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Abstract
In this note on the paper from Jiang, Manchanda & Réssi%2009), I want to discuss a simple
alternative estimation method of the multinomial legit model for aggregated data with
random coefficients - the so-called BLP model, named for Berry, Levinsohn & Pakes (1995).
The estimation is conducted through a BageSian estimation similar to Jiang et al. (2009).
However in contrast to Jiang et al. (2009) I omiit the time-intensive contraction mapping for
assessing the mean utility in every iteration step of the estimation procedure. The likelihood
function is computed through a special tase of the control function method (Park & Gupta
(2009) and Petrin & Train (2002)9s A full random walk MCMC approach is applied, that
uses two random walk MCMC’ chains - one to draw the parameters of the model, and
a second one to sampled, an explicitly introduced uncorrelated error term. In total, the
suggested simple, prfogedute (i) permits the use of the full information from the data set, in
contrast to Railk &\Gupta (2009), (ii) accelerates the Bayesian estimation by omitting the
contraction mapping, in contrast to Jiang et al. (2009), and (iii) in contrast to both cited
metheds, ‘allows the demand shock to be estimated without a distributional assumption, if

desired.
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1 Introduction

In this note! on the paper from Jiang et al. (2009), I want to discuss a simple alternative
estimation method of the multinomial logit model for aggregated data with random coeffi-
cients - the so-called BLP model, named for Berry et al. (1995).

The estimation is conducted through a Bayesian estimation similar to Jiang et al. (2009).
However in contrast to Jiang et al. (2009) I omit the time-intensive contractionnapping for
assessing the mean utility in every iteration step of the estimation proceduvenTheflikelihood
function is computed through a special case of the control function method(Park & Gupta
(2009) and Petrin & Train (2002)). A full random walk MCMCsapproach is applied, that
uses two random walk MCMC chains - one to draw the parameters<f the model, and a sec-
ond one to sampled an explicitly introduced uncorrelated etfor term. In total, the suggested
simple procedure (i) permits the use of the full information from the data set, in contrast to
Park & Gupta (2009), (ii) accelerates the Bayesian estimation by omitting the contraction
mapping, in contrast to Jiang et al. (2009), and {iii) in contrast to both cited methods,
allows the demand shock to be estimdted, without a distributional assumption, if desired.

The rest of this paper is structuredrasfollows. In the next section, the model setup is outlined,
both for the usual BLP model’and for the estimation through the Bayesian method, which
includes the derivationtef the likelihood function, the prior distribution and the Bayesian
estimation througl™thevposterior distribution. In the following section, a simulation study
is employed, te assess the performance of the introduced alternative estimation approach.
Those results,are compared with the outcome of the estimation according to Park & Gupta

(2009) and*Jiang et al. (2009). The paper ends with a conclusion.

IThis study originates from a course paper for the lecture 'Bayesian Modeling for Marketing’ held by
Prof. Thomas Otter at the Goethe University Frankfurt for doctoral students in the winter semester of
2009/10.



2 Random coefficient logit model for aggregated data

2.1 General model

In the following, the choice model for aggregated data with random coefficients is con-
sidered, as developed by Berry et al. (1995), the so-called BLP model. Although Berry et al.
(1995) study a model of markets in equilibrium, i.e. with explicit formulation and gStimation
of a demand side model and a supply side model, here only the demand sidé is taken into
consideration.

This simulation concentrates on a normal distribution of unobserved individual preference?,
which is often used in applied work (e.g., recently Sovinsky Goerée (2008), Gowrisankaran
& Rysman (2009), Albuquerque & Bronnenberg (2008)).
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With a similar notation as in Nevo (2000) the utility,of'a product j=1,...,J for an individuum

i=1,....,I in a market t=1,.... T can be written as:

e = Tpi + &t it
= O G+ 2 (1D 4 Avy) + e

= Oy + fijt + Eije- (1)

xj¢ is the vector of influenge variables, including e.g. price or advertising, with the vector of
random coefficients, 3;,*that is decomposed as §; = § + I1D; + Av;, v; ~ N(0, [), where A
is the lower-triangular Cholesky factor of the K x K covariance matrix, i.e. ¥ = A - A’

gijr is am ndependently and identically distributed (i.i.d.) extreme value distributed error
term and §;; is the surrogate of unknown product characteristics. II are the influence pa-
rameters of the matrix of demographic variables D;. Moreover, the mean value of the utility
of product j in market t is 0;; = ;15 + & and thus p,;;; = x;4(I1D; + Ay;) is the individual
specific deviation from d;;. Therefore, 3; ~ N (5 + I1D;, X).

