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Abstract

In this note on the paper from Jiang, Manchanda & Rossi (2009), I want to discuss a simple

alternative estimation method of the multinomial logit model for aggregated data with

random coefficients - the so-called BLP model, named for Berry, Levinsohn & Pakes (1995).

The estimation is conducted through a Bayesian estimation similar to Jiang et al. (2009).

However in contrast to Jiang et al. (2009) I omit the time-intensive contraction mapping for

assessing the mean utility in every iteration step of the estimation procedure. The likelihood

function is computed through a special case of the control function method (Park & Gupta

(2009) and Petrin & Train (2002)). A full random walk MCMC approach is applied, that

uses two random walk MCMC chains - one to draw the parameters of the model, and

a second one to sampled an explicitly introduced uncorrelated error term. In total, the

suggested simple procedure (i) permits the use of the full information from the data set, in

contrast to Park & Gupta (2009), (ii) accelerates the Bayesian estimation by omitting the

contraction mapping, in contrast to Jiang et al. (2009), and (iii) in contrast to both cited

methods, allows the demand shock to be estimated without a distributional assumption, if

desired.
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1 Introduction

In this note1 on the paper from Jiang et al. (2009), I want to discuss a simple alternative

estimation method of the multinomial logit model for aggregated data with random coeffi-

cients - the so-called BLP model, named for Berry et al. (1995).

The estimation is conducted through a Bayesian estimation similar to Jiang et al. (2009).

However in contrast to Jiang et al. (2009) I omit the time-intensive contraction mapping for

assessing the mean utility in every iteration step of the estimation procedure. The likelihood

function is computed through a special case of the control function method (Park & Gupta

(2009) and Petrin & Train (2002)). A full random walk MCMC approach is applied, that

uses two random walk MCMC chains - one to draw the parameters of the model, and a sec-

ond one to sampled an explicitly introduced uncorrelated error term. In total, the suggested

simple procedure (i) permits the use of the full information from the data set, in contrast to

Park & Gupta (2009), (ii) accelerates the Bayesian estimation by omitting the contraction

mapping, in contrast to Jiang et al. (2009), and (iii) in contrast to both cited methods,

allows the demand shock to be estimated without a distributional assumption, if desired.

The rest of this paper is structured as follows. In the next section, the model setup is outlined,

both for the usual BLP model and for the estimation through the Bayesian method, which

includes the derivation of the likelihood function, the prior distribution and the Bayesian

estimation through the posterior distribution. In the following section, a simulation study

is employed to assess the performance of the introduced alternative estimation approach.

Those results are compared with the outcome of the estimation according to Park & Gupta

(2009) and Jiang et al. (2009). The paper ends with a conclusion.

1This study originates from a course paper for the lecture ’Bayesian Modeling for Marketing’ held by
Prof. Thomas Otter at the Goethe University Frankfurt for doctoral students in the winter semester of
2009/10.
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2 Random coefficient logit model for aggregated data

2.1 General model

In the following, the choice model for aggregated data with random coefficients is con-

sidered, as developed by Berry et al. (1995), the so-called BLP model. Although Berry et al.

(1995) study a model of markets in equilibrium, i.e. with explicit formulation and estimation

of a demand side model and a supply side model, here only the demand side is taken into

consideration.

This simulation concentrates on a normal distribution of unobserved individual preference2,

which is often used in applied work (e.g., recently Sovinsky Goeree (2008), Gowrisankaran

& Rysman (2009), Albuquerque & Bronnenberg (2008)).

With a similar notation as in Nevo (2000) the utility of a product j=1,...,J for an individuum3

i=1,...,I in a market t=1,...,T can be written as:

uijt = xjtβi + ξjt + εijt

= xjtβ + ξjt + xjt(ΠDi + Λνi) + εijt

= δjt + µijt + εijt. (1)

xjt is the vector of influence variables, including e.g. price or advertising, with the vector of

random coefficients βi, that is decomposed as βi = β + ΠDi + Λνi, νi ∼ N(0, IK), where Λ

is the lower-triangular Cholesky factor of the K × K covariance matrix, i.e. Σ = Λ · Λ′.

