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Abstract

Are “generous” bargaining offers made out of fairness or in fear of rejection?

We disentangle risk and social preferences by analyzing experimental behavior

in three majority bargaining games: (1) a random-proposer game with infinite

time horizon; 2) a one round proposer game with disagreement payoffs equal to

the infinite horizon continuation payoffs; and, (3) a demand commitment game.

Inequity aversion predicts very differently across these games, but risk aversion

does not. Observed strategies violate neither stationarity nor truncation consis-

tency. This allows us to use structural models of bargaining behavior to estimate

the latent type shares of subjects with CES, inequity averse, and Prospect the-

oretic preferences. The Prospect theoretic, i.e. reference-dependent, model of

utility explains the observations far better than any mixture of alternative mod-

els.
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1 Introduction

Group decisions reached by bargaining entail compromise. For example, legislatures

may agree on actions that benefit some more than others. Although expected payoffs

should increase with power (Snyder Jr et al., 2005), proposers often make overly

generous offers and realize less power than predicted, e.g. in bilateral (Camerer and

Thaler, 1995) or multilateral (Fréchette et al., 2005a,b) bargaining. Knight (2005)

provides empirical evidence from US Congress data. Generosity yields equity, but it

can also be instrumentally used to buy votes for pushing proposals through, e.g. in

congressional elections (Levitt and Snyder Jr, 1997). Ultimatum game experiments

suggest that this is due to the fear of rejection rather than fairness (Croson, 1996;

Kagel et al., 1996; Straub and Murnighan, 1995). These results, however, can neither

exclude fairness nor ascertain the degree to which each explanation holds. Separating

these motives in the ultimatum game is difficult as both operate in the same direction.

In this paper, we seek a parsimonious explanation of generosity in bargaining.

To distinguish between motives, we experimentally test games across which inequity

aversion (in the sense of Fehr and Schmidt, 1999) operates in different directions.

Candidate models are then econometrically estimated and compared. Our tests are

based on the random-proposer model of Baron and Ferejohn (1989) and Harrington

(1990), the predominant approach of modeling decision making in committees and

parliaments. Fréchette et al. (2005a) showed that the results of laboratory tests on

this game resemble those of the field, while Knight (2005) applied it to estimating

the value of proposer power from US Congress data. This model is a generalization

of alternating-offers bargaining (Ståhl, 1972, and Rubinstein, 1982) to n players and

majority voting rule. In each round, a player is randomly recognized as proposer, this

player makes a proposal on how to divide a dollar, and all players vote on the proposal.

If a majority votes in the affirmative, the proposal is implemented, otherwise a new

round begins.

The set of subgame perfect equilibrium payoffs is vast, but the stationary equi-

librium payoffs are unique (Eraslan, 2002). Stationarity follows if players choose

the least complex strategies (Baron and Kalai, 1993), but it has not yet been verified

experimentally. Building on the assumption that stationarity is valid, the random-
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proposer model has been extended in a variety of dimensions. Examples include

one-dimensional ideological decisions (Cho and Duggan, 2003; Cardona and Pon-

satí, 2007), decisions with both ideological and distributive dimensions (Jackson and

Moselle, 2002), bicameral legislatures (Ansolabehere et al., 2003), weighted voting

(Snyder Jr et al., 2005), and costly recognition (Yildirim, 2007). Our other objective

is to test the validity of stationarity.

Our experiment comprises three treatments: PB95, PB00, and DB95. PB95 is

a random-proposer game with the continuation probability .95 if a proposal is not

accepted by the majority (with probability .05, all players would then get nothing).

The “dollar” to be divided is worth e 24, three players participate per game, and two

out of three players are required to implement a proposal (i.e. the proposer requires

one opponent to vote in the affirmative). PB00 is a random-proposer game with a

continuation probability of 0 if a proposal gets rejected, but with e 7.60 disagreement

payoffs in this case. This disagreement payoff is equal to the continuation payoff

in the stationary SPE of PB95. DB95 inverts the random-proposer game toward a

specific demand commitment game analyzed by Breitmoser (2009). In each round,

a proposer is drawn randomly again, but instead of making the proposal first, the

opponents simultaneously state their “voting strategies” (payoff demands) first. The

proposer is informed of the demands, makes a proposal, and if his proposal satisfies

at least one of these demands, then it is implemented. Otherwise a new round begins

(with probability .95). In equilibrium, the demands are e .02 or less (our smallest

currency unit is .01 Euro), and the proposer gets at least e 23.98.

Montero (2007) theoretically showed that “inequity aversion may increase in-

equity” in the random proposer game. In particular, this applies to PB95 where in-

equity averse players make less equitable offers than payoff maximizers (in equilib-

rium), while they make more equitable offers than payoff maximizers in PB00, and

equally inequitable offers in DB95 (assuming Fehr-Schmidt preferences). If the play-

ers deviate toward equitable demands in all three games, then they do so for other

reasons than inequity aversion. Further, the relation between PB00 and PB95 al-

lows us to study truncation consistency as discussed by Binmore et al. (2002), and

the differences between rounds in PB95 allows us to examine stationarity.1 Thus,

1Note that non-stationarity (and delay) is plausible both empirically and theoretically, for example
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our study also sheds light on whether insights from truncated bargaining games, e.g.

one-shot ultimatum games (Güth et al., 1982) or proposer games (Okada and Riedl,

2005), extend to non-truncated (infinite horizon) majority games. Much of the litera-

ture discusses these games based on the assumption that consistency holds—and our

experiment allows us to test this assumption.

At the center of discussion in many experimental analyses of truncated bargain-

ing games had been the utility functions of subjects, however. Systematic deviations

from payoff maximization have been observed and are not yet conclusively explained.

The assumption of social preferences in general, and of fairness concerns in particu-

lar (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000), does by itself not suffice

(Forsythe et al., 1994). Noisy maximization according to random utility models (see

e.g. Goeree and Holt, 2000, Costa-Gomes and Zauner, 2003, and Yi, 2005) has been

found to be relevant, as well. Building on these results, we model bargainers’ prefer-

ences in tandem with random utility components.

Our analysis distinguishes logit equilibria and nested logit equilibria, and it is

applied to both the truncated game PB00 and the non-truncated one PB95. Structural

analyses of infinite horizon bargaining games have been previously unfeasible be-

cause of the immense strategy space2 and complexity in computing stationary AQREs

(agent quantal response equilibria, following McKelvey and Palfrey, 1995, 1998). Us-

ing the definition of Markov QREs, see Breitmoser et al. (2010), recent advances in

parallel computing now allow random utility analyses of infinite-horizon bargaining

games,3 and exploiting these advances, the present paper constitutes the first struc-

tural analysis of behavior in infinite-horizon bargaining games. To the best of our

knowledge, the only related analyses are Battaglini and Palfrey (2007), who studied

dynamic majority bargaining where the proposals are generated randomly (rather than

being strategic choices), and Diermeier et al. (2002, 2003), who analyzed structural

models of government formation assuming rationality during the actual bargaining

due to reputation effects (Abreu and Gul, 2000), heterogeneity of prior beliefs (Yildiz, 2003), and

history-dependent preferences (Li, 2007).
2Our analysis assumes a smallest currency unit of e 0.2, and given the cake size of e 24, this

implies that merely the number of proposals is on the order of 106 in each round.
3The programs underlying our computations are available as supplementary material. They are

based on the CUDA architecture for parallel computing on NVIDIA GPUs, and they can be adapted

straightforwardly toward OpenCL.
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phase.