2However in the BLP model, any other distribution for individual heterogeneity can be employed.
31.e. a costumer.



Define*

Yo 0 -0

Y Y

A = 21 22
0
YK1 TKK

The expectation of the individual market shares s;;,

sit = Epu(siji) = //Sijt(D,V)dVdPD(D)

/ / exp(w), B+ & + 2%, (ILD + Av))
1+ eap(anf + & + adID F7Av))

¢(v)dvdPp(D) (2)

can be approximated by different simulation methaods:
D; ~ Pp(D) is the distribution of the demographic vartables and ¢(-) denotes the density of
the standard normal distribution.

The most obvious kind of an approximation of the expectation is the mean value

Lo ns exp(alyf + & + 2, (ILD; + Av;)) @
L= =
’ = 1 30 eap(auf + & + i (IID; + Avy))

with ns ° random drags or decisively chosen draws from the assumed distribution of v and
for given datajobservagions from the empirical distribution of D with some appropriately
chosen weights'w; for decisively chosen draws.

Laterfm,the simulation study (section (3)) I use for the simulation of equation (3) the nested
Gauss-Quadrature with nodes and weights on sparse grids as implemented and developed by

Heiss & Winschel (2006)°. In the following, demographic variables are not considered, so D

4With respect to the exclusion restrictions for identification (Walker, Ben-Akiva & Bolduc 2007).

®ns for "number of simulations”.

6Because the overall computation time depends mainly on the magnitude of ns (Dube, Fox & Su 2008),
it is desirable to use the smallest necessary number of draws. Gauss-Quadrature with nodes and weights on
sparse grids has the advantage over applying the product rule to the usual Gauss-Quadrature (e.g., Judd
(1998)) in that the construction of sparse grids with far fewer nodes is needed for the integration of integrals
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is dropped from equations. Because one or more of the known’ product characteristics
might be chosen on the basis of unknown product characteristics §;;, the in the literature

well-known problem of endogeneity arises.

2.2 Likelihood

In the likelihood function, endogeneity is explicitly incorporated through the sét up used
by Park & Gupta (2009), whose theory goes back to Hausman (1954) and Heekman (1978).
Their approach uses a special case of the more general control functionfestimation method
of Petrin & Train (2002). Park & Gupta (2009) proceed as follows:
Let z;; be the vector of instrumental variables that are correlated with the known product
characteristics xj;, e.g., only price®, but that are uncorrélated with the unknown product

characteristics &;;.

Tjt G FNZj§ + Vjt, (4)
th = IK & Z;t’
Vit N N(()? ED]’)?

& NN, 0),

|
>
<

cov(Dji, Ejit)

cov(zji, &) = 0,V

of higher dimension. The numerical integration with Gauss-Quadrature on sparse grids leads to a relatively
fast estimation compared with other simulation methods such as simple random draws from the normal
distribution or randomized draws from Halton Sequences (e.g., Bhat (2000), Train (2000)).

"I.e. known respectively unknown to the data analyst.

8To simplify the notation, this notational difference is not made, but incorporating a set of exogenous
variables and a set of endogenous variables is straightforward. In fact, one could treat all variables as
endogenous and simply add the exogenous variables to the instrumental variables.



The distribution of the two error terms can be expressed as the product of a Choleski factor

of their covariance and two independent error terms:

Vjt B bu; 0 Wi, jt 5)
it ba1; oz wa,jit
Wi, 5t iid.
~ N(Ov-[K-i-l)'
Wa jt
!
S bu; 0 bi; 0 25, N,
j p— p—
2
barj bz barj baaj 2w ) O,

With (5) and with by ; = E},J/,Q, the equation (1) and (4) can/be transformed to

uige = 05 + barjwi e + oo jwai + €ijt, and (6)
it = ZjtC + b jwm. (7)
After plugging wy j; from equation (7),in equation (6), the utility can be written as:

Uiji % JT5i + 0)lwje — ZuCG) + Doz jwa ji + €ije

with g; = bQ]_Jbl_ll’j.

Note that now, aleng with the usual extreme value error term ¢;j5, there are two additional
uncorrelatedwerror terms in the utility: wq j; and ws j.