εijt is an independently and identically distributed (i.i.d.) extreme value distributed error

term and ξjt is the surrogate of unknown product characteristics. Π are the influence pa-

rameters of the matrix of demographic variables Di. Moreover, the mean value of the utility

of product j in market t is δjt ≡ xjtβ + ξjt and thus µijt ≡ xjt(ΠDi + Λνi) is the individual

specific deviation from δjt. Therefore, βi ∼ N(β + ΠDi, Σ).

2However in the BLP model, any other distribution for individual heterogeneity can be employed.
3I.e. a costumer.
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Define4

Λ =



















γ11 0 · · · 0

γ21 γ22
. . .

...

...
. . . 0

γK1 · · · γKK



















.

The expectation of the individual market shares sijt,

sjt = ED,ν(sijt) =

∫

D

∫

ν

sijt(D, ν)dνdPD(D)

=

∫

D

∫

ν

exp(x′

jtβ + ξjt + x′

jt(ΠD + Λν))

1 +
∑J

l=1 exp(xltβ + ξlt + xlt(ΠD + Λν))
φ(ν)dνdPD(D) (2)

can be approximated by different simulation methods.

Di ∼ PD(D) is the distribution of the demographic variables and φ(·) denotes the density of

the standard normal distribution.

The most obvious kind of an approximation of the expectation is the mean value

ŝjt =
1

ns

ns
∑

i=1

wi

exp(x′

jtβ + ξjt + x′

jt(ΠDi + Λνi))

1 +
∑J

l=1 exp(xltβ + ξlt + xlt(ΠDi + Λνi))
(3)

with ns 5 random draws or decisively chosen draws from the assumed distribution of ν and

for given data observations from the empirical distribution of D with some appropriately

chosen weights wi for decisively chosen draws.

Later in the simulation study (section (3)) I use for the simulation of equation (3) the nested

Gauss-Quadrature with nodes and weights on sparse grids as implemented and developed by

Heiss & Winschel (2006)6. In the following, demographic variables are not considered, so D

4With respect to the exclusion restrictions for identification (Walker, Ben-Akiva & Bolduc 2007).
5ns for ”number of simulations”.
6Because the overall computation time depends mainly on the magnitude of ns (Dube, Fox & Su 2008),

it is desirable to use the smallest necessary number of draws. Gauss-Quadrature with nodes and weights on
sparse grids has the advantage over applying the product rule to the usual Gauss-Quadrature (e.g., Judd
(1998)) in that the construction of sparse grids with far fewer nodes is needed for the integration of integrals
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is dropped from equations. Because one or more of the known7 product characteristics xjt

might be chosen on the basis of unknown product characteristics ξjt, the in the literature

well-known problem of endogeneity arises.

2.2 Likelihood

In the likelihood function, endogeneity is explicitly incorporated through the set up used

by Park & Gupta (2009), whose theory goes back to Hausman (1954) and Heckman (1978).

Their approach uses a special case of the more general control function estimation method

of Petrin & Train (2002). Park & Gupta (2009) proceed as follows:

Let zjt be the vector of instrumental variables that are correlated with the known product

characteristics xjt, e.g., only price8, but that are uncorrelated with the unknown product

characteristics ξjt.

xjt = Zjtζj + ν̃jt, (4)

Zjt ≡ IK ⊗ z′jt,

ν̃jt
i.i.d.∼ N(0, Σν̃j

),

ξjt
i.i.d.∼ N(0, σ2

ξj
),

cov(ν̃jt, ξjt) = λj,

cov(zjt, ξjt) = 0,∀t.

of higher dimension. The numerical integration with Gauss-Quadrature on sparse grids leads to a relatively
fast estimation compared with other simulation methods such as simple random draws from the normal
distribution or randomized draws from Halton Sequences (e.g., Bhat (2000), Train (2000)).

