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Abstract

The Nash equilibrium concept combines two fundamental ideas. First, rational
players choose the most preferred strategy given their beliefs about what other
players will do. Second, it imposes the consistency condition that all players’ be-
liefs are correct. This consistency condition has often been considered too strong
and different solution concepts have been introduced in the literature in order to
take into account ambiguous beliefs. In this paper, we show, by means of exam-
ples, that in some situation beliefs might be dependent on the strategy profile and
that this kind of contingent ambiguity affects equilibrium behavior differently with
respect to the existing models of ambiguous games. Hence we consider a multiple
prior approach and subjective beliefs correspondences which depend on the strat-
egy profile; we investigate existence of the equilibrium concepts corresponding to
different attitudes towards ambiguity (namely optimism and pessimism). Finally
we analyze particular beliefs correspondences: beliefs given by correlated equilibria
and by ambiguity levels on events.

Keywords: Noncooperative games, ambiguity, beliefs correspondence, equilibrium

1 Introduction

In the theory of decision making under uncertainty actions of decision makers are usually
assumed to lead to well-defined probability distributions over outcomes, meaning that
choices of actions could be identified with choices of probability distributions. The sub-
jective expected utility theory (Savage (1954)) provides a strongly founded approach for
ranking probability distributions over outcomes for decision-makers endowed with sub-
jective risk preferences. While this approach has led to many theoretical achievements in
economics over the past decades, the evidence from Ellsberg (1961) suggests that beliefs
cannot always be represented by conventional probabilities. Empirical research seems
to confirm Ellsberg’s conjecture on the inconsistencies between Savage’s theory and em-
pirically observed behavior. In order to fit these discrepancies, alternative theories have
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been proposed. The most known theories are the Choquet expected utility theory (hence-
forth CEU, see Schmeidler (1989)), which involves individuals maximizing the expected
value of an utility function with respect to non-additive beliefs (capacities) by means of
Choquet integrals (Choquet(1953)) and the maxmin expected utility theory (henceforth
MEU, see Gilboa and Schmeidler (1989)) in which beliefs are represented by a convex set
of probability distributions over outcomes (multiple priors) and individuals maximize the
minimum over the set of beliefs of the corresponding expected utilities. These theories
and their extensions are known as ambiguity theory.

Part of the growing literature on ambiguity has focused in the last years on games
with players having ambiguous beliefs; in particular, the analysis has been directed to
the concept of Nash equilibrium. In fact, the Nash equilibrium concept combines two
fundamental ideas: First, rational players choose one of their most preferred strategies
given their beliefs about what other players will do. Second, it imposes the consistency
condition that all players’ beliefs are correct. One of the major criticisms to the Nash
equilibrium concept has always been the strength of the consistency condition. In fact,
in many settings it is not clear why players should have exactly correct beliefs about each
other. Therefore, different solution concepts have been introduced in order to weaken
such consistency condition by taking into account ambiguous beliefs; most of such solution
concept are founded on the MEU approach (see for instance, Dow and Werlang (1994),
Eichberger and Kelsey (2000) , Lo (1996) and Klibanoff (1993)). In Eichberger, Kelsey
and Schipper (2008) and in Marinacci (2000) instead, the CEU approach has been taken
into account. However, in all these papers the set of beliefs of each player is fixed, while
it can be exogenous or endogenously given by the solution concept; moreover, ambiguity
concerns only beliefs on opponents’ strategies. Examples suggest, instead, that ambiguity
may concern also the rules of the game and that it may vary with the strategy profile;
this is the case, for instance, of the models of coalition formation investigated in De
Marco and Romaniello (2010;a,b) in which ambiguity concerns also the rules of coalition
formation. More precisely, those papers extend previous literature in which stability
of coalition structures has been analyzed by using concepts of equilibrium in associated
strategic form games (see Hart and Kurz (1983)). In this class of games the strategy set of
each player i is the set of all subgroups of players containing i and his choice represents
the coalition he wishes to join. It is well known that, given a strategy profile (i.e. a
coalition for each player), the coalition structure formed is not unequivocally determined
since it depends on the so-called rules of coalition structure formation which are functions
associating to every strategy profile a coalition structure. The usual assumption in this
literature is that each player i makes his choice having correct beliefs about the strategies
of every other player and about the formation rule of coalitions in which i is not involved.
However, other literature argues that the formation of a coalition is the outcome of private
communication within the members of the coalition (see Moreno and Wooders (1996)
and references therein). Hence, differently from the previous literature, in De Marco and
Romaniello (2010;a,b) it has been considered the case in which each player has vague
expectations about the choices of his opponents corresponding to the coalitions in which
is not involved and about the formation rule of these coalitions. It is shown that the join
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of those two different sources of ambiguity implies multiplicity of additive beliefs over
outcomes, which turn also to be strategy profile dependent.

Therefore, in this paper we take into account a general setting in which the set of
beliefs over outcomes varies with the strategy profile. In particular, this model embodies
ambiguity about beliefs over opponents’ strategies. We show, by means of examples, that
slight variations to already existing models give rise quite naturally to the contingent am-
biguity we investigate in this work. We follow the multiple prior approach: for each player,
beliefs are given by a set-valued map (correspondence) which provides a set of subjective
additive beliefs (probability distribution) over outcomes for every strategy profile. In line
with the work of Marinacci (2000), ambiguity is solved by considering two different kind
of (extreme) attitudes towards ambiguity: pessimism and optimism. Players that, in the
presence of ambiguity, emphasize the lower payoffs are called pessimistic and players that
instead emphasize the higher ones are called optimistic. In fact, the emphasis on higher
and lower payoffs may be thought of as dependent on whether or not the player expects
that ambiguity will be resolved in his favor. We provide existence results for the equilib-
ria in games in which every player is optimistic or pessimistic. These results are based
on the topological properties of the belief correspondences. The last section of the paper
analyzes whether two specific kind of belief correspondence satisfy the requirements of
the existence results. In the first model, beliefs to a player over his opponents’ strategy
profiles depend only on his strategies: beliefs are given by the correlated equilibria of
the game between the opponents once they have observed players’ action. In the second
model, beliefs are determined by contingent assignment of ambiguity levels on a family
of disjoint events in the set of outcomes.