As wyp =wais, ..., wa ) is uncorrelated with every other term in the equation Park &
Gupta (2009) denote it as ”exogenous unmeasured product characteristic” (EUPC).

Now, the logit probability for the individual i’s choice of product j at time t, s;j, thus equals:

B exp(, 3+ of[wje — Zji(s] + bag jwa je + 2 Avy)
1+ 25:1 exp(zy,3 + g [z — (Ix ® Zl,t)cl] + bagwa gy + xEtAVz')

Sijt



Explicit inclusion of endogeneity thus leads to the ordinary form of the random coefficient
logit model, apart from the bias correction term [x; — Z;(;] and the EUPC shocks ws j;.
Given the bias correction term [zj; — Z;(;] and conditional on ws j;, the likelihood can be

written as:

qdjt

[ sutensmotin ®)

v

o= (i)

!
ot ---qit*/) 5

Let g;: denote the observed chosen quantity of product j at time t. Becauge the error terms
way are not observed, Park & Gupta (2009) assume the error terms%o he i.i.d. standard

normally distributed and the authors integrate out those EUPCfterms®

Ll,t = /Ll,t(wz,t)¢(w2)dw2~ (9)

Because of this integration, ordinarily only a subsample of the observed sold quantities
can be used, e.g., 100 draws - not all ofythe‘information about the sold quantity in the
data. Otherwise, the computation guickly reaches machine zero because the observed
choice quantities enter the likeliheod through the exponent (see equation (8)) and because
the logarithmic transformatiom,does not help to avoid as usual the computation of the
exponentiated probabilities, Although Park & Gupta (2009) state that the estimation is
not sensitive to thatastibsampling, it is generally desirable to use the full information of the
data, if posgsiblen, This is especially important when one wants to recover the parameter
values of awmiodel with a complex setup. However, when integrating out ws, one has to
additionally integrate over the dimension of J, the number of alternatives, which can be
high. Moreover, because v; from equation (3) needs to be integrated out with a number of
ns draws, the total number of evaluations to numerically integrate out both v; and wy is
ns - nsg, if nsy is the number of draws needed for integrating out ws. That increases the
burden of computation.

In summary it is desirable to use the full available information from the data set and to



alleviate the burden of estimation, if possible.

The approach introduced here is to sample ws through a random walk MCMC chain,
which does not require a second numerical integration and which permits use of the full
information of the data. Finally, the distribution of w, does not need to be known, but
it can be automatically estimated, if desired. In the following, the likelihood is written
conditional on wy and conditional on the bias correction term [xj; — Z;(;] high'is then

drawn in the Bayesian estimation. Let the conditional likelihood functiontbe denoted as:

9|w2 Hth wzt

Wlth (9 = (6, Y11y -+ VKK b1171, bgl’l, b22’17 cevy bn’(], bgly‘], b22,J). Therefore, except fOI' a Con-

stant, the conditional log likelihood is:

T J+1

[(Olwz) = > ) gulog </ Sijt(w2,jt7Vi)¢(V)dV) :

t=1 j=1

The bias correction term [z;; — Z5p¢;) - that is the error term from the first-stage regression
of the endogenous variable(§) on, the instrumental variables - is not known. We can either
include the bias correction term in the likelihood as the probability from the K dimensional
normal distribution (Rark' & Gupta 2009) and estimate it simultaneously, or we can estimate
the bias corfreetion térm in advance (Petrin & Train 2002). The latter has the advantage of
simplifying the estimation procedure and reducing the number of parameters in the likeli-
hood estimation respectively Bayesian estimation. That might be particularly important if
the number of instrumental variables is very large as a result of interactions with dummy

variables, as in some practical applications.



2.3 Priors
The standard choice for the priors is®:
6 ~ N(ﬁﬂ? V,@)J
(G~ NG V).)
As pointed out previously, one can optionally assume, that:

u)Q’jt l}\fl N(O,l)

To obtain a more equal distribution of the correlations of both variahceCovariance matrices

ij and X, the prior distributions are set as in Jiang et al. (2009)!

S = AN,
e 0 e 0 Y
7/-21 6r22
A =
0
TK1, W WIKK-1 €KK

Whete, the priors of r,,;. are specified as
Trm 4~ AN (002, )
T, 0 N(O,asz),mzl,...,K and k=1,.... K,m > k.
Analogously for ;(same for all j =1, ..., J):
.~ N(0,57)

fin ~ N(0,62;),0=1,....J and h=1,....J,1 > h.