7I.e. known respectively unknown to the data analyst.
8To simplify the notation, this notational difference is not made, but incorporating a set of exogenous

variables and a set of endogenous variables is straightforward. In fact, one could treat all variables as
endogenous and simply add the exogenous variables to the instrumental variables.
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The distribution of the two error terms can be expressed as the product of a Choleski factor

of their covariance and two independent error terms:







ν̃jt

ξjt






=







b11,j 0

b21,j b22,j













ω1,jt

ω2,jt






(5)







ω1,jt

ω2,jt







i.i.d.∼ N(0, IK+1).

Σ̃j =







b11,j 0

b21,j b22,j













b11,j 0

b21,j b22,j







′

=







Σν̃j
Σξj ,ν̃j

Σν̃j ,ξj
σ2

ξj






.

With (5) and with b11,j = Σ
1/2
ν̃j

, the equation (1) and (4) can be transformed to

uijt = x′

jtβi + b21,jω1,jt + b22,jω2,jt + εijt, and (6)

xjt = Zjtζj + b11,jω1,jt. (7)

After plugging ω1,jt from equation (7) in equation (6), the utility can be written as:

uijt = x′

jtβi + ̺′

j[xjt − Zjtζj] + b22,jω2,jt + εijt,

with ̺j = b21,jb
−1
11,j.

Note that now along with the usual extreme value error term εijt, there are two additional

uncorrelated error terms in the utility: ω1,jt and ω2,jt.

As ω2,t = (ω2,1t, . . . , ω2,Jt) is uncorrelated with every other term in the equation Park &

Gupta (2009) denote it as ”exogenous unmeasured product characteristic” (EUPC).

Now, the logit probability for the individual i’s choice of product j at time t, sijt, thus equals:

sijt =
exp(x′

jtβ + ̺′

j[xjt − Zjtζj] + b22,jω2,jt + x′

jtΛνi)

1 +
∑J

l=1 exp(x′

ltβ + ̺′

l[xlt − (IK ⊗ z′lt)ζl] + b22,lω2,lt + x′

ltΛνi)
.
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Explicit inclusion of endogeneity thus leads to the ordinary form of the random coefficient

logit model, apart from the bias correction term [xjt − Zjtζj] and the EUPC shocks ω2,jt.

Given the bias correction term [xjt − Zjtζj] and conditional on ω2,jt, the likelihood can be

written as:

L1,t(ω2,t) =

(

qt!

q0t! . . . qJt!

) J+1
∏

j=1

[∫

ν

sijt(ω2,jt, νi)φ(ν)dν

]qjt

. (8)

Let qjt denote the observed chosen quantity of product j at time t. Because the error terms

ω2,t are not observed, Park & Gupta (2009) assume the error terms to be i.i.d. standard

normally distributed and the authors integrate out those EUPC terms.

L1,t =

∫

L1,t(ω2,t)φ(ω2)dω2. (9)

Because of this integration, ordinarily only a subsample of the observed sold quantities

can be used, e.g., 100 draws - not all of the information about the sold quantity in the

data. Otherwise, the computation quickly reaches machine zero because the observed

choice quantities enter the likelihood through the exponent (see equation (8)) and because

the logarithmic transformation does not help to avoid as usual the computation of the

exponentiated probabilities. Although Park & Gupta (2009) state that the estimation is

not sensitive to that subsampling, it is generally desirable to use the full information of the

data, if possible. This is especially important when one wants to recover the parameter

values of a model with a complex setup. However, when integrating out ω2, one has to

additionally integrate over the dimension of J, the number of alternatives, which can be

high. Moreover, because νi from equation (3) needs to be integrated out with a number of

ns draws, the total number of evaluations to numerically integrate out both νi and ω2 is

ns · ns2, if ns2 is the number of draws needed for integrating out ω2. That increases the

burden of computation.

In summary it is desirable to use the full available information from the data set and to
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alleviate the burden of estimation, if possible.

The approach introduced here is to sample ω2 through a random walk MCMC chain,

which does not require a second numerical integration and which permits use of the full

information of the data. Finally, the distribution of ω2 does not need to be known, but

it can be automatically estimated, if desired. In the following, the likelihood is written

conditional on ω2 and conditional on the bias correction term [xjt − Zjtζj] which is then

drawn in the Bayesian estimation. Let the conditional likelihood function be denoted as:

L(θ|ω2) =
T
∏

t=1

L1,t(ω2,t).

