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1 Introduction

Detecting tacit collusion is a central theme of research in empirical industrial organization

(Jaquemin and Slade [1989], Porter [2005], Harrington [2008]). In most instances, tacit

collusion leads oligopolistic �rms to monopolize a market, leading to reduced and ine¢cient

equilibrium output, higher prices, and lower consumer welfare.1 Not surprisingly, then,

detecting collusion is a fundamental objective of antitrust agencies in both Europe and the

United States. In the US, collusion is prohibited under the Sherman Act.2

Identifying collusive behavior poses di¢cult econometric challenges. If we see all �rms

charging the same price, is it because they are colluding and charging the monopoly price,

or are they competing aggressively against each other while facing similar costs? If one �rm

raises its prices and its competitors respond by raising their prices as well, can we conclude

that �rms in this market are colluding? Or should we be worried about conscious parallelism,

whereby it may be rational to follow the anticompetitive lead of one�s rival if the �rm believes

that the rival has better information about market conditions (Porter and Zona [2008])?3

Previous work has identi�ed collusive behavior by using variation in costs (Rosse [1970],

Panzar and Rosse [1987], Baker and Bresnahan [1988]),4 rotations of demand (Bresnahan

[1982], Lau [1982]), taxes (Ashenfelter and Sullivan [1987]), conduct regimes (Porter [1983]),

and product entry and exit (Bresnahan [1987], Nevo [2001]).5 Here, we propose a di¤erent

1A notable exception, Fershtman and Pakes [2000] show that collusive pricing can lead to increased entry
and welfare-improving product variety.

2Under Section 1 of the Sherman Act, any cartel or cartel-like behavior is �per se� illegal. Other practices,
where, for example, �rms might appear to be tacitly colluding, are examined under a rule of reason analysis.
Probably the most famous instance when the antitrust agencies were able to detect collusion is the lysine
price-�xing conspiracy. As reported by White [2001], in October 1996 the Archer Daniels Midland Company
(ADM) pleaded guilty to criminal price �xing with respect to sales of lysine and agreed to pay a $70 million
�ne.

3More generally, the identi�cation problem that we face when trying to detect collusion is conceptually the
same as the one that Manski [1993] called the �re�ection� problem. Firms might be charging the same prices
because of exogenous (contextual) e¤ects, for example they o¤er similar products; or because of correlated
e¤ects, for example they face similar (unobservable to the econometrician) marginal costs; or because they
do actually collude (endogenous e¤ects).

4See Weyl [2009] for a discussion on the identi�cation of conduct parameters using variation in costs. See
Salvo [2010] for a recent work that uses conduct parameters to identify market power under the threat of
entry.

5There is also an important literature on detecting collusion in auctions, which presents its own econo-
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identi�cation strategy.

We identify collusive behavior by using variation in multimarket contact across airline

markets. Multimarket contact is de�ned as the number of markets in which �rms encounter

each other.6 In Bernheim and Whinston�s [1990] words, multimarket contact serves to pool

the incentive constraints from all the markets served by the two �rms. That is, the more

extensive is the overlap in the markets that the two �rms serve, the larger are the bene�ts

of collusion and the costs from deviating from a collusive agreement.7

We quantify multimarket contact using the measure �rst introduced by Evans and Kes-

sides [1994] (EK, from here on). Multimarket contact between any pair of airline carriers is

equal to the total number of markets that two airlines serve concomitantly. For example, if

American and Delta serve 200 markets in common, then this variable is equal to 200 for the

American-Delta pair.

We consider a model of the airline industry where the strategic interaction among �rms is

measured by conduct parameters that are functions of multimarket contact. Our modeling

strategy implements an idea �rst proposed by Nevo [1998], who o¤ers a constructive synthesis

of the two main methodological ways to identify collusion.8 The �rst line of research (for

example, Panzar and Rosse [1987], Bresnahan [1982], Ashenfelter and Sullivan [1987], and

Porter [1983]) identi�es collusive behavior by estimating conduct parameters, which revealed

whether �rms competed on prices, competed on quantities, or colluded.9 The second line

of research, which started with Bresnahan [1987], estimates di¤erent behavioral models and

compares how these models �t the observed data (Gasmi, La¤ont, and Vuong [1992], Nevo

[2001]). We take some ingredients from the �rst line of research (the conduct parameters)

and nest them into the modeling framework proposed by the second line of research.

metric challenges. See Hendricks and Porter [1989] for more on that literature.
6The de�nition of multi-market contact is attributed to Corwin Edwards; see Bernheim and Whinston

[1990].
7If, for example, two �rms interact in many markets, then they know that if they deviate from collusive

behavior in one market, they will be punished by the other �rms in all the markets where they interact.
8This type of approach that looks for identifying potential facilitators of collusion in the industry has also

been recently advocated by Berry and Haile [2010].
9See Bresnahan [1987] for a superb review of the early empirical work in industrial organization.
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The main identi�cation concern is whether multimarket contact is exogenous.10 In their

theoretical analysis, Bernheim and Whinston [1990] think of multimarket contact as an

�external factor�. However, one might reasonably think that there is some source of unob-

servable heterogeneity that determines both prices and multimarket contact. For example,

in the airline industry the multimarket contact is a variable constructed using information

on the markets served by an airline, and an airline might self-select into markets where it has

a competitive advantage (Ciliberto and Tamer [2010]). We instrument for the multimarket

contact variables using a unique and original dataset on the number of gates controlled by

each airline at many airports in the US. The number of gates is naturally correlated with

the number of markets served by an airline out of an airport, but is not directly correlated

with the pricing decisions.11

In our reduced-form analysis, we generally con�rm the �ndings of EK. We �nd that

multimarket contact is associated with higher equilibrium fares using both a �xed-e¤ects

and instrumental-variables approach.

In the structural analysis, we directly link multimarket contact to collusion. First, we

�nd that carriers with little multimarket contact (e.g. JetBlue and Frontier served 2 markets

concurrently in the second quarter of 2007) do not cooperate in setting fares. Carriers with

a signi�cant amount of multimarket contact (e.g. Delta and US Air served 1150 markets

concurrently in the second quarter of 2007) can sustain near-perfect cooperation in setting

fares. Thus, for very high levels of multimarket contact, where �rms are already perfectly

coordinating on prices, there is very little impact from an increase in multimarket contact.

However, for low or moderate levels of contact, there is a signi�cant increase in fares. Sec-

ond, we �nd that the standard assumption that �rms behave as Bertrand-Nash competitors

leads to marginal cost estimates 30 percent higher than when we use a more �exible behav-

10This is a well-recognized problem in the empirical literature on multimarket contact. Waldfogel and
Wulf [2006] use the enactment of the Telecommunication Act of 1996 to identify the e¤ect of multi-market
contact.
11While an airline can enter and exit markets quite easily and quickly, it is much more di¢cult to gain

access to an airport. The crucial observation here is that the control of gates is associated with sunk entry
costs that a¤ect the entry decision but cannot respond contemporaneously to demand or cost shocks as
prices do.
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ioral model that allows �rms to behave di¤erently depending on the extent of multimarket

contact. Finally, we show that cross-price elasticities play an important role in determining

the impact of multimarket contact on equilibrium fares. If two goods are close substitutes,

then cooperation in setting fares will result in a larger change from the competitive outcome

than in cases where two goods are not such close substitutes.

Our paper is related to previous research that studies the impact of multimarket con-

tact on the strategic decisions of �rms (Feinberg [1985], Jans and Rosenbaum [1997], Singal

[1996], Parker and Roller [1997], Fernandez and Marin [1998], Busse [2000], Waldfogel and

Wulf [2006], Bilotkach [2010], and Miller [2010]). However, our work di¤ers from these

earlier works in three dimensions. First, we treat multimarket contact as endogenous and

use an instrumental-variable approach to control for its endogeneity. Previous solutions to

the endogeneity of multimarket contact included �xed-e¤ects approaches (e.g. EK) and ex-

ploiting regulatory changes to identify a causal relationship (Waldfogel and Wulf [2006] and

Parker and Roller [1997]). Second, we propose a structural model nested in the mainstream

empirical industrial organization literature to directly link multimarket contact to the degree

of coordination in �rms� decisions. The extant literature has only been able to link multi-

market contact to market outcomes, such as prices, providing less information about the

degree of coordination that di¤erent levels of multimarket contact can support. Finally, we

clearly discuss the mechanics by which multimarket contact matters through its links with

cross-price elasticities. This is economically important to understand because it allows one

to identify markets or industries where collusive behavior will result in signi�cantly higher

prices and lower welfare.