9If the estimation of the bias correction term is done separately before the full estimation procedure, as
it is done here, the prior of ¢; is not needed in the following.
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The standard choice of hyper-parameters is:

By = 0,V;=100Ig,
14 \/1 —4(2(m — 1ol —¢)

1
2 e -

Tmm = 2 ’
| . 1+\/1—4(2(1—1)a—§ff—c)
=y 2 ’
2 _ ~2 _ _

oup = Lliogpp=1,¢=050.

For the hyper-parameter of the variance-covariance matrices sgeyJiang et al. (2009) and

otherwise, e.g., Rossi, Allenby & McCulloch (2005).

2.4 Bayesian estimation

With the inversion of the market shares th@trequires the contraction mapping according
to Berry (1994), the parameters can be estimated with a hybrid MCMC algorithm as in
Jiang et al. (2009).

They proceed as following. Given thedraws for the Choleski factor of the variance-covariance
matrix of the random coefficienits®\, the mean utility ¢;; can be computed by the contraction
mapping.

After that, one can conduct a Bayesian linear instrumental variable regression of this mean
utility on the Thflience variables and instrumental variables '°. This permits an assessment
of thesstructural error term §;; and permits the establishment of the likelihood function
with the assumed distribution of £;;. The parameters of A are gained through a step of a
random walk Metropolis chain.

The advantage of the procedure of Jiang et al. (2009) is, that one can easily obtain draws

from all parameters other than those of A, while using information from the model set up

10This Bayesian linear instrumental variable regression can be conducted as e.g. outlined in Rossi et al.
(2005). An adapted description for the case and the parameter notation used here can also be requested
from the author.
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and from the observed shares to obtain these draws.

A disadvantage of this approach is that for every iteration of the MCMC algorithm the
contraction mapping!! must be conducted, which leads to a three times larger estimation
time than with the GMM approach, after Jiang et al. (2009). Additionally, the Jacobian of

the shares according to §;; must be computed.

In this paper, the likelihood is evaluated without conducting the contraction map-
ping. I use a method similar to that employed in Park & Gupta (2009), to ealculate the
likelihood function, but I apply a full random walk MCMC algorithm“or all parameters 6
in this model.

The approach is to sample ws through a random walk MCMC chain, which (i) omits a
second numerical integration, (ii) allows us to use ghe/full\information of the data and (iii)
does not require us to assume of specific distribution“ef ws, if not desired. The posteriori

probability for given wy is:

m(0]st, Xef1,wn) =
o Sl B]<33) 7 (0)
L (B]wn) %
x [Va| ™2 eaxp (—0.5(8 — Bo) Vi (8 — Bo))

K K j-1 .2
X Hexp (—2”;’“ > X HHexp <—20”;k )

m=2 k=1

I [Hexp (1) ﬁﬁmp< 2;”}f)] |

j=1 Li=1 =2 h=1

There are two random walk MCMC chains, that are iterated - one for updating 6 and one

for updating ws:

1 That is the same contraction mapping procedure that is conveyed in the inner loop of the generalized
method of moments (GMM) estimation of the BLP model.
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(1) For given wy the MCMC chain for € is updated in this way:

oY = QOld + To, Ty ~ N(O,UQDQ).

Where o2 is a scaling constant and Dy is the candidate variance-covariance matrix that is

typically obtained from a calibration chain.

A new draw of 6 is accepted with the probability a: é
' L(enew|w2)ﬂ.(9new) ®
= 1 .
a = mnun { * " L(6°1|wy ) (914

(2) For given 6 the random walk MCMC chain for wy is u@d as:

Wy = W' + Ty, T (&Dw).

new old
y Ywy

Where o2, is the scaling constant and Dﬁcandidate variance-covariance matrix for ws
which has the dimension of the nu of"alternatives J.
A new draw of wy is accepted @E probability a,,,:
L wnew 0 wnew
&amm {1t "o

Q L(wg"|0)m(ws')
0\\

5 —

12



3 Simulation study

3.1 Data generating process (DGP)

In this simulation study, I consider J=2 products (and an outside option) on T=50
markets. Thus there are J x T = 100 observations. The data are generated as follows, in a
manner similar to Park & Gupta (2009). Hence the way that endogeneity enters’a certain

variable, say price, is explicitly modeled:

xﬁ) = uﬁ) : ugf) (Variable 1)

uly EN(0,1)

uly R U(0,1)

xﬁ) Wy (0,1) (Variable 2)

xﬁ’) = Zj; + Uj (an endogenous variable, say price)
W jit, W jt R N(0,1).