With θ = (β, γ11, ..., γKK , b11,1, b21,1, b22,1, ..., b11,J , b21,J , b22,J). Therefore, except for a con-

stant, the conditional log likelihood is:

l(θ|ω2) =
T
∑

t=1

J+1
∑

j=1

qjtlog

(∫

ν

sijt(ω2,jt, νi)φ(ν)dν

)

.

The bias correction term [xjt − Zjtζj] - that is the error term from the first-stage regression

of the endogenous variable(s) on the instrumental variables - is not known. We can either

include the bias correction term in the likelihood as the probability from the K dimensional

normal distribution (Park & Gupta 2009) and estimate it simultaneously, or we can estimate

the bias correction term in advance (Petrin & Train 2002). The latter has the advantage of

simplifying the estimation procedure and reducing the number of parameters in the likeli-

hood estimation respectively Bayesian estimation. That might be particularly important if

the number of instrumental variables is very large as a result of interactions with dummy

variables, as in some practical applications.
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2.3 Priors

The standard choice for the priors is9:

β ∼ N(β0, Vβ),

(ζj ∼ N(ζ0, Vζ).)

As pointed out previously, one can optionally assume, that:

ω2,jt
i.i.d.∼ N(0, 1).

To obtain a more equal distribution of the correlations of both variance-covariance matrices

Σ̃j and Σ, the prior distributions are set as in Jiang et al. (2009).

Σ = ΛΛ′,

Λ =



















er11 0 · · · 0

r21 er22
. . .

...

...
. . . 0

rK1 · · · rK,K−1 erKK



















.

Where the priors of rmk are specified as

rmm ∼ N(0, σ2
mm)

rmk ∼ N(0, σ2
off ), m = 1, ..., K and k = 1, ..., K,m > k.

Analogously for Σ̃j(same for all j = 1, ..., J):

r̃ll ∼ N(0, σ̃2
ll)

r̃lh ∼ N(0, σ̃2
off ), l = 1, ..., J and h = 1, ..., J, l > h.

9If the estimation of the bias correction term is done separately before the full estimation procedure, as
it is done here, the prior of ζj is not needed in the following.
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The standard choice of hyper-parameters is:

β0 = 0, Vβ = 100IK ,

σ2
mm =

1

4





1 +
√

1 − 4(2(m − 1)σ4
off − c)

2



 ,

σ̃2
ll =

1

4





1 +
√

1 − 4(2(l − 1)σ̃4
off − c)

2



 ,

σ2
off = 1, σ̃2

off = 1, c = 50.

For the hyper-parameter of the variance-covariance matrices see Jiang et al. (2009) and

otherwise, e.g., Rossi, Allenby & McCulloch (2005).

2.4 Bayesian estimation

With the inversion of the market shares that requires the contraction mapping according

to Berry (1994), the parameters can be estimated with a hybrid MCMC algorithm as in

Jiang et al. (2009).

They proceed as following. Given the draws for the Choleski factor of the variance-covariance

matrix of the random coefficients Λ, the mean utility δjt can be computed by the contraction

mapping.

After that, one can conduct a Bayesian linear instrumental variable regression of this mean

utility on the influence variables and instrumental variables 10. This permits an assessment

of the structural error term ξjt and permits the establishment of the likelihood function

with the assumed distribution of ξjt. The parameters of Λ are gained through a step of a

random walk Metropolis chain.

The advantage of the procedure of Jiang et al. (2009) is, that one can easily obtain draws

from all parameters other than those of Λ, while using information from the model set up

10This Bayesian linear instrumental variable regression can be conducted as e.g. outlined in Rossi et al.
(2005). An adapted description for the case and the parameter notation used here can also be requested
from the author.
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and from the observed shares to obtain these draws.

A disadvantage of this approach is that for every iteration of the MCMC algorithm the

contraction mapping11 must be conducted, which leads to a three times larger estimation

time than with the GMM approach, after Jiang et al. (2009). Additionally, the Jacobian of

the shares according to ξjt must be computed.

