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DCC and DECO-GARCH are compared to that of GMV portfolios constructed by sample covariance 

and constant correlation methods in terms of reduced volatility. Also, the performance of GMV 
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constructed from the stocks listed in Istanbul Stock Exchange 30 index (hereafter, ISE-30). The results 

show that GMV portfolios constructed by DCC-GARCH outperformed the other portfolios. In 

addition, the performance of GMV portfolios estimated by DCC and DECO-GARCH methods are 

improved by extending calibration period from three years to four years and lowering rolling window 
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the effect of time varying variance and dynamic correlations on portfolio optimization at Turkish stock 

market.  
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1.      Introduction 

Investors and even portfolio managers often monitors the benchmark indices which are 

generally constructed by exchanges relying on cap weighted average. These benchmarks 

only give the investors the general idea about the general market movement. Since they lack 

the requirements for robust benchmark or portfolio construction, investments decisions 

depend on these benchmarks lead the investors and portfolio managers to underperform. 

Therefore, robust portfolio optimization is one of the major issues for portfolio managers and 

other market participants. 

 

Since Markowitz (1952) developed the mean-variance framework, there have been 

profound developments on the portfolio optimization. Sharpe (1963) proposes the CAPM as 

the single factor model to estimate covariance matrices. Elton and Gruber (1973) introduce 

the constant correlation methodology to reduce the burden of large scale parameter 

estimation. Instead of simple model of Sharpe (1963), multi-factor model estimation is 

applied by Chan, Karceski and Lakonishok (1999).  

 

Standard deviations and the pair-wise correlations are the elements for covariance 

construction. Employing unconditional standard deviations and constant correlations to 

estimate covariance matrix are always debated by finance literature and market as well. The 

presence of time varying variances and correlations are shown by Engle (1982). GARCH 

(1,1), introduced by Bollerslev(1986), capture the ARCH effect and model the time varying 

variance with less constraints relative to ARCH.  

 

The first adaptation of univariate GARCH process is carried out by Bollerslev, Engle 

and Wooldridge (1988). They employ the univariate GARCH process to do multivariate 

parameterization. It is known as vech form of multivariate GARCH. They also propose 

diagonal vech form of that model by which the numbers of parameters, which are to be 

estimated, were reduced. However, it creates a computational burden when the sample size 

increases. Since the number of parameters to be estimated is too many, it is hard to achieve a 

feasible estimation.  

 

Engle and Kroner (1995) find the way of producing positive definite covariance matrix 

through BEKK model. However, it is a great problem that estimating the conditional 

covariances as the sample size increased. In order to solve this problem, Bollerslev (1990) 
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introduces constant conditional correlation GARCH (CCC-GARCH) model. By this model, 

standard deviations of each asset are produced by univariate GARCH process and it is 

assumed that the pair-wise correlations are constant. Therefore, CCC approach does not 

model the time varying conditional correlation. The standard deviations within the covariance 

matrix are calculated relying on the GARCH constraints such as non-negativity. So, under the 

conditions of the guaranteed non-negative conditional variances and the invertible conditional 

matrix generating positive definite covariance matrix is certainly obtained.   

 

However, Tse and Yu (1999) prove that the constant correlation is not valid when the 

estimation process is multivariate. The pair-wise correlations are also time-varying and they 

need to be modeled to produce consistent errors.  

 

The challenging problem of constant correlation is solved by the dynamic conditional 

correlation GARCH (DCC-GARCH), proposed by Engle (2001). Mathematical framework of 

this model, developed by Engle and Sheppard (2001), has main two steps algorithm to have 

time varying covariance matrix. First step is to find conditional standard deviations through 

the univariate GARCH and second step is to model the time varying correlations relying on 

lagged values of residuals and covariance matrices. After that, conditional covariance matrix 

could be found by using conditional standard deviations and dynamic correlations.  

 

Tse and Tsui (2002) support estimation accuracy of dynamic correlation model. They 

assume that the pair-wise correlations follow moving average process and they find the 

conditional variances by univariate GARCH.  They show that errors of maximum likelihood 

estimator are reduced by the multivariate GARCH estimation with dynamic correlation.  