Our main results can be summarized as follows. Proposals in the two proposer

games are not significantly different, contradicting the prediction of inequity aversion.

The demand commitment game results corroborate. Strategies do not significantly

violate stationarity, and hence they can be modeled as stationary QREs. We then

examine whether subjects utility functions are represented best as CES, Fehr-Schmidt,

or Prospect theoretic utilities. To this end, we first determine which structural model

captures the behavior best and find that an intuitive nested logit equilibrium model fits

better than two alternative models for all of the utility functions considered. Using

this nested logit model, we then conduct a latent type analysis to classify subjects into

CES, Fehr-Schmidt, and Prospect theory types. We find that the shares of all types

but Prospect theory are insignificant, i.e. that social preferences do not significantly

matter. These results are sharpened by the fact that pseudo-R2 of the resulting models

are around .90, i.e. the model does not leave much of the data unexplained. These

results are consistent with the models of reference-dependent preferences proposed

and analyzed by Shalev (2000, 2002), Kőszegi and Rabin (2006, 2007), Butler (2008),

and Kőszegi (2010).

Section 2 describes the experimental games and procedure. Section 3 describes

our basic observations concerning stationarity, truncation consistency, and fairness

concerns based on econometric estimates of the subjects’ strategies. Section 4 spec-

ifies the range of structural models considered. Section 5 discusses the estimates of

these models with respect to our data set. Section 6 concludes.

2 Experimental design

2.1 Experimental games

In all treatments, the players in N = {1,2,3} have to divide e 24. The smallest cur-

rency unit is 0.01 Euro, and thus the set of feasible allocations is

X =
{

x ∈ R
N | x ≥ 0, ∑i∈N xi ≤ 24, ∀i ∈ N∃ni ∈ N0 : xi = 0.01ni

}

. (1)
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The first model that we implement is the random-proposer game with indefi-

nite time horizon following Baron and Ferejohn (1989). After each round without

agreement, the game stops with probability 0.05; in this case, the players receive zero

payoffs. This game is outcome equivalent to the random-proposer game with time

preferences (discount factor δ = 0.95) if the players are risk neutral.

Game 1 (PB95). In each round, one player is recognized as proposer by a uniform

draw from N. This player chooses x ∈ X, and the other players vote on x. If one

of them accepts, then the players’ payoffs are x. Otherwise, the payoffs are 0 with

probability .05 and a new round begins with probability .95.

All stationary SPEs of PB95 satisfy a few intuitive restrictions (see e.g. Baron

and Ferejohn, 1989, and Eraslan, 2002). In each round, the proposal allocates 16.40 to

the proposer, 7.60 to one opponent, and 0 to the other opponent. The responders vote

in the affirmative if and only if the own share is at least 7.60. The proposers may ran-

domize when choosing the coalition, and the individual randomization probabilities

are largely unrestricted in equilibrium. Going beyond these well-known results, Mon-

tero (2007) shows that if players have Fehr-Schmidt preferences for inequity aversion

(see e.g. Fehr and Schmidt, 1999), and if preferences are common knowledge, then

the equilibrium outcomes are less equitable than those without inequity aversion (es-

sentially, because responders accept lower shares rather than risk being left out under

standard formulations of inequity aversion). The Fehr-Schmidt utility function is

ui(x) = xi −α ∑
j 6=i

max{x j − xi,0}−β ∑
j 6=i

max{xi − x j,0}, (2)

with 0 ≤ β ≤ α < 1/3. Specifically, Montero shows that the structure of the equilib-

rium proposals under inequity aversion is equal to the structure of proposals without

inequity aversion, i.e. the proposer offers some y > 0 to q−1 opponents (where q = 2

in our case) and zero to the rest, and that under Fehr-Schmidt preferences the value

of y is (Proposition 5 of Montero, 2007, as applied to our game)

y = 24 ·
α(3−2δ)+2δ(1−β)

6+2α(3−δ)−β(3+2δ)
. (3)
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Clearly, y = 7.60 for α = β = 0, and y is decreasing in both α and β if

β ≤
4δ(3−δ)−6(3−2δ)

4δ(3−δ)− (3+2δ)(3−2δ)
α ≥

12δ−2δ(3+2δ)

(3+2δ)(3−2δ)−4δ(3−δ)
. (4)

Since δ = 0.95 in our case, this is satisfied if α ≥ −0.87 and β ≤ 0.495, i.e. com-

fortably within the conventional restrictions 0 ≤ β ≤ α < 1/3. Hence, y < 7.60 for

Fehr-Schmidt inequity aversion.

The second bargaining model implemented in our experiment is the correspond-

ing one-round game.

Game 2 (PB00). There is one round. A player is recognized as proposer by a uniform

draw from N. This player chooses x ∈ X, and the other players vote on x. If one of

them accepts, then the players’ payoffs are x. Otherwise, the payoffs are 7.60 per

player.

The disagreement payoff of 7.60 per player exactly equates with the continuation

payoff in the SSPE of PB95. Thus, if players maximize expected payoffs, the set of

SPEs of PB00 corresponds with the set of SSPEs of PB95 in the sense that the ex-post

payoffs (16.40,7.60,0) obtain in all cases. If players are inequity averse, however, the

predictions diverge. The disagreement payoffs in PB00 induce the utility ũi = 7.60 for

all (α,β) under Fehr-Schmidt preferences, and this disagreement utility differs from

the continuation utility in PB95. The proposal structure is as above, i.e. the proposer

offers some y > 0 to a randomly selected opponent, zero to the other opponent, and

claims 1− y for himself, but the costs for buying a vote are now (using δ := 7.6/8 as

the “implicit” discount factor)

y = 24 ·
δ/3+α

1+2α−β
. (5)

This value is increasing in both α and β under our assumptions. That is, the optimal

proposal in PB00 if players have Fehr-Schmidt preferences is more equitable than

if players maximize pecuniary payoffs—PB00 inverts the effect of inequity aversion

under Fehr-Schmidt preferences in relation to PB95. This allows us to test for inequity

aversion.4

4While most of the above statements relate to Fehr-Schmidt preferences, they continue to hold in a
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The third model implemented in our experiment is a demand commitment game.

Here, the players can pre-commit to a specific voting strategy prior to the choice of

the proposer, and the proposer is informed of their “demands” prior to his choice.

Define the set of possible “demands” as D = {n/100 | n ∈ N0,n ≤ 2400}.

Game 3 (DB95). In each round, a proposer is drawn uniformly from N. His oppo-

nents i and j choose di,d j ∈ D, the proposer is informed of (di,d j) and chooses x ∈ X.