In this paper, the likelihood is evaluated without conducting the contraction map-

ping. I use a method similar to that employed in Park & Gupta (2009) to calculate the

likelihood function, but I apply a full random walk MCMC algorithm for all parameters θ

in this model.

The approach is to sample ω2 through a random walk MCMC chain, which (i) omits a

second numerical integration, (ii) allows us to use the full information of the data and (iii)

does not require us to assume of specific distribution of ω2, if not desired. The posteriori

probability for given ω2 is:

π(θ|st, Xt
T
t=1, ω2) =

∝ L(θ|ω2)π(θ)

= L(θ|ω2) ×

× |Vβ|−1/2 exp
(

−0.5(β − β0)
′V −1

β (β − β0)
)

×
K
∏

m=1

exp

(

− r2
mm

2σ2
mm

)

×
K
∏

m=2

j−1
∏

k=1

exp

(

− r2
mk

2σ2
off

)

×
J+1
∏

j=1

[

J
∏

l=1

exp

(

− r̃2
ll

2σ̃2
ll

)

×
J
∏

l=2

l−1
∏

h=1

exp

(

− r̃2
lh

2σ̃2
off

)]

.

There are two random walk MCMC chains, that are iterated - one for updating θ and one

for updating ω2:

11That is the same contraction mapping procedure that is conveyed in the inner loop of the generalized
method of moments (GMM) estimation of the BLP model.
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(1) For given ω2 the MCMC chain for θ is updated in this way:

θnew = θold + τθ, τθ ∼ N(0, σ2Dθ).

Where σ2 is a scaling constant and Dθ is the candidate variance-covariance matrix that is

typically obtained from a calibration chain.

A new draw of θ is accepted with the probability α:

α = min

{

1,
L(θnew|ω2)π(θnew)

L(θold|ω2)π(θold)

}

.

(2) For given θ the random walk MCMC chain for ω2 is updated as:

ωnew
2 = ωold

2 + τω2
, τω2

∼ N(0, σ2
ω2

Dω2
).

Where σ2
ω2

is the scaling constant and Dω2
the candidate variance-covariance matrix for ω2

which has the dimension of the number of alternatives J.

A new draw of ω2 is accepted with the probability αω2
:

αω2
= min

{

1,
L(ωnew

2 |θ)π(ωnew
2 )

L(ωold
2 |θ)π(ωold

2 )

}

. (10)
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3 Simulation study

3.1 Data generating process (DGP)

In this simulation study, I consider J=2 products (and an outside option) on T=50

markets. Thus there are J × T = 100 observations. The data are generated as follows, in a

manner similar to Park & Gupta (2009). Hence the way that endogeneity enters a certain

variable, say price, is explicitly modeled:

x
(1)
jt = u

(1)
jt · u(2)

jt (Variable 1)

u
(1)
jt

i.i.d.∼ N(0, 1)

u
(2)
jt

i.i.d.∼ U(0, 1)

x
(2)
jt

i.i.d.∼ U(0, 1) (Variable 2)

x
(3)
jt = Z ′

jtγj + ν̃jt (an endogenous variable, say price)

ω1,jt, ω2,jt
i.i.d.∼ N(0, 1).

Through the setting from equation (5) to account for endogeneity, there is a correlation

between x
(3)
jt and the structural error term ξjt, but ξjt also exhibits an additional variation

component.

b11 =
√

.1/niv and the 1+niv instrumental variables are set as the following, where niv = 10:

Zjt = (2, zjt,1, ..., zjt,niv
),

zjt,l
i.i.d.∼ N(0, .9/niv), l = 1, 2, ..., niv

b21 =
√

.5/niv, b22 =
√

.5/niv.

Where γj is a column vector of values 1/2.

Thus, along with the two brand dummy variables dj, there are five influence vari-
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ables:

(d1, d2, x
(1)
jt , x

(2)
jt , x

(3)
jt ) with mean parameter values determined as

β = (−3.25,−3.5, .5, 1,−1).