 

Considering that DCC-GARCH captures the time varying correlations and variances, it 

is very well structured model to estimate time varying covariance matrix. However, the 

estimation of conditional correlation matrix for a portfolio with large number of assets causes 

the difficulty of estimation. The way of reducing the scale of estimation was proposed by 

Engle and Kelly (2009). Averaging of pair dynamic correlations, they reduce the burden of 

large scale parameterization. This process is called as Dynamic Equicorrelation GARCH 

(DECO-GARCH). It reduces the sample risk caused by large scale covariance matrix. 

However, there is always estimation risk because of assigning one value to each pair-wise 

correlation instead of their real values. 
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These relatively new techniques, DCC and DECO-GARCH, are employed to construct 

GMV portfolio in this paper.  Considering the high volatile structure of emerging stock 

markets, one of the volatile emerging market indexes, Istanbul Stock Exchange 30 Index 

(ISE-30) and its constituents are used to test the performance of GMV. 

 

In order to test the effect of time varying variance and dynamic correlations on 

portfolio optimization, the estimation accuracy of these methods is compared to that of the 

sample covariance and constant correlation methodology in terms of reduced volatility of the 

GMV portfolios. The performances of non-optimized portfolios such as equally weighted 

and cap weighted portfolios are also compared to that of those GMV portfolios.  

 

The rest of the paper is organized as following: Part 2 gives brief information about 

theoretical framework of mean-variance optimization and covariance estimation techniques 

employed in this paper. While Part 3 describes the data and evaluates the empirical results, 

concluding remarks are finally given at Part 4.  

 

2.    Theoretical Framework 

Estimating Covariance Matrix by constant volatilities and correlations:  

As modern portfolio theory (MPT) proposes, main objective of diversification is to 

minimize risk in a given level of return. While all efficient portfolios nest on the efficient 

frontier, GMV is the one at the beginning of that frontier and it has lowest volatility amongst 

other efficient portfolios. 

 

In brief, the mathematical construction of the GMV portfolio is as follows: Having n 

number of assets, weight w vectors along with the covariance matrix Σ , the objective and 

subjective functions of the optimization process of GMV portfolio is 

  ww
w

Σ′
2

1
min            subject to [ ],11,1,1.....1 ;11 =′=′w  

 

Then the weights of GMV portfolio that minimizes the portfolio variance are 

calculated as
11

1
1

1

−

−

Σ′
Σ=gmvw . Since there is no argument about mean in GMV portfolio 

construction, so there is no constraint on mean. The key part is in that equation is finding the 
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covariance matrix denoted as Σ . When constant standard deviations and pair-wise correlations 

are used to estimate covariance matrix, this optimization procedure is called sample 

covariance estimation. Considering sample covariance estimation, RSS �′=Σ where R is n 

by n square matrix of constant correlations and S refers to the vector of constant standard 

deviations such as [ ]nsssS ,...,, 21=  where is = ith asset in the portfolio. 

 

In constant correlation estimation, R  is constructed by using average of pair-wise 

correlations such that  

( )
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where ρ is average constant correlation, nn×1  is nn × matrix of ones and nnI ×  is nn × identity 

matrix. Then, new covariance matrix is estimated by Hadamard product of constant average 

correlation matrix and the matrix constructed by multiplication of vectors of constant standard 

deviations such that RSScc �′=Σ . This technique is named as constant correlation estimation 

and developed by Elton and Gruber (1973). Aftermath, finding optimal weights for GMV 

portfolio is the same with sample covariance such that
11

1
1

1

−

−

Σ′
Σ

=
cc

cc
gmvw . 

The Dynamic Conditional Correlation Model (DCC-GARCH) 

Being a multivariate GARCH model, DCC-GARCH assumes that returns of the assets 

( tr ) distribute normally with zero mean and they have covariance matrix such as Ct.  

( )tt CNr ,0~      

Conditional covariance matrix is found by using conditional standard deviations and 

dynamic correlation matrix. Let St is n×1 vector of conditional standard deviations modeled 

by univariate GARCH process such that 

 2
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where ititite −−− = ζσ and ( )1,0~ Nit−ζ . In order to find time varying correlation matrix, 

Engle (2002) proposes a model for the time varying covariance such that 
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As it can be seen from that equation above, the GARCH process is adopted to model 

time varying covariance matrices. K  is the unconditional covariance and it is initially 

obtained by sample covariance estimation. tK  is forecasted by lagged residuals ( ite − ), which 

are standardized by conditional standard deviations, and lagged covariances ( itK − ). 

