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Abstract

Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a
parametric model that are based on auxiliary non-parametric maximum likelihood density
estimators are shown to be asymptotically normal. If the parametric model is correctly
speci�ed, it is furthermore shown that the asymptotic variance-covariance matrix equals the
Cramér-Rao bound. These results are based on uniform-in-parameters convergence rates
and a uniform-in-parameters Donsker-type theorem for non-parametric maximum likelihood
density estimators.

1 Introduction

Suppose X1; : : : ; Xn are independent and identically distributed (i.i.d.) random variables with
law P. Furthermore, we are given a parametric model P� = fp� : � 2 �g of probability density
functions p� and � � Rm. Assume for the moment that P� is correctly speci�ed and identi�able
in the sense that there is a unique �0 2 � such that p�0 is a density of P. A standard method
of estimation of � is then the maximum likelihood method, which under appropriate regularity
conditions is known to lead to asymptotically e¢cient estimators. However, in a number of
models, e.g., in econometrics and biostatistics, the maximum likelihood method may not be
feasible as no closed form expressions for the densities p�, and thus for the likelihood, are available.
For example, the data may be modeled by an equation of the form Xi = g("i; �0) where "i are
i.i.d. with a known distribution but the implied parametric densities are not analytically tractable
because g is complicated or "i is high-dimensional. A similar problem naturally also occurs in the
estimation of dynamic nonlinear models; see Smith (1993), Gouriéroux, Monfort and Renault
(1993), Gallant and Tauchen (1996), Gouriéroux and Monfort (1996), and Gallant and Long
(1997) for several concrete examples. This has led to the development of alternative estimation
methods like the so-called indirect inference method, see the just mentioned references as well
as Jiang and Turnbull (2004). Ideally, these estimation methods should also be asymptotically
e¢cient. In our context these methods can be described in a nutshell as follows:

1. Simulate a random sample X1(�); :::; Xk(�) of size k from the density p� for � 2 �. [This
is often possible in the examples alluded to above, e.g., by perusing the equations de�ning
the model. Note that then only the disturbances "1; : : : ; "k have to be simulated once and
Xi(�) can be computed from g("i; �) for any given �.]

�This paper is based on the doctoral thesis of the �rst author written under the supervision of the second
author.
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2. Based on the simulated sample as well as on the true data, compute auxiliary estima-
tors ~pk(�) and p̂n, respectively, in a not necessarily correctly-speci�ed but numerically
tractable auxiliary model Maux. [For example, by maximum likelihood if Maux is �nite-
dimensional.]

3. With a suitable choice of a distance � then estimate �0 by minimizing over � the objective
function

Qn;k(�) := �(p̂n; ~pk(�)): (1)

In most of the indirect inference literature, the auxiliary modelMaux is assumed to be �nite-
dimensional indexed by a vector � 2 B � Rl, say, and one then in fact minimizes a distance
between �̂n, the maximum likelihood estimator in the auxiliary model computed from the original
data, and ~�k(�), the maximum likelihood estimator in the auxiliary model computed from the
simulated sample X1(�); :::; Xk(�). The resulting indirect inference estimator can be shown to
be consistent and asymptotically normal (under standard regularity conditions, see Gouriéroux
and Monfort (1996)). However, the indirect inference estimator is asymptotically e¢cient (in
the sense of having the Cramér-Rao bound as its asymptotic variance-covariance matrix) only
if Maux happens to be correctly speci�ed. This assumption is certainly restrictive and often
unnatural if Maux is of �xed �nite dimension. Therefore Gallant and Long (1997) suggested
that choosing Maux with dimension increasing in sample size should result in estimators that
are asymptotically e¢cient, the idea being that this essentially amounts to choosing an in�nite-
dimensional auxiliary model Maux, for which the assumption of correct speci�cation is much
less restrictive.
In the present paper we show in some generality that the suggestion in Gallant and Long

(1997) is indeed correct, namely that the indirect inference estimator for � is asymptotically
normal with the Cramér-Rao bound as its asymptotic variance-covariance matrix if the auxiliary
estimators ~pk(�) and p̂n in Step 2 are chosen to be non-parametric maximum likelihood (NPML)
estimators obtained from optimizing the non-parametric likelihood over suitable bounded sub-
sets of a Sobolev-space and if the size k of the simulated sample is of order larger than n2.
Furthermore, we show that asymptotic normality persist even if the originally given model P�
is misspeci�ed.
We now comment on some related literature in the area of indirect inference: Gallant and

Long (1997) studies the case where the density estimators are based on non-parametric maximum
likelihood estimators over sieves spanned by Hermite-polynomials, but their limiting result is
only informative if the sieve dimension stays bounded (so that e¢ciency of the estimator is only
established if the true density is a �nite linear combination of Hermite-polynomials) bringing
one back into the realm of �nite-dimensional auxiliary models. Fermanian and Salanié (2004)
propose a di¤erent procedure and establish asymptotic e¢ciency of their estimators under several
high-level conditions, which, as they admit themselves, are very stringent. For example, even
in the simplest model they consider, they need to have simulations of order k � n6. Nickl
and Pötscher (2010) consider the case where ~pk(�) and p̂n are spline projection estimators and
establish asymptotic normality and asymptotic e¢ciency if the parametric model P� is correctly
speci�ed. There are also some other related recent papers on this topic, Altissimo and Mele
(2009) and Carrasco, Chernov, Florens, and Ghysels (2007), whose proofs, however, we were not
able to follow.
In the present paper we shall use for � the Fisher-metric, hence the objective function de�ning

the indirect inference estimator will be given by

Qn;k(�) =

Z
(p̂n � ~pk(�))2p̂�1n :
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It transpires that the indirect inference estimators considered in the present paper can be viewed
as minimum distance estimators with the important (and nontrivial) modi�cation that p� has
been replaced by an estimator ~pk(�) based on the simulated data. In that sense our results can
be viewed as an extension of Beran�s (1977) asymptotic e¢ciency result for classical minimum
distance estimators to the case of simulation-based minimum distance estimators, the simulation
step introducing considerable additional complexity into the proofs.
In order to establish the above mentioned results for the indirect inference estimator a careful

study of several aspects of the NPML-estimators ~pk(�) and p̂n is required. In particular, it turns
out to be crucial to establish the weak convergence of the stochastic process

(�; f) 7!
p
k

Z
(~pk(�)� p�)f (2)

to a Gaussian process in `1(��F) where F is an appropriate class of functions. This result can
be seen to imply a uniform-in-� version of a Donsker-type result for NPML-estimators obtained
recently by Nickl (2007). In the course of establishing this weak convergence result it is also
necessary to derive rates of convergence for

sup
�2�

k~pk(�)� p�ks;2 (3)

where the norm is a suitable Sobolev-norm.
The outline of the paper is as follows: After some preliminaries in Section 2, we introduce

the model and assumptions in Section 3. In Section 4.1 we derive existence and uniqueness
of the NPML-estimator while rates of convergence as indicated in (3) are given in Section 4.2.
Donsker-type theorems like (2) are the subject of Section 4.3. In contrast to Nickl (2007), we
avoid an assumption that requires all densities to be bounded away from zero in our results as far
as possible. Section 5 introduces simulation-based minimum distance estimators (i.e., indirect
inference estimators) based on auxiliary NPML-estimators and establishes asymptotic normality
of these estimators even if the originally given parametric model P� is misspeci�ed. If P� is
correctly speci�ed, it is furthermore shown that the estimator is asymptotically e¢cient in the
sense that its asymptotic variance-covariance matrix equals the Cramér-Rao bound. Some proofs
and technical results are collected in the appendices.

2 Preliminaries and Notation

For � a non-empty set and f a real-valued function on �, de�ne kfk� = supx2� jf(x)j and let
`1(�) denote the Banach space of all bounded real-valued functions on �, equipped with the
sup-norm k � k�. If D is a (non-empty) subset of `1(�) we shall write (D; k � k�) to denote
the metric space D with the induced metric kf � gk�. For (�;A) a (non-empty) measurable
space, let L0(�;A) denote the vector space of all A-measurable real-valued functions on � and
de�ne the Banach space L1(�;A) = L0(�;A) \ `1(�), again equipped with the sup-norm. For
f 2 L0(�;A) and � a non-negative measure on (�;A), de�ne kfk2;� =

�R
�
f2d�

�1=2
and set

L2(�;A; �) =
�
f 2 L0(�;A) : kfk2;� <1

	
. For the measure space (
;B(
); �), where 
 is a

(non-empty) measurable subset of the real line R with associated Borel �-�eld B(
) and where
� is Lebesgue measure, we shall simplify notation and write L0(
), L2(
), L1(
), and k � k2
for L0(
;B(
)), L2(
;B(
); �), L1(
;B(
)), and k � k2;�, respectively. Furthermore, we shall
write a.e. instead of �-a.e. For any (non-empty) metric space (T; d), we denote by B(T; d), or
simply B(T ), its Borel �-�eld and by C(T; d), or simply C(T ), the Banach space of all bounded,
d-continuous real-valued functions on T , equipped with the sup-norm.
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We shall denote by k�k the 2-norm on Euclidean space. For two real-valued functions f and g
on (0;1), we shall write f(") . g(") if there is a constant C, 0 < C <1, such that f(") � Cg(")
holds true for all " > 0. It will also prove useful to de�ne log1 = 1 and log 0 = �1, thus
making the logarithm a continuous function from [0;1] to [�1;1].
Let (�0;A0; P0), (�n;An; Pn), n � 1, be probability spaces. Suppose Y0 : �0 ! T is an

A0-B(T; d)-measurable mapping and Yn : �n ! T are (not necessarily measurable) mappings,
where (T; d) is a metric space. We say that Yn converges weakly to Y0 in (T; d), denoted by
Yn  Y0, if the outer integrals

R �
�n
g(Yn)dPn converge to

R
�0
g(Y0)dP0 for every g 2 C(T; d);

furthermore, Yn is said to converge weakly to a Borel probability measure L on (T;B(T; d)),
denoted by Yn  L, if

R �
�n
g(Yn)dPn converges to

R
T
gdL for every g 2 C(T; d). We say that Yn

converges to � 2 T in outer Pn-probability if P �n(d(Yn; �) > ") converges to 0 for all " > 0. If Yn
are real-valued and rn is a sequence of positive real numbers, we write Yn = o�Pn(rn) if r

�1
n Yn

converges to 0 in outer Pn-probability, and Yn = O
�
Pn
(rn) if

lim
M!1

lim sup
n!1

P �n
�
r�1n Yn > M

�
= 0:

In case the probability spaces (�n;An; Pn) are the n-fold products of a single probability space
(�;A; P ), that is, (�n;An; Pn) = (�n;An; Pn), we write Yn = o�P (rn) instead of Yn = o�Pn(rn)
and Yn = O

�
P (rn) for Yn = O

�
Pn(rn).

2.1 Hölder and Sobolev Spaces

For 
 a (non-empty) open subset of R, a function f : 
! R, and s � 0, de�ne

kfks;
 =
(P

0���bsc kf (�)k
 + supx6=y
jfbsc(x)�fbsc(y)j

jx�yjs�bsc
if s is non-integer,

P
0���s kf (�)k
 otherwise:

Here f (�) denotes the classical derivative of f of order �, and bsc denotes the integer part of s.
For any non-integer s > 0, de�ne the Hölder space Cs(
) as the space of all f : 
! R such that
kfks;
 <1; for any integer s � 0, let Cs(
) be the space of all f : 
! R such that kfks;
 <1
and f (s) is uniformly continuous. Note that C0(
) thus is the space of bounded and uniformly
continuous functions on 
.
For 
 and s as above and functions f; g 2 L2(
), let

hf jgis;2 =

8
>>>>>><

>>>>>>:

P
0���bschf (�)w jg(�)wi2
+
R



R


(f(bsc)w (x)�f(bsc)w (y))(g(bsc)w (x)�g(bsc)w (y))

jx�yj1+2(s�bsc)
d�(x)d�(y)

if s is non-integer,
P

0���shf (�)w jg(�)wi2
otherwise,

and set kfks;2 =
p
hf jfis;2. Here, f (�)w denotes the weak derivative of f of order �, and h�j�i2

is the usual inner product on L2(
). De�ne Ws
2(
) as the space of all f 2 L2(
) such that

kfks;2 is �nite. For s > 1=2 and 
 a non-empty bounded open interval in R, each f 2 Ws
2(
)

is a.e. equal to exactly one bounded continuous function on 
. For s > 1=2 and such 
, we
consequently de�ne the Sobolev space Ws

2(
) = Ws
2(
) \ C(
) and note that it is a Hilbert

space. The Sobolev balls ff 2Ws
2(
) : kfks;2 � Bg of radius B, 0 < B <1, will be denoted by

Us;B , and its translates g + Us;B by Us;B(g). The next proposition collects some properties of
Sobolev spaces; see Appendix A for a proof.
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Proposition 1 Let 
 be a non-empty bounded, open interval in R.
(a) For s > 1=2, the Sobolev space Ws

2(
) is a multiplication algebra; that is, there is a �nite
constant Ms > 0 such that

kfgks;2 �Mskfks;2kgks;2
holds true for all f; g 2Ws

2(
).
(b) For s > 1=2, the Sobolev space Ws

2(
) is continuously embedded in C
s�1=2(
). Conse-

quently, Ws
2(
) is embedded in C(
) with an embedding constant Cs, 0 < Cs <1; that is,

kfk
 � Cskfks;2

holds true for all f 2Ws
2(
).

(c) If 0 � r < s, then Ws
2(
) is compactly embedded in Wr

2 (
); if 1=2 < r < s, then W
s
2(
)

is compactly embedded in Wr
2(
).

(d) If F is a (non-empty) bounded subset of some Sobolev space Ws
2(
) of order s > 1=2 such

that infx2
;f2F jf(x)j > 0 holds, then f1=f : f 2 Fg is also a bounded subset of Ws
2(
).