The paper is organized as follows. The data are described in Section 2. Section 3 presents

the reduced-form analysis and results. Our structural econometric approach is discussed in

Section 4 and the results in Section 5. Section 6 concludes and discusses possible extensions

of our research.
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2 Data

We use data from three main sources.12 First, we use data from the Airline Origin and

Destination Survey (DB1B) database, a 10% sample of all domestic itineraries which provides

information on the fare paid, connections made in route to the passenger�s �nal destination,

and information on the ticketing and operating carriers. Second, we use data from the

BEA on the population of Metropolitan Statistical Areas (MSAs). Finally, we use data

from a survey that we conducted jointly with the ACI-NA, an airport-trade organization, on

carrier-speci�c access to boarding gates at a large number of airports in 2007.13

2.1 Market De�nition

Like EK, we de�ne a market as a unidirectional trip between two airports in a particular

quarter regardless of the number of connections a passenger made in route to his or her

�nal destination. We consider markets in which at least 250 passengers were transported

in at least one quarter from 2006 to 2008.14 Finally, we restrict our sample to airports for

which we have information on access to boarding gates. Our �nal sample contains 268,119

observations at the product-carrier-market level.

In what follows, markets are indexed by m = 1; :::;M . There are 6; 366 markets. Year-

quarter combinations are denoted by t = 1; :::T . We use data from 2006 to 2008, so

T = 12. The subindex j = 1; :::; Jmt denotes a product j in market m at time t. A

product is de�ned by the carrier (e.g. American) and the type of service, either nonstop

or connecting. The total number of carriers in the dataset is 17 and includes American

(AA), Alaska (AS), JetBlue (B6), Continental (CO), Delta (DL), Frontier (F9), ATA (FL),

Allegiant (G4), Spirit (NK), Northwest (NW), Sun Country (SY), AirTran (TZ), USA3000

(U5), United (UA), USAir (US), Southwest (WN), Midwest (YX). A product is then denoted

by a combination jmt, which indicates that product j (e.g. nonstop service by American)

12Data on the consumer price index were accessed through the Bureau of Labor Statistics� website at
http://www.bls.gov/cpi/#tables
13A copy of the survey is available from the authors upon request.
14We drop any markets where fewer than 100 passengers were served in any quarter from 2006 to 2008.

6



transports its passengers in market m (e.g. Chicago O�Hare to Fort Lauderdale) at time t

(e.g. the second quarter of 2007).

2.2 Multimarket Contact

We follow EK in measuring multimarket contact, here denoted by mmctkh, where k and h

are two distinct carriers and t is a time period. For a particular carrier and one of its com-

petitors, this variable is calculated as the total number of markets that the two airlines serve

concomitantly. For example, in the �rst quarter of 2007, American and Delta concomitantly

served 855 markets; therefore mmctkh equals 855. For each quarter we construct a matrix

of these pair-speci�c variables. Table 1 shows the matrix, mmct, for the 17 carriers in our

sample in the �rst quarter of 2007.

For each quarter, we then use the mmct matrix to calculate the market-speci�c average

of multimarket contact,15

AvgContactmt =
1

�
Fmt(Fmt�1)

2

�

FX

k=1

FX

h=k+1

1 [k and h active]mt �mmc
t
kh; (1)

where 1[k and h active]mt is an indicator function that is equal to 1 if carriers k and h are

both in market m at time t, Fmt is the number of incumbent �rms in market m at time t,

and F is the total number of airlines (17). Thus, AvgContactmt is equal to the average of

the variable mmctkh across the �rms actively serving market m at time t. This variable is

summarized in Table 2.

15Notice that this measure is not �rm speci�c. In work that is not shown here we have run our reduced-form
regressions considering the following average:

AvgContactjmt =
1

(Fmt � 1)

FX

k 6=h

1 [k and h active]mt �mmc
t
kh:

The results are nearly identical.
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2.3 Fares

We calculate average fares at the product-carrier-market level, where a product is either

nonstop or connecting service.16 Table 2 summarizes the average fare, Farejmt.
17 The

average of Farejmt of a one-way ticket across all carriers and markets from 2006 to 2008 is

around $223.18

To control for price di¤erences in one-way and round-trip tickets we include the variable

Roundtripjmt, which measures the fraction of round-trip tickets over the total number of

tickets sold by a carrier in a market.

2.4 Limited Access to Airport Facilities

Airlines require enplaning/deplaning gates to provide service at an airport. Ciliberto and

Williams [2010] show that limited access to gates is an important determinant of equilibrium

fares and explains approximately 50% of the hub premium, �rst documented by Borenstein

[1989]. We use information on gates as the source of exogenous variation that identi�es the

e¤ect of multimarket contact on the ability of �rms to coordinate their prices.

Gates are typically allocated to carriers through long-term leasing agreements which give

a carrier either exclusive or preferential rights to use the gate, while a small fraction of an air-

port�s gates are usually reserved for common use. Given the importance of access to airport

facilities in determining equilibrium fares and the inability of a carrier to contemporaneously

respond to demand or cost shocks by altering the number of gates it leases at an airport,

the allocation of gates among carriers provides a robust set of instruments. In our empirical

analysis, we use data on the total number of gates at the airport, the number leased to each

16Like EK and consistent with our market de�nition above, we treat roundtrip tickets as two one-way
tickets and divide the fare by two. We also drop exceedingly high and low fares (greater than $2500 and less
than $25) which are likely the result of key-punch errors. Fares are then de�ated using the consumer price
index to 2009 dollars. Like Berry [1992], we drop carriers which do not represent a competitive presence in
each market by transporting fewer than 100 passengers in a quarter. This corresponds to dropping those
carriers transporting fewer than 10 passengers in the DB1B�s sample of itineraries.
17All results and conclusions are robust to using the median fare instead of the average.
18This average, across carriers and markets, is not weighted by the number of passengers traveling under

each fare.

8



carrier on a preferential or exclusive basis, and the number reserved for common use by the

airport authority.

We collected these detailed data on carrier-speci�c leasing agreements from airports as

part of a survey conducted jointly with the ACI-NA. We received completed surveys from 107

of the top 200 airports in terms of enplanements in 2007. For the 17 carriers in our sample,

we construct the mean of the percentage of gates leased on an exclusive or preferential basis

by each carrier at the two market endpoints. For each carrier (e.g. AA_avgm for American),

this variable is summarized in Table 2. The signi�cant amount of variation across markets

in the fraction of gates leased by each carrier provides a great source of identifying variation.

We also construct a variable, Common_Avgm, as the mean fraction of gates reserved by the

airport authority for common-use.

2.5 Control Variables

Carriers can o¤er both nonstop and connecting service.19 Thus, for each product o¤ered

by a carrier in a market, we generate a dummy variable, Nonstopjmt, that is equal to 1 if

the service o¤ered by a carrier is nonstop. Table 2 shows that approximately 17% of the

observations in our dataset correspond to nonstop services o¤ered by a carrier.

A second source of di¤erentiation among carriers is related to the size of the carrier�s

network at an airport, see Brueckner, Dyer, and Spiller [1992]. In particular, carriers

serving a larger number of destinations out of an airport have more attractive frequent �yer

programs and other services at the airport (number of ticket counters, customer service

desks, lounges, etc.). To capture this idea, we compute the percentage of all markets served

out of an airport that are served by an airline and call this variable NetworkSizejmt.

