the return. However the
rule makes the most out of the 60’s, 70’s and 80’s. However for the 2006 -2008
crises, we find that the rule does not tend to perform well. The rule would work
reasonably well if only mean reversion started happening within the actual date
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of shifting the asset to the next period when the investor computes the
P∗

t

Pt
again

This is interesting since in this case, we find a situation where mean reversion
does not happen instantly. In fact the actual price goes further from its rational
value.

The rule makes only 58 % of the times the good decision of selecting the
higher return. This is quite low comparatively. Throughout the sample, the
number of switches posited by the rule is 208 times, while the best accumulated
returns would be reached by making 344 switches. The accumulated wealth
is 2.05 times higher than the Buy and Hold strategy. The reason for a higher
cumulated return is simply because the switches were made later rather than
earlier in the sample. Both strategies have relatively the same standard devi-
ation. The model illustrates that the market is highly underpriced especially

during once off events. Figure 4 shows the probability distribution of
P∗

t

Pt
. The

figure shows that the distribution is right skewed and has a mean slightly higher
than the efficient markets, implying that most of the time the market is slightly
underpriced. Hence the rule posits going long for most of the time (54 %) while
the best outcome is to stay in the market 54.7 % of the time.

4.3 Tests on the trading rule

Application of the rule is interesting if it can yield higher returns over the short
run. We also report the mean return and the respective standard error for the
horizon of 12, 24, 36, 48 and 60 years in table 3.

Period RBH RTR S.EBH S.ETR

1 year 0.044 0.052 0.0034 0.0027
2 year 0.092 0.107 0.0035 0.0028
3 year 0.142 0.166 0.0036 0.0028
4 year 0.194 0.230 0.0036 0.0029
5 year 0.249 0.296 0.0036 0.0029

Table 3:
Cummulated Returns over Horizons. The table provides the cummulated
returns over horizons of 12, 24, 36, 48 months for both the model and the Buy
and Hold strategy. The standard errors are also reported to illustrate the riski-
ness of the returns.The Buy and Hold and Trading Rule returns are computed as

RBH(k) = 1
T−k

∑T−k
h=1

K∏

i=h−k

(1+Rm,i) andR
TR(k) = 1

T−k

∑T−k
h=1

K∏

i=h−k

(1+Rtr,i)

respectively.
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Interestingly, contrary to the graphical depiction, we find that marginally
the trading rule seems to have a higher average return with a lower standard
error as well. As the horizon increases, return margin between the rule and
the equity index tend to increase as well, average roughly 4.7 % more than the
equity index over five years of horizon. The standard error tends to remain more
or less stagnant. The increasing margin shows that the rule would be better
suited for long horizons since for shorter horizons, the marginal return may be
eroded by transaction costs. Hence the rule commands both higher returns and
lower risk as illustrated by the figures. The standardized return is obviously
higher when the rule is put to use for all horizons involved.

4.4 Robustness of the rule

In this section, we check the robustness of the earlier results. We test for whether
there is statistical evidence of the rule beating the market. We apply three test,
namely a simple test of paired correlation, the Sweeney’s X statistic, and a
sampling method.

4.4.1 Test of Paired Correlation

We also test whether the returns from the Buy and Hold strategy are signifi-
cantly outperformed by the trading rule returns by performing a test of pairwise
correlated means. The t-statistic is given by:

t(k) =
RBH(k)−RTR(k)

S2
RBH

+ S2
RTR

− 2rSRBH
SRTR

where t(k) refers to the t-statistic for a horizon of k months. RBH refers to
the mean return on the market (Buy and Hold Strategy) and RTR refers to the
mean return under the trading rule. SRBH

refers to the standard deviation on
the market return and SRTR

is the market return under the rule with r being
the correlation coefficient. The results are reported in table 4
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Period Paired Correlation Mean Differences Std error t-statistic
1 year 0.368 -0.010 0.0007 -13.99
2 year 0.329 -0.021 0.0014 -14.88
3 year 0.297 -0.035 0.0022 -15.40
4 year 0.268 -0.049 0.0031 -15.69
5 year 0.247 -0.066 0.0041 -15.88

Table 4:
Test of Correlated Means. The right hand side column illustrates the hold-
ing period (k). The correlation between the two return series are also reported.
the RBH(k) − RTR(k) refers to the mean difference. The denominator in the
test is given by the std error. The degrees of freedom for the 1,2,3, 4, 5 years
of horizons were 1295, 1283, 1271, 1259 and 1247 respectively.