If xi ≥ di or x j ≥ d j, then the players’ payoffs are x. Otherwise, the payoffs are 0 with

probability .05 and a new round begins with probability .95.

In all subgame-perfect equilibria, the non-proposers demand di ≤ 0.02 and the

proposal satisfies one of these demands. The proposers’ payoff is at least 23.98 (for

a more detailed discussion, see Breitmoser, 2009). This equilibrium prediction is

essentially invariant to inequity aversion (under the maintained assumption of Fehr-

Schmidt preferences). The equilibrium demands satisfy di ≤ 0.02(1+ 2α−β)/(1+

3α− β), i.e. di < 0.02 under the maintained assumption 0 ≤ β ≤ α < 1/3 and the

smallest currency unit being 0.01. The observation that inequity averse players are

willing to undercut even 0.02 relates primarily to the fact that undercutting the oppo-

nent reduces the expected inequity between the two non-proposers, while the expected

inequity in relation to the proposer remains constant.

To summarize, in relation to payoff maximizing players, inequity averse play-

ers deviate to less equitable allocations in the equilibria of PB95, to more equitable

allocations in the equilibria of PB00, and to the same allocations as those without

inequity aversion in the equilibria of DB95.

2.2 Procedure and logistics

The experiment was conducted in the experimental economics laboratory at the Eu-

ropean University Viadrina, Frankfurt (Oder), Germany. The experiment was, apart

from the experimental instructions and control questionnaire, fully computerized (us-

ing z-Tree, see Fischbacher, 2007). Subjects were students from various faculties

similar way for more general utility functions exhibiting inequity aversion. See for example Montero

(2007) for a more general discussion of Eq. (3).
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of the university. An announcement for this experiment was sent to recipients on

an email database of potential subjects. Those who responded to the email were re-

cruited accordingly. We conducted a total of 14 sessions, four sessions of the PB00,

five sessions of PB95, and five sessions of DB95. Each session was partitioned into

two sub-sessions, to each six subjects were randomly assigned. Subjects never in-

teracted with those from other sub-sessions. We partitioned the sessions to increase

the number of independent observations, and ran them simultaneously to increase

the sense of anonymity. Each session contained 12 subjects. A total of 168 subjects

participated. Each subject was allowed to participate only once.

Each session comprised 10 repetitions (“stages”) of the same game, PB00, PB95,

or DB95. In each stage, subjects were randomly re-matched into groups of three, so as

to implement the one-shot context. Subjects were also randomly reassigned their roles

at the beginning of each stage. Repetition of tasks allows for experience, while ran-

dom re-matching and anonymity eliminate reputation effects. This between-subject

design reduces the potential carryover effects from playing one game to another. The

subjects’ tasks and information during games matched precisely with the games’ def-

initions provided above. After each stage, all subjects were informed of their earn-

ings. Neutral language was used throughout the experiment (e.g. “A-participant” and

“B-participant” instead of proposer and responder). The instructions used in PB95

sessions can be found in the appendix.

At the beginning of the experiment, subjects were randomly assigned computer

terminals. They started by reading the experimental instructions, provided on printed

sheets, followed by answering a short control questionnaire that allowed us to check

their understanding. Subjects in doubt were verbally advised by the experimental

assistants before being allowed to begin. Each computer terminal was partitioned,

so that subjects were unable to communicate via audio or visual signals, or to look

at other computer screens. Decisions were thus made in privacy. At the end of the

experiment, subjects were informed of their payments, and asked to privately choose

a code-name and password. This was used to anonymously collect their payments

from a third party one week after the experiment. Each subject was given a e 4

participation fee and the earnings from one randomly chosen “winning stage.” The

marginal incentives could therefore range from e 0 to e 24 per subject. The average
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payout per subject was e 11.52 for, on average, less than 1 hour per session.5

3 Overview of subjects’ strategies

In this section, we describe the basic characteristics of the subjects’ strategies and

discuss econometric estimates of proposal, demand, and voting functions. Due to

their stationarity, the games investigated here allow us to estimate these functions

using standard regression models. We estimate the strategies by considering regres-

sion models that include a range of independent variables that may be relevant for the

strategic task at hand, i.e. we include the variables that should be strategically relevant

by theory and others that could have been relevant for the subjects. We control for

the game number within the session, for the round number within the game, and for

the interdependence induced by the experimental design (by considering two levels

of random effects, “Session” and “Subjects within Session”).

We begin with the proposal functions in PB95. See Figure 1 (row 1) for a graph-

ical overview. Each proposal x ∈ X consists of three terms, the payoff the proposer

allocates to himself, denoted as xp, and the duple of payoffs (x1,x2) allocated to the

opponents. We segregate the latter into the “high payoff” xh = max{x1,x2} and the

“low payoff” xl = min{x1,x2}, since these two components generally serve different

purposes in the proposer’s eyes. If xh > xl , then the high payoff serves to buy the

vote of the respective player and the low payoff xl may address fairness concerns. In

stationary SPEs, these values are xp = 16.40, xh = 7.60, and xl = 0. The sample esti-

mates are x̂p = 10.69 (with standard deviation σ̂p = 3.44), x̂h = 8.61 (σ̂h = 2.39), and

x̂l = 4.12 (σ̂l = 3.14). Controlling for interdependence (via random effects), game

number minus 1 (= G), round number minus 1 (= R), and in the case of xl also for

an interaction with xh, our estimates are as follows (significance at the 5% level is

5The monetary incentives provided in our experiment are substantial by local standards. Our mean

payment of about 12.00 per hour is, for example, 50% more than the mean wage of a research assistant

at Frankfurt (Oder).
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Figure 1: Distribution of proposals in the three treatments (Row 1: PB95, Row 2: PB00, Row 3: DB95)
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denoted by ∗ and significance at the 1% level by ∗∗).

xp = 10.340∗∗
(0.5122)

+0.1240∗
(0.0595)

·G −0.5546
(0.3624)

·R (6)

xh = 7.8921∗∗
(0.3690)

+0.1624∗∗
(0.0467)

·G+0.2987
(0.2848)

·R (7)

xl = 7.5530∗∗
(0.8037)

−0.1416∗
(0.0585)

·G +0.3567
(0.3489)

·R−0.3358∗∗
(0.0809)

· xh (8)

The intersect represents the initial proposal, i.e. the average proposal in the first round

of the first game (aside from the interaction with xh). The initial value of xh is about as

predicted, but it increases significantly (albeit small in absolute terms) as the subjects

gain experience. In addition, there is a strong crowding-out effect between security in

vote buying (increasing xh) and non-strategic giving to the third player (xl). In PB00,

the estimated proposal functions differ only slightly (note that the round effect R is

dropped, since there is just a single round in these games).

xp = 8.7277∗∗
(0.5804)

+0.3382∗∗
(0.0701)

·G (9)

xh = 7.7435∗∗
(0.4343)

+0.2431∗∗
(0.0613)

·G (10)

xl = 6.2656∗∗
(0.9673)

−0.3256∗∗
(0.0770)

·G−0.0648
(0.0979)

· xh (11)

The direct crowding out between xh and xl disappeared, and the increase of xp and xh

as the subjects gain experience is slightly sharper than in PB95, again at the expense

of the non-strategic donation xl toward the third player. (The fact that these effects do

not add up to 0 numerically relates to the observation that the subjects get better in

hitting the e 24 available overall as the sessions progress.)