Therefore, in estimating conditional covariance matrix first, conditional standard deviations of 

each asset in the portfolio are modeled by univariate GARCH. It is important to note that the 

constraints of GARCH process are still considered to construct positive definite covariance 

matrix. In order to find estimators of that model, the log likelihood function can be written as 
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After finding optimum estimators that maximize the log likelihood function above, it is 

easy to produce covariance series. But, it is necessary to note that each covariance matrix is 

not constructed by conditional standard deviations yet. This covariance matrix series is 

generated by relying on initial unconditional covariance matrix. Then new covariance matrix 

for next time point is generated by previous one and standardized residuals as in simple 

univariate GARCH process. So, univariate GARCH process is employed to extract time 

varying positive definite correlation matrices from that covariance matrix series such that 
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The matrix notation for time varying correlation indicates that the way of calculating 

correlations such as dividing covariances by standard deviations extracted from the 

covariance matrix. The matrix notation can be interpreted by algebraically such 

that
22

,,
,,

jjii

tji
tji

SS

S
=ρ .  

 

Finally, conditional covariance matrix can be found by Hadamard product of the matrix 

of conditional standard deviations and time varying correlation matrix such that  

tttt MSSC �
′=  

This methodology gives the conditional covariance matrix for each data point of the 

calibration period. To find the conditional covariance matrix that is used to optimize weights 

of assets in the portfolio, one day conditional standard deviations of assets and their dynamic 

correlation matrix are forecasted.  

The Dynamic Equicorrelation Model (DECO-GARCH) 

  Engle and Kelly (2009) propose a different version of DCC-GARCH model, named 

DECO-GARCH. They set the average of conditional correlation equal to all pair correlations 

in order to reduce burden of the computation of large scale correlation matrices. They use the 

same structure to construct covariance matrix as in the DCC-GARCH model such 

that tttt MSSC �′= . However, the conditional correlation matrix would be different because 

of taking average of conditional correlations as the below equation shows 

( ) ∑
≠

=−
=

n

ji
ji

tijt nn 1,
,ˆ

1

1 ρρ  

where, tρ is defined as conditional equicorrelation as tij,ρ̂ refers to the pair-wise correlation. 

After finding the average correlation, the new conditional correlation matrix is constructed 

such that, 

( ) nntnntt IM ×× −+= ρρ 11  

That equation is almost same with the equation that calculates the constant correlation 

matrix. The only difference is that correlation matrix is extracted from covariance matrix 
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series modeled by univariate GARCH process and therefore, average correlation matrix in 

that equation is conditional and time varying. 

Engle and Kelly (2009) defined the log- likelihood function such that, 

[ ] ( )[ ]( ) ( ) ( )∑ ∑ ∑
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Considering DCC, it is necessary to estimate 
( )
2

1−× nn
 pair-wise correlations. Instead 

of estimating each pair-wise correlation, only one parameter for conditional correlation is 

estimated by DECO. When the sample size is quite large, the DCC model incurs sample size 

risk due to the fact that the number of parameters which are to be estimated would be many. It 

creates a burden on programming and also noise on the forecasted data. Considering DECO 

approach, the computational burden may be decreased by assigning same correlation to the 

each element of conditional correlation matrix but, there would be model risk for the sample 

in which each asset returns has quite different dynamic pair-wise correlations. So, this paper 

also answers that question whether the pair-wise correlations of Turkish stocks are not quite 

different from each other to be negligible or not. If the results indicate that performance of 

GMV portfolio estimated by DECO is better than that of GMV portfolio constructed by DCC, 

it can be concluded that pair-wise correlations move very close to mean. Otherwise, this is not 

the case. 

