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Abstract

We develop a rational expectations model of financial bubbles and study how

the risk-return interplay is incorporated into prices. We retain the interpretation

of the leading Johansen-Ledoit-Sornette model: namely, that the price must rise

prior to a crash in order to compensate a representative investor for the level of

risk. This is accompanied, in our stochastic model, by an illusion of certainty as

described by a decreasing volatility function. As the volatility function decreases

crashes can be seen to represent a phase transition from stochastic to deterministic

behaviour in prices. Our approach is first illustrated by a benchmark Gaussian

model – subsequently extended to a heavy-tailed model based on the Normal Inverse

Gaussian distribution. Our model is illustrated by an empirical application to

the London Stock Exchange. Results suggest that the aftermath of the Bank of

England’s process of quantitative easing has coincided with a bubble in the FTSE

100.

Keywords: financial crashes, super-exponential growth, illusion of certainty, heavy tails,

bubbles.

1 Introduction

Rational expectations models were introduced with the work of Blanchard and Watson to

account for the possibility that prices may deviate from fundamental levels [1]. We take
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as our main starting point the somewhat controversial subject of log-periodic precursors

to financial crashes [2]-[11], with a fundamental aim of our approach being relatively easy

calibration of our model to empirical data. Additional background on log-periodicity and

complex exponents can be found in [12]. A first-order approach in [3] and subsequent

extensions in [13] state that prior to a crash the price must exhibit a super-exponential

growth in order to compensate a representative investor for the level of risk. However, this

approach concentrates solely on the drift function and ignores the underlying volatility

fluctuations which typically dominate financial time series [14]. We undertake a similar

approach to that in [3] but extend the original method by deriving a second-order condition

which incorporates volatility fluctuations and enables us to combine insights from a

rational expectations model with a stochastic model [15]-[16].

Our model gives two important characterisations of bubbles in economics. Firstly, a

rapid super-exponential growth in prices. Secondly, an illusion of certainty as described by

a decreasing volatility function prior to the crash. As the volatility function goes to zero

bubbles and crashes can be seen to represent a phase transition from stochastic to purely

deterministic behaviour in prices. This clarifies the oft cited link in the literature between

phase transitions in critical phenomena and financial crashes. Further, this recreates

the phenomenology of the Sornette-Johansen paradigm: namely that prices resemble a

deterministic function prior to a crash. We explore a number of different applications of

our model and the potential relevance to recent events is striking.

The layout of this paper is as follows. In Section 2 we introduce a benchmark Gaussian

model. In Section 3 we extend the basic model to a heavy-tailed setting in order to account

for leptokurtosis in financial returns. Section 4 gives an empirical application. Section

5 is a conclusion. A probability Appendix, included for the reader’s convenience, can be

found at the end of the paper.

2 Motivation: a simple Gaussian model

In this section we derive and solve a Gaussian model for financial bubbles, our approach

later serving to motivate a non-Gaussian model in Section 3. An alternate formulation of

the basic model in [3] leads naturally to a stochastic generalisation of the original model

as follows. Let P (t) denote the price of an asset at time t. Our starting point is the

equation

P (t) = P1(t)(1− κ)j(t), (1)
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where P1(t) satisfies

dP1(t) = µ(t)P1(t)dt+ σ(t)P1(t)dWt, (2)

where Wt is a Wiener process and j(t) is a jump process satisfying

j(t) =

{

0 before the crash

1 after the crash.
(3)

When a crash occurs κ% is automatically wiped off the value of the asset. Prior to a

crash P (t) = P1(t) and Xt = log(P (t)) satisfies

dXt = µ̃(t)dt+ σ(t)dWt + ln[(1− κ)]dj(t), (4)

where µ̃ = µ(t)− σ2(t)/2. If a crash has not occurred by time t, we have that

E[j(t+ dt)− j(t)] = h(t)dt+ o(dt), (5)

Var[j(t+ dt)− j(t)] = h(t)dt+ o(dt), (6)

where h(t) is the hazard rate. We compare (4) with the prototypical Black-Scholes model

for a stock price:

dXt = µdt+ σdWt, (7)

where µ̃ = µ − σ2/2, and use (7) as our model for “fundamental” or purely stochastic

behaviour in prices.