Particular aspects of a market also a¤ect the demand for air travel. One important

element of demand is the number of consumers in a market. Like Berry, Carnall, and

Spiller [2006] (BCS, from here on) and Berry and Jia [2010], we follow the industry standard

19Even if carriers may �o¤er� both types of services, one of the two types is either exceedingly inconvenient
or prohibitively costly to both the carrier and consumer. Thus, we usually see either nonstop or connecting
service but not both in the DB1B sample.
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and de�ne the size of a market, MktSizemt, as the geometric mean of the population at

the market endpoints. Another important determinant of consumers� travel decisions is

the nonstop distance between the endpoints of a market, Distancem. One may expect

on shorter markets, travel as a whole is more attractive, while in very long markets any

form of travel is less attractive due to the time spent reaching one�s destination. Also,

the availability and attractiveness of substitutes to air-travel varies signi�cantly depending

on the distance between the market endpoints. Since the relationship between Distancem

and the demand for air-travel may have some nonlinearities due to these countervailing

e¤ects, we include both Distancem and its square directly in consumers� utility function

in our structural analysis. We also construct a variable, Extramilesjmt, to measure the

indirectness of a carrier�s service. More precisely, Extramilesjmt is the average distance

�own by consumers choosing a product relative to the nonstop distance in the market.

Finally, we construct an indicator,Hub jm, which is equal to one if one of the two endpoints

of market m is a hub airport of carrier j.20 The variable Hubjm captures whether �ying on

the hub airline is more attractive than �ying on any other airlines. It also captures potential

cost advantages.

3 Reduced-Form Analysis

In this section, we �rst replicate the work of EK and then motivate the structural model by

pointing out the limitations of a reduced-form analysis of this type.

3.1 Replicating Evans and Kessides [1994]

EK test the hypothesis that multimarket contact facilitates collusion by running the following

regression:

ln(pjmt) = AvgContactmt � �AvgContactmt + Controlsjmt�Controls + "jmt (2)

20The hub airports are Chicago O�Hare (American and United), Dallas/Fort Worth (American), Denver
(United), Phoenix (USAir), Philadelphia (USAir), Charlotte (USAir), Minneapolis (Northwest, then Delta),
Detroit (Northwest, then Delta), Atlanta (Delta), Cincinnati (Delta), Newark (Continental), Houston (Con-
tinental).
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where j indexes products, m markets, and t time. The dependent variable is the natural

logarithm of the average price for product j. The main variable of interest is AvgContactmt,

whose coe¢cient �AvgContactmt is expected to be positive. In addition to the controls discussed

below, all speci�cations also include carrier and year-quarter �xed e¤ects. In four of the six

speci�cations we also include market �xed e¤ects. We present the results of these regressions

in Table 3.

Column 1 of Table 3 replicates the main market-�xed-e¤ects regression in EK. We

include data for only the 1,000 largest routes, with the ranking constructed after aggre-

gating the number of passengers in each market over all periods. The variables mmctkh

and AvgContactmt are constructed with the data from the small sample. The mean of

AvgContactmt is equal to 0:21 in this small sample. This number is very similar to 0:18,

the mean value of the AvgContactmt in EK. Following EK, we include a measure of market

share,MktSharejmt, the number of passengers transported by a carrier in a market over the

total number of passengers transported in that market, as well as the Her�ndhal-Hirschman

Index of passengers, HHImt, a measure of market concentration.

We �nd that the coe¢cient of multimarket contact is equal to 0:246. This number should

be compared to 0:398, the number reported in Column 3 of Table III in EK. To understand

whether the di¤erence between these two numbers is economically meaningful, we can multi-

ply each number by 0:128, which is the change in AvgContactmt that EK �nd when moving

from the route in their sample with the twenty-�fth percentile in contact to a route with

the seventy-�fth percentile. Using our estimates, we �nd that such a change in multimarket

contact corresponds to a change of 3 percent in fares, compared to 5 percent in EK. The

results for the control variables, when precisely estimated, are also comparable with those

in EK.

Column 2 of Table 3 presents another regression in the spirit of EK. We again include

data for only the 1,000 largest routes. The only di¤erence between Columns 1 and 2

concerns the control variables. Column 2 excludes HHImt and MktSharejmt, which are

endogenous, and includes a dummy variable, Hubjm, which is exogenous. The result for
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the variable of interest, AvgContactmt, is nearly identical. The coe¢cient of AvgContactmt

is equal to 0:291, which implies that a 0:128 change in AvgContactmt would result in an

increase in prices of 4 percent.

Column 3 of Table 3 considers the full sample of markets. The variables mmctkl and

AvgContactmt are constructed using the full sample of markets. The striking result now is

that AvgContactmt has a negative e¤ect on prices. A crucial limitation of AvgContactmt

is that it is not well de�ned for monopoly markets, for which the denominator 1
Fmt(Fmt�1)

is

zero. In these cases, we follow EK and set the variable AvgContactmt equal to zero. The

problem with this solution is that, ceteris paribus, prices are higher in monopoly markets

than in oligopoly markets. Yet, we expect prices to increase with multimarket contact.

Figure 1 clearly illustrates the signi�cance of this problem. The �gure reports two lines,

the predicted values of the regression of prices on multimarket contact when we include

monopolies and when we don�t. We also include the median spline of prices as a function

of multimarket contact. There is clearly a discontinuity in the relationship between average

multimarket contact and prices when multimarket contact is equal to zero. Prices are high

when multimarket contact is equal to zero (monopoly markets), but immediately drop to

their lowest point when multimarket contact is just above zero and then increase monoton-

ically with multimarket contact. As Column 3 demonstrates, if there are many monopoly

markets, this discontinuity signi�cantly alters the reduced-form regression results. As we

discuss below, the structural analysis does not rely on the average measure, AvgContactmt,

but on the pair-speci�c measures, mmctkh. Consequently, the structural analysis does not

encounter this discontinuity problem. It also has the advantage of using information from

the distribution of multimarket contact within a market, rather than just the mean.

In Column 4 we run the same regressions using only non-monopoly markets. The coe¢-

cient of AvgContactmt is now positive and statistically signi�cant. Its e¤ect is smaller than

the one we estimated in Column 3. Here, the change of 0:128 in AvgContactmt implies

an increase in prices of less than 1 percent against the change of 4 percent we estimated in

Column 2.
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Overall, the e¤ects of multimarket contact on prices range between 1 and 5 percent when

we include market �xed e¤ects which uses only within-market variation in multimarket

contact and prices to identify the causal e¤ect of the �rst on the second. This presents

a problem, since variation within a market in multimarket contact may be driven by the

same factors that drive within-market variation in prices. For example, a negative shock

(unobserved to the econometrician) to demand may lead �rms to exit the market, potentially

resulting in an increase (or decrease depending on who exits) in multimarket contact and

an increase in fares. However, it would be incorrect to regard this correlation as evidence

of a causal relationship between multimarket contact and fares. In these situations, as

Griliches and Mairesse [1995] suggest, �xed-e¤ects will perform poorly and the researcher

should search for an instrument-variables solution. We follow this suggestion.

To construct instrumental variables, we use the carrier-speci�c gate data. Our main

identifying assumption is that the control of gates is a determinant of prices through its

e¤ect on the entry decisions of �rms. That is, gates determine which �rms serve a market,

which in itself determines the value of AvgContactmt. The long-term nature of gate leasing

agreements ensures that the allocation of gates among carriers cannot respond to transient

shocks driving within-market variation in prices. The instruments we use include the average

fraction of gates leased by each carrier at the market endpoints and the average fraction of

gates reserved for common use at the market endpoints. Also, for each carrier and market

we generate three instruments to capture the level of potential competition a carrier faces in

a market from legacy and low-cost carriers as well as Southwest: the sum over carrier-type

(legacy, Lcc, Southwest) of the average fraction of gates leased by each carrier at the market

endpoints.