2.2 Covering Numbers and Metric Entropy

Let (T; d) be a metric space. Let 0 < " <1 and let X be a (non-empty) totally bounded subset
of T . Then we denote by N(";X; T; d) the covering number of X, i.e., the minimal number of
closed balls in T of radius " needed to cover X; we de�ne the metric entropy of X as

H(";X; T; d) = logN(";X; T; d):

If T is a normed space with norm k�k, we shall write in abuse of notation N(";X; T; k�k) and
similarly for the metric entropy.
Let (�;A; �) be a (non-empty) measure space. For any two elements l; u 2 L0(�;A), the set

[l; u] = ff 2 L0(�;A) : l(x) � f(x) � u(x) for all x 2 �g

is called a bracket and ku� lk2;� its L2(�)-bracketing size. For 0 < " <1 and F a (non-empty)
subset of L0(�;A), we de�ne N[ ](";F ; k � k2;�) to be the minimal number of brackets of L2(�)-
bracketing size less than or equal to " needed to cover F ; if there is no �nite number of such
brackets, we set N[ ](";F ; k � k2;�) =1 for convenience. The L2(�)-bracketing metric entropy of
F is de�ned as

H[ ](";F ; k � k2;�) = logN[ ](";F ; k � k2;�):
Furthermore, for 0 < � <1 the L2(�)-bracketing metric integral I[ ](�;F ; k � k2;�) of F is given
by

I[ ](�;F ; k � k2;�) =
Z

(0;�]

q
1 +H[ ](";F ; k � k2;�) d":

3 The Framework and Assumptions

From now on let 
 be a non-empty bounded, open interval in R. We consider i.i.d. random
variables (Xi)i2N that take their values in (
;B(
)) and have common law P, with X1; : : : ; Xn
representing the data at sample size n. Furthermore, let � be a (non-empty) compact subset
of Rm and let P� = fp� : � 2 �g be a parametric family of probability density functions p�
on 
. The law P may or may not correspond to a density in P�. We assume that there is
a way of simulating synthetic data according to the densities in the class P� in the following
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sense: There is a probability space (V;V; �) and a function � : V � � ! 
, which is V-B(
)-
measurable in its �rst argument, such that for every � 2 � the law of �(�; �) under � has density
p�. Consequently, if (Vi)i2N is a sequence of i.i.d. random variables with values in (V;V) and
law �, then Xi(�) = �(Vi; �) is an i.i.d. sequence with law having density p�, simultaneously so
for all � 2 �. We shall also always assume that the process (Vi)i2N is independent of (Xi)i2N.
[As indicated in the Introduction, the simulation mechanism � may derive form an underlying
equation model, but it may also arise in some other way.] In the application to indirect inference
in Section 5 we shall estimate � by matching a non-parametric estimator for (the density of) P
obtained from the data X1; : : : ; Xn with a non-parametric estimator for p� obtained from the
synthetic data X1(�); : : : ; Xk(�). We stress that construction of the synthetic data requires only
one simulation, and not a separate simulation for every �. For convenience we shall from now
on assume that the random variables Xi and Vi are the respective coordinate projections on the
measurable space (
N�V N;B(
)N
VN) equipped with the product measure Pr := PN
�N. We
note, however, that all results of the paper hold also without this assumption; see Remark 19.
Furthermore, the empirical measures associated with X1; : : : ; Xn and V1; : : : ; Vk will be denoted
by Pn and �k, respectively.
The density estimators we shall consider will be NPML-estimators over non-parametric mod-

els (called auxiliary models in Section 5) of the form

P(t; �;D) =
�
p 2Wt

2(
) :

Z




p d� = 1; inf
x2


p(x) � �; kpkt;2 � D
�
;

where t > 1=2, 0 � � < 1, and 0 < D < 1. Some important properties of P(t; �;D) that will
be used repeatedly are summarized in the subsequent propositions, the proofs of which can be
found in Appendix A.

Proposition 2 Suppose t > 1=2, 0 � � <1, and 0 < D <1.
(a) The following statements are equivalent: (i) � � �(
)�1 � D2; (ii) the constant density

�(
)�1 belongs to P(t; �;D); (iii) P(t; �;D) is non-empty.
(b) Suppose � � �(
)�1 � D2. Then the following statements are equivalent: (i) � = �(
)�1

or �(
)�1 = D2; (ii) the constant density �(
)�1 is the only element of P(t; �;D); (iii) P(t; �;D)
is a singleton.
(c) Suppose � � �(
)�1 � D2. Then P(t; �;D) is a non-empty convex set, which is compact

in C(
) as well as in Ws
2(
) for every s satisfying 1=2 < s < t.

In the following let Ht denote the closed a¢ne hyperplane given by Ht =
�
f 2Wt

2(
) :
R


f d� = 1

	

endowed with the relative topology it inherits from Wt
2(
). Note that P(t; �;D) � Ht holds.

Proposition 3 1 Suppose t > 1=2 and 0 � � � �(
)�1 � D2 <1.
(a) An element p 2 P(t; �;D) is an interior point of P(t; �;D) relative to Ht if and only if

(i) kpkt;2 < D and (ii) infx2
 p(x) > � hold.
(b) A (non-empty) subset P 0 of P(t; �;D) is uniformly interior to P(t; �;D) relative to Ht

(meaning that there exists a � > 0 such that for every p 2 P 0 the set Ut;�(p)\Ht � P(t; �;D)) if
and only if (i) supp2P0 kpkt;2 < D and (ii) infx2
;p2P0 p(x) > � hold.
(c) Suppose � < �(
)�1 < D2 holds. Then the constant density �(
)�1 is interior to

P(t; �;D) relative to Ht. Moreover, the interior of P(t; �;D) relative to Ht is dense in P(t; �;D)
(w.r.t. the Wt

2(
)-topology).

1An obvious extension of Theorem V.2.1 in Dunford and Schwartz (1966) to a¢ne spaces shows that in our
setting the notion of an element being interior relative to H coincides with the notion of internality of that element
(relative to H).
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We emphasis that for the rest of the paper t, �, and D will be treated as �xed (although
at arbitrary values) satisfying the constraints t > 1=2 and 0 � � < �(
)�1 < D2 < 1 (thus
excluding only the trivial cases where P(t; �;D) is empty or the singleton f�(
)�1g). Many
results will hold under the natural condition � � 0, but for some results we shall have to assume
the stronger requirement � > 0. In that context we note that if D2 is su¢ciently close to �(
)�1,
then P(t; 0; D) coincides with P(t; �;D) for su¢ciently small � > 0, cf. Remark 29 in Appendix
A.
For later use we stress that any p 2 P(t; �;D) is continuous on 
 and satis�es kpk
 � CtD

in view of Part (b) of Proposition 1. We further note the fact that in P(t; �;D) pointwise
convergence is equivalent to convergence in all Sobolev norms of order smaller than t, as well as
to convergence in the sup-norm, as shown in the next proposition.

Proposition 4 Let pn; p 2 P(t; �;D). Then the following statements are equivalent: (i) kpn �
pk
 converges to 0; (ii) pn converges pointwise to p; (iii) pn converges to p a.e.; (iv) pn converges
to p on a dense subset of 
; (v) kpn � pkr;2 converges to 0 for some r satisfying 0 � r < t; (vi)
kpn � pkr;2 converges to 0 for all r satisfying 0 � r < t.

Apart from the maintained assumptions laid out at the beginning of this section, we will
make frequent use of the assumptions listed below. We start with assumptions on the probability
measure P governing the data.

Assumption D The probability measure P has a density pN.

In the following we treat the probability density pN as a function from 
 to R, that is, we
let pN denote a �xed representative of the Radon-Nikodym derivative of P with respect to �.
Recall also that P need not correspond to an element of P�, hence pN need not be a.e. equal to
an element of P�.

Assumption D.1 Assumption D holds and the density function pN belongs to P(t; �;D).

Assumption D.2 Assumption D holds and the density function pN satis�es the strict inequality

inf
x2


pN(x) > 0:

Clearly, if � > 0, then Assumption D.1 implies Assumption D.2. In light of Proposition 3,
the next assumption just states that pN is an interior point of P(t; �;D) relative to Ht.

Assumption D.3 Assumption D.1 holds and the strict inequalities

inf
x2


pN(x) > � and kpNkt;2 < D

are satis�ed.

We note here, however, that even under Assumption D.3 the NPML-estimator is never an
interior point of P(t; �;D) relative to Ht as shown in Section 4; this leads to a number of
complications as discussed prior to Lemma 15 in Section 4.3.
Next are assumptions on the class P�. We will often write p(x; �) for p�(x), and we stress

that p(x; �) is a function from 
�� to R.

Assumption P.1 P� � P(t; �;D).
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Assumption P.2 The strict inequality

inf

��

p(x; �) > 0

holds true.

Clearly, if � > 0 then Assumption P.1 implies Assumption P.2.

Assumption P.3 Assumption P.1 holds and the strict inequalities

inf

��

p(x; �) > � and sup
�2�

kp�kt;2 < D

are satis�ed.

Assumption P.3 states that P� is uniformly interior to P(t; �;D) relative to Ht, cf. Proposition
3. If P� happens to be a k � kt;2-compact subset of P(t; �;D) (which in light of compactness of
� is, e.g., the case if the map � ! p� is k � kt;2-continuous), Assumption P.3 is clearly equivalent
to infx2
 p(x; �) > � and kp�kt;2 < D for every � 2 � (i.e., equivalent to P� belonging to the
interior of P(t; �;D) relative to Ht).
Occasionally we shall also need to refer to the following assumption. However, note that As-

sumption P.1 together with Assumption R.1 below already imply this assumption, cf. Proposition
30 in Appendix A.

Assumption P.4 For every x 2 
, � 7! p(x; �) is a continuous function on �.

Remark 5 If Assumption P.1 is satis�ed, then in view of Proposition 4 the following are equiv-
alent: (i) Assumption P.4; (ii) � 7! p� is continuous as a mapping from � into the space
(P(t; �;D); k � ks;2) for every s satisfying 0 � s < t; (iii) � 7! p� is continuous as a mapping from
� into the space (P(t; �;D); k � k
).

Next are assumptions on the simulation mechanism �(v; �). Apart from the already assumed
measurability of �(v; �) in its �rst argument, we will need assumptions to control its behaviour
in the second argument. We note that Assumption R.2 below is weaker than the corresponding
Assumption R.2 in Gach (2010), but we have been able to obtain the same conclusions as in
Gach (2010) by re�ning the proofs.

Assumption R.1 For every v 2 V , the simulation mechanism �(v; �) is continuous in �.

Assumption R.2 For some constant , 0 <  � 1, and some measurable function R : V !
(0;1), the simulation mechanism � : V ��! 
 satis�es

j�(v; �0)� �(v; �)j � R(v)k�0 � �k

for all v 2 V and all �; �0 2 �, with the function R satisfying
R
V
Rad� <1 for some a > 0.

Assumptions on the class P� and on the simulation mechanism �(v; �) are obviously closely
related. In principle, the assumptions on P� could be substituted for by assumptions on �(v; �).
[Conversely, the existence of a simulation mechanism having certain required properties can in
principle be deduced from suitable assumptions on P�.] However, the interrelation between
assumptions on P� and on �(v; �) is complicated and intricate, and hence we prefer to work with
the two sets of assumptions as given above. For some results concerning the relationship between
these two sets of assumptions see Proposition 30 in Appendix A.
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4 Non-Parametric Maximum Likelihood Estimators

We now introduce NPML-estimators, called auxiliary estimators in Section 5. De�ne the (non-
parametric) log-likelihood function based on the given data X1; : : : ; Xn as

Ln(p) := Ln(p;X1; : : : ; Xn) =
1

n

nX

i=1

log p(Xi)

for p 2 P(t; �;D), and based on the simulated data X1(�) = �(V1; �); : : : ; Xk(�) = �(Vk; �) as

Lk(�; p) := Lk(�; p;V1; : : : ; Vk) =
1

k

kX

i=1

log p(�(Vi; �))

for p 2 P(t; �;D) and � 2 �. Note that Lk(�; p) = Lk(p;X1(�); : : : ; Xk(�)) = k�1
Pk

i=1 log p(Xi(�))
holds. In view of our convention for the logarithm, both functions Ln(f) and Lk(�; f) are in fact
well-de�ned and take their values in [�1;1) for any non-negative real-valued function f on 
.
An NPML-estimator for given X1; : : : ; Xn is de�ned as an element p̂n(�) := p̂n(�;X1; : : : ; Xn)

of P(t; �;D) satisfying
Ln(p̂n) = sup

p2P(t;�;D)

Ln(p):

Similarly, an NPML-estimator for givenX1(�); : : : ; Xk(�) is an element ~pk(�)(�) := ~pk(�)(�;V1; : : : ; Vk)
of P(t; �;D) satisfying

Lk(�; ~pk(�)) = sup
p2P(t;�;D)

Lk(�; p):

Clearly we have
~pk(�)(�;V1; : : : ; Vk) = p̂k(�;X1(�); : : : ; Xk(�)): (4)

In this section we investigate existence, uniqueness, consistency, rates of convergence, and
uniform central limit theorems for NPML-estimators. The results obtained here go beyond Nickl
(2007) in three respects: First, we show not only existence but also uniqueness of the NPML-
estimators. Second, we allow for non-parametric models P(t; �;D) where the lower bound for
the densities, i.e., �, can be equal to 0 and extend the consistency and rate results for the
NPML-estimator w.r.t. the Sobolev-norms k � ks;2 with s < t in Nickl (2007) to this case. We
furthermore also establish inconsistency of the NPML-estimator in the k � kt;2-norm. Third, we
prove that the consistency and rate results in Nickl (2007) for p̂n hold for the NPML-estimators
~pk(�) even uniformly over the parameter space � (provided that � > 0). Finally, we prove a
uniform Donsker-type theorem which extends Theorem 3 in Nickl (2007) and shows that, for
appropriate classes F , the stochastic process (�; f) 7!

p
k
R


(~pk(�)� p�)fd� converges weakly in

`1(��F) to a Gaussian process.

4.1 Existence, Uniqueness, and Consistency of NPML-Estimators

In the following theorem we show that the NPML-estimators de�ned above exist, are unique,
and are measurable (cf. also Lemma 36 in Appendix D).