3.   Data and Empirical Results 

3.1. Data 

In the paper, the data, composed of the daily prices of stocks within the ISE-30 Index 

from January 2004 to the end of the September 2010, is collected from FOREX FX2000 

6.1.233. Then, daily prices are transformed to daily logarithmic returns. A rolling-window 

estimate of the variance-covariance matrix with a calibration period of three years is 

performed by ruling out the short sale and then, 1 week out-of sample forecasting of optimal 
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portfolio returns are generated. Calibration period of three years is extended to four years to 

test the effect of changing calibration period on the performance of the GMV portfolio. Then, 

in order to make the portfolio allocation more dynamic, the out-of sample forecasting period 

is lowered to 1 day. 

 

Since the list of constituents of the index changes over time, a fixed list of 23 stocks 

within the ISE-30 Index dating from January 2004 is used to simulate a cap-weighted 

portfolio for fair comparison. The descriptive statistics of the ISE-30 Index consist of three 

years of data, and constituents ISE-30 Index are given by the Table 1. Since there are some 

short sale restrictions at Istanbul Stock Exchange, the short sale constraint is added to 

constraint set of optimizer.  
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Table 1: Descriptive Statistics (Ise-30 Index and Its Constituents) 

  
Mean Std. Dev. Max. Min. Skewness 

Excess 
Kurtosis 

JB Test 
(Prob.) 

AKBNK 0.11% 2.60% 11.28% -10.30% 0.1584 1.0186 0.001 

AKENR 0.05% 2.46% 13.35% -11.00% 0.1913 3.2670 0.001 

ARCLK 0.02% 2.36% 12.76% -9.35% 0.3229 2.2598 0.001 

DOHOL 0.08% 2.60% 10.01% -9.80% -0.1853 0.7324 0.001 

DYHOL 0.05% 2.76% 11.90% -10.23% 0.0575 1.0645 0.001 

ECILC 0.14% 2.60% 14.20% -12.03% 0.3352 3.7143 0.001 

ENKAI 0.17% 2.13% 12.84% -10.19% 0.4792 2.9533 0.001 

EREGL 0.17% 2.34% 10.09% -11.15% 0.0262 1.5035 0.001 

GARAN 0.19% 2.67% 11.88% -16.21% -0.2449 1.9679 0.001 

ISCTR 0.10% 2.70% 9.48% -11.25% 0.0711 0.6291 0.001 

KCHOL 0.06% 2.39% 9.20% -10.43% 0.1073 0.6980 0.001 

KOZAA 0.30% 3.98% 20.59% -13.98% 0.9269 2.9904 0.001 

KRDMD 0.22% 3.51% 21.13% -12.14% 0.6236 4.0294 0.001 

PETKM 0.05% 2.41% 17.23% -13.70% 0.5545 5.2626 0.001 

SAHOL 0.06% 2.44% 9.58% -9.20% 0.0304 0.5920 0.003 

SISE 0.11% 2.37% 9.53% -8.16% 0.0996 0.7390 0.001 

SKBNK 0.28% 3.68% 17.44% -22.91% 0.5564 4.5639 0.001 

TCELL 0.15% 2.58% 8.82% -15.00% -0.0161 1.7240 0.001 

TEBNK  0.22% 3.18% 19.19% -15.07% 0.3721 2.7968 0.001 

THYAO 0.02% 2.43% 13.27% -20.48% -0.4480 10.0071 0.001 

TUPRS 0.15% 2.29% 11.65% -10.03% 0.3943 2.5442 0.001 

VESTL -0.07% 2.07% 12.29% -8.38% 0.1531 2.2729 0.001 

YKBNK 0.13% 2.71% 14.87% -10.88% 0.3004 2.1896 0.001 

ISE-30 0.10% 1.85% 7.18% -8.53% -0.1477 0.8782 0.001 
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According to the Table 1, for four years period of data daily logarithmic returns of the 

stocks and ISE-30 Index is lower than 1% while the daily volatility of those is between 1.85% 

and 3.98%. Also spread between maximum and minimum values of daily returns are quite 

high and moreover, the minimum values of daily logarithmic returns are negative. Since the 

return series of all stocks and the index are right skewed (positive skewness), the distribution 

of data is asymmetric. Relying on the kurtosis values, the logarithmic return series of stocks 

and index have positive excess kurtosis. So, the distribution the data series can be indicated as 

leptokurtic (the presence of fat-tails). Since skewness is different from zero and there is high 

excess kurtosis, the data distribution shows non-normality. This claim is supported by the 

results of the JB test. Since the probability values of JB test is lower than 0.01 (99%, 

confidence level) for all stocks and ISE-30 Index, ISE-30 Index and its constituents show 

non-normality. Those results present the high volatile and non-normality structure of daily 

logarithmic returns of ISE-30 Index and its constituents.  