The variance-covariance Σ of the coefficients of the five influence variables is specified as

the following, to assure a model with different substitution patterns than those from the

homogeneous logit (similar to Jiang et al. (2009)):

Σ =

























2 0 0 0 0

0 2 0 0 0

0 0 2 1.5 −1.5

0 0 1.5 2 −1.5

0 0 −1.5 −1.5 2

























To computed an observed aggregated market share in the data generating process, I take

the average of the simulated decisions of 100,000 random sampled customers 1213.

3.2 Estimation with an alternative approach

After the data were generated, I obtained first a candidate variance-covariance matrix for

the MCMC algorithm by performing a calibration chain with some initial starting values14.

The random walk sampling matrix15 for θ is set as a diagonal matrix with the entries of

12With e.g. 20,000 random sampled customers the following results were quite similar.
13To check the robustness of the simulation study toward the parameter setup, different data generating

parameters as shown below were used. The proposed estimation approach recovered the parameter values
with an accuracy similar to that in the previously outlined parameter setup.

b11 = 2
√

.1/niv, b21 = 2
√

.1/niv, b22 = b21

β = (−2,−3, 2, 2,−5)

Σ =













4 0 0 0 0
0 4 0 0 0
0 0 3 .5 .5
0 0 .5 3 −.5
0 0 .5 −.5 3













14The starting values are deliberately taken from a prior ad-hoc unprecise estimation.
15i.e. the initial candidate variance-covariance.
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1/100 on the diagonal, and then I took 10,000 draws, with 6,000 of them as burn-in.

After that, every draw is kept and the mean of the draws is used as the starting value for

the final MCMC chain. The variance-covariance matrix of the selected draws is employed

as the candidate variance-covariance. Moreover, the scaling factor is set to the usually

recommended value of 2.3/
√

number of parameters in θ (Roberts & Rosenthal 2009), which

is divided by 10. The same is done for the candidate variance-covariance matrix of ω2.

Finally, 20,000 draws are taken, with 20% of them as burn-in draws, i.e., 4,000.

To compute the simulated likelihood function, I used the nested Gauss-Quadrature

with nodes and weights on sparse grids implemented and developed by Heiss & Winschel

(2006), as mentioned earlier. The accuracy level is set to 6, which leads to ns=993 nodes

for eight parameters for the integration of equation (2). This means that the approximation

is exact up to a polynomial of degree 6+1.

3.3 Estimation with the reference model

The Bayesian estimation with the contraction mapping is conducted, as in Jiang et al.

(2009), thus providing a comparison with the presented approach. The DGP, the overall

procedure and the prior distributions as well as hyperparameters are the same as before,

except the prior for the variance-covariance matrix Σ̃j
16, but now the likelihood function

and posterior are obtained as in Jiang et al. (2009).

For every set of parameters Λ, the contraction mapping must be executed and Jacobian

matrix must be computed, so this sampling procedure is considerably slower than the

introduced alternative approach. The estimation time in general depends critically on

the number of simulation draws for the simulation of the expected market share (Dube

et al. 2008). In all three estimation methods discussed here, the same number of simulation

draws for obtaining the market share is applied, but when employing the contraction

16To apply, as in Jiang et al. (2009) the usual Bayes linear instrumental variable regression as prior for
Σ̃j a standard inverted Wishart distribution is employed.
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mapping on average roughly about 70 to 100 iterations are conducted in this setting. Thus

additionally 70 to 100 times more time is needed to simulate the expected market share.

As a stopping criterion for the contraction mapping I use (similarly to Nevo (2000)) the

condition that the mean respectively maximum of two consecutive values of δ is smaller

than 1e-12 respectively 1e-15 to employ tight tolerance levels as recommended by Dube

et al. (2008) 17.

Furthermore, for comparison, the parameters are also estimated with the maximum

likelihood estimation from Park & Gupta (2009). In each replication of the data generation

and estimation, a subsample of 100 choices is randomly drawn before the estimation to be

able to numerically compute the likelihood18 from equation (9), as recommended in Park

& Gupta (2009). To integrate out the J = 2 dimensional EUPC term ω2, a second grid of

ns2 = 17 values of the Gauss-Quadrature on sparse grids is used. The accuracy level is set

to 4, which indicates that the approximation is exact up to a polynomial of degree 4+1.