Theorem 6 (a) There exists a unique p̂n 2 P(t; �;D) such that

Ln(p̂n) = sup
p2P(t;�;D)

Ln(p)

9



holds. The resulting mapping p̂n : 

n ! P(t; �;D) is measurable with respect to the �-�elds

B(
)n and B(P(t; �;D); k � k
). Moreover, p̂n always satis�es kp̂nkt;2 = D.
(b) For each � 2 � there exists a unique ~pk(�) 2 P(t; �;D) such that

Lk(�; ~pk(�)) = sup
p2P(t;�;D)

Lk(�; p)

holds. The resulting mapping ~pk(�) : V
k ! P(t; �;D) is measurable with respect to the �-�elds

Vk and B(P(t; �;D); k � k
). Moreover, ~pk(�) always satis�es k~pk(�)kt;2 = D. Furthermore, if
Assumption R.1 is satis�ed, then, for arbitrary �xed values of the underlying simulated vari-
ables V1; : : : ; Vk, � 7! ~pk(�) is continuous when viewed as a mapping from � into the space
(P(t; �;D); k � k
).

Proof. (a) Let x1; : : : ; xn be given points in 
. The existence of a maximizer of Ln(p) =
Ln(p;x1; : : : ; xn) follows from the fact that Ln is continuous on the compact space (P(t; �;D); k �
k
) by Part (b1) of Proposition 31 in Appendix B with F = P(t; �;D) and by Proposition 2. We
next establish uniqueness: Denote by S the set of all p 2 P(t; �;D) that maximize Ln, and note
that S is non-empty as just shown. Since Ln is a concave function on the convex set P(t; �;D)
with values in [�1;1), a standard argument shows that S is convex. If S is a subset of the
Sobolev sphere of radius D we are done, as then S must be a singleton since the Sobolev norm
k � kt;2, being a Hilbert norm, is strictly convex. Suppose now S is not a subset of the Sobolev
sphere of radius D and let p 2 S with kpkt;2 < D. Then there is some z 2 
 with p(z) > � since
the maintained assumption � < ��1(
) implies that � =2 P(t; �;D). By continuity of p we may
assume that z is di¤erent from any of the �nitely many data points x1; : : : ; xn. We claim that
there is a q 2 P(t; �;D) such that q(xi) > p(xi) whenever xi = x1 and q coincides with p on the
remaining (if any) observations xj with xj 6= x1. This will contradict the maximizing property
of p (noting that the case Ln(q) = Ln(p) = �1 is impossible in view of �(
)�1 2 P(t; �;D) and
Ln(p) � Ln(�(
)

�1) > �1). The existence of such a q can be seen as follows: Choose " > 0
such that I := [z � 2"; z + 2"], �U := [x1 � 2"; x1 + 2"], and fxj : xj 6= x1g are pairwise disjoint
subsets of 
 and infx2I p(x) > �. As A := [x1 � "; x1 + "] is a closed set contained in the open
set U := (x1 � 2"; x1 + 2"), there is a compactly supported C1-function f : 
! R with values
in [0; 1] such that f jA = 1 and f j
nU = 0. For every y 2 
 let

�f(y) =

(
f(y + x1 � z) if y + x1 � z 2 
,
0 otherwise;

so that �f is the translation of f by z�x1; and de�ne g : 
! R by g = f� �f . Then g has values in
[�1; 1], integrates to 0, and is contained in Wt

2(
) since it is C
1 and has compact support in 
.

Since kpkt;2 < D and infx2I p(x) > �, we can �nd a scalar � > 0 such that k�gkt;2 � D � kpkt;2
and � � infx2I p(x)� �. Let q = p+�g and observe that kqkt;2 � kpkt;2+k�gkt;2 � D. Further,
q(x) � � for every x 2 
, which can be seen as follows: For x 2 
 n I we have that g(x) � 0,
and hence q(x) � p(x) � �. If x 2 I, then q(x) � p(x) � � � p(x) � infx2I p(x) + � � �, where
the �rst inequality holds because g(x) � �1 for every x 2 
, the second inequality holds by the
choice of �, and the third one does so since x 2 I and therefore p(x)� infx2I p(x) � 0. It follows
that q 2 P(t; �;D). Since � > 0 and g(x1) = 1, q(xi) > p(xi) whenever xi = x1. Furthermore,
q coincides with p on the remaining (if any) data points because g is 0 there. The existence of q
contradicts the maximizing property of p, and consequently S is a subset of the Sobolev sphere
of radius D. We thus have established uniqueness as well as kp̂nkt;2 = D.
To see that p̂n : 


n ! P(t; �;D) is measurable, we apply Lemma A3 in Pötscher & Prucha
(1997), making use of Proposition 31(a),(b1) in Appendix B. [Because Ln potentially can attain
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the value �1, we apply this lemma to the real-valued function arctan(Ln) rather than to Ln,
where we use the usual convention arctan(�1) = ��=2.]
(b) The same arguments as above establish existence, uniqueness, and measurability of ~pk(�),

as well as k~pk(�)kt;2 = D, for any �xed � 2 �. To see that the mapping � 7! ~pk(�) is continuous as
claimed, apply Lemma 34 in Appendix B with X = �, Y = (P(t; �;D); k�k
), u(x; y) = Lk(�; p),
and v(x) = ~pk(�). Note that (P(t; �;D); k � k
) is a compact metric space by Proposition 2 and
that, under Assumption R.1, Lk(�; p) is continuous on �� (P(t; �;D); k � k
), as can be seen by
applying Part (b2) of Proposition 31 in Appendix B with F = P(t; �;D).

Remark 7 (i) The mapping p̂n : 
 � 
n ! R is continuous in the �rst argument and B(
)n-
measurable in the second argument. Since 
 is separable, p̂n is consequently jointly measurable.
Similarly, the mappings ~pk(�) : 
� V k ! R are jointly measurable for all � 2 �.
(ii) For any x1; : : : ; xn in 
, we have that p̂n(xi) = p̂n(xi;x1; : : : ; xn) > 0 for i = 1; : : : ; n.

This follows from the observation made in the above proof that Ln(p̂n) > �1 must hold. By
a similar argument we have that ~pk(�)(�(vi; �)) = ~pk(�)(�(vi; �); v1; : : : ; vk) > 0 for i = 1; : : : ; k
and for every � 2 �.

We next turn to consistency of the NPML-estimators. Theorem 6 already shows that p̂n
cannot be consistent in the k � kt;2-norm as kp̂nkt;2 = D always holds and P(t; �;D) contains
densities with k � kt;2-norm less than D (under our assumptions on � and D). A similar remark
applies to ~pk(�). However, this does not preclude consistency of the NPML-estimators in other
norms as we show next. To this end de�ne for any non-negative measurable function f on 
 and
for any � 2 �

L(f) =

Z




log fdP

and

L(�; f) =

Z

V

log f(�(�; �))d�

provided the respective integral is de�ned. If f 2 L1(
), then both functions are well-de�ned
and take their values in [�1;1). We note that the restrictions of L(f) to P(t; �;D) and of
L(�; f) to ��P(t; �;D) are real-valued in case � > 0. We will make use of the following simple
facts which are proved in Appendix B.

Lemma 8 (a) L(pN) is well-de�ned and satis�es L(pN) > �1, provided Assumption D holds.
Similarly, for every � 2 �, L(�; p�) is well-de�ned and satis�es L(�; p�) > �1.
(b) If Assumption D.1 is satis�ed, then pN is the unique maximizer of the function L(�) over

P(t; �;D).
(c) If p� 2 P(t; �;D) for a given � 2 �, then p� is the unique maximizer of the function

L(�; �) over P(t; �;D).

The consistency result is now given below. Under the additional assumption that � is positive,
Part (a) of the subsequent theorem already follows from Proposition 6 in Nickl (2007).

Theorem 9 (a) Let Assumption D.1 be satis�ed. Then

lim
n!1

kp̂n � pNks;2 = 0 P-a.s.

for every s, 0 � s < t; in particular, limn!1 kp̂n � pNk
 = 0 P-a.s.
(b) Let p� 2 P(t; �;D) for a given � 2 �. Then, for the given �,

lim
k!1

k~pk(�)� p�ks;2 = 0 �-a.s.
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for every s, 0 � s < t; in particular, limk!1 k~pk(�)� p�k
 = 0 �-a.s.
(c) Let Assumptions P.1, P.2, and R.1 be satis�ed. Then

lim
k!1

sup
�2�

k~pk(�)� p�ks;2 = 0 �-a.s.

for every s, 0 � s < t; in particular, limk!1 sup�2� k~pk(�)� p�k
 = 0 �-a.s.

Proof. (a) In view of Part (c) of Proposition 1, we may restrict ourselves to the case 1=2 < s < t.
Note that jL(pN)j <1 by Assumption D.1 and Part (a) of Lemma 8; also note that the random
variables log pN(Xi) are P-a.s. real-valued. By Kolmogorov�s strong law of large numbers we then
have

lim
n!1

jLn(pN)� L(pN)j = 0 P-a.s. (5)

Let "l be positive real numbers that converge monotonously to 0 as l!1. Apply the uniform law
of large numbers in Part (d1) of Proposition 31 in Appendix B with F = fp+ "l : p 2 P(t; �;D)g
to see that

lim
n!1

sup
p2P(t;�;D)

jLn(p+ "l)� L(p+ "l)j = 0 P-a.s. (6)

for every l 2 N. In the following arguments we �x an arbitrary element of the probability 1
event where the statements in (5) and (6) hold true. We now prove that kp̂n � pNks;2 converges
to 0 by showing that any subsequence p̂n0 of p̂n has another subsequence converging to pN in
the Sobolev norm k � ks;2. Because P(t; �;D) is compact in Ws

2(
) by Proposition 2, there is a
subsequence p̂n00 of p̂n0 and some p

� 2 P(t; �;D) such that kp̂n00 � p�ks;2 converges to 0. Now
use Assumption D.1, the de�nition of p̂n00 as maximizer, and the monotonicity of the logarithm
to obtain

Ln00(pN) � Ln00(p̂n00) � Ln00(p̂n00 + "l)
� L(p̂n00 + "l) + sup

p2P(t;�;D)

jLn00(p+ "l)� L(p+ "l)j: (7)

The �rst term on the r.h.s. of (7) converges to L(p� + "l) since kp̂n00 � p�ks;2, and hence also
kp̂n00 � p�k
, converges to 0 and since L(� + "l) is sup-norm continuous on P(t; �;D) by Part
(c1) of Proposition 31 in Appendix B. The supremum on the r.h.s. of (7) goes to 0 and Ln00(pN)
converges to L(pN) in view of (5) and (6). It follows that

L(pN) � L(p� + "l): (8)

The sequence of functions log(p� + "l) is monotonously non-increasing in l with pointwise limit
log p�, and is bounded above by the integrable function log(p� + "1). Using the theorem of
monotone convergence, we conclude from (8) that L(pN) � L(p�). Hence, p� = pN by Part (b)
of Lemma 8.
(b) Follows analogously as Part (a) with pN replaced by p�.
(c) As in the proof of Part (a), we may restrict ourselves to the case 1=2 < s < t. De�ne

�# = inf
�� p(x; �). By hypothesis, �
# > 0, and P(t; �#; D) is non-empty as it contains P�.

We may now apply Part (d2) of Proposition 31 in Appendix B with F = P(t; �#; D) to get

lim
k!1

sup
��P(t;�#;D)

jLk(�; p)� L(�; p)j = 0 �-a.s. (9)

Let "l be as in the proof of Part (a). For each l 2 N, Part (d2) of Proposition 31 in Appendix B
with F = fp+ "l : p 2 P(t; �;D)g implies that

lim
k!1

sup
�2�

sup
p2P(t;�;D)

jLk(�; p+ "l)� L(�; p+ "l)j = 0 �-a.s. (10)
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In the following arguments we �x an arbitrary element of the probability 1 event where (9) and
(10) hold. Assume that sup�2� k~pk(�)� p�ks;2 does not converge to 0. Then there is some � > 0
such that for every k 2 N there are k0 2 N, k0 � k, and �k0 2 � that satisfy

k~pk0(�k0)� p�k0 ks;2 > �: (11)

By compactness of � and compactness of P(t; �;D) as a subset of Ws
2(
), we �nd a subsequence

~pk00(�k00) of ~pk0(�k0) such that �k00 converges to �
� for some �� 2 �, and k~pk00(�k00) � p�ks;2

converges to 0 for some p� 2 P(t; �;D). So, if p� equals p�� (which we verify below), then
k~pk00(�k00) � p��ks;2 converges to 0. Consequently, k~pk00(�k00) � p�k00ks;2 converges to 0 because
p�k00 converges to p�� in (P(t; �;D); k � ks;2) in view of Proposition 30 in Appendix A and Re-
mark 5. This is in contradiction to (11) and therefore in contradiction to the assumption that
sup�2� k~pk(�)� p�ks;2 does not converge to 0.
It remains to show that p� equals p�� . Use Assumption P.1, the de�nition of ~pk00(�k00) as

maximizer, and the monotonicity of the logarithm to obtain

Lk00(�k00 ; p�k00 ) � Lk00(�k00 ; ~pk00(�k00)) � Lk00(�k00 ; ~pk00(�k00) + "l)
� L(�k00 ; ~pk00(�k00) + "l)

+ sup
�2�

sup
p2P(t;�;D)

jLk00(�; p+ "l)� L(�; p+ "l)j : (12)

The �rst term on the r.h.s. of (12) converges to L(��; p�+"l) since �k00 converges to �
�, k~pk00(�k00)�

p�ks;2, and hence also k~pk00(�k00)�p�k
, converges to 0, and L(�; �+"l) is a continuous function on
��(P(t; �;D); k�k
) by Part (c2) of Proposition 31 in Appendix B. Recall that the supremum on
the r.h.s. of (12) goes to 0 in view of (10). Further, the supremum on the r.h.s. of the inequality

jLk00(�k00 ; p�k00)� L(��; p��)j
� sup

��P(t;�#;D)

jLk00(�; p)� L(�; p)j+ jL(�k00 ; p�k00 )� L(�
�; p��)j

converges to 0 by (9). The second term on the r.h.s. goes to 0 as �k00 converges to �
�, kp�k00 �

p��ks;2, and hence also kp�k00 � p��k
, converges to 0, and L(�; p) is a continuous function on
�� (P(t; �#; D); k � k
) by Part (c2) of Proposition 31 in Appendix B. Hence, the l.h.s. of (12)
goes to L(��; p��). It follows that

L(��; p��) � L(��; p� + "l): (13)

The sequence of functions log (p�+"l)(�(�; ��)) is monotonously non-increasing in l with pointwise
limit log p�(�(�; ��)), and is bounded above by the integrable function log(p�+"1)(�(�; ��)). Using
the theorem of monotone convergence and (13), we conclude that L(��; p��) � L(��; p�). Hence,
p� = p�� by Part (c) of Lemma 8.