Column 5 of Table 3 presents the results from the instrumental variable regressions with

market-speci�c random e¤ects. We consider the full sample of markets, including monopoly

markets. We estimate the coe¢cient of AvgContactmt equal to 0:520. This means that the

change of 0:128 in AvgContactmt would imply, approximately, an increase in prices of 6:5

percent. This e¤ect is similar to those from the estimates in Columns 1 and 2. Column
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6 is the same speci�cation as Column 5 but does not include monopoly markets. The

results are similar to those in Column 5. The marginal e¤ect is now estimated equal to 8:5

percent. At the bottom of Table 3, in Columns 5 and 6, we present the results of an F

test of the joint signi�cance of our instruments. In both cases, the null is rejected at the 1%

level of signi�cance. The intuition behind the success of our instruments is their ability to

explain the entry behavior of �rms, the indicators 1[k and h active]mt in Equation 1, which

determines the observed level of AvgContactmt.

Overall, our results are largely consistent with those of EK. In the section to follow, we

explore what can be learned from a more structural approach.

3.2 Motivating a Structural Analysis

There are three clear reasons for exploring a more structural approach.

First, the reduced-form analysis shows that an increase in multimarket contact leads to

higher prices. However, we cannot determine the exact degree by which multimarket contact

leads to a more collusive behavior, hence to higher prices. In particular, we can only recover

the relationship between fares and multimarket contact, not collusion and multimarket con-

tact.

Second, the reduced-form analysis only examines the relationship between average mul-

timarket contact and equilibrium fares. A more structural approach allows one to take into

account the full distribution of each carrier�s contact with every other carrier in the market.

To see why looking at a distribution is important, consider two markets that are identical

except for the degree of contact between the incumbent carriers. Suppose at time t, the

multimarket contact matrix for the two markets is given by

mmct =

0

@

� :75 :75
:75 � :75
:75 :75 �

1

A ; mmct =

0

@

� :25 1
0:25 � 1
1 1 �

1

A :

In both markets AvgContactmt is equal to 0:75. However, suppose that 750 markets are

enough to support full cooperation between carriers in setting fares, while 250 markets is

not. In the �rst market, there would be full cooperation in setting fares. In the second
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market, there would be full cooperation between the �rst carrier and the other two carriers.

However, the level of multimarket contact between carriers two and three would result in less

cooperation in setting fares. This simple example demonstrates that there is not necessarily

a one-to-one mapping between AvgContactmt and equilibrium fares as the reduced-form

analysis assumes.

Finally, the structural analysis deals with the sample selection issue related to monopoly

markets in a natural way. Monopoly markets are not used to identify the e¤ect of multimarket

contact, since there is only one �rm in those markets. However, monopoly markets are used

to identify all the other parameters of the model. Thus, our structural model of demand and

pricing utilizes information from the full sample to identify demand and marginal cost while

also providing insight into the relationship between multimarket contact and collusion.

4 Structural Analysis

In this section, we describe our structural approach for identifying the relationship between

multimarket contact and collusion.

4.1 Demand

Our basic demand model is most similar to BCS and Berry and Jia [2010]. We allow for 2

consumer types, r = f1; 2g. For product j in market t (for simplicity, we abstract from the

market, m, subscript), the utility of consumer i of type r, is given by

urijt = xjt�r + pjt�r + �jt + �it(�) + �"ijt

where xjt is a vector of product characteristics, pjt is the price, (�r; �r) are the taste pa-

rameters for a consumer of type r, and �jt are product characteristics unobserved to the

econometrician. The term, �it(�) + �"ijt, is the error structure required to generate nested

logit choice probabilities for each consumer type. The parameter, � 2 [0; 1], governs sub-

stitution patterns between the two nests, airline travel and the outside good (not traveling
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or another form of transportation).21 The mean utility of the outside good is normalized to

zero since only di¤erences in utility, not levels, are identi�ed.

The proportion of consumers of type r choosing to purchase a product from the air travel

nest in market t is then
D�
rt

1 +D�
rt

(3)

where

Drt =

JtX

k=1

e(xjt�r+pjt�r+�jt)=�.

The probability of a consumer of type r choosing product j, conditional on purchasing a

product from the air travel nest, is

e(xjt�r+pjt�r+�jt)=�

Drt

(4)

Together, Equations 3 and 4 imply that product j�s market share, after aggregating across

consumer types, is

sjt(xt;pt; �t; 
d) =

2X

r=1

�r
e(xjt�r+pjt�r+�jt)=�

Drt

D�
rt

1 +D�
rt

(5)

where �r is the proportion of consumers of type r and 
d is the collection of demand pa-

rameters to be estimated. To control for persistent variation in consumers� tastes across

carriers and time, we add carrier and year-quarter �xed e¤ects (djt) such that

��jt = �jt � djt 

Following Berry [1994] and Berry, Levinsohn, and Pakes [1995], we exploit a set of moment

conditions formed by interacting the structural error term, ��, with a set of instruments

to recover estimates of 
d. We use a variation of the Berry, Levinsohn, and Pakes [1995]

contraction mapping, due to BCS, to invert Equation 5 and solve for the value of the un-

observables that matches the models predicted shares to observed market shares for each

product, conditional on 
d = f�; �; �; �;  g. Observed market shares are calculated as

21See Goldberg (1995) and Verboven (1996) for models of demand with multiple nests.
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the number of passengers transported by a carrier in a market divided by MktSizemt. To

estimate these parameters, we form the sample counterpart of the moment condition

gd = E
�
��jt(
d) jzjt )

�
= 0

where zt is a vector of instruments. We treat price as an endogenous regressor and use the

average percentage of gates leased by each of the carriers (not just those present in market

j at time t) at the market�s endpoints to generate a set of instruments.

4.2 The Bertrand-Nash Pricing Game

We maintain that airline �rms compete on prices and o¤er di¤erentiated products.22 We

start by assuming that observed equilibrium prices are generated from play of a Bertrand-

Nash pricing game (Bresnahan [1987]). This assumption generates the following supply

relationship for any product j belonging to the set of products, l = 1; :::; F kt , produced by

�rm k in a market at time t,

sjt +
X

l2Fkt

(plt �mclt)
@slt
@pjt

= 0:

where mclt is the marginal cost of product l.

For each market, this set of Jt equations implies price-cost margins for each product.

Using matrix notation, this set of �rst-order conditions for market t can be rewritten as

st �
t(pt�mct) = 0 (6)

where each element of 
 can be decomposed into the product of two components, 
jl =

�jl�jl. The �rst component is the own or cross-price derivatives of demand, �jl = @slt=@pjt,

while the second component is an indicator of product ownership. More precisely, if products

j and l belong to the same �rm, then �jl equals 1 while �jl equals 0 otherwise. With the

22In assuming that airlines compete in prices and o¤er di¤erentiated products, we follow a well-established
literature on airline competition; see Reiss and Spiller [1989], Berry [1990], BCS, Peters [2006], Berry and
Jia [2010]).
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exception of Nevo [2001], the literature has assumed that � is a diagonal matrix (block-

diagonal in the case of multi-product �rms), strictly ruling out any coordination between

�rms in setting prices. In the next section, Section 4.3, we discuss how our model departs

from the literature regarding the assumptions made on �rm behavior.

4.3 Multimarket Contact and Conduct Parameters

As pointed out by Nevo [1998, 2001], the standard assumptions on the structure of � rules

out a continuum of pricing outcomes between the competitive Bertrand-Nash (� is diagonal

or block-diagonal in the case of multi-product �rms) and the fully-collusive outcome (� is

a matrix of ones). In the case of homogenous products, Bresnahan [1982] and Lau [1982]

provide intuitive and technical, respectively, discussions of how "rotations of demand" can be

used to distinguish between di¤erent models of oligopolistic competition or identify conduct

parameters. Recent work, see Berry and Haile [2010], formally demonstrates how to extend

the intuition of Bresnahan [1981, 1982] to di¤erentiated product markets. Berry and Haile

[2010] show that changes in the "market environment" can be used to distinguish between

competing models, including variation in the number, product characteristics, and costs of

competitors.