3.4 Results

The DGP and the estimation were executed 50 times. The resulting biases and mean

squared errors (MSE) are presented in table I 19.

17Dube et al. (2008) determine the effect of the stopping criterion in detail and recommend using tight
tolerance levels, i.e. stopping the contraction mapping if the Euclidean norm of two consecutive values from
this mapping is e.g. less than 1e-14. The applied tolerance level in the estimation thus is in the recommended
range.

18The full likelihood is here the product of equation (9) over all observations t = 1, ..., T , i.e.,

L =
∏T

t=1(L1,t) and the first-stage regression of xjt on Zjt is conducted separately before the likelihood
estimation. If the first-stage regression was estimated simultaneously, the obtained parameter estimates
were less accurate.

19Because of parsimony the parameter estimates from the auxiliary instrumental variable regression are
not presented.
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TABLE I
Results from the maximum likelihood estimation, Bayesian estimation without contraction mapping and the alternative approach

Likelihood estimation: Bayesian estimation: Bayesian estimation:
with subsampling with contraction mapping alternative approach

Description Variable True value Mean Bias MSE Mean Bias MSE Mean Bias MSE

Product dummy 1 d1 -3.25 -4.44 -1.19 4.68 -3.24 0.01 0.21 -3.25 0.00 0.15
Product dummy 2 d2 -3.50 -4.98 -1.48 7.39 -3.41 0.09 0.20 -3.52 -0.02 0.17

Variable 1 x
(1)
jt 1.50 2.06 0.56 1.47 1.52 0.02 0.04 1.43 -0.07 0.04

Variable 2 x
(2)
jt 1.00 1.31 0.31 0.69 1.01 0.01 0.06 0.98 -0.02 0.04

Price x
(3)
jt -1.00 -1.61 -0.61 1.57 -1.24 -0.24 0.16 -1.07 -0.07 0.08

Covariance r11 0.35 0.38 0.04 2.84 0.23 -0.12 0.20 0.30 -0.05 0.10
Covariance r22 0.35 0.57 0.23 1.33 0.14 -0.21 0.21 0.33 -0.02 0.11
Covariance r33 0.35 0.65 0.30 0.28 0.32 -0.03 0.02 0.31 -0.03 0.02
Covariance r43 1.06 1.42 0.36 1.10 0.90 -0.16 0.14 0.97 -0.09 0.12
Covariance r53 -1.06 -1.40 -0.33 1.04 -0.99 0.07 0.04 -0.93 0.13 0.06
Covariance r44 -0.07 -1.49 -1.42 14.57 -0.62 -0.56 0.57 -0.74 -0.67 0.76
Covariance r54 -0.40 -0.98 -0.58 1.16 -0.66 -0.26 0.24 -0.58 -0.18 0.23
Covariance r55 -0.17 -0.71 -0.54 3.81 -0.16 0.00 0.13 -0.28 -0.11 0.16
Endogeneity r̃11,1 0.10 -1.97 0.33 0.11 0.22 0.12 0.01 0.10 0.00 0.00
Endogeneity r̃21,1 0.22 0.27 0.05 0.02 0.17 -0.06 0.00 0.21 -0.02 0.00
Endogeneity r̃22,1 0.22 0.22 1.72 3.00 0.34 0.12 0.02 0.26 0.04 0.00
Endogeneity r̃11,2 0.10 -2.37 -0.07 0.00 0.22 0.12 0.02 0.10 0.00 0.00
Endogeneity r̃21,2 0.22 0.29 0.06 0.05 0.17 -0.06 0.00 0.23 0.00 0.00
Endogeneity r̃22,2 0.22 0.19 1.69 2.91 0.35 0.12 0.02 0.28 0.06 0.01

Goodness of fit
mape 0.63 0.12 0.08
meape 0.36 0.12 0.04
maape 1.72 0.56 0.67
mse 0.70 0.03 0.03

mape: mean absolute percentage error; meape: median absolute percentage error; maape: maximum absolute percentage
error;mse: mean squared error; keep: every 100th draw was kept.
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It can be seen, that with the alternative approach the parameters are captured with

satisfying accuracy. The bias and MSE are in the range of the values of Jiang et al. (2009)

and, in general, even slightly more precise (See goodness of fit of parameter estimates in Table