2 Illustrative Examples

As already mentioned in the Introduction and as it will be formally stated in the next
section, aim of this work is an equilibrium analysis in games in which players have ambigu-
ous beliefs over the outcomes of the game and ambiguous beliefs depend on the strategy
profile. In this section we give two examples showing that this kind of ambiguous beliefs
may arise quite naturally in simple models and affect the equilibrium behavior differently
with respect to the already existing models of ambiguous beliefs.

In the first example, we revise the arguments contained in Marinacci (2000) regarding
the effects of ambiguity on equilibrium behavior in a variation of the stung hunt game.
The second example is devoted to the equilibrium analysis in the noisy leader game
(Bagwell (1982)).

The stung hunt game

The stung hunt game consists in the following 2 player game:
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c d
c 9, 9 0, 8
d 8, 0 7, 7

Call Alice the row player and Bob the column player. This game has two equilibria in
pure strategies: (c, c) which Pareto dominates the other equilibrium (d, d). However the
strategy (d, d) risk dominates (c, c)1.

Aumann (1990) argues that whenever players are prudent the equilibrium (c, c) cannot
be obtained even in case of pre-play communication:
”Let us now change the scenario by permitting pre-play communication. On the face of
it, it seems that the players can then agree to play (c, c); though the agreement is not
enforceable, it removes each player’s doubt about the other one playing c. But does it
indeed remove this doubt? Suppose that Alice (player 1) is a careful, prudent person, and
in the absence of an agreement, would play d. Suppose now that the players agree on
(c, c), and each retires to his corner in order actually to make a choice. Alice is about to
choose c, when she says to herself: Wait; I have a few minutes; let me think this over.
Suppose that Bob doesn’t trust me, and so will play d in spite of our agreement. Then
he would still want me to play c, because that way he will get 8 rather than 7. And of
course, also if he does play c, it is better for him that I play c. Thus he wants me to
play c no matter what . . . it is as if there were no agreement. So I will choose now what
I would have chosen without an agreement, namely d”.

Aumann (1990) points out that it is in a players interest to always signal c, regardless
of whatever strategy he actually intends to use, since each strictly prefers that the other
play c. He concludes that an agreement to play (c, c) conveys no information about what
the players will do, and cannot be considered self-enforcing.

Marinacci (2000) argues that the attitudes towards ambiguity of the player determine
whether (c, c) or (d, d) will be reached. More precisely, since there may be no obvious way
to play, agents might well have low confidence in their own beliefs about their opponent’s
behavior and the way they react to this kind of ambiguity plays a significative role.
With pessimistic players, (that is players that in the presence of ambiguity emphasize
the lower payoffs), and if ambiguity is sufficiently high then only (d, d) is an equilibrium.
This latter prediction accords with Aumann’s arguments. When players are optimistic,
(that is, they emphasize higher payoffs), and ambiguity is sufficiently high then the
Pareto efficient Nash equilibrium (c, c) can be implemented as the unique equilibrium in
the ambiguous game.

1The strategy pair (d,d) risk dominates (c,c) if the product of the deviation losses is highest for
(d,d) (Harsanyi and Selten, 1988, Lemma 5.4.4). In other words, if the following inequality holds:
(fA(c, d) − fA(d, d))(fB(d, c) − fB(d, d)) > (fA(d, c) − fA(c, c))(fB(c, d) − fB(c, c)). Since the game
is symmetric, the inequality allows for a simple interpretation: assume the players are unsure about
which strategy the opponent will pick and assign probabilities 1/2 to c and d each. Since (d, d) risk
dominates (c, c), then the expected payoff from playing d exceeds the expected payoff from playing c, in
fact Ei

(
d, 1

2
c + 1

2
d
)

= 15

2
> 9

2
= Ei

(
c, 1

2
c + 1

2
d
)
.
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To understand better these arguments, consider the game in which players have mul-
tiple priors2. For every i ∈ {A, B}, denote with Bi the set of beliefs of player i over
the strategies of his opponent, that is bi ∈ Bi denotes the probability of c and 1 − bi

the probability of d. For the sake of simplicity assume that Bi = [b, b] for i = 1, 2 and,
for every bi ∈ Bi, the expect payoffs from playing c or d are respectively Ei(c, bi) = 9bi

and Ei(d, bi) = 8bi + 7(1 − bi). Hence for an optimistic player i, the expect payoffs from
playing c or d are respectively

max
bi∈Bi

Ei(c, bi) = 9b max
bi∈Bi

Ei(d, bi) = 8b + 7(1 − b)

while, for a pessimistic player i, the expect payoffs from playing c or d are respectively

min
bi∈Bi

Ei(c, bi) = 9b min
bi∈Bi

Ei(d, bi) = 8b + 7(1 − b).

Therefore, it follows that, for an optimistic player i, c is a best reply to Bi if and only if

9b ≥ 8b + 7(1 − b) ⇐⇒ b ≥
7

8

and that, for a pessimistic player i, d is a best reply to Bi if and only if and only if

9b ≤ 8b + 7(1 − b) ⇐⇒ b ≤
7

8
.