The first-order condition see e.g. [1], [3], suggests that µ̃(t) in (4) grows in order

to compensate a representative investor for the risk associated with a crash. The

instantaneous drift associated with (4) is

µ̃(t) + (ln(1− κ))h(t). (8)

For (7) the instantaneous drift is µ̃. Setting (8) equal to µ̃, it follows that in order for

bubbles and non-bubbles to co-exist

µ̃(t) = µ̃− (ln(1− κ))h(t). (9)

If we ignore volatility fluctuations by setting σ(t) = σ, then our pre-crash model for an
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asset price becomes

dXt = (µ̃− ln(1− κ)h(t))dt+ σdWt. (10)

However, this is actually a rather poor empirical model [18], failing to adequately account

for the volatility fluctuations in (4). Under a Markowitz interpretation, means represent

returns and variances/standard deviations represent risk. Suppose that in (4) σ(t) adapts

in an analogous way to µ(t) so as to compensate a representative investor for bearing

additional levels of risk. The instantaneous variance associated with (4) is

σ2(t) + (ln(1− κ))2h(t). (11)

For (7) the instantaneous variance is σ2. Setting (11) equal to σ2, the second-order

condition for co-existence of bubbles and non-bubbles becomes

σ2(t) = σ2 − (ln(1− κ))2h(t). (12)

(12) illustrates an illusion of certainty – a decrease in the volatility function – which

arises as part of a bubble process. Intuitively, in order for a bubble to occur not only

must returns increase but the volatility must also decrease. If this does not happen (7)

with an instantaneous variance of σ2 would represent a more attractive and less risky

investment than a market described by (10) and bubbles could not occur. We use (7) as

a model of a ‘fundamental’ or purely stochastic regime, as in Black-Scholes theory. From

(12), our model for prices under a bubble regime becomes

dXt = [µ̃− ln(1− κ)h(t)]dt+
√

σ2 − (ln(1− κ))2h(t)dWt. (13)

The simplest h(t) considered in [3] is

h(t) = B(tc − t)−α, (14)

where it is assumed that α ∈ (0, 1) and tc is a critical time when the hazard function

becomes singular, by analogy with phase transitions in statistical mechanical systems

[19]. Here, we choose on purely statistical grounds

h(t) =
βtβ−1

αβ + tβ
, (15)

which is the form corresponding to a log-logistic distribution and is intended to capture

the essence of the previous approach as the hazard rate has both a relatively simple form
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and, for β > 1, has a non-trivial mode at t = α(β − 1)
1
β , with modal point (β − 1)1−

1
β /α.

For these reasons, the log-logistic distribution is commonly used in statistics [20]. The

log-logistic distribution has probability density

f(x) =
βαβxβ−1

(αβ + xβ)2
, (16)

on the positive half-line. The cumulative distribution function is

F (x) = 1− αβ

αβ + xβ
(17)

The model (13) with h(t) given by (15) has the solution

Xt = X0 + µ̃t+ v ln

(

1 +
tβ

αβ

)

+

∫ t

0

√

σ2 − v2
βtβ−1

αβ + tβ
dWu. (18)

where v = − ln(1− κ) with v > 0. From (18) the conditional densities can be written as

Xt|Xs∼N(µt|s, σ
2
t|s), (19)

where

µt|s = Xs + µ̃(t− s) + v ln

(

αβ + tβ

αβ + sβ

)

, (20)

σ2
t|s = σ2(t− s)− v2 ln

(

αβ + tβ

αβ + sβ

)

. (21)

Under the fundamental equation (7) these expressions are simply µt|s = Xs+ µ̃(t− s) and

σ2
t|s = σ2(t− s). Thus, we see that under the bubble model the incremental distributions

demonstrate a richer behaviour over time.

The fundamental or purely stochastic non-bubble model (7) corresponds to the case

that κ = 0, or equivalently that v = 0. We can test for bubbles by testing the null

hypothesis v = 0 (no bubble) against the alternative hypothesis v > 0 (bubble). This

can be simply done using a (one-sided) t-test since maximum likelihood estimates, and

estimated standard errors, can be easily calculated numerically from (19). A range of

further implications of our bubble model can be derived as we describe below.

Crash-size distribution. Suppose that prices are observed up to and including time t and

that a crash has not occurred by time t. The crash-size distribution resists an analytical

description but a Monte Carlo algorithm to simulate the crash-size C is straightforward

and reads as follows:
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1. Generate u from U ∼ Log-logistic(α, β) with the constraint u≥t.

2. C∼κeZ ,

where

Z∼N

(

Xt + µ̃(u− t) + v ln

(

αβ + uβ

αβ + tβ

)

, σ2(u− t)− v2 ln

(

αβ + uβ

αβ + tβ

))

(22)

We note that simulating u from the log-logistic distribution is straight-forward and from

(17) possible via inversion using

F−1(x) = α

(

x

1− x

)
1
β

or F−1(x) =

(

αβ + tβ

1− x
− αβ

)

1
β

with constraint u≥t.