In the context of the airline industry, one such shifter of the "market environment" is

the degree of multimarket contact between carriers. In particular, we expect higher levels

of multimarket contact between competitors to facilitate collusion. To capture this idea,

we depart from di¤erentiated literature and de�ne �jl as a function of multimarket contact.

In particular, if product j is owned by carrier k and product l is owned by carrier h, then

�jl equals f(mmc
t
kh). This function, determining the amount of coordination between

carriers k and h in setting fares, is bound between zero and one and dependent on the level

of multimarket contact between the two carriers, mmctkh, the fk; hg element of the contact

matrix. Thus, the conduct parameters tell us whether price-setting �rms compete or collude.

If the conduct parameters are estimated to be equal to zero, we can conclude that �rms do

not cooperate in setting fares. If the conduct parameters are estimated to be equal to 1, we
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can conclude that �rms collude.23

The interpretation of these conduct parameters is most easily seen by examining the �rst-

order conditions in the case with two �rms. In this case, the �rst-order conditions are

(market and time subscripts are omitted for simplicity)

�
s1
s2

�

+

"
@s1
@p1

f (mmc12) �
@s2
@p1

f (mmc21) �
@s1
@p2

@s2
@p2

#�
p1 �mc1
p2 �mc2

�

= 0:

The �rst-order condition of �rm 1 is then

s1 +
@s1
@p1

(p1 �mc1)

| {z }

Bertrand FOC

+ f (mmc12) �
@s2
@p1

(p2 �mc2)

| {z }

Cooperative E¤ect

= 0: (7)

The additional cooperative term is what di¤erentiates our model and makes clear how mul-

timarket contact impacts equilibrium pricing behavior.

The impact of this additional term depends on two factors. First, the size of f (mmc12)

determines the degree to which �rms cooperate in setting fares. In particular, values of

f (mmc12) ranging from zero to one result in equilibrium pricing behavior ranging from the

competitive Bertrand-Nash outcome to a fully collusive outcome, respectively. Second,

the degree to which cooperation increases prices depends on the cross-price derivatives of

demand, @s2
@p1

and @s1
@p2
. This is intuitive, if the products that �rms o¤er are close substitutes

(@s2
@p1

and @s1
@p2

are relatively large), then cooperation will result in fares that are signi�cantly

higher than the competitive Bertrand-Nash outcome.

Our goal is to utilize these �rst-order conditions to estimate both the conduct parameters

and the marginal cost functions of each �rm. The set of �rst-order conditions for each

market, Equation 6, can be inverted as

pt �

�1
t st �mct = 0 (8)

23This type of modeling is admittedly less ambitious than the one proposed by the earlier work on the
estimation of conduct parameters (e.g. Brander and Zhang [1990, 1993]). In earlier work, conduct para-
meters informed the researcher both on the choice variable of the �rms (whether �rms compete on prices
or quantities) and whether the �rms collude or compete. Our approach, while less ambitious, is still very
e¤ective and simple to generalize to any industry where there is a market-speci�c exogenous variable that
shifts the incentive of �rms to collude.
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where we specify the marginal cost for product j in market t as

mcjt = wjt� + djt + !jt

The wjt vector includes Distance and its square, Extramiles and its square, and djt, a set

of carrier and year-quarter dummies. The error term, !jt, is the portion of marginal cost

unobserved to the econometrician.

We specify the conduct parameters as

f(mmckh) =
exp(�1 + �2mmckh)

1 + exp(�1 + �2mmckh)

which restricts f(mmckh) between zero and one.
24

We then use Equation 8 to form the sample counterpart of the moment condition,

gs = E [!jt(
d; 
s) jzjt )] = 0;

where 
s are the conduct and marginal cost parameters and zjt are the vector of instruments

discussed in Section 2.4. Following Berry, Levinsohn, and Pakes [1995], we estimate 
 =

f
d; 
sg by minimizing

Q(
) = G(
)0W�1G(
)

where G(
) is the stacked set of moments, (gd; gs), and W is a consistent estimate of the

e¢cient weighting matrix.25

5 Multimarket Contact and Collusion

The structural estimates are reported in Table 4 which is organized into panels. The top

panel presents the results for the demand estimation. The middle panel presents the esti-

24We �nd nearly identical results for an alternative speci�cation for the conduct parameters,

f(mmctkh) = max
�
0;min

�
1; �

1
+ �

2
mmctkh

	�
:

Given the similarity in the results, for conciseness, we only report the results for the �rst speci�cation.
25Due to the highly nonlinear nature of the objective function and potential for local minima, we use a

stochastic optimization algorithm (simulated annealing) to �nd a global minimum. In calculating standard
errors, we allow for demand and cost errors to be correlated within a market.
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mates of the cost parameters. The next panel presents the results for the conduct parameters,

�1 and �2. The bottom panel describes marginal costs and elasticities of demand.

5.1 Bertrand-Nash Competition

Column 1 of Table 4 presents the estimates from the model when we assume �rms price as

Bertrand-Nash competitors.26 The demand estimates in the top panel are largely consistent

with the previous studies of the industry (BCS [2006] and Berry and Jia [2010]).

First, as one would expect, consumers dislike higher fares, ceteris paribus. We �nd the

coe¢cients of price to be equal to �1:32 for the �rst type and equal to �0:126 for the second

type. Not only are these two coe¢cient estimates signi�cantly di¤erent statistically, but their

magnitudes are also quite di¤erent. We can think of the �rst type as the tourist type, who

is very sensitive to prices, while the second type can be thought of as the business-traveler

type, who is much less sensitive to prices. The mean own-price elasticity across all markets

and products for the tourist type is equal to �4:31 while only �0:42 for the business-traveler

type. The mean own-price elasticity across all markets, products, and types is �3:042, a

number consistent with previous work.27

Next, we can look at the decision to �y rather than use other means of transportation

or simply not traveling at all. This decision is captured by the coe¢cient estimates of the

type-speci�c constants and by the nesting parameter �. The nesting parameter is greater

than 0:5 in every speci�cation, suggesting much of the substitution by consumers between

products occurs within the air-travel nest, rather than to the outside option. This means

that passengers are more likely to substitute between carriers when prices change rather

than deciding not to �y at all. We �nd that the estimated constant for the tourist type is

26We also estimated a nested-logit model of demand with one consumer type. The qualitative implications
are very similar, suggesting that the speci�c model of demand is not driving the results.
27Our demand is estimated to be slightly more elastic than the estimates of Berry and Jia [2010]. This

di¤erence is likely driven by how products are de�ned. Berry and Jia [2010] identify each unique fare
observed in the data as a di¤erent product. Since we do not know whether the unique fares observed in
the data are in fact a result of variation in unobserved product characteristics or part of an intertemporal
pricing strategy of the �rm, we chose to aggregate all fares for a carrier in a quarter into one of two groups,
nonstop and connecting service.
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equal to �5:692 and for the business-traveler type is equal to �7:626. This means that the

business types are less likely to travel, but when traveling they are less price sensitive.

The results for the other variables are as expected. Both tourist and business travelers

prefer nonstop �ights and dislike longer connections. Travelers prefer �ying with carriers

o¤ering a larger network out of the originating airport, which is consistent with previous

work; see BCS and Berry and Jia [2010]. The positive coe¢cient on Distance and negative

coe¢cient on Distance2 show that consumers �nd air travel more attractive in markets with

longer nonstop distances; however, this e¤ect is diminishing as the nonstop distance becomes

larger and the outside option becomes more attractive.

On the cost side, we �nd that the marginal cost of serving a passenger is increasing,

although at a decreasing rate, in the nonstop distance between the market endpoints. We

also �nd that the marginal cost of connecting service is more expensive than nonstop service.

The mean of marginal cost across all markets is $111.28

5.2 Collusion

Next, we estimate the model under the assumption that �rms fully cooperate in setting fares.