Through the setting from equatieny(5) to account for endogeneity, there is a correlation
between mﬁ) and the structufalerror term &j;, but §j; also exhibits an additional variation
component.

b11 = +/.1/n;, and she bdn,, instrumental variables are set as the following, where n;, = 10:

th - (27zjt,17"'7zjt,niv)a

Zi RON(0,.9/ni) 0= 1,2, .. ngy

bgl = \/ .5/7’Lw,b22 = \/ 5/7’Lw

Where 7; is a column vector of values 1/2.

Thus, along with the two brand dummy variables d;, there are five influence vari-
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ables:

(dy, ds, xﬁ), xﬁ), xﬁ’)) with mean parameter values determined as

8 =(-3.25,-3.5,.5,1,—1).

The variance-covariance Y of the coefficients of the five influence variables is specified as

the following, to assure a model with different substitution patterns than those from the

homogeneous logit (similar to Jiang et al. (2009)):

00 —15 —154. 029

To computed an observed aggregated market share in the data generating process, I take

the average of the simulated decisions of 4007000 random sampled customers 213,

3.2 Estimation with an alternative approach

After the data were generated, [ obtained first a candidate variance-covariance matrix for
the MCMC algorithm By performing a calibration chain with some initial starting values'?.

The random walkSampling matrix'® for 0 is set as a diagonal matrix with the entries of

12With e.g, 20;000 random sampled customers the following results were quite similar.

13To check the'wobtistness of the simulation study toward the parameter setup, different data generating
parameters, as,shown below were used. The proposed estimation approach recovered the parameter values
with anfaccuracy similar to that in the previously outlined parameter setup.

bin = 2v.1/ng, bai =2/.1/n4, baa = ba

6 = (-2,-3,2,2,-5)
4 0 0 O 0
04 0 O 0
Y = 0 0 3 ) .5
00 5 3 =5
00 5 -5 3

14The starting values are deliberately taken from a prior ad-hoc unprecise estimation.
15i e. the initial candidate variance-covariance.
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1/100 on the diagonal, and then I took 10,000 draws, with 6,000 of them as burn-in.
After that, every draw is kept and the mean of the draws is used as the starting value for
the final MCMC chain. The variance-covariance matrix of the selected draws is employed

as the candidate variance-covariance. Moreover, the scaling factor is set to the usually

recommended value of 2.3/y/number of parameters in 6 (Roberts & Rosenthal 2009), which
is divided by 10. The same is done for the candidate variance-covariance mat#ix of ws.

Finally, 20,000 draws are taken, with 20% of them as burn-in draws, i.e., 4,000.

To compute the simulated likelihood function, I used the nestedy Gauss-Quadrature
with nodes and weights on sparse grids implemented and developed by Heiss & Winschel
(2006), as mentioned earlier. The accuracy level is set tof6/which leads to ns=993 nodes
for eight parameters for the integration of equation, (2). This means that the approximation

is exact up to a polynomial of degree 6+1.

3.3 Estimation with the referenee model

The Bayesian estimation with, the @ontraction mapping is conducted, as in Jiang et al.
(2009), thus providing a comparisen with the presented approach. The DGP, the overall
procedure and the prier distributions as well as hyperparameters are the same as before,
except the prior for,the variance-covariance matrix ij 16 but now the likelihood function
and posterior are obtained as in Jiang et al. (2009).

For everfysset)of ‘parameters A, the contraction mapping must be executed and Jacobian
matrix must be computed, so this sampling procedure is considerably slower than the
introduced alternative approach. The estimation time in general depends critically on
the number of simulation draws for the simulation of the expected market share (Dube
et al. 2008). In all three estimation methods discussed here, the same number of simulation

draws for obtaining the market share is applied, but when employing the contraction

~ 16To apply, as in Jiang et al. (2009) the usual Bayes linear instrumental variable regression as prior for
>; a standard inverted Wishart distribution is employed.
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mapping on average roughly about 70 to 100 iterations are conducted in this setting. Thus
additionally 70 to 100 times more time is needed to simulate the expected market share.
As a stopping criterion for the contraction mapping I use (similarly to Nevo (2000)) the
condition that the mean respectively maximum of two consecutive values of ¢ is smaller
than le-12 respectively le-15 to employ tight tolerance levels as recommended by Dube

et al. (2008) 7.