Due to insignificance of the round index R in Eqs. (6)–(8), we conclude that

stationarity is not significantly violated. In order to test for truncation consistency, we

next evaluate the differences between PB95 and PB00. On the one hand, the means of

xp, xh, and xl do not differ significantly at the 5% level (in Mann-Whitney-U tests; see

also Table 2a). On the other hand, we test whether the proposal functions estimated

above, Eqs. (6)–(8) and Eqs. (9)–(11), differ significantly. To this end, we compare
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the model where the proposal function coefficients depend on treatment (PB95 or

PB00) with the simpler model where the coefficients do not depend on treatment.

In likelihood-ratio tests, the differences are insignificant at the .01 level in all three

dimensions, but they are close to that threshold with respect to xl (the p-values of

the likelihood-ratio tests are p = .064 for xp, p = .24 for xh, and p = .011 for xl).

That is, the non-strategic donation toward the third player slightly violates truncation

consistency, but the proposal functions in the other two dimensions do not violate

truncation consistency.

Result 3.1. There is no significant round effect in PB95 and the proposal functions

differ significantly between PB95 and PB00 only with respect to the “non-strategic

donation” toward the third player. Overall, neither stationarity nor truncation con-

sistency are violated significantly.

The interrelation between proposed payoffs is displayed in Figure 2b, which

plots the bivariate proposals (x1,x2) to the opponents in relation to the empirical con-

tinuation payoffs. There are several cluster points in these plots, and simplifying

things a bit, these cluster points satisfy either (x,0) or (0,x) for some x ∈ [9,12] or

(y,y) for some y ≈ 7.6. In turn, there are relatively few proposals of the kind (x,x)

for x ∈ [9,12], or (y,0) for y ≈ 7.60. These cluster points suggest that proposals are

not independent of irrelevant alternatives and that they are explicitly made in relation

to the continuation payoffs. This will be picked up in the structural analysis made

below.

The proposal functions in DB95 are functions of game number G and round

number R, too, and since the proposer chooses x ∈ X in response to a profile (d1,d2)

of demands, they also depend on these demands. The lower of the two demands dl =

min{d1,d2} is strategically relevant for the proposer (assuming dl ≤ 16.40), while

the higher one dh = max{d1,d2} is strategically irrelevant. The following strategy

estimates therefore control for dl and dh rather than (d1,d2). Using this notation, the

theoretically predicted proposals are xp = 24− dl , xh = dl , and xl ≈ 0 (notably, this
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Figure 2: Further information on the distribution of proposals

(a) Means (and standard errors) of the proposals

Proposer payoff Higher payoff Lower payoff

G 1–5 G 6–10 G 1–5 G 6–10 G 1–5 G 6–10

PB95 10.266
(0.5465)

10.992
(0.6411)

8.365
(0.3369)

8.911
(0.3976)

4.676
(0.5542)

3.548
(0.5554)

PB00 9.57
(0.7255)

10.899
(0.531)

8.273
(0.5503)

9.403
(0.3458)

4.887
(0.6133)

3.484
(0.6421)

DB95 10.983
(0.5751)

11.921
(0.7104)

7.89
(0.322)

7.511
(0.2421)

4.083
(0.4795)

3.359
(0.3603)

Note: The standard errors are computed using the subsession means as independent ob-

servations. The values for “G 1–5” refer to the first five games per session, those for “G

6–10” refer to the last five games per session.

(b) Proposals in relation to the (empirical) continuation payoffs in PB00 and PB95
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Note: The points are slightly perturbed to improve visualization.

(c) Proposals in relation to the demands in DB95
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holds true for both, egoistic utilities and Fehr-Schmidt utilities).

xp = 12.560∗∗
(1.3096)

+0.3072∗∗
(0.0799)

·G−0.4421
(0.3293)

·R−0.4772∗∗
(0.1382)

·dl +0.1327
(0.0817)

·dh (12)

xh = 4.5274∗∗
(0.6597)

−0.0136
(0.0463)

·G −0.0778
(0.1878)

·R+0.3789∗∗
(0.0763)

·dl +0.0434
(0.0458)

·dh (13)

xl = 4.5787∗∗
(0.9931)

−0.1625∗∗
(0.0563)

·G+0.4060
(0.2323)

·R+0.0655
(0.1016)

·dl −0.1217∗
(0.0576)

·dh +0.0527
(0.0792)

· xh

Figure 2c plots the proposals in relation to lower demand and higher demand, respec-

tively. This shows that the proposers generally match the lower demand, while they

give a more or less random amount to the third player. This close relationship does

not show through in the estimate for xh, Eq. (13), since contrary to the theoretical

prediction, the higher of the payoffs is not always given to the player with the lower

demand (see the points above the diagonal in the third plot of Figure 2c).

The effects of dl show that the proposer payoffs increase only by e 0.50 if the

lowest demand decreases by e 1. The remaining e 0.50 is split in an 80–20 ratio

between xh and xl . As predicted theoretically, the high demand is largely irrelevant,

but interestingly, xl decreases when the high demand is more greedy. There is no

direct crowding out between xh and xl . In relation to PB95 and PB00, the proposer

payoff increases slightly, the high payoff decreases significantly, and the low payoff is

not significantly different (in Mann-Whitney-U tests at the .01 level). The following

summarizes the main observations concerning the proposals in DB95.

Result 3.2. The proposer payoff is not significantly higher in DB95 than in PB95,

the “non-strategic donation” xl is not significantly different, but the expenses for vote

buying xh fall significantly. Again, stationarity is not violated.

The close relationship between the lower demand and the payoff of the player

with the lower demand strongly suggests that the overpayment effect with respect to

the high payoff xh in PB95 and PB00 is not related to generosity, but to risk aversion—

as it disappears if we take away the risk. Generosity shows through in the positive

expense xl , however, and hence, neither risk aversion nor social preferences alone can

explain our observations.