Remark 10 For later use we note the following: (i) Let Assumption D.1 be satis�ed, and
suppose � � 0 satis�es infx2
 pN(x) > �. It follows from Part (a) of Theorem 9 that there are
events An 2 B(
)n that have Pn-probability tending to 1 as n!1 on which infx2
 p̂n(x) > �
holds.
(ii) Let p� 2 P(t; �;D) for a given � 2 � be satis�ed, and suppose �(�) � 0 satis�es

infx2
 p(x; �) > �(�) for the given �. It follows from Part (b) of Theorem 9 that for the given
� there are events Bk(�) 2 Vk that have �k-probability tending to 1 as k ! 1 on which
infx2
 ~pk(�)(x) > �(�) holds.
(iii) Let Assumptions P.1 and R.1 be satis�ed, and suppose � � 0 satis�es inf
�� p(x; �) > �.

It follows from Part (c) of Theorem 9 that there are events Bk 2 Vk that have �k-probability
tending to 1 as k !1 on which inf�2� infx2
 ~pk(�)(x) > � holds.
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4.2 Rates of Convergence for NPML-Estimators

Following ideas of van de Geer (1993), Nickl (2007, Proposition 6) obtained convergence rates
for the NPML-estimator p̂n in various Sobolev-norms as

kp̂n � pNks;2 = O�P(n�(t�s)=(2t+1)) (14)

for every 0 � s � t, provided Assumption D.1 and � > 0 hold. Modulo measure-theoretic
nuisances, this immediately gives an analogous result for k~pk(�) � p�ks;2 for each � 2 �. [The
complication here is that the result in Nickl (2007) is proved for data generating processes de�ned
as coordinate projections on a product space, which is not the case for Xi(�); cf. the proof of
Part (b) of the subsequent proposition.] In Section 4.3 below, however, we shall need convergence
rates for sup�2� k~pk(�)� p�ks;2, i.e., convergence rates that hold uniformly w.r.t. � 2 �. Before
we turn to these uniform results, we provide an extension of Nickl�s (2007) rate result in that we
avoid the restriction � > 0. Note that Assumption D.2 already follows from Assumption D.1 in
case � > 0.

Proposition 11 (a) Under Assumptions D.1 and D.2 we have kp̂n�pNks;2 = OP(n�(t�s)=(2t+1))
for every 0 � s � t. (b) If p� 2 P(t; �;D) and infx2
 p(x; �) > 0 hold for a given � 2 �, then
k~pk(�)� p�ks;2 = O�(k�(t�s)=(2t+1)) for every 0 � s � t and the given �.

Proof. (a) Measurability of kp̂n � pNks;2 is established in Proposition 37 in Appendix D. The
result is trivial in case s = t since P(t; �;D) is a bounded subset of Wt

2(
). Hence assume
s < t. If � > 0, the result follows from Proposition 6 in Nickl (2007). Now suppose � = 0. By
Assumption D.2 we can then choose � > 0 = � such that infx2
 pN(x) > � holds. By Remark
10(i) we have that p̂n 2 P(t; �;D) on events An 2 B(
)n that have probability tending to 1 as
n ! 1. Since P(t; �;D) � P(t; �;D), the NPML-estimator p̂n over P(t; �;D) coincides with
the NPML-estimator over the smaller set P(t; �;D) on these events, and the latter estimator
satis�es (14) by Proposition 6 in Nickl (2007).
(b) In view of (4) and since (x1; : : : ; xk) 7! p̂k(�;x1; : : : ; xk) is a measurable mapping from


k into (P(t; �;D); k � k
), cf. Theorem 6, ~pk(�) has the same law as p̂k(�;Z1; : : : ; Zk), where
(Z1; : : : ; Zk) has the same distribution as (X1(�); : : : ; Xk(�)) but the Zi are given by the coor-
dinate projections on (
N;B(
)N). Since k � k
 and k � ks;2 for s � t generate the same Borel
�-�eld on P(t; �;D) (cf. Lemma 36 in Appendix D), k~pk(�) � p�ks;2 is measurable and has the
same distribution as kp̂k(�;Z1; : : : ; Zk) � p�ks;2. Now apply the already established Part (a) to
p̂k(�;Z1; : : : ; Zk).

In case s = t, in fact kp̂n�pNks;2 � 2D and k~pk(�)�p�ks;2 � 2D hold under the assumptions
of the above proposition. The next proposition is instrumental in proving the uniform-in-�
convergence rate result.

Proposition 12 Let F be a (non-empty) bounded subset of Ws
2(
) with s > 1=2. Suppose

Assumption R.2 holds.
(a) Then the L2(�)-bracketing metric entropy of

F� = ff(�(�; �)) : � 2 �; f 2 Fg

satis�es
H[ ](";F�; k � k2;�) . "�1=s: (15)

In particular, F� is �-Donsker.
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(b) Suppose the elements of F are bounded below by some � > 0. Then the L2(�)-bracketing
metric entropy of

logF� = flog f(�(�; �)) : � 2 �; f 2 Fg
satis�es

H[ ]("; logF�; k � k2;�) . "�1=s:

We note that in the subsequent uniform-in-� convergence rate result Assumption P.2 already
follows from Assumption P.1 in case � > 0.

Theorem 13 Let Assumptions P.1, P.2, and R.2 be satis�ed. Then

sup
�2�

k~pk(�)� p�ks;2 = O�(k�(t�s)=(2t+1)) as k !1 (16)

for every 0 � s < t. [In case s = t, the above supremum is bounded by 2D.]

Proof. Measurability of sup�2� k~pk(�) � p�ks;2 for 0 � s < t is established in Proposition 37
in Appendix D. The claim in parentheses follows since ~pk(�) 2 P(t; �;D) by construction and
p� 2 P(t; �;D) by Assumption P.1. We now distinguish two cases:
Case 1: Assume �rst that � > 0 and s = 0. We then verify the conditions of Theorem 40

in Appendix E with (�;A; P ) = (V N;VN; �N), S = �, T = P(t; �;D), d(p; q) = kp � qk2,
Hk(�; �) = Lk(�; p), H(�; �) = L(�; p), �̂k(�) = ~pk(�), and �(�) = p�. Condition (43) is satis�ed
by de�nition of the NPML-estimators ~pk(�). Condition (41) follows from the second-order Taylor
expansion of L(�; �) around the density p�: using Proposition 32 in Appendix B we obtain

L(�; p)� L(�; p�) = DL(�; p�)(p� p�) +
1

2
D
2L(�; �p)(p� p�; p� p�)

= �1
2

Z




(p� p�)2
�p2

p�d� � �
1

2
� (CtD)

�2 kp� p�k22;

where �p is some density on the line segment joining p and p�; note that �p 2 P(t; �;D) by
convexity of this set, and hence satis�es k�pk
 � CtD. This proves condition (41) in Theorem 40

with C = 2�1� (CtD)
�2
and � = 2, both constants being independent of � and p.

Next we verify condition (42): set

G� = flog p(�(�; �))� log p�(�(�; �)) : � 2 �; p 2 P(t; �;D); kp� p�k2 � �g

for � > 0, which is clearly non-empty. Then clearly

E
� sup
�2�

sup
p2P(t;�;D);
kp�p�k2��

���
p
k(Lk � L)(�; p)�

p
k(Lk � L)(�; p�)

��� = E�

p
k(�k � �)


G�

where E� denotes the outer expectation. Since we have temporarily assumed � > 0, the logarithm
is Lipschitz on [�;1) with Lipschitz constant ��1. This implies that G� is bounded by B :=

2��1CtD in the sup-norm and by �(�) := ��1C
1=2
t D1=2� in the L2(�)-norm. Consequently,

E
�

p
k(�k � �)


G�
� (1696 + 64

p
2) I[ ](�(�);G�; k � k2;�)

�
1 +

B

�(�)2
p
k
I[ ](�(�);G�; k � k2;�)

�

by Theorem 41 in Appendix E. Since

G� � flog p(�(�; �))� log p�(�(�; �)) : � 2 �; p 2 P(t; �;D)g
� flog p(�(�; �)) : � 2 �; p 2 P(t; �;D)g � flog p(�(�; �)) : � 2 �; p 2 P(t; �;D)g;
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we have that

N[ ](";G�; k � k2;�) � N[ ]("=2; flog p(�(�; �)) : � 2 �; p 2 P(t; �;D)g ; k � k2;�)2:

Applying Proposition 12(b) with s = t and F = P(t; �;D) we get from this inequality

I[ ](�(�);G�; k � k2;�) .
Z

(0;�(�)]

p
1 + "�1=td" . max(�(�);

Z

(0;�(�)]

"�1=2td")

. max(�; �1�1=2t):

Hence there is some constant L, 0 < L <1, such that

E
�

p
k(�k � �)


G�
� Lmax(�; �1�1=2t)

"

1 +
max(�; �1�1=2t)

�2
p
k

#

holds for all � > 0. Write 'k(�) for the r.h.s. of the last display and note that � 7! ���'k(�) is
non-increasing for � = 1. This establishes condition (42) in Theorem 40.
Condition (44) in that theorem is satis�ed for � = 2 and rk = k

t=(2t+1). This gives the desired
rate and completes the proof in case � > 0 and s = 0. Now suppose � > 0 but 0 < s < t. Recall
that sup�2� k~pk(�)� p�kt;2 � 2D. The result then follows from the interpolation inequality

kfks;2 � Cs;t kfks=tt;2 kfk
(t�s)=t
2

for f 2Wt
2(
), where Cs;t > 0; see Theorem 1.9.6 and Remark 1.9.1 in Lions & Magenes (1972).

Case 2: Suppose now � = 0 and 0 � s < t. In view of Assumption P.2 we may choose � > 0
such that inf
�� p(x; �) > �. Then, by Remark 10(iii), there are events that have probability
tending to 1 on which inf�2� infx2
 ~pk(�)(x) > � holds true. Since P(t; �;D) � P(t; �;D),
we have that on these events ~pk(�) coincides with the NPML-estimators over the smaller set
P(t; �;D). The result now follows from what has already been established in Case 1 since
Assumption P.1 (and P.2) is also satis�ed with respect to P(t; �;D).

4.3 Donsker-type Theorems for NPML-Estimators

Nickl (2007) established Part (a) of the following Donsker-type result under the additional as-
sumption that � > 0 holds. Part (b) is (modulo measure-theoretic nuisances) a simple conse-
quence of Part (a).

Theorem 14 Let F be a non-empty bounded subset of Ws
2(
) for some s > 1=2.

(a) Suppose Assumption D.3 is satis�ed. Then, for all real j > 1=2,

sup
f2F

����
p
n

Z




(p̂n � pN)fd��
p
n(Pn � P)f

���� = oP(n
�(min(s;t)�j)=(2t+1)) (17)

as n ! 1; in particular, the l.h.s. of the above display is oP(1) as n ! 1. Consequently, the
stochastic process f 7! p

n
R


(p̂n � pN)fd� converges weakly to a P-Brownian bridge in `1(F).

(b) Suppose p� 2 P(t; �;D), infx2
 p(x; �) > �, and kp�kt;2 < D hold for a given � 2 �. Then,
for the given �, a result analogous to Part (a) holds for the process f 7!

p
k
R


(~pk(�) � p�)fd�

with Pk and P, respectively, replaced by P�;k and P�, where P�;k is the empirical measure of
X1(�); : : : ; Xk(�) and P� is the probability measure corresponding to p�.
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Proof. (a) Measurability of the l.h.s. of (17) follows from Proposition 38 in Appendix D. For
� > 0 the result follows immediately from Theorem 3 in Nickl (2007). Now suppose � = 0. In view
of Assumption D.3 we may choose � > 0 such that infx2
 pN(x) > �. Then, by Remark 10(i),
there are events that have probability tending to 1 on which infx2
 p̂n(x) > � holds true. Since
P(t; �;D) � P(t; �;D) = P(t; 0; D), we have that on these events p̂n coincides with the NPML-
estimators over the smaller set P(t; �;D). Since � > 0 and since Assumption D.3 is also satis�ed
relative to P(t; �;D), the result now follows from what has already been established.
(b) Note that Xk(�x; f) and supf2F jXk(�x; f)�Yk(�x; f)j de�ned in Proposition 38(a) in Ap-

pendix D are Borel measurable on 
k. Consequently,

sup
f2F

jXk(X1(�); : : : ; Xk(�); f)�Yk(X1(�); : : : ; Xk(�); f)j

and
sup
f2F

jXk(Z1; : : : ; Zk; f)�Yk(Z1; : : : ; Zk; f)j

have the same distribution, where the Zi are as in the proof of Proposition 11. Furthermore,
it follows that the �nite-dimensional distributions of the processes f 7! Xk(X1(�); : : : ; Xk(�); f)
and f 7! Xk(Z1; : : : ; Zk; f) coincide. It is easy to see that the maps f ! Xk(�x; f) belong to
C0(F ; k � k
), the space of bounded uniformly continuous functions on (F ; k � k
). Consequently,
Xk(�x; �) is Borel measurable as a random element in C0(F ; k � k
), since the Borel �-�eld on this
space is generated by the point-evaluations (observe that (F ; k � k
) is totally bounded in view
of Lemma 35 in Appendix C). Since C0(F ; k � k
) is Polish by total boundedness of (F ; k � k
),
the entire laws of the processes f 7! Xk(X1(�); : : : ; Xk(�); f) and f 7! Xk(Z1; : : : ; Zk; f) on
C0(F ; k � k
), and hence on `1(F), coincide. In view of (4), Part (b) now follows from applying
the already established Part (a) to p̂k(�;Z1; : : : ; Zk).