The key point of this analysis is that the the set of multiple priors is fixed (that is, it
does not depend on the strategy of each player). However, in such a context of vagueness,
it is possible that a player (say Alice) has so vague expectations that she believes that
with probability ε Bob will observe her action before choosing his strategy. Assuming
that Alice believes that Bob will react optimally once observed her action then, the beliefs
of Alice over Bob’s strategies become

BA(c) = (1 − ε)BA + ε(bi = 1) = [(1 − ε)b + ε, (1 − ε)b + ε];

BA(d) = (1 − ε)BA + ε(bA = 0) = [(1 − ε)b, (1 − ε)b]

hence the expected payoffs of an optimistic Alice are

max
bA∈BA(c)

EA(c, bA) = 9[(1 − ε)b + ε]; max
bA∈BA(d)

EA(d, bA) = 8[(1 − ε)b] + 7[1 − [(1 − ε)b]]

while, for a pessimistic Alice we get

min
bA∈BA(c)

EA(c, bA) = 9[(1 − ε)b + ε]; min
bA∈BA(d)

EA(d, bA) = 8[(1 − ε)b] + 7[1 − [(1 − ε)b]]

2Marinacci (2000) considers instead capacities and the Choquet expected utility approach. However
in this example it is possible to obtain similar insights by considering the multiple priors approach.
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Analogous arguments can hold for Bob. Therefore, it can be checked that c is a best

reply if and only if b ≥ 7−8ε
8(1−ε)

and d is a best reply if and only if b ≤ 7−8ε
8(1−ε)

. Since
7−8ε

8(1−ε)
< 7

8
. Hence, these new beliefs imply that (c, c) requires a lower level of ambiguity

to be implemented as an equilibrium for optimistic players while the implementation of
(d, d) requires more vagueness. However, in this case there are no substantial differences
with the analysis involving a fixed set of beliefs. To better understand the impact of
variable beliefs we need to consider a variation of the stung hunt game:

c d
c 8, 8 0, 8
d 8, 0 7, 7

This game has yet two equilibria (c, c) (which remains the unique strong nash equilibrium)
and (d, d) which not only is risk dominant but it is also in weakly dominant strategies.
Obviously, (c, c) can be implemented by optimistic players in the game with fixed set of
beliefs only if such set is of the following kind Bi = [b, 1]. However, for the set of beliefs
also the Pareto dominated profile (d, d) is an equilibrium for optimistic players. However,
the introduction of variable beliefs allows for a resolution of this drawback. In fact, in
this case the beliefs correspondence are

BA(c) = (1 − ε)BA + ε[0, 1] = [(1 − ε)b + ε, 1];

BA(d) = (1 − ε)BA + ε(bA = 0) = [(1 − ε)b, (1 − ε)]

hence

max
bA∈BA(c)

EA(c, bA) = 8; max
bA∈BA(d)

EA(d, bA) = 8[(1 − ε)] + 7[1 − [(1 − ε)]] = 8 − ε

which implies that c is always the unique best reply and (c, c) the unique equilibrium for
optimistic players.

The noisy leader game

Consider a simple 2 x 2 setting in which there are two players who choose one of two
actions, C and S. If the game is played simultaneously, the payoff matrix is

S C
S 5, 2 3, 1
C 6, 3 4, 4

The (S, S) outcome is the “Stackelberg outcome” since this is the unique subgame perfect
equilibrium outcome for the game in which player 1 moves first in a perfectly observable
fashion. The unique Nash equilibrium outcome of the simultaneous-move game is (C,C),
and this corresponds to the “Cournot outcome”. Bagwell (1982) then considers the noisy-
leader game. In this game, a pure strategy for player 1 is simply an action in the set
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{C, S}. Let the signal received by player 2 be denoted by φ, and assume for simplicity
that φ either takes value C or S. The signal technology works as follows:

Prob(φ = S|S) = 1 − ε = Prob(φ = C|C),

where ε ∈]0, 1[. In other words, when player 1 chooses a particular action, the probability
that player 2 will observe a signal specifying that same action is 1 − ε. If a2 ∈ {C, S}
represents an action for player 2, then a pure strategy for player 2 is a function, a2 = ω(φ),
where ω(φ) ∈ {C, S} for all φ. The noisy-leader game admits no off-equilibrium-path
information sets, since, for any given action by Player 1, each signal is realized with
positive probability. Hence, backward-induction-based refinements of Nash equilibrium
are not effective (helpful) in this game and the equilibria can be found from the following
strategic form:

SS SC CS CC
S 5, 2 5 − 2ε, 2 − ε 3 + 2ε, 1 + ε 3, 1
C 6, 3 4 + 2ε, 4 − ε 6 − 2ε, 3 − ε 4, 4

The Stackelberg outcome therefore fails to emerge as a Nash equilibrium outcome for
the noisy leader game, and this is true no matter how precise the signal may be (i.e.,
no matter how small is ε). In fact, the unique pure-strategy Nash equilibrium of the
noisy-leader game occurs when player 1 selects C and player 2 also selects C for all signal
values.

Now we look at the effects of ambiguity: suppose that the probability ε is vague
and in particular assume that it can be any probability in an interval [ε, ε]. It is easy
to check that if ε > 0 then only (C, (C, C)) is an equilibrium, independently from the
attitudes of the players towards ambiguity. Therefore, assume that ε = 0 implying that
the signal might be precise. If player 2 is pessimistic, then, again (C, (C, C)) is the unique
equilibrium independently from the attitudes of player 1 towards ambiguity. Suppose now
that player 2 is optimistic, then the payoff matrix becomes

SS SC CS CC
S 5, 2 5 − 2ε, 2 3 + 2ε, 1 + ε 3, 1
C 6, 3 4 + 2ε, 4 6 − 2ε, 3 4, 4

This game has at least another equilibrium in which player 2 chooses his strategy accord-
ing to the signal he receives, that is the equilibrium strategy of player 2 is (S, C). The
best reply of player 1 to player 2’s strategy (S, C) depends on the level of ambiguity of
the signal (ambiguity is larger as ε increases) and not on the attitude of player 1 towards
ambiguity. In fact, independently of his attitudes, when ε < 1/2 player 1 prefers S to C.
Whenever ε > 1/2 things are exactly the opposite since player 1 prefers C to S.