We now turn to the voting and demand functions. See Figure 3 for a graphical

15



Figure 3: Voting functions (relative acceptance frequencies) and distribution of de-

mands
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overview of the voting functions (the relative frequency of “accept” as a function of

the allocated payoff) and distribution of demands. The voting decisions are modeled

using binomial logit regression, and the demands are modeled using a linear model,

both with random effects as described above. The independent variables considered

in the following are, aside from G and R, the own payoff xi according to the proposal

on the table, the proposer’s payoff xp, an indicator ICP that is 1 iff xi ≥ 7.60 (which is

the expected continuation payoff), and indicator Ih that is 1 iff one has the high payoff

under the proposal in the sense xi = max{x1,x2}. Theoretically, only ICP should be

significant. The estimated voting function in PB95 is (where =̂ represents the logit

link)

σv =̂ −1.4469
(0.6869)

−0.1052∗
(0.0450)

·G +0.1869
(0.2679)

·R +1.7571∗∗
(0.3756)

· ICP

+0.5537∗∗
(0.0876)

· xi −0.2660∗∗
(0.0492)

· xp +1.1541∗∗
(0.3840)

· Ih (14)

and the voting function in PB00 is

σv =̂ −3.1558∗
(1.2271)

−0.1311
(0.0884)

·G +2.7040∗∗
(0.7292)

· ICP (15)

+0.4821∗∗
(0.1573)

· xi −0.0702
(0.0967)

· xp −0.5231
(0.7554)

· Ih. (16)

Similar to above, the hypothesis that the coefficients of these voting functions equate

between the treatments (“truncation consistency”) is tested in likelihood-ratio tests,
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Figure 4: Number of rounds in PB95 and DB95
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but again it cannot be rejected at the .01 level (p = 0.026). The main difference is

that the acceptance probability in PB95 depends negatively on the proposer’s payoff

xp and on whether xi ≥ x j (i.e. that one has been offered the high payoff). Both of

these influences suggest fairness-like concerns. Stationarity is not violated, since the

round effect remains insignificant.

Result 3.3. The voting functions in PB95 and PB00 violate neither truncation con-

sistency nor stationarity (at α = .01). The voting decisions seemingly exhibit fairness

concerns in PB95, while they are largely as predicted in PB00.

Finally, we describe the estimated demand functions in DB95. Similarly to the

proposal functions in PB95, their only independent variables are game number within

the session G and the round number within the game R.

xd = 9.4550∗∗
(0.3230)

−0.1403∗∗
(0.0382)

·G−0.0873
(0.1643)

·R (17)

Result 3.4. The demands in DB95 do not violate stationarity, but they are far higher

than predicted and decrease only slowly as subjects gain experience.

The following section introduces the structural models that we use to describe

the above observations. These models will allow us to understand exactly how and

why the subjects deviated from the equilibrium predictions.
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4 Structural models of random-proposer bargaining

The present section introduces the family of structural models that we consider to

describe subjects’ behavior. The purpose of our analysis is to explore the reason for

the abovely documented—and essentially anticipated—deviations from the equilib-

rium predictions in the proposer games. In particular, we seek to find out why the

proposers are more generous than seems necessary. Qualitatively, generosity can be

explained by both risk aversion (as generosity increases the possibility of an affirma-

tive vote) and social preferences (i.e. altruism on the side of the proposer), and in line

with previous bargaining experiments that have been debated for several decades, the

descriptive results above suggest that both of these influences are relevant indeed.

The structural approach described next allows us to shed light on this discussion

from a novel perspective, and beyond that, the majority game allows for analyses that

are novel in the following ways. First, our experimental design requires the proposer

to state all cake shares without enforcing that they sum up to 1. This allows us to

gauge their taste for efficiency and their numerical prowess, which in turn is needed

to distinguish deviations from best response from deviations from risk-neutral payoff

maximization. Second, we consider one-round games and infinite-horizon games in

a joint analysis, to gauge the subjects’ sense of their continuation payoffs (i.e. their

numerical prowess, again). Third, and most importantly, our analysis is the first to

consider risk aversion and altruism in quantal response equilibria of infinite-horizon

bargaining games altogether.

4.1 Possible forms of risk aversion and altruism

The motives that we are interested in distinguishing can be formalized in a variety

of ways. We will consider subject heterogeneity with respect to the four motives

discussed next. All four of them can be defined using two-parameter utility functions.

The first of them is the model of inequity aversion following Fehr and Schmidt (1999).

If π ∈ R
N denotes the payoff profile, then the utility of i ∈ N is

ui(π) = πi −α ·∑
j 6=i

max{π j −πi,0}−β ·∑
j 6=i

max{πi −π j,0}. (18)
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As we discussed above (based on Montero, 2007), inequity aversion alone cannot ex-

plain the observed deviations from equilibrium, but in a model of quantal response

equilibrium, it may at least explain the motivation of a fraction of the subject pool.

An alternative explanation of equitable proposals, and in particular of the central pro-

posals in Figure 2b, is that subjects have more general distributive preferences, e.g.

Leontief preferences over payoff profiles. We capture this possibility using the fol-

lowing family of CES utility functions.

ui(π) =
(

(1−α) · (1+πi)+α/2 · (1+π j)
β +α/2 · (1+πk)

β
)

/β. (19)

CES utilities have been found to be descriptive in several studies, e.g. Andreoni and

Miller (2002), and the particular CES family considered here has been proposed by

Cox et al. (2007).

Alternatively, risk preferences can explain generous proposals. In SPEs, voters

accept if and only if their continuation payoffs are covered. However, the empirical

voting functions are continuous (see Figure 3), and thus more generous proposals

have a higher probability of being accepted. In this context, risk aversion may explain

the clustering of proposals around (x,0) and (0,x) for x ≈ 10 in Figure 2b, but an idea

of risk diversification may also explain the equitable proposals in the center of Figure

2b. To capture a general form of risk and loss aversion, we consider the following

prospect theoretic utility function.

ui(π) =

{

(πi −8)α, if πi ≥ 8

−β · (8−πi)
α, if πi < 8

(20)

Note that we assume that subjects “aspire” to get a third of the cake (i.e. a payoff of 8),

which is reasonable in this context as it constitutes the ex-ante payoff in equilibrium.

This “aspiration point” could also be considered a free parameter, but for compara-

bility with the other utility functions, we stick to this parsimonious two-parameter

variant. As a final alternative, we allow for a utility function containing elements of

both risk aversion and altruism (i.e. Cobb-Douglas altruism and constant relative risk
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aversion).

ui(π) =
(

(1+πi)
1−α · (1+π j)

α/2 · (1+πk)
α/2

)1−β
/(1−β) (21)

4.2 Quantal response proposal functions

The above set of utility functions will allow us to discuss the (mixture of) motives

shaping subjects’ behavior, but to obtain unbiased estimates of these motives, we also

have to specify the (possible) random component in the utility function. The exis-

tence of a random component allows us to explain why proposals vary in seemingly

equivalent circumstances. Random utility modeling has a long tradition in choice the-

ory, see e.g. the survey of McFadden (1984), and has been introduced to game theory

by Rosenthal (1989) and McKelvey and Palfrey (1995). First, we describe the nested

logit model of the proposal choice, and further below how this model is extended to

a stationary quantal response equilibrium in bargaining games.