The next theorem shows that a weak limit theorem for the stochastic process (�; f) 7!p
k
R


(~pk(�) � p�)fd� can be obtained even in the space `1(� � F). A corollary of this is

then a uniform-in-� version of Part (b) of the above theorem. The proof of this theorem largely
follows the ideas in Nickl (2007): Loosely speaking, a mean-value expansion of DLk(�; ~pk(�))(�),
analogous to the one in the classical parametric case, shows that this can be represented as the
sum of the score evaluated at the true density p�, i.e., DLk(�; p�)(�), plus a second derivative
term applied to the estimation error (~pk(�) � p�; �). [For given � 2 �, the Fréchet-derivative of
Lk with respect to the second argument is here denoted by DLk(�; �).] The score, evaluated at
the true density p� and properly scaled, turns out to be an empirical process having a Gaussian
limit. The second derivative term turns out to coincide with �

R


(~pk(�)�p�)fd� up to negligible

terms. [An important ingredient for establishing negligibility are the uniform-in-� convergence
rates for ~pk(�) in di¤erent Sobolev norms that have been established in the previous section.]
Apart from a series of technical di¢culties not present in the classical parametric case, the major
di¢culty is then the following: in the classical parametric case the usual assumption that the
true parameter belongs to the interior of the parameter space together with consistency implies
that the estimator is eventually an interior point, implying that the score evaluated at the max-
imizer is zero. In the present case, while p� is an interior point of P(t; �;D) relative to Ht as a
consequence of the assumptions underlying Theorem 16, the estimator ~pk(�) is, however, not an
interior point of the domain P(t; �;D) (relative to Ht) over which optimization is performed, as
shown in Theorem 6; in particular, ~pk(�) is not consistent w.r.t. the k�kt;2-norm. As a conse-
quence, one can not conclude that the score evaluated at the maximizer is zero. [Trying to save
this argument directly by using an k�ks;2-norm with s < t does not work either: while ~pk(�) is
consistent in the k�ks;2-norm, p� is then not an interior point of P(t; �;D) relative to Hs.] Hence,
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a di¤erent reasoning is needed to show that DLk(�; ~pk(�))(�), although not necessarily zero, is of
su¢ciently small order. This is provided in the subsequent lemma, which is essentially a uniform
version of Lemma 4 in Nickl (2007). The proof as given below makes use of Proposition 3 which
allows us to simplify the arguments given in Nickl (2007). In the following lemma let H0t denote
the linear subspace of Wt

2(
) that is parallel to Ht.

Lemma 15 Suppose Assumptions P.3 and R.2 are satis�ed and � > 0 holds. Let G be a non-
empty bounded subset of H0t �Wt

2(
). Then

sup
�2�

sup
g2G

jDLk(�; ~pk(�))(g)j = o�(k�(t�j)=(2t+1)�1=2) (18)

for every real j > 1=2.

Proof. Measurability of the l.h.s. of (18) follows from Proposition 38(c) in Appendix D. W.l.o.g.
we may assume 1=2 < j < t. By Assumption P.3 and Proposition 3(b) we can �nd � > 0 small
enough such that

p� + w 2 P(t; �;D)
holds for every � 2 � and every w 2 Ut;� \ H0t . Note that � does not depend on �. Since ~pk(�)
maximizes Lk(�; �) (which is di¤erentiable in view of Proposition 32 as � > 0 is assumed) over
P(t; �;D) we conclude that

DLk(�; ~pk(�))(p� + w � ~pk(�)) � 0

holds for all � 2 � and all w 2 Ut;� \ H0t . This implies

DLk(�; ~pk(�))(w) � DLk(�; ~pk(�))(~pk(�)� p�)

for all � 2 � and w 2 Ut;� \ H0t . Since Ut;� \ H0t is invariant under multiplication by �1, we
obtain

sup
�2�

sup
w2Ut;�\H0t

jDLk(�; ~pk(�))(w)j � sup
�2�

jDLk(�; ~pk(�))(~pk(�)� p�)j

� sup
�2�

j(DLk(�; ~pk(�))�DL(�; ~pk(�)))(~pk(�)� p�)j

+ sup
�2�

j(DL(�; ~pk(�))�DL(�; p�))(~pk(�)� p�)j

� sup
�2�

k~pk(�)� p�kj;2 sup
��P(t;�;D)

kDLk(�; p)�DL(�; p)kUj;1

+��1 sup
�2�

k~pk(�)� p�k22 ;

where we have repeatedly used Proposition 32, in particular to establish that DL(�; p�))(~pk(�)�
p�) = 0. Now use Theorem 13 and Proposition 33 with � = 1 and H1 = Uj;1 to conclude that
the r.h.s. of the last display is

O�(k
�(t�j)=(2t+1)�1=2) +O�(k

�2t=(2t+1)) = O�(k
�(t�j)=(2t+1)�1=2)

since j > 1=2. A fortiori this holds for all j > 1=2 and thus proves the result for the case where
G is contained in Ut;� \ H0t . Since (18) is homogenous w.r.t. scaling of G and � does not depend
on G, this inclusion can, however, always be achieved by rescaling.

We note that the lemma can easily be extended to the case � = 0 by making use of Remark
10(iii). The main result is now the following.
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Theorem 16 Suppose Assumptions P.3 and R.2 are satis�ed. Let F be a non-empty bounded
subset of Ws

2(
) for some s > 1=2. Then:
(a) For all real j > 1=2,

sup
�2�

sup
f2F

����
p
k

Z




(~pk(�)� p�)fd��
p
k(�k � �)f(�(�; �))

���� = o�(k
�(min(s;t)�j)=(2t+1)) (19)

as k !1; in particular, the l.h.s. of the above display is o�(1) as k !1.
(b) There exists a zero-mean Gaussian process G indexed by ��F with bounded sample paths

such that the stochastic process (�; f) 7!
p
k
R


(~pk(�) � p�)fd� converges weakly to G(�; f) in

`1(��F). The process G is measurable as a mapping with values in `1(��F), has separable
range, and has sample paths that are uniformly continuous with respect to the pseudo-metric

d((�; f); (�0; g)) =
�
Var[G(�; f)�G(�0; g)]

�1=2
. Its covariance function is given by

Cov[G(�; f);G(�0; g)] =

Z

V

�
f(�(�; �))�

Z

V

f(�(�; �))d�
��

g(�(�; �0))�
Z

V

g(�(�; �0))d�
�
d�:

(c)

sup
�2�

sup
f2F

����
p
k

Z




(~pk(�)� p�)fd�
���� = O�(1) as k !1:

Proof. Part (a): Measurability of the l.h.s. of (19) follows from Proposition 38(b) in Appendix
D.
Step 1: We �rst consider the case � > 0. Let G be a non-empty bounded subset of H0t .

Applying the pathwise mean-value theorem to the function DLk(�; �)(g), adding and subtracting
a term, and using Proposition 32 leads to

DLk(�; ~pk(�))(g) = DLk(�; p�)(g) +D
2Lk(�; �pk(�))(~pk(�)� p�; g)

= (�k � �) (p�1� g)(�(�; �)) +D2L(�; p�)(~pk(�)� p�; g)
+
�
D
2Lk(�; �pk(�))�D2L(�; p�)

�
(~pk(�)� p�; g);

where �pk(�) = �~pk(�) + (1 � �)p� for some � 2 (0; 1); note that �pk(�) 2 P(t; �;D) by convexity.
In the above display we have also made use of the fact that �(p�1� g)(�(�; �)) = 0 since g 2 H0t .
Again adding and subtracting a term and using Proposition 32 this leads to

DLk(�; ~pk(�))(g) = (�k � �) (p�1� g)(�(�; �))�
Z




p�1� (~pk(�)� p�)gd�

+
�
D
2Lk(�; �pk(�))�D2L(�; �pk(�))

�
(~pk(�)� p�; g)

+

Z




�p�2k (�)p�1� (�p2k(�)� p2�)(~pk(�)� p�)gd�:

Consequently, for every real j with 1=2 < j < t we obtain

sup
�2�

sup
g2G

����

Z




p�1� (~pk(�)� p�)gd�� (�k � �) (p�1� g)(�(�; �))
����

� sup
�2�

sup
g2G

jDLk(�; ~pk(�))(g)j+

sup
�2�

sup
g2G

���D2Lk(�; �pk(�))�D2L(�; �pk(�))
�
(~pk(�)� p�; g)

��

+ sup
�2�

sup
g2G

����

Z




�p�2k (�)p�1� (�p2k(�)� p2�)(~pk(�)� p�)gd�
����

= I + II + III; (20)
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where I = o�(k
�(t�j)=(2t+1)�1=2) by Lemma 15. We next bound expressions II and III:

Clearly,

II � sup
�2�

k~pk(�)� p�kj;2 sup
��P(t;�;D)

D2L(�; p)�D2Lk(�; p)

Uj;1�G

The �rst supremum in the above display is O�(k
�(t�j)=(2t+1)) by Theorem 13. Since G is

bounded in Wt
2(
) and hence also in W

j
2(
) as j < t (cf. Proposition 1), and since Uj;1 is clearly

bounded in Wj
2(
), the second supremum in the above display is O�(k

�1=2) by Proposition 33,
when applied with � = 2, H1 = Uj;1, and H2 = G. This shows that the expression II is
O�(k

�(t�j)=(2t+1)�1=2) for every real j with 1=2 < j < t.
Next, observe that j�pk(�)� p�j = � j~pk(�)� p�j � j~pk(�)� p�j and that �pk(�) � �, p� � � as

these functions belong to P(t; �;D). Hence

III � 2��3C2tDG sup
�2�

k~pk(�)� p�k22 ;

where G < 1 is a k�kt;2-norm bound for G. (Here we have repeatedly used Proposition 1(b)).
Theorem 13 then shows that expression III is O�(k

�2t=(2t+1)). Putting things together we obtain
that the l.h.s. of (20) is O��(k

�(t�j)=(2t+1)�1=2) for every real j with 1=2 < j < t, and hence a
fortiori for every real j > 1=2. Consequently,

sup
�2�

sup
g2G

p
k

����

Z




p�1� (~pk(�)� p�)gd�� (�k � �) (p�1� g)(�(�; �))
���� = o

�
�(k

�(t�j)=(2t+1)) (21)

for every real j > 1=2.
Let now F be a nonempty bounded subset of Wt

2(
) and let B < 1 denote a k�kt;2-norm
bound for F . De�ne ��0(f) = (f �

R


fp�0d�)p�0 for any f 2 Wt

2(
) and �
0 2 �. Then, using

Proposition 1(a) and the fact that p�0 2 P(t; �;D) by Assumption P.3, gives

sup
�02�

sup
f2F

k��0(f)kt;2 � Mt sup
�02�

sup
f2F

"f �
Z




fp�0 d�


t;2

kp�0kt;2
#

� MtD

"

B + sup
f2F

kfk
 k1kt;2

#

� MtDB(1 + Ct�(
)
1=2) <1: (22)

This shows that the set
G(�;F) =

�
��0(f) : f 2 F ; �0 2 �

	

is a nonempty bounded subset of Wt
2(
). In fact, it is a subset of H

0
t by de�nition of ��0 . It is

now easy to see that applying (21) to G(�;F) implies (19) in the case s = t. The case s > t
immediately follows, since every nonempty bounded subset of Ws

2(
) with s > t can also be
viewed as a nonempty bounded subset of Wt

2(
) by Proposition 1(c). This proves Part (a) in
case � > 0 and s � t.
Step 2: We now consider the case where � > 0 and 1=2 < s < t. For every f 2 F let

uk(f) 2Wt
2(
) be the approximators de�ned in the proof of Proposition 1 in Nickl (2007). They

have the following properties:

sup
f2F

kuk(f)kt;2 = O(k(t�s)=(2t+1)) as k !1; (23)
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where supf2F kuk(f)kt;2 is �nite for every k 2 N; and, for every r, 0 � r < s,

sup
f2F

kf � uk(f)kr;2 = O(k�(s�r)=(2t+1)) as k !1: (24)

We have that

sup
�2�

sup
f2F

����
p
k

Z




(~pk(�)� p�)fd��
p
k(�k � �)f(�(�; �))

����

� sup
�2�

sup
f2F

����
p
k

Z




(~pk(�)� p�)(f � uk(f))d�
����

+ sup
�2�

sup
f2F

���
p
k(�k � �)(f(�(�; �))� uk(f)(�(�; �)))

���

+ sup
�2�

sup
f2F

����
p
k

Z




(~pk(�)� p�)uk(f)d��
p
k(�k � �)uk(f)(�(�; �))

����

= IV + V + V I: (25)

We now derive bounds for each of the above expressions:
Using (24) with r = 0, the Cauchy-Schwarz inequality, and Theorem 13 we obtain

IV �
p
k sup
f2F

kf � uk(f)k2 sup
�2�

k~pk(�)� p�k2 = O�(k�(s�1=2)=(2t+1)):

Next, choose an arbitrary real j such that 1=2 < j < s and observe that

V = sup
�2�

sup
f2F

���
p
k(�k � �)(f � uk(f))(�(�; �))

���

�
 

sup
�2�

sup
h2Uj;1

���
p
k(�k � �)h(�(�; �))

���

!

sup
f2F

kf � uk(f)kj;2

= k
p
k(�k � �)kU�j;1 sup

f2F
kf � uk(f)kj;2; (26)

where
U�j;1 = fh(�(�; �)) : � 2 �; h 2 Uj;1g :

Since j > 1=2, the class of functions U�j;1 is �-Donsker by Proposition 12(a), hence

p
k(�k � �)