Furthermore, for comparison, the parameters are also estimated awith the maximum
likelihood estimation from Park & Gupta (2009). In each replication ofithe data generation
and estimation, a subsample of 100 choices is randomly drawn (before the estimation to be
able to numerically compute the likelihood'® from equatién¥9), as recommended in Park
& Gupta (2009). To integrate out the J = 2 dimensionalNEUPC term ws, a second grid of
nsy = 17 values of the Gauss-Quadrature on sparse grids is used. The accuracy level is set

to 4, which indicates that the approximationsis éxact up to a polynomial of degree 4+1.

3.4 Results

The DGP and the estimation*were executed 50 times. The resulting biases and mean

squared errors (MSE) @rd'presefited in table T 19,

"Dube et al. (2008) determine the effect of the stopping criterion in detail and recommend using tight
tolerance levels, i.e. stopping the contraction mapping if the Euclidean norm of two consecutive values from
this mapping is e.g. less than le-14. The applied tolerance level in the estimation thus is in the recommended
range.

8The full likelihood is here the product of equation (9) over all observations t = 1,..,7, i.e.,
L= HtT:1(L1,t) and the first-stage regression of z;; on Z;; is conducted separately before the likelihood
estimation. If the first-stage regression was estimated simultaneously, the obtained parameter estimates
were less accurate.

19Because of parsimony the parameter estimates from the auxiliary instrumental variable regression are
not presented.

16



L1

TABLE 1
Results from the maximum likelihood estimation, Bayesian estimation without contraction mapping and the alternative approach

Likelihood estimation: Bayesian estimation; Bayesian estimation:
with subsampling with contraction mapping alternative approach
Description Variable True value Mean Bias MSE Mean Bias MSE Mean Bias MSE
Product dummy 1 d; -3.25 -4.44 -1.19 4.68 -3.24  0.01 0.21 -3.25  0.00 0.15
Product dummy 2 ds -3.50 -4.98 -1.48 7.39 -3.41 009 0.20 -3.52  -0.02 0.17
Variable 1 aty 1.50 206 056 147 152 0.02 0.04 143 -0.07  0.04
Variable 2 xﬁ) 1.00 1.31  0.31 0.69 1.04, 0.01 0.06 0.98 -0.02 0.04
Price iy .00 <161 061 157 124" f0.24 016 -1.07 -0.07 0.08
Covariance 711 0.35 0.38 0.04 2.84 0:237 -0.12 0.20 0.30 -0.05 0.10
Covariance T'99 0.35 0.57 0.23 1.33 0.14 -0.21 0.21 0.33 -0.02 0.11
Covariance 733 0.35 0.65 0.30 0.28 0.32 -0.03 0.02 0.31 -0.03 0.02
Covariance T43 1.06 1.42  0.36 1910 0.90 -0.16 0.14 0.97 -0.09 0.12
Covariance 53 -1.06 -1.40 -0.33 1.04 -0.99  0.07 0.04 -0.93 0.13 0.06
Covariance T44 -0.07 -1.49 142 14.57 -0.62  -0.56 0.57 -0.74 -0.67  0.76
Covariance 754 -0.40 -0.98 -0.58 1.16 -0.66 -0.26 0.24 -0.58 -0.18 0.23
Covariance 755 -0.17 -0.71 #7=0.54 3.81 -0.16  0.00 0.13 -0.28 -0.11 0.16
Endogeneity 7111 0.10 -1.97%, 0:33 0.11 0.22  0.12 0.01 0.10  0.00 0.00
Endogeneity T21,1 0.22 0.27 0.05 0.02 0.17 -0.06 0.00 0.21 -0.02 0.00
Endogeneity T92,1 0.22 0220 1.72 3.00 0.34 0.12 0.02 0.26 0.04 0.00
Endogeneity T11,2 0.10 -2:37  -0.07 0.00 0.22  0.12 0.02 0.10  0.00 0.00
Endogeneity T21,2 0.22 0.29 0.06 0.05 0.17  -0.06 0.00 0.23 0.00 0.00
Endogeneity T92,2 0.22 0.19 1.69 2.91 0.35 0.12 0.02 0.28 0.06 0.01
Goodness of fit

mape 0.63 0.12 0.08

medpe 0.36 0.12 0.04

maape 1.72 0.56 0.67

1mse 0.70 0.03 0.03

mape: mean absolute percentage error; meape: median absolute percentage error; maape: maximum absolute percentage
error;mse: mean squared error; keep: every 100th draw was kept.