In his study of the 1955 price war in the American automobile industry, Bresnahan [1987]

shows that one can get dramatically di¤erent coe¢cient estimates under di¤erent behavioral

assumptions. In this section we set out to test how sensitive the parameter estimates are to

the assumed behavioral model.

Column 2 of Table 4 shows the results under the assumption that �rms fully cooperate

in setting fares. First, we �nd that the price coe¢cients are now equal to �1:674 for

the tourist traveler against the value of �1:32 that we had estimated in Column 1. We

�nd that the estimated coe¢cient of price for the business traveler is now equal to �0:223,

twice as large as in Column 1. This large di¤erences in the estimated coe¢cients lead

to signi�cantly di¤erent estimates of the marginal cost, whose average is now estimated to

28This is at the high end of the range of estimates in Berry and Jia (2010), who de�ne costs for roundtrip
service while we de�ne trips for one-way service. Thus, when comparing the estimates, one should normalize
the estimates of Berry and Jia (2010) by dividing by two.
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be equal to 53:7 dollars, approximately 50% less than the estimates in Column 1. The

coe¢cient estimate of �1 is also very di¤erent in Columns 1 and 2.

The estimates of the cost coe¢cients are also quite di¤erent in Columns 1 and 2. The

constant term is almost half as big (0:502 against 0:869). Moreover, the cost is now increasing

at a slower pace in distance. Finally, we �nd the marginal cost of connecting service is now

less expensive than nonstop service at all distances. This is not a particularly surprising

result since longer connections through major hubs often involve the use of larger planes that

have a lower cost per passenger.

5.3 A Model with Conduct Parameters

Column 3 of Table 4 presents the estimates of the model where we allow the degree of

price coordination to depend on the level of multimarket contact between each carrier in a

market. That is, we now look at a model that allows the �rms to behave di¤erently with

di¤erent competitors. That is, �rm A might be colluding with �rm B but not with a �rm

C.

We start again from the demand estimates. We immediately observe that the coe¢cient

estimates in Column 3 are much closer to those in Column 1 (Bertrand-Nash behavior)

than to those in Column 2 (collusive behavior). For example, the price coe¢cients for the

�rst type of consumer, the tourist type, are equal to �1:32 in Column 1 and �1:189 in

Column 3, but up to �1:674 in Column 2. The price coe¢cient for the business travelers

is equal to �0:117 in Column 3 and equal to �0:126 in Column 1. It was estimated equal

to �0:223 in Column 2.

Now consider the fraction of vacation travelers. This fraction is equal to 68:7 percent in

Column 3 and to 67:5 in Column 1, but it is equal to 40:1 percent in Column 2.

The cost estimates in Column 3 are between those in Column 2 and Column 1. The

mean of marginal cost is now equal to $77, compared to the estimate of $111 in Column

1 and $53:7 in Column 3. This suggests that strict assumptions regarding �rm behavior,

�rms behaving as Bertrand-Nash competitors or as a fully-collusive cartel, leads to biased
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estimates of marginal cost. The intuition for marginal costs now being lower than in

Column 1 is because the presence of the conduct parameters, �1 and �2; allows for an

alternative to high marginal costs as an explanation for the high fares we observe in some

markets.

Consider now the estimates for �1 and �2 which shift the conduct parameters. We

estimate �1 equal to �3:145 and �2 equal to 6:006. Figure 2 plots the conduct parameters.

From Figure 2 it is clear that carriers with little multimarket contact do not cooperate in

setting fares. Carriers with a signi�cant amount of multimarket contact can sustain near-

perfect cooperation in setting fares.

Table 5 provides a one-to-one mapping from multimarket contact matrix in Table 1 to

the level of cooperation carriers can sustain in setting fares. In particular, Table 5 presents

f(mmc) evaluated at each element of Table 1. As an example, consider the interaction

between American and Delta. Table 1 shows that in the �rst quarter of 1997 the two �rms

overlapped in 855 markets. InTable 5, we �nd that the conduct parameter is equal to 0:880,

which is essentially saying that American and Delta collude in fares in markets that they

concomitantly serve. Consider, instead, the interaction between American and JetBlue.

From Table 1 we know that they overlap in 84 markets. Table 5 shows that the conduct

parameter is equal to 0:067, which implies that they do not cooperate in setting fares.

The results suggest that legacy carriers cooperate with one another to a large degree in

setting fares. However, there is very little cooperation between most low-cost carriers and

legacy carriers. This �nding is largely consistent with that of Ciliberto and Tamer [2009],

who show that there is heterogeneity in the competitive e¤ects of airline �rms and that an

additional low-cost competitor has a much more signi�cant impact on the level of competition

in a market than an additional legacy competitor. There is one notable exception. In

recent years, AirTran has rapidly expanded its network out of Delta�s Atlanta-Harts�eld

hub. Our results suggest these two carriers can now maintain some level (f(mmc) = 0:398)

of cooperation in setting fares. Remarkably, Delta and AirTran are currently the target of a

civil class-action lawsuit alleging cooperation in introducing and maintaining additional fees
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on checked bags.29

One feature of our framework is that the conduct parameters are not exactly equal to

0 and 1, which are the values that correspond, respectively, to the cases of Nash-Bertrand

competition and collusion. However, Figure 3 shows the distribution of the estimated

conduct parameters is bimodal, except for a peak at 0:6. Consider �rst the case of the

parameters that are close to 0 and 1. We interpret the fact that they are not exactly equal

to 0 or 1 as the result of random sampling and possible model speci�cation. Next, we can

ask what explains the peak at 0:6. The conduct parameters close to 0:6 describe the strategic

interaction between USair and Northwest, USair and American, USair and Continental, and

United and Continental. Our interpretation is that the interaction of these pairs is less

frequent than the interaction between other legacy pairs, which might suggest that their

strategic behavior might be driven by other, more local, factors. For example, USAir and

Northwest might be colluding at some airports where they concumitantly provide many

markets, but they do not collude in the other markets.

There are two interesting extensions that could address in more detail the �ndings in

Figure 3. First, we could allow the conduct parameter to take two values, 0 and 1, and

assume the outcome in any particular market is drawn from a binomial distribution where

the probability of each value depends on the level of multi-market contact. However, we feel

that this approach would impose more structure than is needed for the empirical analysis

presented in this paper. Second, we have assumed that the relevant level of multimarket

contact is at the national level, which follows EK and previous work. However, one might

think that the level of strategic interaction where multimarket contact plays a role is at the

airport level. We leave this extension to future work.

The structural model predicts that di¤erent levels of multimarket contact between carriers

imply di¤erent levels of cooperation in setting fares. However, coordination in setting fares

does not necessarily translate to fares signi�cantly di¤erent from those that would be realized

29The case is Avery v. Delta Air Lines Inc., AirTran Holdings Inc. 09cv1391, U.S. District Court, Northern
District of Georgia (Atlanta).
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from a competitive Bertrand-Nash pricing game. To examine the impact of multimarket

contact on fares, we perform an exercise similar to the one used in the reduced-form analysis.

In particular, we increase the average multimarket contact in a market by 0:128, increasing

each carrier�s contact with every other carrier by 0:128, and look at the resulting percentage

change in fares. These results are presented in the top half of Figure 4. The bottom half

of Figure 4 plots the mean change in fares across all markets for increases in multimarket

contact of 0:128, 0:256, and 0:384, respectively.

In both parts of Figure 4, the initial level of average multimarket contact in the market is

on the horizontal axis, and the resulting percentage change in the average fare in the market

on the vertical axis. The results in the top half of Figure 4 are exactly as one would expect

given the shape of Figure 2. For very high levels of multimarket contact in which �rms

are already perfectly coordinating on prices, there is very little impact from an increase in

multimarket contact. However, for low or moderate levels of contact, there is a signi�cant

increase in fares, ranging from 1% to 6%. For these moderate levels of contact, there is also

a great deal of dispersion in the change in fares resulting from the increase in multimarket

contact. This dispersion can largely be explained by examining Equation 7, which shows

the important role that cross-price elasticities play in determining the size of the change

in fares. The results in the bottom half of Figure 4 are also intuitive; larger increases in

multimarket contact result in larger increases in fares, except at very high levels of contact

where �rms are already perfectly coordinating.