Therefore, vagueness on the technology of the signal and the presence of an optimistic
player 2 alters the scenario since it allows for the existence of other equilibria in which
player 2 plays the strategy (S, C). Moreover, one can check that in those equilibria an
optimistic player 1 gets an expected payoff which is greater or equal than 5 which is the
Stackelberg outcome. This means that an optimistic attitude towards ambiguity restores
the first mover advantage.
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3 Games, contingent beliefs and equilibria

3.1 The model

We consider a finite set on players I = {1, . . . n}; for every player i, Ψi = {ψ1
i , . . . , ψ

k(i)
i }

is the (finite) pure strategy set of player i, Ψ =
∏

i∈I Ψi and Ψ−i =
∏

j 6=i Ψj. Denote
with Xi the set of mixed strategies of player i and each strategy xi ∈ Xi is a vector
xi = (xi(ψi))ψi∈Ψi

∈ R
k(i)
+ such that

∑
ψi∈Ψi

xi(ψi) = 1. Denote also with X =
∏n

j=1 Xj

and with X−i =
∏

j 6=i Xj.
Differently from the classical literature on games, in this work we do not assume the

existence of a one to one correspondence between strategies and outcomes of a game.
Instead, we denote with Ω ⊆ R

n the set of outcomes of the game, where ωi represents
the payoff to player i when outcome ω is realized. Let P be the set of all probability
distributions on Ω, we consider the general situation in which each player is endowed
with a set-valued map Bi : X Ã P , called beliefs correspondence, which gives to player
i the set Bi(x) of subjective beliefs over outcomes, for every strategy profile x ∈ X.
We consider the (extreme) situation in which players are either pessimistic or optimistic
where a player is pessimistic if, in the presence of ambiguity, emphasizes the lower payoffs
while he is optimistic if he emphasizes the higher ones instead.

More precisely a pessimistic player has the pessimistic payoff F P
i : X → R defined by

F P
i (x) = min

̺∈Bi(x)

∑

ω∈Ω

̺(ω)ωi ∀x ∈ X, (1)

while an optimistic player has the optimistic payoff FO
i : X → R defined by

FO
i (x) = max

̺∈Bi(x)

∑

ω∈Ω

̺(ω)ωi ∀x ∈ X. (2)

Assuming that players are partitioned in optimistic and pessimistic ones, that is, I =
IO ∪ IP with IO ∩ IP = ∅; we consider the game

ΓO,P = {I; X1, . . . , Xn; (FO
i )i∈IO , (F P

i )i∈IP }.

Remark 3.1: In the usual interpretation of a game, each agent is endowed with a payoff
function fi : Ψ → R; when the pure strategy profile ψ is played then every player knows
that the outcome will be the payoff vector (f1(ψ), . . . , fn(ψ)). Being Ei : X → R defined
by

Ei(x) =
∑

ψ∈Ψ

[
∏

i∈I

xi(ψi)

]
fi(ψ) for all x ∈ X

the expected payoff of player i, the choice of a mixed strategy profile x implies that each
player has the same expectation on the outcomes of the game given by the expected
payoff vector (E1(x), . . . , En(x)) since, for each player, beliefs about what other players
will do are correct.
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3.2 Equilibria

Aim of this subsection is to provide an existence result for the equilibria of the strategic
form game ΓO,P . This result depend on the properties of the beliefs correspondences,
so the analysis starts by recalling well known definitions and results on set-valued maps
which we use below.

Preliminaries on set-valued maps

Following Aubin and Frankowska (1989)3, recall that if Z and Y are two metric spaces
and F : Z Ã Y a set-valued map, then

i) Lim inf
z→z′

F (z) = {y ∈ Y | limz→z′ d(y, F (z)) = 0}

ii) Lim sup
z→z′

F (z) =
{

y ∈ Y | lim inf
z→z′

d(y, F (z)) = 0
}

iii) Lim inf
z→z′

F (z) ⊆ F (z′) ⊆ Lim sup
z→z′

F (z).

Moreover

Definition 3.2: Given the set valued map F : Z Ã Y , then

i) F is lower semicontinuous in z′ if F (z′) ⊆ Lim inf
z→z′

F (z); that is, F is lower semi-

continuous in z′ if for every y ∈ F (z′) and every sequence (zν)ν∈N converging to
z′ there exists a sequence (yν)ν∈N converging to y such that yν ∈ F (zν) for every
ν ∈ N. Moreover, F is lower semicontinuous in Z if it is lower semicontinuous for
all z′ in Z.

ii) F is closed in z′ if Lim sup
z→z′

F (z) ⊆ F (z′); that is, F is closed in z′ if for every

sequence (zν)ν∈N converging to z′ and every sequence (yν)ν∈N converging to y such
that yν ∈ F (zν) for every ν ∈ N, it follows that y ∈ F (z′). Moreover, F is closed in
Z if it is closed for all z′ in Z.

iii) F is upper semicontinuous in z′ if for every open set U such that F (z′) ⊆ U there
exists η > 0 such that F (z) ⊆ U for all z ∈ BZ(z′, η) = {ζ ∈ Z |; ||ζ − z′|| < η}.
Moreover, F is upper semicontinuous in Z if it is upper semicontinuous for all z′ in
Z.

iv) F is continuous (in the sense of Painlevé-Kuratowski) in z′ if it is lower semicon-
tinuous and upper semicontinuous in z′.