Post-crash increase in volatility. Before a crash equation (18) applies and the volatility

is given by

σ2(t) = σ2 − v2βtβ−1

αβ + tβ
. (23)

After a crash, the volatility reverts to its fundamental level σ2. Equation (23) thus predicts

a post-crash increase in volatility according to

σ2(t) ∝ v2βtβ−1

αβ + tβ
. (24)

For β = 1 (24) corresponds to the model of post-financial-crash volatility decay in [21].

Fundamental values. The above model suggests a simple approach to estimate

fundamental value. Under the fundamental dynamics (7)

PF (t) := E(P (t)) = P (0)eµt. (25)

(25) leads to a simple approach to estimate fundamental value. This approach recreates

the widespread phenomenology of approximate exponential growth in economic time series

(see e.g. Chapter 7 in [22]).

Estimated bubble component.Define

H(t) =

∫ t

0

h(u)du. (26)

Under the fundamental model E(P (t)) is given by (25). Under the bubble model, since
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Xt = log(Pt) satisfies

Xt ∼ N
(

X0 + µ̃t+ vH(t), σ2t− v2H(t)
)

, (27)

it follows that

PB(t) := E(P (t)) = P (0)e
µt+

(

v− v2

2

)

H(t)
, (28)

where H(t) is given by

H(t) = ln

(

1 +
tβ

αβ

)

. (29)

This motivates the following estimate for the proportion of observed prices which can be

attributed to a speculative bubble:

1− 1

T

∫ T

0

PF (t)

PB(t)
dt = 1− 1

T

∫ T

0

(

1 +
tβ

αβ

)−(v−v2/2)

dt. (30)

3 Heavy-tailed models via the NIG distribution

3.1 Purely stochastic or fundamental model

As a model for fundamental or purely stochastic behaviour in prices we choose the equation

dP (t) = µP (t)dt+ σ
√
UP (t)dWt, (31)

where U is an unobserved random variable with an IG(1, 1/K) distribution (see the

Appendix), which has mean 1 and is independent of the Wiener process Wt. This

formulation retains the tractability of Gaussian stochastic calculus [23] but enables one

to generate heavy-tailed non-Gaussian behaviour inline with stylized empirical facts [14],

Chapter 7. The models in this section are based around the Normal Inverse Gaussian

(NIG) distribution [24]-[25]. See the Appendix for the definition and for some additional

facts about this distribution.

From (31) it follows that the log-price Xt evolves according to

dXt =

[

µ− σ2U

2

]

dt+ σ
√
UdWt. (32)
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From Result 1 in the Appendix it follows that

Xt ∼ NIG

(

µ = X0 + µt, α =

√

1

σ2tK
+

1

4
, β = −1

2
, δ =

σ
√
t√

K

)

. (33)

Further, the incremental distributions are given by

Xt+∆ −Xt ∼ NIG

(

µ = µ∆, α =

√

1

σ2∆K
+

1

4
, β = −1

2
, δ =

σ
√
∆√
K

)

. (34)

We have that

E[Xt+∆ −Xt] = µ+
δβ

γ
= µ∆+ σ

√

∆

K

(

−1

2

)√
σ2∆K = ∆

(

µ− σ2

2

)

, (35)

and

var[Xt+∆ −Xt] =
δα2

γ3
= σ

√

∆

K
(σ2∆K)

3
2

(

1

σ2∆K
+

1

4

)

= σ4∆2K

(

1

σ2∆K
+

1

4

)

= σ2∆+ o(∆). (36)

Hence it follows, as in the Gaussian case, that under the fundamental or purely stochastic

regime Xt has instantaneous mean or drift given by µ− σ2/2 and instantaneous variance

given by σ2.