Given a utility function ui : RN → R for player i ∈ N and well-defined continua-

tion strategies, let vi(x) denote the expected utility of i as a proposer when proposing

x ∈ X. Player i chooses the proposal to maximize the random utility

ṽi(x) = vi(x)+ εi,x, (22)

where εi,x has generalized extreme value (GEV) distribution. This model of random

utility maximization gives rise to the family of GEV proposal functions. If we would

restrict our attention to the case that εi,x has the extreme value distribution, then the

choice density would have the simpler multinomial logit form. That is, for all x ∈ X,

σi(x) = exp{λ · vi(x)}/ ∑
x̃∈X

exp{λ · vi(x̃)}. (23)

We do not restrict our attention to this special case, as it seems unrealistic that sub-

jects come up with a three-dimensional proposal just like this. It seems much more

reasonable to at least allow for the possibility that they decide sequentially about its

components or its characteristics—not the least because these values are entered se-

quentially in the form at the computer terminal. Much of the existing literature in
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experimental game theory tends to neglect the choice theoretic implications that se-

quential (i.e. “hierarchical”) decision procedures can have, but as indicated, to enable

an unbiased analysis of the motives, we allow for such hierarchical “nested logit”

choice patterns.

As for proposal making in three-player games, two three-level choice hierarchies

seem particularly intuitive. According to the first one, the proposer decides sequen-

tially on the three components of his proposal. That is, first he chooses xp ∈ [0,24],

second he chooses x1 ∈ [0,24− xp], and third he chooses x2 ∈ [0,24− xp − x1]. We

formalize this procedure by defining, given X as the initial choice set of the proposer,

a partition Y of the choice set X, and for all Y ∈ Y, partitions Z(Y) of Y. The pro-

poser first chooses Y ∈ Y, second he chooses Z ∈ Z(Y), and finally he chooses the

actual proposal x ∈ Z. Using this notation, the sequential choice procedure can be

defined as follows.

Definition 4.1 (Sequential proposal refinement (SeqRef)). Two proposals x′,x′′ ∈ X

are in the same subset Y ∈ Y if and only if x′p = x′′p. Given Y, two proposals x′,x′′ ∈ Y

are in the same subset Z ∈ Z(Y) if and only if x′1 = x′′1 .

The second choice procedure that we consider is inspired by the theoretical argu-

ments made in the existing literature. Here, the proposer first chooses the quadrant in

relation to the continuation payoffs (i.e. whom to pay his continuation payoff, see Fig-

ure 2b). To extend this to a three-level hierarchy, we assume that he secondly chooses

the approximate region of his proposal within the chosen quadrant (with an accuracy

of e 2), and that he thirdly chooses the actual proposal. In this second model, the

proposal maker refines his proposal simultaneously over all three dimension, rather

than sequentially.

Definition 4.2 (Simultaneous proposal refinement (SimRef)). Let ũ denote the con-

tinuation utilities of the voters. Two proposals x′,x′′ ∈ X are in the same subset Y ∈ Y

if and only if ui(x
′)≥ ũ ⇔ ui(x

′′)≥ ũ for i = 1,2. Given Y, two proposals x′,x′′ ∈ Y

are in the same subset Z ∈ Z(Y) if and only if ⌊x′i/2⌋= ⌊x′′i /2⌋ for i = 1,2.

Given these nested choice procedures, the choice probabilities follow from the

standard definitions of nested logit response functions (see McFadden, 1984, and the
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references cited therein). For the following, let ũ denote the continuation utility, and

given a proposal x = (xp,x1,x2), let u1(x) and u2(x) denote the utility of voter 1 and

2, respectively. The probability of choosing x ∈ X is

σi(x) = Q(x | Z) ·Q(Z | Y) ·Q(Y) (24)

for x ∈ Z, Z ∈ Z(Y), and Y ∈ Y, with

Q(x | Z) = exp
{

λp · vi(x)
}

/pZ pZ = ∑
x̃∈Z

exp
{

λp · vi(x̃)
}

Q(Z | Y) = exp
{

ρ′ · ln pZ

}

/pY pY = ∑
Z̃∈Z(Y)

exp
{

ρ′ · ln pZ̃

}

Q(Y) = exp
{

ρ′′ · ln pY

}

/p p = ∑
Ỹ∈Y

exp
{

ρ′′ · ln pỸ

}

,

where (λp,ρ′,ρ′′) are precision and interdependence parameters. McFadden (1984,

p. 1422ff) also defines the distribution of the random utility component that gives rise

to this three-level nested logit model. Further, since the nested logit model is a GEV

model, a nested logit equilibrium (see below) is a special case of a quantal response

equilibrium as defined by McKelvey and Palfrey (1995).

4.3 Stationary quantal response equilibria

Following the majority bargaining literature, we focus on symmetric equilibria. That

is, both voting functions and proposal functions are symmetric between players. Sym-

metric (stationary) QREs of our random-proposer games are fully characterized by

a duple (σp,σv), where σp ∈ ∆(X) is the proposal function (of each player), and

σv : X → [0,1] is the voting function (for a general definition of stationary QREs, see

Breitmoser et al., 2010). Let u : X → R denote the players’ utility function.6 Define

ũ ∈ R as the disagreement utility under (σp,σv), i.e. the expected utility in case the

next proposal is not accepted, and initially let us take it as given. The logit voting

6The argument of u(x), i.e. x = (x1,x2,x3), is understood to have the payoff of the respective player

as x1, and the opponents’ payoffs as x2 and x3. We assume u(x1,x2,x3) = u(x1,x3,x2).
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function σv solves7

σv(x
1|ũ) =

exp{λv ·u(x1)}

exp{λv ·u(x1)}+ exp{λv(σv(x2|ũ)∗u(x1)+(1−σv(x2|ũ))∗ ũ)}
. (25)

The corresponding probability that x will be accepted, conditional on ũ and σv, is

Pr(x) = 1−
[

1−σv

(

x1|ũ
)][

1−σv

(

x2|ũ
)]

. (26)

and thus the expected utility of the proposer from proposing x ∈ X is

vi(x) = Pr(x) ·ui(x)+(1−Pr(x)) · ũ, (27)

Given this function vi, the proposal function σp is defined by Eq. (24). Note that

we allow for role-specific precision parameters λp and λv for proposers and voters,

respectively, because their choice problems have different complexity. Finally, let

u ∈ R
N denote the expected payoff of all i ∈ N under (σp,σv), and define

u = δ · (u1 +u2 +u3)/3+(1−δ) ·u(0,0,0). (28)

In any stationary QRE of PB95, ũ = u. We determine the equilibrium (σp,σv) by

function iteration using the starting value ũ = u(7,7,7). The stationary equilibrium

is unique if and only if the voting equilibria (25) are unique for all proposals x ∈ X,

but conditions for the latter do not seem available. In our computations, the function

iteration generally converged quickly to the fixed point (ũ = u), which suggests that

the equilibrium is stable and locally unique.8

The strategy profile (σp,σv) is the symmetric QRE of PB00 for ũ= u(7.6,7.6,7.6).