The following proposition is very useful in this work.

3All the definitions and the propositions we use, together with the proofs can be found in this book.
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Proposition 3.3: Assume that Z is closed, Y is compact and the set-valued map F :
Z Ã Y has closed values, i.e. F (z) is closed for all z ∈ Z. Then, F is upper semicon-
tinuous in z ∈ Z if and only if F is closed in z4.

Recall also that

Definition 3.4: Let Z a convex set, then the set valued map F : Z Ã Y is a said to be
concave if

tF (z) + (1 − t)F (ẑ) ⊆ F (tz + (1 − t)ẑ) ∀ z, ẑ ∈ Z, ∀ t ∈ [0, 1] (3)

while it is convex if

F (tz + (1 − t)ẑ) ⊆ tF (z) + (1 − t)F (ẑ) ∀ z, ẑ ∈ Z, ∀ t ∈ [0, 1] (4)

Existence theorems

Denote with BRO
i : X−i Ã Xi and with BRP

i : X−i Ã Xi the set valued maps defined
by

BRO
i (x−i) = {xi ∈ Xi | FO

i (xi, x−i) = max
xi∈Xi

FO
i (xi, x−i)} ∀x−i ∈ X−i (5)

BRP
i (x−i) = {xi ∈ Xi | F P

i (xi, x−i) = max
xi∈Xi

F P
i (xi, x−i)} ∀x−i ∈ X−i (6)

and recall that

Definition 3.5: If D ⊆ R
n is a convex set and g : D → R then g is said to be

quasi concave if for every x, y ∈ D and α ∈]0, 1[ it results that f(αx + (1 − α)y) ≥
min{f(x), f(y)}.

Then

Proposition 3.6: Assume that Bi is continuous with not empty compact and convex
images for every x ∈ X and Bi(·, x−i) is concave in Xi for every x−i ∈ X−i, that is

tBi(xi, x−i) + (1 − t)Bi(x̂i, x−i) ⊆ Bi(txi + (1 − t)x̂i, x−i) ∀x−i ∈ X−i. (7)

Then FO
i is continuous in X and FO

i (·, x−i) is quasi concave in Xi for every x−i ∈ X−i.
Therefore, the set valued map BRO

i is upper semicontinuous with not empty, closed and
convex images for every x−i ∈ X−i.

Proof. From the assumptions each function FO
i is well defined and by applying the Berge

maximum theorem (see also Aubin and Frankowska (1990), Border (1985)), FO
i is con-

tinuous on the compact set X and BRO
i is upper semicontinuous with not empty and

closed images for every x−i ∈ X−i.
Now we prove that FO

i (·, x−i) is quasi concave for all x−i ∈ X−i. Let xi and x̂h in
Xi, and consider ̺ ∈ Bi(xi, x−i) and ̺̂ ∈ Bi(x̂i, x−i) such that FO

i (xi, x−i) = E(̺) and

4Every set valued map in this paper satisfies the assumptions of this proposition. Hence upper
semicontinuity and closeness coincide in this work.
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FO
i (x̂h, x−i) = E(̺̂). If t ∈]0, 1[ then from the assumptions it follows that t̺ + (1− t)̺̂∈

Bi(txi + (1 − t)x̂i, x−i). Since

E(t̺ + (1 − t)̺̂) = tE(̺) + (1 − t)E(̺̂) ≥ min{E(̺), E((̺̂)}

then

FO
i (txi + (1 − t)x̂i, x−i) = max

̺∈Bi(txi+(1−t)x̂i,x−i)
E(̺) ≥ min{E(̺), E(̺̂)} (8)

= min{FO
i (xi, x−i), F

O
i (x̂i, x−i)}. (9)

Therefore FO
i (·, x−i) is quasi concave for every x−i ∈ X−i. Then it follows that BRO

i has
convex images for every x−i ∈ X−i.

Proposition 3.7: Assume that Bi is continuous with not empty compact and convex
images for every x ∈ X and Bi(·, x−i) is convex in Xi for every x−i ∈ X−i, that is

tBi(xi, x−i) + (1 − t)Bi(x̂i, x−i) ⊇ Bi(txi + (1 − t)x̂i, x−i) ∀x−i ∈ X−i. (10)

Then F P
i is continuous in X and F P

i (·, x−i) is quasi concave in Xi for every x−i ∈ X−i.
Therefore, the set valued map BRP

i is upper semicontinuous with not empty, closed and
convex images for every x−i ∈ X−i.

Proof. We follow the same steps of the proof of the previous Proposition. From the
assumptions each function F P

i is well defined and by applying the Berge maximum the-
orem (see also Aubin and Frankowska (1990), Border (1985)), F P

i is continuous on the
compact set X and BRP

i is upper semicontinuous with not empty and closed images for
every x−i ∈ X−i.

Now we prove that F P
i (·, x−i) is quasi concave for all x−i ∈

∏
j 6=i Xj. Let xi and x̂h be

in Xi and t ∈ [0, 1]. Let F P
i (txi +(1− t)x̂i, x−i) = E(̺∗) with ̺∗ ∈ Bi(txi +(1− t)x̂i, x−i).

Then, in light of the assumptions, there exist ̺ ∈ Bi(xi, x−i) and ̺̂ ∈ Bi(x̂i, x−i) such
that ̺∗ = t̺ + (1 − t)̺̂; therefore

E(̺∗) = tE(̺) + (1 − t)E(̺̂) ≥

t

[
min

̺∈Bi(xi,x−i)
E(̺)

]
+ (1 − t)

[
min

̺∈Bi(x̃i,x−i)
E(̺)

]
= tF P

i (x̃i, x−i) + (1 − t)F P
i (x̃i, x−i)

and F P
i (·, x−i) is quasi concave for all x−i. Then it follows that BRP

i has convex images
for every x−i ∈ X−i.