We find that the rule significantly outperforms the Buy and Hold strategy.
The null hypothesis that the mean difference is zero is rejected in all cases. As
the horizon increases, the t-statistic becomes larger. Hence over the long hori-
zon, there is a higher mean reversion towards the equilibrium. The correlation
between the rule and thhe Buy and Hold strategy tends to decrease over time
which is normal as there is a higher probability of assets being held in bonds
for one or more months.

4.4.2 Test of Riskiness

As a further test for the whole horizon, we perform the Sweeney’s X statistic
designed to take into account the number of periods that the asset is stored in
the equity or in the bond market. It is highly probable that when the asset is
held in the stock market, it possesses higher risk than when the asset is kept
in the bond market. Sweeney’s test procedure (1986) is used in an attempt to
account for the riskiness of shifting assets. The test is given as follows

X = Rtr − (1− f)RBH

σx = σ[f(1− f)/N ]
1
2

where RTR relates to the returns under the trading rule over the period, RBH
refers to the returns under the Buy and Hold Strategy, (1-f) is the proportion
of months in which the investor’s wealth is placed in the equity market, N is
the number months the rule is put to the test and σ is the standard error of
the monthly returns under the Buy and Hold strategy. The X statistic turns
out to be 0.0022 with a standard error of 5.4 x 10−5. The resulting t-statistic
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rejects the null hypothesis of equal returns for both the rule and the buy and
hold strategy after accounting for the riskiness of the equity index.

4.4.3 Sampling with Replacement

The earlier results for the different horizons are based on the whole sample
of returns. Hence the results may be biased due to periods of randomly high
returns the rule posited. The results may be biased if we have some high values
of returns for particular horizons, which may produce higher returns under the
rule than under the Buy and Hold Strategy. In the following test, random dates
are picked from the larger sample, and the success of the rule vis- a-vis the Buy
and Hold strategy are investigated.

The selection of the random dates is derived from a uniform probability
distribution. A vector of dates is generated using a random number generator
where an equally size vector between zero and one is randomly chosen from
the uniform probability distribution. This vector is then multiplied with n-k
where n is the end date of the sample and k is the length of horizon we are
looking at, for example k = 12, 24. . . ..60. Subtraction of k ensures that returns
under the passive Buy and Hold can be calculated for horizon k, especially if
the draw is near the end of the sample. The number of dates (initial point)
picked out are 20,40, 80 and 160. Adopting a large sample may add power to
the results. However, we note that having a large sample may not exclude the
presence of dependence in the results. For example, just by luck , there is a
higher probability of two dates being drawn near to each other such that some
element of double counting may not be excluded. The results are reported in
table 5

Period 20 40 80 120
1 year 40 40 46.25 43.13
2 year 35 47.5 43.75 43.75
3 year 35 47.5 40 40.63
4 year 40 47.5 42.5 41.88
5 year 45 52.5 41.25 41.88

Table 5:
Performance of Model versus Buy and Hold. The column period relates
to the number of months returns have been cummulated. The first row illustrate
the sample size of the number of dates randomly picked up. The figures illustrate
the percentage number of times the trading rule strictly beats the Buy and Hold
strategy.
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The table illustrates that the Buy and Hold strategy marginally beats the
rule. This is not unexpected. In the cumulated returns plot ??, the Buy and
Hold strategy seems to exceed the rule for approximately 68 % of the whole
sample. Hence it seems appropriate that a random date was picked up in time
where the rule performed badly. We also report the percentage number of times
where the rule beats or equals the Buy and Hold strategy in table 6

Period 20 40 80 120
1 year 55 60 61.25 60
2 year 40 52.5 53.75 53.12
3 year 40 47.5 41.25 41.87
4 year 45 50 40 41.25
5 year 45 52.5 42.5 43.12

Table 6:
Performance of Model versus Buy and Hold. This table illustrates the
number of times that the rule beats or equals the Buy and Hold Strategy.