As was the case with the Gaussian model in Section 2, this simple NIG model also

suggests a simple approach to estimating fundamental value. It follows from (33) and

Result 2 in the Appendix that

PF (t) := E(P (t)) = eX0+µt = P (0)eµt. (37)

3.2 Leptokurtic bubble model

We formulate a heavy-tailed extension of the Gaussian bubble model in Section 2 as

follows. We retain (1) but replace (2) with the equation

dP1(t) = µ(t)P1(t)dt+ σ(t)
√
UP1(t)dWt. (38)
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As before, we have that prior to a crash P (t) = P1(t) and from (38) that Xt = log(P (t))

satisfies

dXt =

(

µ− σ2(t)U

2

)

dt+ σ(t)UdWt + ln[1− κ]dj(t). (39)

Under the bubble model (39) we have that

E[Xt+∆ −Xt|U ] = ∆

[

µ(t)− σ2(t)

2
U

]

+∆ ln[1− κ]h(t) + o(∆). (40)

Therefore

E[Xt+∆ −Xt] = E

[

∆

[

µ(t)− σ2(t)

2
U

]]

+∆ ln[1− κ]h(t) + o(∆), (41)

= ∆

[

µ(t)− σ2(t)

2
+ ln[1− κ]h(t)

]

+ o(∆). (42)

Similarly, we see that

var[Xt+∆ −Xt] = E[var[Xt+∆ −Xt|U ]] + var (E[Xt+∆ −Xt|U ])

= ∆E[σ2(t)U + v2h(t)] + ∆2var

(

µ− σ2U

2

)

+ o(∆)

= ∆[σ2(t) + v2h(t)] + o(∆), (43)

where v = − ln[1 − κ]. Hence, it follows that under the bubble model the instantaneous

mean is µ(t) − σ2(t)/2 + vh(t) and the instantaneous variance is σ2(t) + v2h(t). The

mean-variance conditions for the co-existence of bubbles and non-bubbles become

σ2 = σ2(t) + v2h(t), σ2(t) = σ2 − v2h(t), (44)

and

µ− σ2

2
= µ(t)− σ2(t)

2
− vh(t);µ(t) = µ+

(

v − v2

2

)

h(t). (45)

3.3 Statistical properties of the bubble model

As constructed, the bubble model in (38) has the following construction:

U ∼ IG

(

1,
1

K

)

,

Xt|U ∼ N

(

X0 + µt+

(

v − v2

2

)

H(t)− (σ2t− v2H(t))U

2
,
[

σ2t− v2H(t)
]

U

)

.(46)
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It follows from (46) and Result 1 in the Appendix that that Xt is NIG distributed with

parameters

µ = X0 + µt+

(

v − v2

2

)

H(t),

α =

√

1

(σ2t− v2H(t))K
+

1

4
,

β = −1

2
,

δ =

√

σ2t− v2H(t)√
K

, (47)

where H(t) is given by (29). Similar reasoning shows that we have that the conditional

distribution of Xt given Xs is NIG distributed with parameters

µ = Xs + µ(t− s) +

(

v − v2

2

)

ln

(

αβ + tβ

αβ + sβ

)

,

α =

√

√

√

√

1
(

σ2(t− s)− v2 ln
(

αβ+tβ

αβ+sβ

)) +
1

4
,

β = −1

2
,

δ =

√

σ2(t− s)− v2 ln
(

αβ+tβ

αβ+sβ

)

√
K

. (48)

Crash-size distribution. Suppose that prices are observed up to and including time t and

that a crash has not occurred by time t. The crash-size distribution resists an analytical

description but a Monte Carlo algorithm to simulate the crash-size C is straightforward

and reads as follows:

1. Generate u from U ∼ Log-logistic(α, β) with the constraint u≥t.

2. C∼κeZ ,

where Z is NIG distributed with parameters

µ = Xt + µ(u− t) +

(

v − v2

2

)

ln

(

αβ + uβ

αβ + tβ

)

,

α =

√

√

√

√

1
(

σ2(u− t)− v2 ln
(

αβ+uβ

αβ+tβ

)) +
1

4
,

β = −1

2
,
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δ =

√

σ2(u− t)− v2 ln
(

αβ+uβ

αβ+tβ

)

√
K

(49)

Estimated bubble component. Under the fundamental model E(P (t)) is given by (37).

Under the bubble model, since it follows from (47) and Result 2 in the Appendix that

PB(t) := E(P (t)) = P (0)e
µt+

(

v− v2

2

)

H(t)
. (50)

Continuing, we see that the estimated bubble component can be formulated in exactly

the same way as in equation (30).

4 Empirical application

As an empirical application we look at daily prices of the FTSE 100 from March 2nd 2009

to October 29th 2010 to try and determine whether or not the Bank of England’s policy

of quantitative easing has coincided with, and possibly led to, a speculative bubble in the

London Stock Exchange. As shown in Figure 1, even with such a relatively short data

set, there appears to be some merit in using a heavy-tailed non-Gaussian model with the

asymmetric NIG model offering a better fit than the normal distribution to the right tail

of the empirical distribution of the log-returns.