From the Nash equilibrium existence theorems (see for instance Rosen (1965), it
immediately follows that

Theorem 3.8: Assume that for every player i, Bi is continuous with not empty compact
and convex images for every x ∈ X. If, for every player i ∈ IO, Bi(·, x−i) is concave in
Xi for every x−i ∈ X−i and, for every player i ∈ IP , Bi(·, x−i) is convex in Xi for every
x−i ∈ X−i, then, the game ΓO,P has at least an equilibrium.
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4 Examples of Beliefs Correspondences

In this section we propose two different kind of beliefs correspondence and investigate
whether they satisfy the requirements of the existence results. In the first model, beliefs
to a player over his opponents’ strategy profiles are given by the correlated equilibria of
the game between the opponents once they have observed player’s action. In the second
model, beliefs are determined by contingent assignment of ambiguity levels on a family
of disjoint events on the set of outcomes.

4.1 Beliefs given by correlated equilibria

The idea underlying the kind of beliefs correspondence investigated in this subsection is
that a player believes his opponents will observe his action before choosing their strate-
gies. Assuming that the player believes that his opponents will react optimally and in
a correlated way once observed his action then his beliefs are given by the correlated
equilibria of the game between the opponents given the player’s action.

For a given player i, denote with Ji = I \ {i}, then, for every pure strategy ψi ∈ Ψi,
consider the game

G(ψi) = {Ji; (Ψj)j∈Ji
; (gψi

j )j∈Ji
}

where Ψj is the pure strategy set of player j and the payoff function gψi

j : Ψ−i → R

is the payoff function of player j which corresponds to the payoff of player j in the
game Γ when player i chooses ψi, i.e., gψi

j ((ψ̂h)h∈Ji
) = fj(ψ̂1, .., ψ̂i−1, ψi, ψ̂i+1, .., ψ̂n) for

every ψ̂−i ∈ Ψ−i. Now we recall the definition of correlated equilibrium (Aumann (1974,
1987)) for the game G(ψi). To this purpose we denote with ψ−(i,j) = (ψh)h∈I\{i,j} and
with Ψ−(i,j) = (Ψh)h∈I\{i,j}

Definition 4.1 (Aumann): A probability distribution µ on Ψ−i is a correlated equilib-
rium for the game G(ψi) if for every player j ∈ Ji and every pure strategy ψ̄j ∈ Ψj,

∑

ψ
−(i,j)∈Ψ

−(i,j)

µ
(
ψ−(i,j)|ψ̄j

)
gψi

j (ψ̄j, ψ−(i,j)) ≥
∑

ψ
−(i,j)∈Ψ

−(i,j)

µ
(
ψ−(i,j)|ψ̄j

)
gψi

j (ψj, ψ−(i,j)) ∀ψj ∈ Ψj.

(11)
where

µ
(
ψ−(i,j)|ψ̄j

)
=

µ
(
ψ̄j, ψ−(i,j)

)

∑
ψ̃
−(i,j)∈Ψ

−(i,j)
µ

(
ψ̄j, ψ̃−(i,j)

)

if
∑

ψ̃
−(i,j)∈Ψ

−(i,j)
µ

(
ψ̄j, ψ̃−(i,j)

)
6= 0 and µ

(
ψ−(i,j)|ψ̄j

)
= 0 otherwise. Therefore, µ

(
ψ−(i,j)|ψ̄j

)

is player j’s conditional probability of ψ−(i,j) given ψ̄j; that is, the probability that player
j assigns to the strategy profile ψ−(i,j) of his opponents in Ji once the mediator has
communicated player j to play ψ̄j. In other words, µ is a correlated equilibrium if the
expected payoff from playing the recommended strategy is no worse than playing any
other strategy.
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Denote with Ci(ψi) the set of correlated equilibria of the game G(ψi). Then, assume
that Ω = {f(ψ) | ψ ∈ Ψ} and let Bi : X Ã P be the set-valued map defined by

Bi(x) =
∑

ψi∈Ψi

xi(ψi)Ci(ψi) ∀x ∈ X (12)

that is, for every x ∈ X,

̺ ∈ Bi(x) ⇐⇒ ∀ψi ∈ Ψi ∃µψi
∈ Ci(ψi) such that ̺ =

∑

ψi∈Ψi

xi(ψi)µψi
.

We emphasize that this set valued map means that player i believes that the other players
will observe his play and then they will react by choosing a correlated equilibrium.

Lemma 4.2: The set valued map Bi defined in (12) is continuous with not empty convex
and closed values for every x ∈ X. Moreover Bi(·, x−i) is concave and convex for every
x−i ∈ X−i.