The reason for reporting table 5 and 6 separately lies in the subjective pref-
erences of investors. For example an investor mind not mind getting the same
return as the Buy and Hold Strategy. As expected the percentage of times,
the trading rule beats or equals the Buy and Hold strategy tends to increase.
However. In this case, the rule seems to work only for 1 and 2 years of accumu-
lated returns. However for longer periods, the rule does not seem to beat the
market. A potential reason that can be highlighted for this phenomenon is that
markets tend to suffer from behavioral biases that may hinder the adjustment
from the actual price to the theoretical price. Or within a rational expectations
context, over the long periods, even if the market is efficient, which implies that
P ∗t = Pt, marginal changes in the P

∗
t through measurement errors in either

µt and gt will lead to changes in the theoretical price. Marginal measurement
errors in forming the theoretical price P ∗t can lead to an improper selection of
the asset.

5 Conclusion

This paper draws attention to a relatively passive trading rule that can be im-
plemented by identifying whether equity indices are overpriced or underpriced.
If the equity market is underpriced, the asset should be held long in the equity
market and vice versa. A conceptual issue addressed in this paper is the valua-
tion of the asset, which is dependent on the future dividends, expected returns
and expected dividend growth rates. All these three series are unidentifiable in
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real time. The series for the three variables were derived using a state space
framework.

The interesting finding of this paper is that the rule does work for long
periods of time. The cumulative returns over a long monthly sample was derived
and found to be higher for the rule. Even when risk of shifting the asset was
accounted for, the rule produced higher returns. However, when a sample of
dates was randomly selected, the rule tends to perform worse over longer periods
that it was put to use. It seems to beat or equal the buy and hold strategy
marginally for short periods of time. The success of the rule, a priori, relies on
whether markets are dynamically efficient. However, if markets are not efficient,
the rule fails since the actual price will not adjust to the theoretical price set
by rational agents. The behavioral story behind it is that there seems to be
periods where there is no convergence of actual price to the theoretical price
and that would explain the current model However, small measurement errors

in the neighborhood of the
P∗

t

Pt
= 1,may actually make lead to an incorrect

timing of the market. Moreover, market sentiments might actually perpetuate
any disequilibrium from the efficient market price. In other words, it may take
more than one month, which is our period of measurement, for the process of
mean reversion to take place.

This simple study raises further research questions. For instance, the fre-
quency of the data is quite important since it is highly possible in lower frequency
data that any disequilibrium will not take time to be updated in the information
set of agents and hence smooth the path of the adjustment of the actual price
to the efficient market’s price. Moreover, it is worth examining the reliability of
using earlier data. Moreover, transaction costs may be included in order to see
whether the return from the rule is not arbitraged away.
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A The Net Present Value Model.

Equations 3 , 4 and 5 are represented

rt = log(
Pt+1 +Dt+1

Pt
) (21)

PDt =
Pt
Dt

(22)

∆dt+1 = log(
Dt+1
Dt

) (23)

The return process can be written as

rt = log((
Pt+1 +Dt+1

Pt
).
Dt
Dt
.
Dt+1
Dt+1

)

log((
Pt+1Dt +Dt+1Dt

PtDt+1
).
Dt+1
Dt

) (24)

log((
Dt
Pt
.
Pt+1
Dt+1

+
Dt
Pt
).
Dt+1
Dt

) (25)

log((
Pt+1
Dt+1

+ 1)
Dt+1
Dt

.
Dt
Pt
) (26)

log(1 + epdt+1)) + ∆dt+1 − pdt (27)

Assuming the log linearization of Campbell and Shiller (1988) the returns
can be written as

rt ' log((1 + e
pdt+1)) +

exp(pd)

1 + exp(pd)
+ ∆dt+1 − pdt

rt = κ+ ρpdt+1 +∆dt+1 − pdt

Hence,
pdt = κ+ ρpdt+1 +∆dt+1 − rt+1
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B State Space Model.