It can be seen, that with the alternative approach the parameters are captured with
satisfying accuracy. The bias and MSE are in the range of the values of Jiang et al. (2009)
and, in general, even slightly more precise (See goodness of fit of parameter estimates in Table

(I)). It can be seen that the alternative approach is well able to recover the parameters from

the DGP.
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4 Conclusion

Conclusion
In summary, the proposed simple alternative estimation approach leads to accurate results,
and the approach is shown to be capable of estimating the discussed model with a simpler
estimation procedure and with less computational effort. In applied work, the reduced
computation time is particularly helpful when many model specifications_need to be
estimated and analyzed. The introduced approach reduces the computatiop*time-by a factor
roughly proportional to the iterations needed in the contraction mapping?. In general
the number of draws used for the simulation of the market share fategral predominantly
determines the overall computation time?!. For 1,000 iterations‘ef the MCMC chain, the
alternative approach needs 2,001 evaluations of that integral, whereas the procedure in
Jiang et al. (2009) required about 95,000 evaluatiéns for that chain in a test run. This
means that the alternative approach is about 45 times faster in computation.
Moreover, in contrast to Park & Gupta (2009), the procedure enables us to use all of the
information about sold quantities available in the data set.
Procedures as Jiang et al. (2009)hand Park & Gupta (2009), in contrast to the GMM
estimation of the BLP model Berry et al. (1995), rely on the additional assumption that
the surrogate of unknowm product characteristics £ is normally distributed. More precisely,
the assumption 4n/Parks& Gupta (2009) is that the residual 7, for the mapping of price on
its instrumental wariable, and £ are jointly normally distributed as in equation (5).
In fact, i the proposed approach, the distributional assumption of w; and ws is mainly
irrelevant. © In the first-stage regression of price on its instruments, the assumption of
normality of w; is not necessarily required for the validity of the OLS method. Otherwise,
the assumption of normality of wy is used only in the acceptance probability for ws in

equation (10), which can be easily be removed, if desired. Furthermore, the proposed

20The iterations needed in the contraction mapping are in a range of 70 to 100 iterations in this setting
21That is the case for a GMM estimation, a maximum likelihood estimation, a Bayesian estimation as in
Jiang et al. (2009) and the approach discussed here.
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estimation approach allows for a very flexible distribution of wsy, as a result of the MCMC
random walk estimation.
The assumption made here is that & = byjwq + baows. Therefore, the specific distribution of

& can be assessed freely through ws, and it does not need to be determined a priori.

Limitation and Outlook

The cost of the introduced approach is, that the dimension of the first randéom walk chain
is larger than in Jiang et al. (2009), which may complicate the tuning, efithe *andom walk
chain. Beyond that, a second random walk chain has to be tuned, This additional cost is
comparable low, because the second candidate variance-covarianée/matrix has, by definition,
only the dimension of the number of choice alternatives afid’hecause the candidate matrix
can be scaled to obtain a reasonable acceptance rate.

Further investigation is needed to study how the,supply’side of the BLP model, as in Berry

et al. (1995), can be introduced in a likelihoed-based model and estimated.

Contribution

In summary, the introduced siitiplé, approach contributes in three ways:

(i) In contrast to the GMM dstitnation and the Bayesian estimation method in Jiang et al.
(2009), the computation-imtensive contraction mapping can be omitted. This results in a
simpler estimationy,procedure and in an accelerated computation. This speed advantage
becomesgmore “important in practical applications, where many estimations must be
conducted\for model specification and testing, and in the handling of larger data sets
containing many choice alternatives, a greater number of observations (markets) or random
coefficients. In the simulation study discussed here, the proposed estimation was roughly
about 45 to 50 times faster than the reference estimation as in Jiang et al. (2009).

(ii) In contrast to the maximum likelihood estimation in Park & Gupta (2009), a second

numerical integration is left out and the full information of the data set about the market
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share is used. Thus, subsampling resulting from the lack of computational precision is
avoided.

(iii) Finally in contrast to estimation methods in Park & Gupta (2009) and Jiang et al.
(2009), the introduced approach does not necessarily require a normally distributed
demand shock &, but the approach does allow for it and does allow its distribution to be

o)

automatically assessed similar to the GMM estimation in Berry et al. (1995).
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