Proof. For every ψi the set Ci(ψi) of correlated equilibria of the game G(ψi) is not empty
closed and convex (see Aumann (1974, 1987)). Let ̺′ and ̺′′ in Bi(x). Hence, for every
strategy ψi there exist correlated equilibria µ′

ψi
and µ′′

ψi
of the game G(ψi) such that

̺′ =
∑

ψi∈Ψi

xi(ψi)µ
′
ψi

, ̺′′ =
∑

ψi∈Ψi

xi(ψi)µ
′′
ψi

hence
α̺′ + (1 − α)̺′′ =

∑

ψi∈Ψi

xi(ψi)[αµ′
ψi

+ (1 − α)µ′′
ψi

]

for every α ∈]0, 1[ which implies that Bi(x) is convex for every x ∈ X.
Now, we show that the set valued map Bi is closed for every x ∈ X. In fact, given a

point x ∈ X, let (xν)ν∈N be a sequence in X converging to x and (̺ν)ν∈N be a sequence
converging to ̺ with in ̺ν ∈ Bi(xν) for every ν ∈ N. Denote with xν = (x1,ν , . . . , xn,ν),
then ̺ν =

∑
ψi∈Ψi

xi,ν(ψi)µ
ν
ψi

with µν
ψi

∈ Ci(ψi) for every ψi ∈ Ψi and every ν ∈ N. Since
µν

ψi
→ µψi

and Ci(ψi) is closed then µψi
∈ Ci(ψi) for every ψi and ̺ ∈ Bi(x). Therefore Bi

is closed in x. Applying the previous arguments at the constant sequence (xν)ν∈N with
xν = x for every ν ∈ N, it follows that Bi(x) is also closed for every x ∈ X. Being P
compact and X closed it follows that Bi is upper semicontinuous in X.

Bi is also lower semicontinuous in every x ∈ X. In fact, given a point x ∈ X, consider
̺ ∈ Bi(x) and a sequence (xν)ν∈N in X converging to x. Since ̺ =

∑
ψi∈Ψi

xi(ψi)µψi
with

µψi
∈ Ci(ψi) for every ψi ∈ Ψi, consider ̺ν =

∑
ψi∈Ψi

xi,ν(ψi)µψi
with µψi

∈ Ci(ψi) for
every ψi ∈ Ψi and every ν ∈ N. It immediately follows that ̺ν → ̺ as ν → ∞ which
implies that Bi is lower semicontinuous in x.

Finally, since

Bi(x
′
i, x−i) =

∑

ψi∈Ψi

x′
i(ψi)Ci(ψi), and Bi(x

′′
i , x−i) =

∑

ψi∈Ψi

x′′
i (ψi)Ci(ψi)
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then, for every α ∈]0, 1[ it follows that

Bi(αx′
i + (1 − α)x′′

i , x−i) =
∑

ψi∈Ψi

[αx′
i + (1 − α)x′′

i ]Ci(ψi) =

α

[
∑

ψi∈Ψi

x′
i(ψi)Ci(ψi)

]
+ (1 − α)

[
∑

ψi∈Ψi

x′′
i (ψi)Ci(ψi)

]
= αBi(x

′
i, x−i) + (1 − α)Bi(x

′′
i , x−i)

which implies that Bi(·, x−i) is concave and convex for every x−i ∈ X−i.

Remark 4.3: Note that an analogous construction of a beliefs correspondence involving
the set of Nash equilibria Ni(ψi) of the game G(ψi) instead of the set of correlated
equilibria Ci(ψi) does not guarantee that all the properties required for the existence
of the equilibria of the game ΓO,P are satisfied. More precisely, since the set of Nash
equilibria is not always convex5, each Ni(ψi) is not necessarily convex and hence the
set-valued map Ni : X Ã P defined by

Ni(x) =
∑

ψi∈Ψi

xi(ψi)Ni(ψi) ∀x ∈ X

does not have convex values in general.

Remark 4.4: Given the beliefs correspondence Bi(·) defined by (12), we can consider a
generalization of the beliefs correspondence considered in the stung hunt game: player
i has a fixed set of ambiguous beliefs Di but he believes that with probability ε his
opponents will observe his action and will react optimally in a correlated way. In fact,
let Di be a convex and closed set of probability distributions over Ψ−i and let ε > 0, it
is possible to consider the beliefs correspondence Di : X Ã P defined by

Di(x) =
∑

ψi∈Ψi

xi(ψi)[(1 − ε)Di + εCi(ψi)] ∀x ∈ X.

Following the same steps in the proof of Lemma 4.2, it results that Di is continuous with
not empty convex and closed values for every x ∈ X and Di(·, x−i) is concave and convex
for every x−i ∈ X−i.

4.2 Ambiguity Levels

We consider now the case in which the set valued maps Bi are determined by an assign-
ment of upper levels for the probabilities of a family of disjoint events in Ω6.

In particular, given a player i, we assume there exist a family of subsets of Ω, denoted
with Fi such that

∪F∈Fi
F = Ω; E ,F ∈ Fi and E 6= F =⇒ E ∩ F = ∅

5Indeed, examples show that usually the set of Nash equilibria is not convex.
6In De Marco and Romaniello (2010;a,b) ambiguity derives from assignments of probabilities on

disjoint events
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and a family of functions (gi,F)F∈Fi
such that gi,F : X → [0, 1]. Each gi,F(x) gives the

maximal probability of the event F to player i given the mixed strategy profile x. Hence,
the following consistency condition should be satisfied

∑

F∈Fi

gi,F(x) ≥ 1 ∀x ∈ X.

The set-valued map of feasible beliefs to player i Bi is therefore given by

̺ ∈ Bi(x) ⇐⇒





∑
ξ∈F ̺(ξ) ≤ gi,F(x) ∀F ∈ Fi

and
̺ ∈ P

(13)

So we have that

Theorem 4.5: If the function gi is continuous on X then the set valued map Bi defined
by (13) is upper and lower semicontinuous with not empty compact and closed images.

Proof. By definition Bi(x) is compact and convex. Now we prove that the graph of Bi

that is
Graph(Bi) = {(x, ̺) ∈ X × P | ̺ ∈ Bi(x)} (14)

is closed. In fact, let {(xν , ̺ν)}ν be a sequence converging to (x, ̺) with (xν , ̺ν) ∈
Graph(Bi) for all ν. Obviously, from compactness, x ∈ X and ̺ ∈ P . Being

∑
ξ∈F ̺ν(ξ) ≤

gi,F(xν) for all ν ∈ N, from continuity of gi,F for all F ∈ F it follows that
∑

ξ∈F ̺(ξ) ≤
gi,F(x) for all F ∈ F and hence ̺ ∈ Bi(x). Hence Bi has closed graph and compact
images so it is upper semicontinuous.