In this section, we describe the Kalman filter procedure. The model has been
coded using Ox 5. From the paper, there are two measurement equation and
one transition equation. Equations 15, 16 and 17 can be written in this form:

Xt = FXt−1 +Rεt

Yt =M0 +M1Yt−1 +M2Xt

where Yt =

[
∇dt
pdt

]

The variables of the transition equation are Xtand ε
x
t+1and are made up of

the following elements:

Xt =




ĝt−1
εDt
εgt
εµt


 F =




γ1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 R =




0 0 0
1 0 0
0 1 0
0 0 1


 εxt+1 =



εDt+1
εgt+1
εµt+1




The parameters of the measurement equation include parameters of the net
present value model to be estimated. These are defined as :

M0 =

[
γ0

(1− δ1) ∗A

]
M1 =

[
0 0
0 δ1

]
M2 =

[
1 1 0 0

B2(γ1 − δ1) 0 B2 −B1

]

The variance covariance matrix from the state space model is given by :

Σ = var



εgt+1
εµt+1
εdt+1


 =



σ2g σgµ σgd
σgµ σ2µ σDµ
σgd σDµ σ2D




The Kalman Filter procedure is given by the following equations :

X0|0 = E[X0]

P0|0 = E[XtX
′
t]

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +RΣR′

ηt = Yt −M0 −M1Yt−1 −M2Xt|t−1

St = M2Pt|t−1M
′
2

Kt = Pt|t−1M
′
2S

−1
t

Xt|t = Xt|t−1 +Ktηt

Pt|t = (I −KtM2)Pt|t−1
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The parameters to be optimized are :

Θ = (γ0, δ0, γ1, δ1, σg, σµ, σD, ρgµ, ρgD, ρµD)
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C Other Statistical results

Rt µt ∆dt gt

Stationarity test of I(0)

Robinson-Lobato 9.54 (0) 5.327 (0) 1.263 (0.103) -0.676 (0.751)

KPSS test 0.574 (<0.02) 0.878 (<0.01) 0.054 (<1) 0.049 {<1)

Lo’s RS 1.316 (<0.4) 1.386 (0.3) 0.971 (<0.9) 0.962 (<0.9)

Stationarity test of I(1)

Augmented Dickey-Fuller -25.34 (<0.01) -2.199 (<0.9) -17.07 (<0.01) -11.85 (<0.01)

Phillips-Perron -25.34 (<0.01) -2.601 (<0.1) -16.99 (<0.01) -11.75 (<0.01)

DF-GLS -25.34 (<0.01) -2.201 (<1) -16.74 (<0.01) -11.76 (<0.01)

P 0.549 (<0.01) 1.819 (<0.01) 0.151 (<0.01) 0.160 (<0.01)

Table 7:
Tests of Stationarity. The table reports the computed statistics for the tests
of stationarity. The first three tests have for null hypothesis that the series is
stationary, while the rest have the null hypothesis of a nonstationary series. The
figures in brackets are the p-values.

Lag ∆dtvs ∆dt−j gtvs gt−j ∆dtvs gt−j gtvs ∆dt−j
0. 1 1 0.649 0.649
1. 0.636 0.807 0.519 0.962
2. 0.506 0.643 0.420 0.781
3. 0.386 0.520 0.402 0.626
4. 0.387 0.470 0.349 0.489
5. 0.332 0.416 0.319 0.448
6. 0.317 0.374 0.261 0.395
7. 0.258 0.317 0.215 0.366
8. 0.224 0.264 0.160 0.314
9. 0.165 0.208 0.125 0.268
10. 0.128 0.165 0.112 0.212
11. 0.117 0.141 0.092 0.167
12. 0.103 0.116 0.089 0.144

Table 8:
Correlation of Realized and Expected Dividend Growth. The table
illustrates the correlation of realized and expected dividend growth rates at
specific lags.
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Lag Rtvs Rt−j µtvs µt−j Rtvs µt−j µtvs Rt−j
0. 1 1 0.255 0.255
1. 0.340 0.992 0.353 0.220
2. 0.097 0.981 0.372 0.211
3. 0.038 0.969 0.365 0.215
4. 0.102 0.960 0.353 0.211
5. 0.155 0.951 0.351 0.205
6. 0.145 0.942 0.356 0.198
7. 0.118 0.931 0.362 0.193
8. 0.113 0.921 0.361 0.189
9. 0.103 0.911 0.357 0.186
10. 0.115 0.901 0.357 0.179
11. 0.097 0.890 0.360 0.176
12. 0.071 0.88 0.359 0.177

Table 9:
Correlation of Realized and Expected Returns. The table illustrates the
correlation of realized and expected returns at specific lags.
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D Graphical Plots
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Figure 1: Plot of Expected and Realized Returns
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Figure 2: Plot of Expected and Realized Dividend Growth Rate
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Figure 3: Plot of Trading Rule Return and Best Return.
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Figure 4: Probabibility Distribution of P∗t /Pt
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