(I)). It can be seen that the alternative approach is well able to recover the parameters from

the DGP.
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4 Conclusion

Conclusion

In summary, the proposed simple alternative estimation approach leads to accurate results,

and the approach is shown to be capable of estimating the discussed model with a simpler

estimation procedure and with less computational effort. In applied work, the reduced

computation time is particularly helpful when many model specifications need to be

estimated and analyzed. The introduced approach reduces the computation time by a factor

roughly proportional to the iterations needed in the contraction mapping20. In general

the number of draws used for the simulation of the market share integral predominantly

determines the overall computation time21. For 1,000 iterations of the MCMC chain, the

alternative approach needs 2,001 evaluations of that integral, whereas the procedure in

Jiang et al. (2009) required about 95,000 evaluations for that chain in a test run. This

means that the alternative approach is about 45 times faster in computation.

Moreover, in contrast to Park & Gupta (2009), the procedure enables us to use all of the

information about sold quantities available in the data set.

Procedures as Jiang et al. (2009) and Park & Gupta (2009), in contrast to the GMM

estimation of the BLP model Berry et al. (1995), rely on the additional assumption that

the surrogate of unknown product characteristics ξ is normally distributed. More precisely,

the assumption in Park & Gupta (2009) is that the residual ν̃, for the mapping of price on

its instrumental variable, and ξ are jointly normally distributed as in equation (5).

In fact, in the proposed approach, the distributional assumption of ω1 and ω2 is mainly

irrelevant. In the first-stage regression of price on its instruments, the assumption of

normality of ω1 is not necessarily required for the validity of the OLS method. Otherwise,

the assumption of normality of ω2 is used only in the acceptance probability for ω2 in

equation (10), which can be easily be removed, if desired. Furthermore, the proposed

20The iterations needed in the contraction mapping are in a range of 70 to 100 iterations in this setting
21That is the case for a GMM estimation, a maximum likelihood estimation, a Bayesian estimation as in

Jiang et al. (2009) and the approach discussed here.
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estimation approach allows for a very flexible distribution of ω2, as a result of the MCMC

random walk estimation.

The assumption made here is that ξ = b21ω1 + b22ω2. Therefore, the specific distribution of

ξ can be assessed freely through ω2, and it does not need to be determined a priori.

Limitation and Outlook

The cost of the introduced approach is, that the dimension of the first random walk chain

is larger than in Jiang et al. (2009), which may complicate the tuning of the random walk

chain. Beyond that, a second random walk chain has to be tuned. This additional cost is

comparable low, because the second candidate variance-covariance matrix has, by definition,

only the dimension of the number of choice alternatives and because the candidate matrix

can be scaled to obtain a reasonable acceptance rate.

Further investigation is needed to study how the supply side of the BLP model, as in Berry

et al. (1995), can be introduced in a likelihood-based model and estimated.

Contribution

In summary, the introduced simple approach contributes in three ways:

(i) In contrast to the GMM estimation and the Bayesian estimation method in Jiang et al.

(2009), the computation-intensive contraction mapping can be omitted. This results in a

simpler estimation procedure and in an accelerated computation. This speed advantage

becomes more important in practical applications, where many estimations must be

conducted for model specification and testing, and in the handling of larger data sets

containing many choice alternatives, a greater number of observations (markets) or random

coefficients. In the simulation study discussed here, the proposed estimation was roughly

about 45 to 50 times faster than the reference estimation as in Jiang et al. (2009).

(ii) In contrast to the maximum likelihood estimation in Park & Gupta (2009), a second

numerical integration is left out and the full information of the data set about the market
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share is used. Thus, subsampling resulting from the lack of computational precision is

avoided.

(iii) Finally in contrast to estimation methods in Park & Gupta (2009) and Jiang et al.

(2009), the introduced approach does not necessarily require a normally distributed

demand shock ξ, but the approach does allow for it and does allow its distribution to be

automatically assessed similar to the GMM estimation in Berry et al. (1995).
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