3.2. Empirical Results 

Reduced volatility is the major criteria to test the performances of GMV portfolios. 

First, the out of sample returns within 1 week rolling window period is forecasted by using 

calibration period of three years. Then, the forecasting period is lowered from one week to 

one day. So, Out-of sample returns are forecasted from the beginning of January 2008 till the 

end of September 2010 for 3 years calibration. The Table 2 and 3 show the risk and return 

measures of the GMV portfolios, generated by different covariance estimation methods with 

three year calibration period, for one week and one day rolling windows. Also the 

performance of the each GMV is compared to that of equally weighted and cap weighted 

portfolios. On the tables, SC, EQW, CAPW, CC refer to sample covariance estimation, 

equally weighted portfolio, cap-weighted portfolio and constant correlation covariance 

estimation respectively. 
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Table 2: GMV Portfolio- Risk and Return Measures (Calibration Period: 3 Years; Rolling Window: 1 Week) 

3 Year-Weekly Roll SC EQW CAPW CC DCC DECO 

Mean Return 0.058% 0.055% 0.073% 0.061% 0.031% 0.030% 

Annualized Mean Return 15.650% 15.000% 20.286% 16.703% 8.063% 7.987% 

Volatility 1.399% 1.493% 1.659% 1.598% 1.411% 1.629% 

Annualized Volatility 22.215% 23.697% 26.340% 25.374% 22.393% 25.856% 

Skewness -0.320 -0.227 -0.083 -0.208 -0.399 -0.489 

Excess Kurtosis 1.788 1.681 1.426 2.870 5.041 6.004 

Historical VAR (99%) 4.760% 4.863% 5.226% 5.476% 4.670% 6.413% 

 
 

Table 3: GMV Portfolio- Risk and Return Measures (Calibration Period: 3 Years; Rolling Window: 1 Day) 

3 Years-Daily Roll SC EQW CAPW CC DCC DECO 

Mean Return 0.060% 0.057% 0.075% 0.063% 0.050% 0.046% 

Annualized Mean Return 16.208% 15.537% 20.914% 17.268% 13.401% 12.320% 

Volatility 1.393% 1.491% 1.657% 1.595% 1.374% 1.606% 

Annualized Volatility 22.121% 23.668% 26.310% 25.317% 21.816% 25.502% 

Skewness -0.323 -0.230 -0.086 -0.226 -0.346 -0.519 

Excess Kurtosis 1.747 1.691 1.433 2.795 4.712 5.715 

Historical VAR (99%) 4.672% 4.863% 5.226% 5.488% 4.745% 6.303% 

 

According to the results, volatility of the portfolios decreases as the forecasting period 

(rolling window) is lowered. GMV portfolio constructed by DCC-GARCH produce the 

lowest volatility while portfolio optimization is carried out by more dynamically (when 

rolling window is one day).  

 

In addition, all portfolio returns are negative skewed and the distribution of the portfolio 

returns shows fat-tail since all portfolios have positive excess kurtosis. Value at Risk Analysis 

is also employed. DCC-GARCH and sample covariance give lowest historical VaR for three 

year calibration period.  
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To test the effect of using larger scale of data, the calibration period is extended.  Table 

4 and 5 indicate the risk and return measures of the GMV and other portfolios for four year 

calibration period with one week and one day rolling windows.  