Testing the null hypothesis of no bubble is a test of the hypothesis v = 0. This can

be tested using a one-sided t-test – dividing the estimate v̂ by its estimated standard

error and comparing to a normal distribution. For this data set we obtain a t-statistic

of 3.332 and a p-value of 0.000, giving strong evidence of a bubble. A plot of observed

prices compared to estimated fundamental values is shown in Figure 2. Some degree

of over-pricing is apparent although prices appear to have moved closer to estimates of

fundamental value over the second half of 2010. In contrast, however, calculating the

estimated bubble component in equation (30) is only estimated to be 0.006, suggesting

that the speculative bubble component accounts for a relatively trivial amount, roughly

0.6%, of the observed prices.

In summary, the statistical test and the plot shown in Figure 2 give enough evidence to

point to a bubble and to some level of over-pricing in the FTSE 100. However, the level

of over-pricing does not seem particularly large and prices appear to have moved closer to

estimated fundamental values over the second half of 2010. The level of over-pricing also

seems much less than the recent UK housing bubble where a similar approach suggested

that the speculative bubble component accounted for around 20% of the observed prices
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[26].

5 Conclusions

This paper builds on the now well-established analogy between financial crashes and

phase transitions in critical phenomena. In a stochastic version of the original model

of Johansen et al. (2000) crashes are seen to represent a phase transition from random

to deterministic behaviour in prices. Crash precursors are a super-exponential growth

accompanied by an“illusion of certainty”, characterised by a decrease in the volatility

function prior to the crash. A Gaussian model is introduced and then further extended to

incorporate a heavy-tailed version of the model based around the NIG distribution. Under

both settings a range of potential applications to economics were discussed. These include

statistical tests for bubbles, crash-size distributions, predictions of a post-crash increase in

volatility – related to Omori-style power laws in complex systems – and simple estimates

of fundamental-value and speculative-bubble components. As an empirical application

we test for whether a bubble is present in the FTSE 100 following the introduction of

the Bank of England’s policy of quantitative easing. Some evidence of a bubble and

subsequent over-pricing is found. However, the level of over-pricing does not appear very

large – particularly in comparison to the recent UK housing bubble – and prices appear

to have converged towards estimated fundamental values during the latter half of 2010.

Probability appendix

Definition 1 The inverse Gamma distribution is the probability distribution on [0,∞)

with parameters µ, λ and probability density

f(x) =

√

λ

2πx3
e
−λ(x−µ)2

2µ2x . (51)

The mean is equal to µ and the variance is equal to µ3/λ.

Definition 2 The normal inverse Gaussian distribution is the probability density on

(−∞,∞) with parameters µ, α, β, δ. Define γ =
√

α2 − β2, |β| < α. The NIG

distribution has probability density function given by

f(x) =
αδK1

(

α
√

δ2 + (x− µ)2
)

π
√

δ2 + (x− µ)2
eδγ+β(x−µ). (52)
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where K1 denotes the modified Bessel function of the second kind with integral

representation

Kv(z) =
e−z

Γ
(

v + 1
2

)

√

π

2z

∫ ∞

0

e−ttv−
1
2

(

1 +
t

2z

)v− 1
2

dt. (53)

In addition to (53) we note, for later use, the following integral [14]

∫ ∞

0

e−
α2t
2

−β2

2t t−1−vdt = 2

(

α

β

)v

Kv(βα). (54)

The mean of the NIG distribution is

µ+
δβ

γ
, (55)

and the variance is

δα2

γ3
. (56)

Further, the moment generating function of the NIG distribution, E[exp{tX}] is given by

MX(t) = eµt+δ(γ−(β+t)2). (57)

Result 1 (Mixture representation of the NIG distribution) Suppose that X and

U are random variables obeying the following construction:

U ∼ IG(1,
1

K
) (58)

X|U ∼ N

(

µ− σ2U

2
, σ2U

)

, (59)

then the marginal distribution of X is NIG(µ, α, β, δ) where

µ = µ,

α =

√

1

σ2K
+

1

4
,

β = −1

2
,

δ =
σ√
K

. (60)

Result 2 Suppose that X is NIG distributed with parameters given by (60). Then it

14



follows that

E(eX) = eµ. (61)

Proof

It follows from (57) that

E[eX ] = eµ+δ(γ−
√

α2−(−1/2+1)2) (62)

= eµ+δ(γ−
√
α2−4) = eµ+δ.0 = eµ. (63)

�
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