As mentioned above, the impact on fares of a marginal increase in multimarket contact

depends on the cross-price elasticity of demand. To see why, recall that the cooperative

e¤ect is measured by f (mmc12)�
@s2
@p1
(p2 �mc2). Figure 5 plots the mean percentage change

in fares resulting from the same 0:128 increase in average multimarket contact for di¤erent

cross-price elasticities. More precisely, we use the average cross-price elasticity across all

products in the market. The �gure shows that in markets where cross-price elasticities are

high, the increase in fares resulting from an increase in multimarket contact is larger. For

moderate levels of multimarket contact, the mean percentage change in fares increases from
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2% to 5% depending on the cross-price elasticities in the market. For very high levels of

initial multimarket contact, regardless of the cross-price elasticity, there is almost no change

in fares since �rms are already fully colluding.

6 Conclusion

In this paper, we build on Nevo [1998] to develop a new methodological approach to identify

collusive behavior in the US airline industry. In particular, we nest conduct parameters into

a standard oligopoly model where �rms compete on prices and o¤er di¤erentiated products.

We identify the conduct parameters using variation in multimarket contact across local airline

markets. We �nd that carriers with little multimarket contact (e.g. Frontier and Delta) do

not cooperate in setting fares, while carriers with a signi�cant amount of multimarket contact

(e.g. US Air and Delta) can sustain near-perfect cooperation in setting fares. We also �nd

that cross-price elasticities play a crucial role in determining the impact of multimarket

contact on collusive behavior and equilibrium fares.

Our methodology can be applied to any other industry where data from a cross-section of

markets are available and where �rms encounter each other in many of these markets. More

generally, our methodology can be applied to any industry where there is some exogenous

shifter of the conduct parameters, such as regulatory changes (Waldfogel and Wulf [2006]

and Parker and Roller [1997]) or lawsuits (Miller [2010]). The key step is to express the

conduct parameters as functions of these exogenous shifters and nest these functions within

a standard empirical oligopoly model.

One interesting extension of this paper would be a merger analysis that accounts for

the impact of multimarket contact. Our results suggest that mergers between large airlines

do not necessarily lead to higher prices. To see why, notice that an increase in multimarket

contact between legacy carriers results in almost no change in fares, while the same change in

multimarket contact between low-cost carriers and legacy carriers will result in large increases

in fares. Thus, recently completed (Delta and Northwest) and proposed (Continental and

United) mergers between legacy carriers should have little consequence for market power
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while potentially introducing signi�cant cost e¢ciencies.30

Our analysis is restrictive in a number of aspects, which constitute themes for future

research. First, we have assumed that the functional form that relates conduct parameters

to multimarket contact is the same for all carrier pairs. On one hand this simpli�es the

analysis considerably and still allows for heterogeneity in the conduct parameters. On the

other hand, there might be fundamental di¤erences across di¤erent pairs. Second, our model

is static, while one might be interested in learning how the �rms get to agree to tacitly

collude.31 This would require that we model the strategic interaction between �rms as a

dynamic game, which is clearly beyond the scope of this paper.

30See Brueckner and Spiller [1994] for a discussion of economies of density.
31For a discussion of the importance of accounting for dynamics when estimating demand, see Hendel and

Nevo (2006).
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Figure 1: Multimarket Contact, Prices, and Monopoly
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AA AS B6 CO DL F9 FL G4 NK NW SY TZ U5 UA US WN YX

AA � 22 84 683 855 116 273 7 11 686 11 29 5 819 579 339 119

AS 22 � 3 13 35 10 3 0 0 18 0 1 0 50 30 9 2

B6 84 3 � 96 132 2 57 0 7 83 0 0 4 124 125 41 2

CO 683 13 96 � 733 88 244 4 12 555 5 24 7 572 559 314 86

DL 855 35 132 733 � 115 455 5 20 907 7 28 10 1008 1150 385 114

F9 116 10 2 88 115 � 41 0 3 87 5 8 0 140 115 72 18

FL 273 3 57 244 455 41 � 0 13 306 4 17 5 290 388 106 54

G4 7 0 0 4 5 0 0 � 0 5 3 0 0 11 5 0 1

NK 11 0 7 12 20 3 13 0 � 13 0 1 1 14 20 6 1

NW 686 18 83 555 907 87 306 5 13 � 14 27 7 871 612 282 169

SY 11 0 0 5 7 5 4 3 0 14 � 0 0 13 7 0 3

TZ 29 1 0 24 28 8 17 0 1 27 0 � 0 29 24 28 13

U5 5 0 4 7 10 0 5 0 1 7 0 0 � 5 10 6 0

UA 819 50 124 572 1008 140 290 11 14 871 13 29 5 � 847 329 159

US 579 30 125 559 1150 115 388 5 20 612 7 24 10 847 � 327 74

WN 339 9 41 314 385 72 106 0 6 282 0 28 6 329 327 � 39

YX 119 2 2 86 114 18 54 1 1 169 3 13 0 159 74 39 �

Table 1:  Number of Common Markets in 2007‐Q1



Variable  Source Description Observations Mean Median  Std. Dev.

Fare DB1B Carrier‐Market‐Specific Average Fare 268119 222.692 213.472 66.502

Nonstop DB1B Indicator of Nonstop Service 268119 0.173 0.000 0.379

NetworkSize DB1B
Percentage of All Routes Served by Carrier at 

Originating Airport 295674 0.443 0.470 0.174

ExtraMiles DB1B
Average Distance Flown Between Market Endpoints 

(equals Distance for Nonstop Service)
268119 1258.628 1121.000 625.219

Average_MMC DB1B
Average Market Contact from mmc Matrix (divided 

by 1,000)
268119 0.630 0.621 0.265

MktShare DB1B Market‐Carrier Share of Passengers 268119 0.274 0.168 0.286

HHI DB1B Market‐Carrier Share of Passengers 268119 0.453 0.404 0.214

Roundtrip DB1B Proportion of Roundtrip Passengers 268119 0.827 0.853 0.130

Hub Author  Indicator for Hub Endpoint 268119 0.104 0.000 0.306

Distance DB1B Nonstop Distance Between Market Endpoints 268119 1105.694 969.000 596.201

MktSize BEA Geometric Mean of Population at Market Endpoints 268119 2409758 1789943 1993143

Common_avg Survey Common Mean % Gates at Market Endpoints 268119 0.270 0.226 0.178

AA_avg Survey AA Mean % Gates at Market Endpoints 268119 0.097 0.072 0.084

CO_avg Survey CO Mean % Gates at Market Endpoints 268119 0.067 0.050 0.075

DL_avg Survey DL Mean % Gates at Market Endpoints 268119 0.103 0.084 0.082

NW_avg Survey NW Mean % Gates at Market Endpoints 268119 0.085 0.051 0.107

UA_avg Survey UA Mean % Gates at Market Endpoints 268119 0.087 0.058 0.081

US_avg Survey US Mean % Gates at Market Endpoints 268119 0.126 0.099 0.112

WN_avg Survey WN Mean % Gates at Market Endpoints 268119 0.075 0.056 0.075

AS_avg Survey AS Mean % Gates at Market Endpoints 268119 0.006 0.000 0.018

B6_avg Survey B6 Mean % Gates at Market Endpoints 268119 0.014 0.000 0.018

F9_avg Survey F9 Mean % Gates at Market Endpoints 268119 0.012 0.000 0.026

FL_avg Survey FL Mean % Gates at Market Endpoints 268119 0.023 0.015 0.027

TZ_avg Survey TZ Mean % Gates at Market Endpoints 268119 0.000 0.000 0.001

G4_avg Survey G4 Mean % Gates at Market Endpoints 268119 0.006 0.000 0.019

YX_avg Survey YX Mean % Gates at Market Endpoints 268119 0.014 0.000 0.042

NK_avg Survey NK Mean % Gates at Market Endpoints 268119 0.002 0.000 0.006

U5_avg Survey U5 Mean % Gates at Market Endpoints 268119 0.001 0.000 0.003

Table 2:  Variable Description and Summary Statistics

Carrier‐Market‐Specific Variables

Market‐Specific Variables



Variable (1) (2) (3) (4) (5) (6)