 

Table 4: GMV Portfolio- Risk and Return Measures (Calibration Period: 4 Years; Rolling Window: 1 Week) 

4 Year-Weekly Roll SC EQW CAPW CC DCC DECO 

Mean Return 0.009% 0.020% 0.040% 0.037% -0.035% -0.011% 

Annualized Mean Return 2.383% 5.227% 10.727% 9.892% -8.508% -2.831% 

Volatility 1.490% 1.584% 1.725% 1.668% 1.491% 1.723% 

Annualized Volatility 23.647% 25.147% 27.379% 26.486% 23.671% 27.357% 

Skewness -0.258 -0.176 -0.119 -0.196 -0.481 -0.706 

Excess Kurtosis 1.410 1.442 1.425 2.317 4.382 5.865 

Historical VAR (99%) 4.739% 4.872% 5.987% 5.616% 5.298% 7.256% 

 
  

Table 5: GMV Portfolio- Risk and Return Measures (Calibration Period: 4 Years; Rolling Window: 1 Day) 

4 Year-Daily Roll SC EQW CAPW CC DCC DECO 

Mean Return 0.011% 0.021% 0.041% 0.068% 0.031% 0.066% 

Annualized Mean Return 2.732% 5.506% 10.941% 18.610% 8.011% 18.040% 

Volatility 1.487% 1.583% 1.724% 1.605% 1.153% 1.340% 

Annualized Volatility 23.608% 25.133% 27.361% 25.473% 18.297% 21.276% 

Skewness -0.253 -0.178 -0.120 -0.620 -1.062 -1.617 

Excess Kurtosis 1.414 1.446 1.431 3.209 9.657 14.559 

Historical VAR (99%) 4.695% 4.872% 5.987% 5.948% 4.131% 4.995% 

 

According to the tables above, volatility of all portfolios except ones optimized DCC 

and DECO-GARCH, is raised by extending the calibration period from three years to four 

years. The performances of the portfolios estimated by DCC and DECO-GARCH increases 

substantially in terms of reduced volatility when four year calibration period accompanied 

with one day rolling window is employed. DCC-GARCH covariance estimation gives lowest 

volatility amongst all portfolios. Historical VaR analysis also supports this result, because the 
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lowest historical VaR is achieved by DCC process having four year calibration and one day 

rolling window periods. 

 

Visualizing changes on conditional volatilities over forecasting time horizon is another 

way to compare the performances of GMV portfolios in terms of volatility. Figure 1 and 2 

present the conditional volatilities of each portfolio for each calibration period and the period 

of rolling window. The conditional volatility is modeled by univariate EGARCH (1, 1).  

 
 

Figure 1: Conditional Volatility- Calibration Period: 3 Years 

 

Figure 2: Conditional Volatility- Calibration Period: 4 Years 
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Considering one day rolling window period, the conditional volatility series of 

portfolios constructed by DCC is below the volatilities of other portfolios for each calibration 

period. Although conditional volatility of sample covariance moves at lower level than DCC 

as one week rolling window period is employed, the lowest conditional volatility level is 

achieved by DCC with four year calibration and one day rolling window.  

 

In order to analyze the estimation quality of methods, we compared the performance of 

forecasted GMV portfolios to the performance of the true GMV portfolios. Since the 

forecasted GMV portfolio with lowest volatility is reached by four year of calibration period, 

in-sample estimation for GMV portfolios is carried out by using realized returns of 

forecasting period starts from January 2008 to September 2009. Four different efficient 

frontiers are drawn by using four different covariance estimation methods, which are sample 

covariance, constant correlation, DCC-GARCH and DECO-GARCH. Those efficient frontiers 

are given by figure below: 

 

 
 

Figure 3: In -Sample Estimation-Mean Variance Efficient Frontier 

 
Relying on the in-sample estimation, lowest volatility is achieved by DCC-GARCH and 

DECO-GARCH is the second one. Forecasting accuracy can be measured by spread between 
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the volatility of forecasted GMV and that of true GMV. To quantify this graphical analysis, 

volatilities of forecasted GMV and true GMV portfolios are given table below: 

 

Table 6: In-Sample Estimation: Forecasted GMV Volatilities and True GMV Volatilities 

Covariance Matrix Estimation Methods Forecasted GMV Vol. True GMV Vol. Spread * 

Sample Covariance 1.49% 0.89% 0.60% 

Constant Correlation 1.60% 0.97% 0.63% 

DCC-GARCH 1.15% 0.77% 0.38% 

DECO-GARCH 1.34% 0.88% 0.46% 

*Spread=|Forecasted GMV Volatility-True GMV Volatility| 

 

According to Table 6, the portfolio that is closest to true GMV portfolio is the one 

constructed by DCC-GARCH estimation. While DECO estimation follows DCC, other 

estimation methods create substantial deviations from true volatilities. The spreads generated 

by dynamic correlations models are almost 30%-40% lower than the spreads produced by 

other estimation methods. Therefore, it can be inferred that GMV portfolios with dynamic 

correlations outperformed the other portfolios in terms of reduced risk.  