U�j;1

= O�(1)

in view of Prohorov�s theorem, measurability following from Proposition 38. Making use of (24),
it follows that the r.h.s. of (26), and hence Expression V, is O�(k

�(s�j)=(2t+1)).
Finally note that Expression VI is bounded by

sup
�2�

sup
h2Ut;1

����
p
k

Z




(~pk(�)� p�)hd��
p
k(�k � �)h(�(�; �))

���� sup
f2F

kuk(f)kt;2:

Since Ut;1 is a nonempty bounded subset of Wt
2(
) and since Part (a) has already been estab-

lished in Step 1 for such sets of functions, the �rst term on the r.h.s. of the last display is
o�(k

�(t�j)=(2t+1)), and using (23), we conclude that

V I = o�(k
�(s�j)=(2t+1)):
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The above bounds imply that the l.h.s. of (25) is O�(k
�(s�j)=(2t+1)) for all 1=2 < j < s, and

hence is o�(k
�(s�j)=(2t+1)) for all j > 1=2. This completes the proof of Part (a) of the theorem

in case � > 0.
Step 3: We next consider the case � = 0. In view of Assumption P.3 we may choose � > 0 such

that inf
�� p(x; �) > �. Then, by Remark 10(iii), there are events that have probability tending
to 1 on which inf�2� infx2
 ~pk(�)(x) > � holds true. Since P(t; �;D) � P(t; 0; D) = P(t; �;D),
we have that on these events ~pk(�) coincides with the NPML-estimators over the smaller set
P(t; �;D). Part (a) in case � = 0 now follows from what has already been established in the
preceding two steps (applied to the NPML-estimator based on P(t; �;D) instead of P(t; �;D)
and noting that Assumption P.3 is also satis�ed relative to P(t; �;D)).
Part (b): In view of Part (a) it is su¢cient to show that (�; f) 7!

p
k(�k � �)f(�(�; �))

converges weakly in `1(��F) to G(�; f). To this end, let

H(')(�; f) = '(f(�(�; �)))

for every ' 2 `1(F�), � 2 �, and f 2 F , where F� = ff(�(�; �)) : � 2 �; f 2 Fg. Note that the
resulting mapping H : `1(F�)! `1(��F) is continuous since H is linear and

kH(')k��F = sup
�2�

sup
f2F

j'(f(�(�; �)))j = k'kF�

for all ' 2 `1(F�). In fact, H is an isometry. Since F� is �-Donsker by Proposition 12(a),p
k(�k � �) converges weakly in `1(F�) to a �-Brownian bridge G�, that is, G� is a mean-zero

Gaussian process indexed by F�, which is measurable as a mapping with values in `1(F�), has
covariance function

Cov[G�(f(�( � ; �)));G�(g(�( � ; �0)))]

=

Z

V

�
f(�(�; �))�

Z

V

f(�(�; �))d�
��

g(�(�; �0))�
Z

V

g(�(�; �0))d�
�
d�;

and has sample paths that are uniformly continuous with respect to the pseudo-metric

d�(f(�(�; �)); g(�(�; �0))) =
�
Var[G�(f(�( � ; �)))�G�(g(�( � ; �0)))]

�1=2
:

Since the empirical process
p
k(�k � �) indexed by F� is mapped into the process (�; f) 7!p

k(�k � �)f(�(�; �)) by the map H, the continuous mapping theorem shows that the latter
process converges weakly in `1(� � F) to G := H(G�). The properties of G claimed in the
theorem follow easily from the corresponding properties of the �-Brownian bridge G� and the
fact that H is an isometry.
Part (c): Follows directly from Part (b) in view of Prohorov�s theorem, with measurability

again following from Proposition 38(b) in Appendix D.

We next obtain a corollary showing that
p
k
R


(~pk(�)� p�)(�)d� converges in `1(F) to G(�)

uniformly over �, where G(�)(f) := G(�; f) for all f 2 F . For this we recall the following
de�nitions: Let (S; d) be a metric space. For probability spaces (�1;A1; P1), (�2;A2; P2) and
mappings Y1 : �1 ! S, Y2 : �2 ! S such that Y2 is A2-B(S; d)-measurable and has separable
range de�ne an analogue of the dual bounded Lipschitz metric by

�(S;d)(Y1; Y2) = sup

�����

Z �

�1

h(Y1)dP1 �
Z

�2

h(Y2)dP2

���� : khkBL(S;d) � 1
�
;
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where
R �
denotes the outer integral and k � kBL(S;d) denotes the bounded Lipschitz norm; cf. the

de�nition on p. 115 in Dudley (1999). By Theorem 3.6.4 in Dudley (1999), Yn  Y (where Y is
measurable and has separable range) if and only if

lim
n!1

�(S;d)(Yn; Y ) = 0:

Corollary 17 Let the hypotheses of Theorem 16 be satis�ed. Then, for every � 2 �, G(�) =
G(�; �) is a measurable mapping with values in `1(F) that has separable range. Furthermore,

lim
k!1

sup
�2�

�`1(F)(
p
k

Z




(~pk(�)� p�)(�)d�;G(�)(�)) = 0:

[In fact, G(�) is a P�-Brownian bridge where P� denotes the probability measure corresponding
to p�.]

Proof. Let � 2 � be �xed, and de�ne H�(')(f) = '(�; f) for every ' 2 `1(��F) and f 2 F .
This gives a Lipschitz mapping H� : `

1(� � F) ! `1(F) whose Lipschitz constant is 1 and
hence is independent of �. Clearly, G(�) = H�(G) holds. Since G is a measurable mapping with
separable range in `1(� � F) by Part (b) of Theorem 16, this shows that, for every � 2 �,
G(�) is measurable with separable range in `1(F). Further, since the composition of Lipschitz
mappings with Lipschitz constant at most 1 is again Lipschitz with Lipschitz constant at most
1, it follows that

sup
�2�

�`1(F)(
p
k

Z




(~pk(�)� p�)(�)d�;G(�)(�))

= sup
�2�

�`1(F)(H�(
p
k

Z




(~pk(�)� p�)(�)d�);H�(G(�)(�)))

� �`1(��F)(
p
k

Z




(~pk(�)� p�)(�)d�;G(�)(�)):

The r.h.s., and therefore the l.h.s., of the previous display converges to 0 by Part (b) of Theo-
rem 16. That G(�) is in fact a P�-Brownian bridge indexed by F easily follows from Part (b) of
Theorem 16 and the transformation theorem.

Remark 18 The statement in Corollary 17 is in fact independent of any distance describing the
concept of weak convergence in `1(F). More precisely, under the assumptions of Corollary 17,
the following statements are equivalent: (i)

lim
k!1

sup
�2�

�`1(F)(
p
k

Z




(~pk(�)� p�)(�)d�;G(�)(�)) = 0;

(ii) For any �k; � 2 � such that �k converges to �,
p
k

Z




(~pk(�k)� p�k)(�)d� G(�)(�) as k !1:

To see this we apply Lemma 39 in Appendix D with T = �, S = `1(F) equipped with the
sup-norm, Yk(�) =

p
k
R


(~pk(�) � p�)(�)d�, Y (�) = G(�). Note that G(�) is measurable with

separable range in `1(F) as shown in Corollary 17. It remains to show that G(�k)  G(�) for
any �k; � 2 � such that �k converges to �. Since G(�; �) is measurable in `1(F), it is su¢cient
to show that G(�k) converges a.s. to G(�) in `

1(F), that is

lim
k!1

sup
f2F

jG(�k; f)�G(�; f)j = 0: (27)
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Fix an arbitrary " > 0. Because the sample paths of G are uniformly continuous with respect to
the pseudo-metric d given in Theorem 16(b), there is a �(") > 0 such that jG(�; f)�G(�0; g)j < "
whenever d((�; f); (�0; g)) < �("). Now, observe that

d((�k; f)); (�; f)) �
�Z

V

jf(�(�; �k))� f(�(�; �))j2d�
�1=2

� Ls

�Z

V

j�(�; �k)� �(�; �)j2min(s�1=2;1)d�
�1=2

for some �nite constant Ls > 0 not depending on f 2 F . Here, we have used that F is a
bounded subset of Cmin(s�1=2;1)(
) by Proposition 1(b). The r.h.s. of the last display converges
to 0 as k ! 1 in view of the theorem of dominated convergence (use that Assumption R.2
implies Assumption R.1 together with the fact that � takes its values in the bounded set 
).
Consequently, d((�k; f)); (�; f)) < �(") for k � k(�(")), which implies (27).

Remark 19 We have assumed that the processes (Xi) and (Vi) are canonically de�ned, i.e., are
given by the respective coordinate projections of the measurable space (
N � V N;B(
)N 
 VN).
We have made this assumption to be able to freely use results from empirical process theory as
well as from Nickl (2007) which typically are formulated in this canonical setting. However, the
measurability results in Appendix D show that all results of the paper continue to hold if (Xi)
and (Vi) are de�ned on an arbitrary probability space.

5 Simulation-Based Minimum Distance Estimators

We next study simulation-based minimum distance (indirect inference) estimators when the
auxiliary density estimators are the NPML-estimators p̂n and ~pk(�) based on the given auxiliary
model P(t; �;D). To this end we de�ne for every � 2 �

Qn;k(�) =

(R


(p̂n � ~pk(�))2p̂�1n d� if p̂n(x) > 0 for all x 2 
;

0 otherwise,
(28)

and

Qn(�) =

(R


(p̂n � p�)2p̂�1n d� if p̂n(x) > 0 for all x 2 
;

0 otherwise.

Note that Qn;k as well as Qn take their values in [0;1]: By separability of 
 and continuity
of p̂n, the set fp̂n(x) > 0 for all x 2 
g belongs to the �-�eld B(
)n. Since p̂n and ~pk(�),
respectively, are jointly measurable by Remark 7(i), it follows from Tonelli�s theorem that Qn;k(�)
is B(
)n 
 Vk-measurable and that Qn(�) is B(
)n-measurable for every � 2 �. [Assigning the
value 0 on the complement of fp̂n(x) > 0 for all x 2 
g to both objective functions is arbitrary
and irrelevant for the asymptotic considerations to follow.]

A simulation-based minimum distance (SMD) estimator is now a mapping �̂n;k : 

n�V k ! �

that minimizes Qn;k over � whenever the minimum exists (and is de�ned arbitrarily otherwise).

Similarly, a minimum distance (MD) estimator is a mapping �̂n : 

n ! � that minimizes Qn

over � whenever the minimum exists (and is de�ned arbitrarily otherwise). The MD-estimator
is of course only feasible if a closed form expression for p� can be found; here it serves as an
auxiliary device for proving asymptotic results for the SMD-estimator.
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Furthermore, whenever Assumption D.2 is satis�ed, we de�ne

Q(�) =

Z




(pN � p�)2p�1N d�;

which takes its values in [0;1]. In view of convergence of p̂n to pN and of ~pk(�) to p� (under the
assumptions of Theorem 9), Q can be viewed as the limiting counterpart of both Qn;k as well as
Qn.

5.1 Consistency of SMD-Estimators

Before turning to consistency, we show that MD- and SMD-estimators in fact minimize their
corresponding objective function at least on events that have probability tending to 1. Note that
in the following proposition the statement of Part (c) is stronger than the one of Part (b), but
also requires additional assumptions.

Proposition 20 Let Assumption R.1 be satis�ed.
(a) Suppose � > 0 holds. Then any SMD-estimator �̂n;k minimizes Qn;k for every

(x1; : : : ; xn; v1; : : : ; vk) 2 
n� V k. Furthermore, there exists an SMD-estimator that is B(
)n

Vk-B(�)-measurable.
(b) Suppose � = 0 and Assumptions D.1 and D.2 hold. Then there are events An 2 B(
)n

having probability converging to 1 as n ! 1 such that, on the events An � V k and for every
k 2 N, any SMD-estimator �̂n;k minimizes Qn;k.
(c) Suppose � = 0 and Assumptions D.1, D.2, P.1, and P.2 hold. Then, for every constant

� > 0 satisfying infx2
 pN(x) > � and inf
�� p(x; �) > �, there are events Cn;k 2 B(
)n 
 Vk
that have probability tending to 1 as min(n; k)!1 such that on Cn;k any SMD-estimator �̂n;k
coincides with an SMD-estimator that is obtained from using P(t; �;D) instead of P(t; �;D) as
the underlying auxiliary model.

Proof. (a) By Proposition 43(b) in Appendix F, Qn;k is continuous and real-valued on the

compact set � for each (x1; : : : ; xn; v1; : : : ; vk) 2 
n�V k implying that any �̂n;k is a minimizer for
each (x1; : : : ; xn; v1; : : : ; vk). Since Qn;k is also a measurable function in (x1; : : : ; xn; v1; : : : ; vk)
for each �xed � 2 �, as shown earlier, the existence of a measurable selection follows from
Lemma A3 in Pötscher & Prucha (1997).
(b) By Remark 10(i) there are events An 2 B(
)n that have probability tending to 1 as

n ! 1 on which infx2
 p̂n(x) > 2
�1 infx2
 pN(x) > 0. From Proposition 43(b) it follows that

Qn;k is continuous and real-valued on � for each (x1; : : : ; xn; v1; : : : ; vk) 2 An�V k. Compactness
of � completes the proof.
(c) Let � be as in the proposition. Set Cn;k = An � Bk, where An and Bk are as in

Remarks 10(i) and (iii), and observe that Cn;k has probability tending to 1 as min(n; k)!1. By
Remark 10, we have on Cn;k that infx2
 p̂n(x) > � and inf
�� ~pk(�)(x) > �. Since P(t; �;D) �
P(t; �;D), it follows that on Cn;k the NPML-estimators p̂n and ~pk(�), respectively, coincide
with the corresponding NPML-estimators based on the auxiliary model P(t; �;D) instead of
P(t; �;D). Therefore, on Cn;k, the objective function Qn;k coincides with the corresponding
objective function based on the auxiliary model P(t; �;D), and thus �̂n;k coincides with the
corresponding SMD-estimator based on the auxiliary model P(t; �;D).