7The following expression uses a notation of permutations of x ∈ X. In general, x is in the order

(xp,x1,x2), i.e. the first value refers to the proposer, the second value to the first voter, and the third

value to the second voter. We define x1 := (x1,xp,x2) and x2 := (x2,xp,x1).
8For each proposal x ∈ X, the equilibrium acceptance probabilities σ1(x) and σ2(x) of the voters

had also been determined by function iteration, using the starting probabilities (0.5,0.5). In this case,

the function iteration was dampened to ensure robust convergence. Also note that, as stated in Footnote

2, e 0.2 was used as the smallest currency unit in the structural analysis (most actual proposals had

been multiples of it, and the remaining few had been rounded appropriately).
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5 Model comparison

In the present section, we describe and discuss the estimates for the structural mod-

els introduced above. Each player type is fully defined by the parameter tuple p =

〈λp,ρ′,ρ′′,λv,α,β〉, where the meaning α and β depends on the utility function con-

sidered. We estimate the mixture of types in our subject pool, assuming that every

subject plays according to the QRE of one of the types. Thus, if K denotes the set of

types in the population with type shares ρk for all k ∈ K, P = (pk)k∈K the parameter

profile, O = (os,t) the set of observations for all subjects s ∈ S and periods t ∈ T , the

log-likelihood function is

LL(P|O) = ∑
s∈S

ln ∑
k∈K

ρk ∏
t∈T

σ
(

os,t |p
k
)

, (29)

using σ
(

os,t |p
k
)

as the probability of action os,t according to the QRE defined by the

parameter profile pk. The log-likelihood is maximized jointly over all parameters to

obtain consistent and efficient estimates (see e.g. Amemiya, 1978, and Arcidiacono

and Jones, 2003, for further discussion). We used the derivative-free NEWUOA al-

gorithm (Powell, 2008) for the initial approach toward the maximum (NEWUOA is

a comparably efficient and robust algorithm, see Auger et al., 2009, and Moré and

Wild, 2009), and subsequently, we used a Newton-Raphson algorithm to ensure local

convergence. This procedure has been restarted repeatedly with a variety of starting

values. The complete list of parameter estimates, including standard errors derived

from the information matrix, is provided as supplementary material. Model com-

parisons will be based on the Bayes Information Criterion (Schwarz, 1978), i.e. on

BIC = −LL+(#Pars)/2 · log(#Obs), and on the Cox-Snell Pseudo-R2, which is de-

fined as R2 = 1− (L(MIntercept)/L(MFull))
2/N . As the intercept model, we use the

benchmark that players randomize uniformly in all cases.

As indicated repeatedly above, we exclude the demand game from the structural

analysis. Its results are important to inform us that we can rule out neither risk aver-

sion nor social preferences as an explanation for overpayment in the proposer games

(see e.g. Figure 2b in relation to Figure 2c), but the proposals in demand games do

not seem amenable to structural modeling using a nested logit formulation similar to
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the ones introduced above. For, the proposal to the player with the lower demand

degenerates almost all the way to the pure strategy of paying the lower demand (see

Figure 2c), and in relation to the variance of the proposal to the other player, this de-

generateness does not seem explainable in a random utility model similar to the ones

described above.9

First, we analyze whether the proposers tend to refine their choices sequentially

or simultaneously over the three dimensions, or whether they actually determine all

components without violating IIA. At this point, we focus on one-type models for

simplicity, but the results are similar in finite mixture models allowing for multiple

types. The goodness-of-fit measures obtained for the various model estimated are

reported in Table 1a and can be summarized as follows.

Result 5.1. The SimRef model of nested logit choice explains proposal making far

better than the SeqRef model, regardless of the utility function considered.

Since both nested logit formulations, SimRef and SeqRef, are generalizations

of multinomial logit, the multinomial logit model fits worse than these nested logit

models. But the differences of their goodness-of-fits in relation to multinomial logit

are drastic by any standard. To be precise, the two additional parameters ρ′,ρ′′ would

be significant at the .001 level (in likelihood-ratio tests) if the log-likelihood would

improve by a mere 7 points—but the improvements found here (between multinomial

logit and the SimRef formulation of nested logit) are at least 500 points, for every

utility function. The SeqRef formulation fits worse than the SimRef formulation, but

still it improves upon multinomial logit highly significantly.

In turn, this shows that focusing on multinomial logit may strikingly obstruct

the validity of one’s model, and thus it would also bias one’s identification of the

underlying motive. The latter can be seen in Table 1a, according to which the most

descriptive motive is CES for multinomial logit, Inequity Aversion for SeqRef nested

logit, and Prospect theory for SimRef nested logit. There is no ambiguity with respect

to the choice structure, however, as SimRef nested logit fits better than both SeqRef

9A reasonable model seems to be one where the proposer first decides whose demand to pay, similar

to choosing a quadrant, and secondly whether to pay the demand exactly or generously. The fact that

generosity applies (almost) exclusively with respect to the player whose demand is not explicitly paid

suggests an asymmetry that requires finer parameterization than used above.
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Table 1: The Bayes Information Criteria (BICs) of the various models

(a) Comparison of the multinomial logit and nested logit models

Utility model

Choice model Inequity Aversion CES Prospect theory Altr-CRRA

Multinomial logit 4580 4513 4788 5096

SeqRef Nested logit 4187 4483 4631 4502

SimRef Nested logit 3836 3993 3402 3827

Note: Inequity aversion as defined in Eq. (18), CES utility as in Eq. (19), Prospect theory as in Eq.

(20), and altruistic CRRA as in Eq. (21). The parameter estimates are reported in the appendix.

(b) Goodness-of-fit of multi-type models without mixture of motives

Utility model

Number of types Inequity Aversion CES Prospect theory Altr-CRRA

1 3836 3993 3402 3827

2 3691 3881 3418 3798

3 3659 3682 3426 3801

(c) Goodness-of-fit of two-type models with mixture of motives

Utility model 2

Utility model 1 Inequity Aversion CES Prospect theory Altr-CRRA

Inequity Aversion 3691 3736 3415 3707

CES 3881 3414 3781

Prospect theory 3418 3402

Altr-CRRA 3798

(d) Goodness-of-fit measures of heterogenous models

Voter type

Proposer Prospect CES CRRA IneqAv

Prospect + 3402 3714 3691 3874

CES + 3612 3996 3928 3936

CRRA + 3668 3835 3802 4046

IneqAv + 3488 3741 3692 3839

(e) Estimates for two of the best-fitting models

Type Share λp ρ1 ρ2 λv α β LLBIC R2

Prospect 1 1
(NaN)

4.822
(0.032)

0.035
(0.002)

0.054
(0.001)

2.656
(0.005)

0.002
(NaN)

21.888
(0.039)

−3379.3
3402.02

0.8877

CRRA +

Prospect

1 0.021
(NaN)

0.286
(0.005)

0.159
(0.005)

0.107
(0.014)

0.155
(0.027)

0.154
(0.001)

0.366
(0.004)

2 0.979
(0.012)

4.752
(0.075)

0.042
(0.002)

0.039
(0.001)

2.651
(0.008)

0.001
(NaN)

21.764
(0)

−3352.29
3401.51

0.8908
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nested logit and multinomial logit for every motive considered.

For this reason, we now focus on the SimRef model of nested logit response and

examine whether the data support finite mixtures of types. Tables 1b and 1c report

the goodness-of-fit measures (BIC) for the estimated multi-type models without and

with mixtures of motives, respectively. The parameter estimates for the best models

found in this analysis are reported in Table 1e, the remaining parameter estimates are

provided as supplementary material.