Average_MMC 0.246*** 0.291*** ‐0.017*** 0.054*** 0.520*** 0.667***

(0.030) (0.029) (0.002) (0.004) (0.009) (0.016)

Hub 0.208*** 0.190*** 0.191*** 0.177*** 0.194***

(0.002) (0.001) (0.001) (0.002) (0.002)

NetworkSize 0.630*** 0.314*** 0.224*** 0.226*** 0.496*** 0.207***

(0.013) (0.013) (0.005) (0.006) (0.007) (0.006)

Nonstop ‐0.054*** ‐0.065*** ‐0.032*** ‐0.032*** ‐0.054*** ‐0.033***

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

RoundTrip ‐0.548*** ‐0.576*** ‐0.533*** ‐0.539*** ‐0.443*** ‐0.548***

(0.006) (0.006) (0.003) (0.003) 0.004) (0.004)

HHI 0.014

(0.011)

MktShare 0.063***

(0.005)

Log(Distance) ‐1.240*** ‐0.438***

(0.024) (0.058)

Log
2
(Distance) 0.105*** 0.049***

0.002 (0.004)

Market Fixed Effects Yes Yes Yes Yes No No

IV No No No No Yes Yes

Excluding Monopolies No No No Yes No Yes

R
2

0.167 0.223 0.143 0.171 0.241 0.350

Observations 85,920 85,920 268,119 252,284 268,119 252,284

Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10

Note: Year‐Quarter Dummies, Carrier Dummies included in all regressions. Their coefficient estimates, 

           as well as the constant estimate, are omitted for sake of brevity.

Table 3: Prices and Multimarket Contact

 Top 1000 Markets  All Markets

Χ2   Test Static for joint 
significance of IV

15,314.27*** 5,418.90***



Demand estimate std. error estimate std. error estimate std. error

Price1 ‐1.32*** 0.017 ‐1.674*** 0.016 ‐1.189*** 0.022

Price2 ‐0.126*** 0.003 ‐0.223*** 0.003 ‐0.117*** 0.004

κ1 (fraction type 1 consumers) 0.675*** 0.337 0.401*** 0.204 0.687** 0.417

Constant1 ‐5.692*** 0.526 ‐4.861*** 0.328 ‐5.954*** 0.679

Constant2 ‐7.626*** 1.019 ‐7.59*** 0.618 ‐7.596*** 1.155

Nonstop1 1.194*** 0.007 1.119*** 0.008 1.144*** 0.008

Nonstop2 0.931*** 0.009 1.074*** 0.009 1.034*** 0.009

λ  (nesting parameter) 0.571*** 0.002 0.540*** 0.002 0.564*** 0.003

Network Size 0.600*** 0.018 0.419*** 0.018 0.542*** 0.018

Distance 1.93*** 0.032 1.814*** 0.032 1.848*** 0.032

Distance
2

‐0.482*** 0.029 ‐0.481*** 0.011 ‐0.476*** 0.011

Extra‐miles ‐0.867*** 0.029 ‐0.696*** 0.029 ‐0.775*** 0.029

Extra‐miles
2

0.131*** 0.009 0.107*** 0.009 0.115*** 0.009

Supply

Constant 0.869*** 0.005 0.502*** 0.005 0.549*** 0.003

Distance 0.257*** 0.013 0.171*** 0.013 0.383*** 0.008

Distance
2

‐0.01*** 0.005 ‐0.047*** 0.005 ‐0.072*** 0.003

Extra‐miles 0.073*** 0.013 ‐0.063*** 0.013 ‐0.063*** 0.008

Extra‐miles
2

‐0.039*** 0.004 0.009*** 0.005 0.006*** 0.003

Contact

Constant ‐3.145*** 0.295

MMC 6.006*** 2.989

Model Fit

Median Marginal Cost 1.111 0.537 0.778

Median Elasticity ‐3.042 ‐2.746 ‐2.813

Median Elasticity ‐ Type1 ‐4.306 ‐5.701 ‐3.922

Medoam Elasticity ‐ Type2 ‐0.415 ‐0.763 ‐0.389

Function Value 28785.805 27402.381 27176.777

Table 4:  BCS Estimation

Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10

Note: Year‐Quarter Dummies, Carrier Dummies included in all regressions. Their coefficient estimates, 

           as well as the constant estimate, are omitted for sake of brevity.

(1) (2) (3)

BCS ‐ No Collusion BCS ‐ Full Collusion BCS ‐ CV



AA AS B6 CO DL F9 FL G4 NK NW SY TZ U5 UA US WN YX

AA � 0.047 0.067 0.723 0.880 0.080 0.182 0.043 0.044 0.726 0.044 0.049 0.042 0.855 0.582 0.248 0.081

AS 0.047 � 0.042 0.044 0.050 0.044 0.042 0.041 0.041 0.046 0.041 0.042 0.041 0.055 0.049 0.043 0.042

B6 0.067 0.042 � 0.071 0.087 0.042 0.057 0.041 0.043 0.066 0.041 0.041 0.042 0.083 0.084 0.052 0.042

CO 0.723 0.044 0.071 � 0.779 0.068 0.157 0.042 0.044 0.547 0.042 0.047 0.043 0.572 0.553 0.221 0.067

DL 0.880 0.050 0.087 0.779 � 0.079 0.398 0.042 0.046 0.909 0.043 0.048 0.044 0.948 0.977 0.303 0.079

F9 0.080 0.044 0.042 0.068 0.079 � 0.052 0.041 0.042 0.068 0.042 0.043 0.041 0.091 0.079 0.062 0.046

FL 0.182 0.042 0.057 0.157 0.398 0.052 � 0.041 0.044 0.213 0.042 0.046 0.042 0.197 0.307 0.075 0.056

G4 0.043 0.041 0.041 0.042 0.042 0.041 0.041 � 0.041 0.042 0.042 0.041 0.041 0.044 0.042 0.041 0.042

NK 0.044 0.041 0.043 0.044 0.046 0.042 0.044 0.041 � 0.044 0.041 0.042 0.042 0.045 0.046 0.043 0.042

NW 0.726 0.046 0.066 0.547 0.909 0.068 0.213 0.042 0.044 � 0.045 0.048 0.043 0.890 0.630 0.190 0.106

SY 0.044 0.041 0.041 0.042 0.043 0.042 0.042 0.042 0.041 0.045 � 0.041 0.041 0.044 0.043 0.041 0.042

TZ 0.049 0.042 0.041 0.047 0.048 0.043 0.046 0.041 0.042 0.048 0.041 � 0.041 0.049 0.047 0.048 0.044

U5 0.042 0.041 0.042 0.043 0.044 0.041 0.042 0.041 0.042 0.043 0.041 0.041 � 0.042 0.044 0.043 0.041

UA 0.855 0.055 0.083 0.572 0.948 0.091 0.197 0.044 0.045 0.890 0.044 0.049 0.042 � 0.875 0.237 0.101

US 0.582 0.049 0.084 0.553 0.977 0.079 0.307 0.042 0.046 0.630 0.043 0.047 0.044 0.875 � 0.235 0.063

WN 0.248 0.043 0.052 0.221 0.303 0.062 0.075 0.041 0.043 0.190 0.041 0.048 0.043 0.237 0.235 � 0.052

YX 0.081 0.042 0.042 0.067 0.079 0.046 0.056 0.042 0.042 0.106 0.042 0.044 0.041 0.101 0.063 0.052 �

Table 5:  Price Coordination in 2007‐Q1
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