The proofs of Parts (a) and (b) of the subsequent proposition are analogous to the proofs of
Proposition 20 above. Part (c) follows immediately from compactness of � and Lemma 42 in
Appendix F.
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Proposition 21 Suppose P� � L2(
) and � 7! p� is a continuous map from � into (L2(
); k �
k2).
(a) Suppose � > 0 holds. Then any MD-estimator �̂n minimizes Qn for every (x1; : : : ; xn) 2


n. Furthermore, there exists an MD-estimator �̂n that is B(
)n-B(�)-measurable.
(b) Suppose � = 0 and Assumptions D.1 and D.2 hold. Then there are events An 2 B(
)n

that have probability tending to 1 as n ! 1 such that, on these events, any MD-estimator �̂n
minimizes Qn. [In fact, more is true: If � > 0 satis�es infx2
 pN(x) > �, then, on An, any

MD-estimator �̂n coincides with an MD-estimator that is obtained by using P(t; �;D) instead of
P(t; �;D) as the underlying auxiliary model.]
(c) Suppose Assumption D.2 is satis�ed. Then Q attains its minimum on �.

Remark 22 Assumption P.4 together with a uniform integrability condition on
�
p2� : � 2 �

	

clearly implies that P� � L2(
) and that � 7! p� is a continuous mapping from � into (L2(
); k�
k2). In particular, Assumptions P.1 and P.4 together are su¢cient.
Proposition 23 (a) Let Assumptions D.1, D.2, P.1, P.2, and R.1 be satis�ed. If Q has a

unique minimizer ��0 over �, then any SMD-estimator �̂n;k converges to �
�
0 in outer probability

as min(n; k)!1.
(b) Suppose P� � L2(
) and � 7! p� is a continuous map from � into (L2(
); k � k2).

Let Assumptions D.1 and D.2 be satis�ed. If Q has a unique minimizer ��0 over �, then any

MD-estimator �̂n converges to �
�
0 in outer probability as n!1.

Proof. (a) For " > 0, let
c(") = inf

k����0k�"
[Q(�)�Q(��0)]:

Since Q is continuous by Remark 22, Proposition 30 in Appendix A, and Proposition 43(c) in
Appendix F, since the setf� 2 � : k� � ��0k � "g is compact, and since Q(�) > Q(��0) for any
� 6= ��0, we conclude that c(") > 0. It follows from Proposition 44(b) in Appendix F that, for
any � > 0,

sup
�2�

jQn;k(�)�Q(�)j � �

on events having inner probability tending to 1 as min(n; k) ! 1. Choose � > 0 such that
� < c(")=2. Since

inf
k����0k�"

[Qn;k(�)�Qn;k(��0)] � inf
k����0k�"

[Q(�)�Q(��0)]� 2 sup
�2�

jQn;k(�)�Q(�)j

it then follows that
inf

k����0k�"
[Qn;k(�)�Qn;k(��0)] � c(")� 2� > 0

on events having inner probability going to 1 as min(n; k) ! 1. Together with Proposition 20
this implies that k�̂n;k � ��0k < ", at least on events having inner probability tending to 1 as
min(n; k)!1.
(b) Analogous.

Remark 24 (i) It follows from Proposition 30 in Appendix A together with Remark 22 that the
assumptions of Proposition 21(c) are satis�ed under the assumptions of Part (a) of the above
proposition (and they are trivially satis�ed under the assumptions of Part (b)). Consequently,
under the assumptions of the above proposition, Q always has a minimizer over �. Hence, the
assumption in the above proposition that Q has a unique minimizer is in fact only a uniqueness
assumption.
(ii) We do not strive for utmost generality in the consistency result for MD-estimators; pos-

sible relaxations lie in weakening the assumptions that P� � L2(
) and that ��0 is unique.
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5.2 Asymptotic Normality of SMD-Estimators

We next show that SMD- and MD-estimators are asymptotically normally distributed, with their
asymptotic variance-covariance matrix reaching the Cramér-Rao bound in case the parametric
model P� is correctly speci�ed. We �rst prove the result for MD-estimators and then show how
this can be carried over to SMD-estimators. To this end we introduce a further assumption which
is standard in maximum likelihood theory.

Assumption P.5 The interior �� of � � Rm is non-empty. For every x 2 
 the function
� 7! p(x; �) is twice continuously partially di¤erentiable on ��, and the following domination
conditions hold for all i; j = 1; : : : ;m:

Z




sup
�2��

����
@p

@�i
(x; �)

����
2

d�(x) <1;
Z




sup
�2��

����
@2p

@�i@�j
(x; �)

���� d�(x) <1:

We note that under the assumptions of the subsequent theorem, as well as under the assump-
tions of Theorem 27, the function Q always possesses a minimizer (cf. Proposition 21(c) and
Remark 22, as well as Proposition 30 in Appendix A in case of Theorem 27); furthermore, the
Hessian matrix of Q(�) exists for every � 2 ��, cf. Lemma 46 in Appendix F which provides an
explicit formula. We shall write J(�) for 1=2 times the Hessian matrix of Q(�).

Theorem 25 Let Assumptions D.3, P.1, P.2, P.4, P.5 be satis�ed. Suppose that the minimizer
��0 of Q over � is unique and belongs to �

�, and suppose that the matrix J(��0) is positive de�nite.
Furthermore, assume that the �rst-order partial derivatives @p

@�i
(�; ��0) belong to Ws

2(
) for some
s > 1=2 and for all i = 1; : : : ;m. Then

p
n(�̂n � ��0) N(0; J(��0)

�1I(��0)J(�
�
0)
�1) as n!1;

where I(��0) is given by

Z




@p

@�
(�; ��0)

@p

@�0
(�; ��0)p2��0p

�3
N
d��

Z




@p

@�
(�; ��0)p��0p

�1
N
d�

Z




@p

@�0
(�; ��0)p��0p

�1
N
d�;

which is well-de�ned and nonnegative de�nite. If, additionally, P� is correctly speci�ed in the
sense that pN = p�0 a.e. for some �0 2 �, then ��0 = �0 and I(�0) = J(�0) hold, and I(�0)
coincides with the Fisher-information matrix.

Proof. Step 1: Assume �rst that � > 0. By Proposition 23(b), �̂n belongs to a su¢ciently
small open ball, centered at ��0 and contained in �

�, on subsets En of the sample space that have
inner probability tending to 1 as n!1. Consequently,

@Qn
@�

(�̂n) = 0

holds on En. Applying the mean-value theorem to each component of @Qn=@� then yields on
En p

n
@Qn
@�

(��0) + J(�
�
0)
p
n(�̂n � ��0) + (Hn � J(��0))

p
n(�̂n � ��0) = 0; (29)

where Hn is the Hessian matrix of Qn with i-th row evaluated at some mean value ��n;i on the

line segment that joins ��0 and �̂n. Observe that Hn converges to the invertible matrix J(�
�
0) in

outer probability by Proposition 23, Proposition 47 in Appendix F, and continuity of J(�) on ��
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(cf. Lemma 46 in Appendix F). We next show that the score evaluated at ��0 satis�es a central
limit theorem. To this end let v 2 Rm be arbitrary, and use Lemma 46(a) to obtain

v0
p
n
@Qn
@�

(��0) = 2
p
n

Z




(p̂n � pN)2v0
@p

@�
(�; ��0)

p��0
p̂np2N

d�

�2
p
n

Z




(p̂n � pN)v0
@p

@�
(�; ��0)

p��0
p2N
d�

�2
p
n

Z




(pN � p��0 )v
0 @p

@�
(�; ��0)

1

pN
d�

= I+ II+ III:

Observe that Expression III equals
p
nv0(@Q=@�)(��0) by Lemma 46(b) in Appendix F. Since �

�
0

is an interior minimizer of Q by assumption, Expression III is 0.
Convergence of I: By assumption v0 @p@� (�; �

�
0) belongs to W

s
2(
) with s > 1=2 and is thus

sup-norm bounded by Cskv0 @p@� (�; �
�
0)ks;2 < 1. Clearly,

p��0 p̂
�1
n p�2N




� ��3CtD holds in view

of Assumption P.1. Hence,

I � 2Cs
v

0 @p

@�
(�; ��0)


s;2

��3CtD
p
nkp̂n � pNk22:

Consequently, Expression I converges to 0 in outer probability by Proposition 11(a) applied with
s = 0.
Convergence of II: Set r = min(s; t) > 1=2. Observe that �2v0(@p=@�)(�; ��0) 2 Wr

2(
) by
assumption, that p��0 2 Wr

2(
) by Assumption P.1, and that pN 2 Wr
2(
) by Assumption D.1.

Since � > 0 has been assumed, it follows that

f := �2v0 @p
@�
(�; ��0)

p��0
p2N

belongs to Wr
2(
) in view of Proposition 1(a),(d). Applying Theorem 14(a) with F = ffg we

obtain that II converges in distribution to a centered normal distribution with variance 4v0I(��0)v.
By the Cramér-Wold device,

p
n(@Qn=@�)(�

�
0) asymptotically follows a centered normal distrib-

ution with variance-covariance matrix 4I(��0). Nonnegative de�niteness of I(�
�
0) is now an imme-

diate consequence and the asymptotic distribution of
p
n(�̂n � ��0) follows easily from (29). The

claims under correct speci�cation of the model P� follow easily from Lemma 46(b) in Appendix
F.
Step 2: Now assume that � = 0. Note that infx2
 pN(x) > 0 and inf
�� p(x; �) > 0 because

of Assumptions D.3 and P.2. Let � > 0 be such that infx2
 pN(x) > � and inf
�� p(x; �) > �.
Then it follows from Proposition 21(b) that there are events that have probability tending to

1 such that on these events �̂n coincides with an MD-estimator ��n that is based on P(t; �;D)
instead of P(t; �;D). Since the assumptions of the theorem are also satis�ed with P(t; �;D)
instead of P(t; �;D), applying to ��n what has already been established in Step 1 completes the
proof.

The following lemma will be instrumental in proving the asymptotic normality result for
SMD-estimators.

Lemma 26 Let U � Rm be a (non-empty) open, convex set. Let f : U ! R and g : U ! R be
functions such that g is twice partially di¤erentiable on U with Hessian satisfying

inf
x2U

y0
@2g

@x@x0
(x)y � Kkyk2 (30)
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for all y 2 Rm and some 0 < K <1. If u is a minimizer of f over U and v is a minimizer of
g over U , then

ku� vk � 2K�1=2
p
kf � gkU :

Proof. Suppose that minimizers u and v exist, since otherwise there is nothing to prove. As v
is a minimizer of the twice partially di¤erentiable function g on the convex open set U , we have
(by a pathwise Taylor series expansion) that

g(u) = g(v) +
1

2
(u� v)0 @

2g

@x@x0
(�v)(u� v);

where �v lies in the convex hull of fu; vg � U . By (30) we obtain

ku� vk �
p
2K�1=2

p
jg(u)� g(v)j: (31)

Next, note the inequality

f(u)� g(u) � f(u)� g(v) � f(v)� g(v)

which implies
jf(u)� g(v)j � kf � gkU ;

which in turn yields

jg(u)� g(v)j � jg(u)� f(u)j+ jf(u)� g(v)j � 2kf � gkU :

Plugged into (31) this proves the result.

The asymptotic normality result for SMD-estimators is now as follows.

Theorem 27 Let Assumptions D.3, P.1, P.5, R.2 be satis�ed. Suppose that the minimizer ��0
of Q over � is unique and belongs to ��, suppose that the matrix J(��0) is positive de�nite, and
assume that the �rst-order partial derivatives @p

@�i
(�; ��0) belong to Ws

2(
) for some s > 1=2 and
for all i = 1; : : : ;m. Suppose further that either (i) Assumption P.2 is satis�ed and k(n) satis�es
k(n)=n2+1=t !1 as n!1; or (ii) Assumption P.3 is satis�ed and k(n) satis�es k(n)=n2 !1
as n!1. Then

p
n(�̂n;k(n) � ��0) N(0; J(��0)

�1I(��0)J(�
�
0)
�1) as n!1;

where I(��0) is given as in Theorem 25, is well-de�ned, and is nonnegative de�nite. If, addition-
ally, P� is correctly speci�ed in the sense that pN = p�0 a.e. for some �0 2 �, then ��0 = �0 and
I(�0) = J(�0) hold, and I(�0) coincides with the Fisher-information matrix.

Proof. Step 1: Assume that � > 0. Observe �rst that the assumptions of the current theorem
imply the assumptions of Theorem 25, noting that Assumption P.4 follows from Assumptions
P.1 and R.2 in view of Proposition 30 in Appendix A. It hence su¢ces to prove that

p
n(�̂n;k(n) � �̂n) = o�Pr(1) as n!1. (32)

We achieve this by applying Lemma 26 to the objective functions Qn;k and Qn: Let U be
a su¢ciently small open, convex neighbourhood of ��0 that is contained in �

� such that the
smallest eigenvalue of J(�) is bounded from below by a positive constant for all � 2 U , the
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constant not depending on �. Such a set U exists, since J(��0) is positive de�nite by assumption
and J(�) is continuous on �� by Lemma 46 in Appendix F. Since for all i; j = 1; : : : ;m

sup
�2��

����
@2Qn
@�i@�j

(�)� @2Q

@�i@�j
(�)

���� = oP(1) as n!1

by Proposition 47 in Appendix F, it follows that there are events En having probability tending
to 1 as n!1 such that on En

inf
�2U

y0
@2Qn

@�@�0
(�)y � Kkyk2 for all y 2 Rm

holds for some constant K > 0 which does not depend on n or the data. By Propositions 23,
�̂n and �̂n;k(n) belong to U on subsets E

0
n of the sample space whose inner probability goes to 1

as n ! 1. For the rest of the proof of Step 1 we restrict our reasoning to the events En \ E0n,
and note that they have inner probability tending to 1 as n ! 1. By Proposition 21(a) and
Proposition 20(a) the estimators �̂n and �̂n;k(n), respectively, minimize the objective functions

Qn and Qn;k(n). Hence, we may apply Lemma 26 with f = Qn;k(n)jU , g = QnjU , u = �̂n;k(n),
and v = �̂n to obtain

k�̂n;k(n) � �̂nk � 2K�1=2
q
kQn;k(n) �QnkU :

It follows from Proposition 44(c) in Appendix F and the choice of k(n) that (32) holds under (i)
as well as under (ii).
Step 2: Now assume that � = 0. Note that infx2
 pN(x) > 0 and inf
�� p(x; �) > 0 because

of Assumptions D.3 and P.2 (P.3, respectively). Let � > 0 be such that infx2
 pN(x) > � and
inf
�� p(x; �) > �. Then it follows from Proposition 21(b) and Proposition 20(c) that there

are events Cn;k(n) having probability tending to 1 as n ! 1 such that on these events �̂n;k(n)
coincides with a SMD-estimator ��n;k(n) that is based on P(t; �;D) instead of P(t; �;D). Since
the assumptions of the theorem are also satis�ed with P(t; �;D) instead of P(t; �;D), applying
to ��n;k(n) what has already been established in Step 1 completes the proof.