Result 5.2. The single-type Prospect theoretic model fits better than all mixtures of

non-prospect theoretic types, and in finite mixtures with the Prospect theoretic type,

alternative types do not lead to improvements of the Bayes information criterion.

This suggests that the subject pool is a rather homogenous group with Prospect

theoretic utility, but to verify the robustness of this conclusion, we allow for the pos-

sibility that proposers and voters are heterogenous. The most intuitive such combi-

nation may be that proposers are risk averse and voters are inequity averse, but we

allow for all sixteen such combinations. Table 1d summarizes the Bayes information

criteria of the estimated models.

Result 5.3. Regardless of how proposers are modeled, voters are clearly best mod-

eled as Prospect theoretic types. Modeling proposers as Prospect theoretic does not

improve upon the alternative models regardless of how voters are modeled, but it does

improve upon the other models if voters are modeled as Prospect theoretic.

All subjects are best modeled as Prospect theoretic types. That is, they have

reference-dependent preferences as discussed by Shalev (2000, 2002) and Kőszegi

(2010) with the reference point being equal to the (ex-ante) expected payoff in the

game. It is particularly interesting that although the reference point coincides with

the equitable payoff, the social preference functions considered here (Fehr-Schmidt

and CES) cannot capture the observed behavior of either proposers or responders.
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6 Concluding discussion

In this paper, we analyzed behavior in three multi-player bargaining games with vary-

ing time horizons and move structures. Doing so departs from the traditional approach

of the ultimatum analyses, the closest of which have convexified decisions that reduce

the risk of absolute rejection (Andreoni et al., 2003) or introduced a third player with-

out veto power (for a survey, see Güth, 1995). The research question, however, is

the same: Does genuine fairness concerns and/or the fear of rejection drive generous

bargaining offers? Our design allows us to separate motives and to econometrically

model the structure of proposer behavior. Inequity aversion was predicted to have

very different effects on offers across these games, but we did not observe such differ-

ences. There was no significant difference between the observed outcomes in the two

proposer games. Moreover, the proposer did not realize much more than his coali-

tional voter did, who received on average the continuation payoff, while the other

voter got more than nothing—contrary to equilibrium predictions. These observa-

tions are in line with those of previous studies, which also noted the under-realization

of proposer power and the generosity shown to voters outside the minimal winning

coalition (Fréchette et al., 2005a,b; Knight, 2005).

The gap between proposer and secondvoter payoffs was closer than the (station-

ary) SPE prediction in PB95, implying a form of equity that is counter to the pre-

dictions of inequity aversion. Proposer and second voter shares diverged over time

and thus converged toward the SPE in PB00, which is a relatively less equitable state

and also counter to the predictions of inequity aversion. The income gap was even

narrower in the demand commitment game, contrary to the prediction of maximal

inequity and its invariance with respect to Fehr-Schmidt inequity aversion. Put to-

gether, these qualitative observations cast doubt on the explanatory power of inequity

aversion in explaining proposal making.10

Generous offers thus seem more likely to be due to the proposer’s anticipation

of inequity averse responders than to inequity aversion of himself. The compliance

to the lower of the two demands in DB95, both of which are higher than predicted,

10Similarly, Fréchette et al. (2005a) and Fréchette (2009) observed (non-)convergence of proposals

(votes) and increases in the number of minimal winning coalitions in their infinite horizon games.

28



also suggests so. Such concern for fairness corresponds with evidence from truncated

bargaining experiments, and also with Fréchette (2009) who showed how beliefs of

“fairness” shape proposals over time. This practically means that outcomes are sen-

sitive to institutional rules on group decision making, the timing of moves, and the

structure of information. When demands are publicly known and can be commit-

ted to before proposals are made, for example, inequity aversion of responders may

pose a resistance to convergence toward the equilibrium outcome of disadvantageous

inequity, as fearful proposers pay the ransom for coalitional votes.11

The main contribution and novelty of our study is in the exploitation of the di-

chotomy between PB00 and PB95 to discriminate between risk aversion and inequity

aversion in a structural model of majority bargaining. Behavior was best modeled as

nested logit choices where players first decide whom to pay the continuation payoff

and then decide how much to pay them. This approach was shown to fit unambigu-

ously better than two alternative models (another nested model and a non-nested one)

and also seems very intuitive. Using this model to describe the choice procedure, we

then estimated the subjects’ utility functions in an analysis allowing for latent het-

erogeneity. We found that subjects have Prospect theoretic preferences defined over

gains and losses relative to the reference point of expected prior payoffs (in our case

the equal split). The reference-dependence of preferences is particularly strong with

respect to voter behavior. This equitable reference point coincides with fairness, one

that is different from the inequity aversion defined in the literature. The success of

the nested logit model prompts further effort in applying this pluralistic structural

approach to other bargaining games (there exists extensive supplementary material

containing the programs and instructions required to replicate and extend our analy-

sis).

Okada and Riedl (2005) showed that inequity aversion is a plausible explanation

for behavior in their coalition bargaining game.12 Other studies have shown the rele-

11Such has been observed in Poulsen and Tan (2007) ultimatum game where proposers may dis-

advantage themselves by choosing to become informed of responder demands, and so many avoided

information and offers fluctuated around the equal split over time.
12Our games differ as follows: (i) their game is a one-shot game with zero disagreement payoffs,

(ii) their game has super-additive payoffs rather than being a divide-the-dollar game (implying that the

grand coalition is uniquely efficient), and (iii) the proposer cannot allocate positive shares to players

outside of his coalition. Point (iii) implies that non-coalition players were totally excluded and re-
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vance of CES preferences of proposers in dictator games (Andreoni and Miller, 2002)

and of responders in mini ultimatum games (Cox et al., 2007) when proposers were

treated as “strategic dummies.” We structurally tested the degree to which these al-

ternative models explain proposer behavior in a bargaining context where responders

have bargaining power.13 The results point in favor of a (fairness-like) reference-

dependence. Further research on its validity in other bargaining setups is warranted.

Such structural analysis allows the precise quantitative differentiation between qual-

itatively different utility functions, and eventually, to conclusively discriminate the

motives in games.

Many of these competing utility functions consider relative payoffs and reference

points. This confluence makes identifying the motives at play challenging. Indeed, in

Fréchette et al. (2005b)’s proposer game study, fairness was interpreted as a “behav-

ioral focal point” that responders are inclined to. Our experimental and econometric

results (exploiting the clean differences between PB00 and PB95) together show that

what appears fair to the naked eye is actually fear (or reference dependence) in dis-

guise. Thus, while proposals do not necessarily become more equitable when pro-

posers are more inequity averse as Montero (2007) theorized, they do become more

equitable when proposers are more fearful of rejection—relative to their greed for

acceptance at more favorable terms as we observed. Equity increases also when re-

sponders have a strong reputation for inequity aversion or, as in our case, fairness-like

reference-dependence.
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