Now we show that Bi is lower semicontinuous in X, that is, for every x ∈ X, ̺ ∈ Bi(x)
and xν → x, there exists ̺ν → ̺ with ̺ν ∈ Bi(xν) for all ν ∈ N. In fact, given
the distribution ̺ and for every ξ ∈ Ω let Fξ the unique element of Fi containing
ξ. Denote with P̺ (Fξ) the probability of the event Fξ given the distribution ̺ (i.e.

P̺ (Fξ) =
∑

ξ̂∈Fξ
̺(ξ̂) ) and with P̺ (ξ|Fξ) the conditional probability of ξ given Fξ (set

P̺ (ξ|Fξ) = 0 if P̺ (Fξ)), then we have

̺(ξ) = P̺ (Fξ) [P̺ (ξ|Fξ)] .

Denote with F 0
i = {F ∈ Fi | P̺ (F) = 0}, F 1

i = {F ∈ Fi \ F 0
i | P̺ (F) = gi,F(x)} and

with F 2
i = {F ∈ Fi \ F 0

i | P̺ (F) < gi,F(x)}. From the total probability theorem (i.e.∑
F∈F

P̺ (F) = 1) it follows that the vector (P̺ (F))F∈F2
i

is a solution of the following
equation ∑

F∈F 2
i

YF = H(x) (15)

where H(x) = 1−
∑

F∈F1
i
gi,F(x). From the continuity of each function gi,F it immediately

follows that the set valued map of the solutions of the system (15), x Ã S(x), is lower
semicontinuous in X. This implies that, given the sequence xν → x, there exists a
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sequence (Y ν)ν (where Y ν = (Y ν
F )F∈F2

i
)) which converges to (P̺ (F))F∈F2

i
. Hence, define

for every ν ∈ N

P
ν
̺ (F) =





0 if F ∈ F 0
i

gi,F(xν) if F ∈ F 1
i

Y ν
F if F ∈ F 2

i

Note that, by construction,
∑

F∈F
P

ν
̺ (F) = 1 for every ν ∈ N. Define also

̺ν(ξ) = P
ν
̺ (Fξ) [P̺ (ξ|Fξ)] ∀ξ ∈ X,

where Fξ is the unique set in Fi containing ξ; then, from the continuity of each gi,F , it
follows that ̺ν(ξ) → ̺(ξ) as xν → x. Moreover, it also follows that

∑
ξ∈X ̺ν(ξ) = 1; in

fact

∑

ξ∈X

̺ν(ξ) =
∑

F∈Fi\F0
i

[
∑

ξ∈F

̺ν(ξ)

]
=

∑

F∈Fi\F0
i

∑

ξ∈F

P
ν
̺ (F) [P̺ (ξ|F)] =

∑

F∈Fi\F0
i

P
ν
̺ (F)

[
∑

ξ∈F

P̺ (ξ|F)

]
= 1

since, for every F ∈ Fi \ F 0
i , it results that

∑
ξ∈F P̺ (ξ|F) = 1. So (̺ν(ξ))ξ∈Ω is a

probability distribution on Ω.
Finally, (̺ν(ξ))ξ∈Ω satisfies the consistency constraints in (13). In fact it immediately

follows that ∑

ξ∈F

̺ν(ξ) ≤ gi,F(xν) ∀F ∈ F
1
i ∪ F

0
i

Now, let F ∈ F 2
i , then

∑

ξ∈F

̺ν(ξ) =
∑

ξ∈F

Y ν
F [P̺ (ξ|F)] = Y ν

F

[
∑

ξ∈F

P̺ (ξ|F)

]
= Y ν

F .

Since
lim

ν→∞
Y ν
F = P̺(F) < gi,F(x) = lim

ν→∞
gi,F(xν)

then there exist ν̂ such that, for all ν ≥ ν̂ it results that

∑

ξ∈F

̺ν(ξ) = Y ν
F < gi,F(xν).

So, by redefining ̺ν for ν < ν̂, it follows that ̺ν =∈ Bi(xν) for all ν ∈ N and the assertion
follows.
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Theorem 4.6: If the function gi(·, x−i) is concave in Xi for every x−i ∈ X−i then the
set-valued map Bi(·, x−i) is concave for every x−i ∈ X−i, that is

Bi(txi + (1 − t)x̂i, x−i) ⊇ Bi(xi, x−i) + (1 − t)Bi(x̂i, x−i) ∀x−i ∈ X−i (16)

Proof. Let ̺ ∈ Bi(xi, x−i) and ˜̺ ∈ Bi(x̃i, x−i) and t ∈]0, 1[. Obviously t̺ + (1 − t)̺̂∈ P ;
moroever, by defition follows that

∑

ξ∈F

̺(ξ) ≤ gi,F(xi, x−i) and
∑

ξ∈F

̺̂(ξ) ≤ gi,F(x̂i, x−i) ∀F ∈ Fi.

Hence

∑

ξ∈F

[t̺(ξ)+(1−t)̺̂(ξ)] ≤ tgi,F(xi, x−i)+(1−t)gi,F(x̂i, x−i) ≤ gi,F(txi+(1−t)x̂i, x−i) ∀F ∈ Fi,

which implies that t̺ + (1 − t)̺̂∈ Bi(txi + (1 − t)x̂i, x−i) and

tBi(xi, x−i) + (1 − t)Bi(x̂i, x−i) ⊆ Bi(txi + (1 − t)x̂i, x−i) ∀x−i ∈ X−i.
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