 

4.    Conclusion 

Employing GARCH process in mean-variance optimization framework has been the 

subject of the finance literature for a long time. Considering the co-movements of assets in a 

portfolio, the multivariate form of GARCH process is employed to have efficient covariance 

estimators.  

 

In this paper, the estimation accuracy of two different types of multivariate GARCH 

models, DCC and DECO-GARCH, are compared to classical sample covariance and constant 

correlation estimation. Also, performances of the forecasted GMV portfolios are compared to 

equally weighted portfolio and cap-weighted portfolio in terms of reduced volatility. 

Volatility series of each portfolio is extracted by univariate EGARCH process due to the fact 

that the presence of time varying variance. Also, estimation accuracy of each GMV portfolio 

is tested by employing in-sample estimation. 
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According to the results of out of sample forecast, when more dynamic portfolio 

allocation (one day allocation) is used, extending calibration period from three years to four 

years reduce the volatility of GMV portfolios constructed by DCC and DECO. However, this 

is not case for other covariance estimation methods, equally weighted and cap weighted 

portfolios.  

 

It is important to note that performance of GMV optimized DECO is still poor for three 

years calibration period, even if its performance is improved by lowering rolling window term 

from one week to one day. Also, it performs quite poor with four year calibration and weekly 

roll. DECO is second best only under the conditions of four year calibration and daily roll. 

However, DCC estimation is the best one in terms of reduced volatility when allocation 

period is reduced from one week to one day for each calibration term. Also, the lowest 

volatility is achieved by DCC when calibration period is four years and rolling window term 

is one day. 

 

Relying on the results of in-sample estimation for four year period, the GMV portfolios 

constructed by DCC and DECO-GARCH are closer to the true GMV than the other 

portfolios. The spread between volatility of forecasted GMV portfolio and that of true GMV 

portfolio is detected and it is found that lowest spread belongs to DCC. DECO is the second 

one. Moreover, volatility spreads of DCC and DECO are almost 30% and 40% lower than 

those of other covariance estimation methods. In-sample estimation results support out-of 

sample estimation findings related to better performance of DCC relative to other estimation 

methods under the conditions of more dynamic allocation and extended calibration period. 

 

Finally, there is a necessary question is why DECO performs worse than DCC and 

sample covariance, except in the case of four year calibration period with one day rolling 

window? Answer for that question is actually one of the major results related to the structure 

of Turkish stock market. Before answer that question, digging up empirical results would 

provide logical path to answer that question precisely. If the performance of GMV optimized 

by constant correlation method is detected, it is easy to find it is the worst GMV portfolio for 

both out-of and in-sample estimation. 

 

Bottom line, DECO and constant correlation methods perform worse than the others 

especially when three year calibration period is used. This means the estimation error incurred 
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by these two methods are higher than that of the other methods.  Reason causing high 

estimation error is variance of pair-wise correlations. Therefore, it can be concluded that pair-

wise correlations among Turkish stocks do not cluster closely around mean. Differences 

among those correlations are not negligible. 

 

However, when longer calibration term such as four years and more dynamic allocation 

period such as one day is considered, DECO is the second best GMV. This is the clue for 

another important inference for Turkish stock market. Pair-wise correlations also change over 

time. They are not constant. If more dynamic portfolio allocation is preferred, techniques that 

model dynamic correlations such as DCC and DECO-GARCH should be used.  

 

Covariance estimation techniques that employ each pair-wise correlations, incur 

sampling error because of large number of estimated parameters. However, the benchmark 

index, which is investigated in this paper, consists of only twenty three stocks for the 

investigation period. Therefore, the scale of covariance matrices estimated by each method 

are not too large and so do not create too much noise causing sampling error.  Consequently, 

DCC gives quite low volatility compared to other estimation techniques, when longer 

calibration term and shorter rolling window period is considered. 
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