Remark 28 The preceding theorem was proved by showing that �̂n;k(n) and �̂n are su¢ciently
close and by applying Theorem 25. The reason for going this route instead of directly applying
a mean-value expansion to the score @Qn;k(n)=@� is that this would require knowledge about
di¤erentiability properties of the mapping � 7! ~pk(n)(�), which we were unable to obtain. [The
usual approach to establish such di¤erentiability properties via the implicit function theorem is
not feasible here since ~pk(n)(�) falls on the boundary of P(t; �;D) as shown in Proposition 6.]
A consequence of the method of proof chosen is that we have to assume at least k(n)=n2 !1.
It is likely, that if the more direct method of proof via expansion of the score @Qn;k(n)=@� can
be made to work, this would deliver asymptotic normality under weaker conditions on k(n); see
Nickl & Pötscher (2009) where density estimators other than NPML-estimators are used.

A Appendix: Proofs for Sections 2 and 3

Proof of Proposition 1: For a proof of Part (a) see, e.g., Part 6 of Proposition 2 in Nickl
(2007). Part (b) follows from Section 2.7.1, Formula (12), in Triebel (1983) additionally noting
that (by Proposition 3.4.2 in Triebel, 1983)Ws

2(
) is equal to the space B
s
2;2(
) (as de�ned there)

up to equivalent semi-norms. For Part (c) see Theorem 1.16.1 in Lions & Magenes (1972). We
�nally prove Part (d): By the already established Part (b), F is a bounded subset of Cs�1=2(
).
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Hence, every f 2 F has classical derivatives f (�) at least for 0 � � � bsc � 1 (since bsc � 1 �
bs � 1=2c), and each of these derivatives is sup-norm bounded uniformly by the �nite constant
c = supf2F kfks�1=2;
. Furthermore, since f (bsc)w 2 L2(
) by the assumptions, it follows from
Theorem 2.1.4 in Ziemer (1989) that f (bsc�1) is absolutely continuous, and hence f (bsc) exists
a.e. and coincides with the weak derivative on a set of full Lebesgue measure. The derivatives of
1=f can now be computed for 0 � � � bsc by the classical rules for di¤erentiation, leading to

(1=f)
(�)
= �f (�)=f2 + P�

�
1=f; f (1); : : : ; f (��1)

�
; (33)

where P� is a polynomial in � variables which is completely determined solely by �. Note
that the equality in (33) holds everywhere for � < bsc, but may only hold a.e. for � = bsc.
Let � = infx2
;f2F f(x), which is positive by the assumptions. It follows from the remarks at
the beginning of this proof that

P�
�
1=f; f (1); : : : ; f (��1)

�


is bounded by a �nite constant

uniformly over f 2 F for 0 � � � bsc. Consequently, the same is true for the L2(
)-norm of
P�
�
1=f; f (1); : : : ; f (��1)

�
. Furthermore,

f (�)=f2

2
� ��2

f (�)

2
which is bounded by a �nite

constant uniformly in f 2 F for every 0 � � � bsc, since F is a bounded subset of Ws
2(
). This

proves the claim in case s is integer. If s is not an integer, we additionally have to establish a
bound, uniformly in f 2 F , for

Z




Z




��
f (bsc)=f2

�
(x)�

�
f (bsc)=f2

�
(y)
�2
jx� yj�(1+2(s�bsc)) d�(x)d�(y) (34)

and

Z




Z




�
Pbsc

�
1=f; f (1); : : : ; f (bsc�1)

�
(x)� Pbsc

�
1=f; f (1); : : : ; f (bsc�1)

�
(y)
�2

jx� yj(1+2(s�bsc))
d�(x)d�(y): (35)

Since F is a bounded subset of Cs�1=2(
), it follows that f (�), for 0 � � � bsc � 1, is Hölder
of order at least � with Hölder constant not exceeding c where � = s� 1=2� bs� 1=2c in case
bs � 1=2c = bsc � 1, and � = 1 in case bs � 1=2c = bsc (using the mean value theorem). Since
the derivatives involved are also sup-norm bounded uniformly in f 2 F and since � > 0 holds,
it follows that Pbsc

�
1=f; f (1); : : : ; f (bsc�1)

�
is Hölder of order � in both cases, with a Hölder

constant that can be chosen independently of f 2 F . Hence, the integral (35) is bounded by a
�nite constant, that is independent of f 2 F , times

RR
jx� yj� d�(x)d�(y) which is �nite since

� = 2� � (1 + 2(s� bsc)) satis�es �1 < � � 0 in both cases. The integral in (34) is bounded by

2��4
Z




Z




�
f (bsc)(x)� f (bsc)(y)

�2
jx� yj�(1+2(s�bsc)) d�(x)d�(y)

+8c4��8
Z




Z




�
f (bsc)(y)

�2
jx� yj� d�(x)d�(y);

using the fact that f is sup-norm bounded and Hölder as mentioned earlier. The �rst one of
these two integrals now is clearly bounded by 2��4 supf2F kfk2s;2. The second one is bounded
by

8c4��8 sup
f2F

f (bsc)

2

2
sup
y2


Z




jx� yj� d�(x) � 16c4��8 sup
f2F

kfk2s;2 [(b� a)=2]
�+1

=(� + 1) <1;

where a and b denote the endpoints of 
. �
Proof of Proposition 2: (a) The implications (i) in (ii) and (ii) in (iii) are obvious. If p

is an element of P(t; �;D), we have 1 =
R


p d� �

R


�d� = ��(
) showing that � � �(
)�1.
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Furthermore, the Cauchy-Schwarz inequality implies 1 = kpk1 � kpk2 k1k2 � kpkt;2 k1k2 �
D�(
)1=2, which implies �(
)�1 � D2. Thus (iii) implies (i).
(b) Suppose (i) holds. Then �(
)�1 2 P(t; �;D) by Part (a). Suppose p 2 P(t; �;D). If now

� = �(
)�1, then p��(
)�1 � 0. But clearly
R



�
p� �(
)�1

�
d� = 0, implying that p = �(
)�1

�-a.e., and hence everywhere by continuity of p. If �(
)�1 = D2, then kpk1 = kpk2 k1k2 follows
from the calculations in the proof of Part (a). But this shows that p is �-a.e., and hence
everywhere by continuity of p, proportional to the constant function 1, the proportionality factor
necessarily being �(
)�1. This proves that (i) implies (ii). That (ii) implies (iii) is trivial. Since
the constant density �(
)�1 belongs to P(t; �;D) by Part (a), (iii) is equivalent to (ii). To show
that (ii) implies (i), assume that � < �(
)�1 < D2. Choose " > 0 small enough such that
� < �(
)�1� " holds. Then de�ne f to be the restriction to 
 of the a¢ne function that has the
value �(
)�1�" at the left endpoint of 
 and �(
)�1+" at the right endpoint. By construction
f 2 Wt

2(
), integrates to 1, satis�es inf
 f � �, and kfkt;2 � D provided " is small enough.
That is, f is a further element of P(t; �;D), contradicting (ii).
(c) Note that P(t; �;D) is non-empty by Part (a). Since the de�ning conditions are convex,

it is convex. That P(t; �;D) is compact as claimed follows from Lemma 3 in Nickl (2007). [Note
that the proof of this lemma does not use that � > 0, as is implicit there, and therefore is also
valid for � = 0.] �
Proof of Proposition 3: Since (a) is a special case of (b) it su¢ces to prove the latter:

Suppose P 0 satis�es (i) and (ii), and choose � > 0 small enough such that � < D� supp2P0 kpkt;2
and Ct� < infx2
;p2P0 p(x) � � hold, where Ct is the constant appearing in Proposition 1. For
every p 2 P 0 and f 2 Wt

2(
) with kfkt;2 � � we then have kp + fkt;2 � kpkt;2 + kfkt;2 �
supp2P0 kpkt;2 + � < D and inf
(p+ f) � inf
 p� sup
 f � infx2
;p2P0 p(x)� Ct� > � (for the
latter using Proposition 1). This shows that Ut;�(p)\Ht is a subset of P(t; �;D) for every p 2 P 0.
Conversely, suppose P 0 is uniformly interior to P(t; �;D) relative to Ht. We �rst establish (i):
Let � > 0 be the radius �guring in the de�nition of being uniformly interior and let p 2 P 0 be
arbitrary. Choose a q 2 Ht di¤erent from p and de�ne f = �(q � p)=(2kq � pkt;2). [Note that q
and hence f may depend on p.] Then f 6= 0, kfkt;2 = �=2 < �, and

R


fd� = 0 hold. Observe

that p+f and p�f then both belong to Ut;�(p)\Ht and hence to P(t; �;D), since Ut;�(p)\Ht �
P(t; �;D) by assumption; in particular kp+ fkt;2 � D and kp� fkt;2 � D is satis�ed. Since the
Sobolev-norm originates from an inner product, we have kp+fk2t;2+kp�fk2t;2 = 2

�
kpk2t;2 + kfk2t;2

�

and thus kpk2t;2 � D2 � �2=4. Since this is true for every p 2 P 0 we obtain (i). We �nally prove
(ii): Let xn 2 
 and pn 2 P 0 satisfy pn(xn) ! infx2
;p2P0 p(x). The sequence xn has a cluster
point x0 in the closure �
 of the interval 
. There exists a su¢ciently small neighborhood A of
x0 in �
 and a C

1 function h satisfying h(x) = �1 for all x 2 A \ 
 (which is non-empty) as
well as

R


hd� = 0. Furthermore, h can be chosen to be bounded with all its derivatives having

compact support contained in 
; consequently, h 2 Wt
2(
). Since P 0 is uniformly interior to

P(t; �;D) relative to Ht by assumption, it follows that pn +�h 2 P(t; �;D) for su¢ciently small
� > 0, where � can be chosen independently of n. Consequently, inf
 (pn + �h) � � must hold.
But this implies pn(xn) � inf
 pn = infA\
 pn = infA\
 (pn � �) + � = infA\
 (pn + �h) + � �
inf
 (pn + �h)+� � �+�, which in turn implies infx2
;p2P0 p(x) � �+� > �. Finally, we prove
Part (c): Note that �(
)�1 2 P(t; �;D) by Proposition 2. It is interior to P(t; �;D) relative to
Ht by Part (a) of the current proposition and the assumption � < �(
)�1 < D2. The second
claim then follows from Theorem V.2.1. in Dunford and Schwartz (1966). �
Proof of Proposition 4: To show that (v) implies (vi), it su¢ces, in light of Part (c) of

Proposition 1, to show that kpn� pks;2 converges to 0 for arbitrary s � r satisfying 1=2 < s < t.
Since P(t; �;D) is a compact subset of Ws

2(
) in view of Proposition 2, for any subsequence pn0
of pn there exists a further subsequence pn00 of pn0 and a p

� 2 P(t; �;D) such that kpn00 � p�ks;2
converges to 0. By Part (c) of Proposition 1, we then have that also kpn00 � p�kr;2 converges to

32



0 since s � r. Because also kpn00 � pkr;2 converges to 0 as a consequence of (v) and keeping in
mind that p and p� are continuous, it follows that p� = p. This shows that kpn� pks;2 converges
to 0. Furthermore, (i) implies (ii), (ii) implies (iii), and (iii) implies (iv). That (vi) implies (i)
is a direct consequence of Part (b) of Proposition 1. It remains to show that (iv) implies (v).
Choose r such that 1=2 < r < t. The same compactness argument as above shows that for
any subsequence pn0 of pn there exists a further subsequence pn00 of pn0 and a p

� 2 P(t; �;D)
such that kpn00 � p�kr;2 converges to 0. By Part (b) of Proposition 1, we have that kpn00 � p�k

converges to 0. Consequently, p and p� coincide on a dense subset of 
. Since p and p� are
continuous, they are identical. This shows that kpn00 � pkr;2 converges to 0, and hence the same
is true for the entire sequence pn. �

Remark 29 We note that P(t; �;D) can equivalently be written as
�
p 2Wt

2(
) :

Z




p d� = 1; inf
x2


p(x) � �; kp� ��1(
)k2t;2 � D2 � ��1(
)
�

because p���1(
) and 1 are orthogonal in Wt
2(
). As a consequence, P(t; 0; D) = P(t; �;D) at

least for all 0 � � � ��1(
)� Ct
�
D2 � ��1(
)

�1=2
, since p 2 P(t; 0; D) implies infx2
 p(x) � �

for such � by Proposition 1(b).

Assumptions on the density functions in the class P� and on the simulation mechanism � are
of course related to each other, but the interrelationship is somewhat intricate. The following
proposition collects two important observations.

Proposition 30 If Assumption P.1 is satis�ed, then Assumption R.1 implies Assumption P.4.
However, in general Assumption R.1 does not imply Assumption P.4.

Proof. The �rst claim is proved as follows: Let F (z; �) =
R
fx2
: x�zg

p� d� be the distribution

function on 
 that is associated with p�. Let �n; � 2 � be such that �n converges to �. Now
Assumption R.1 implies that �(�; �n) converges to �(�; �) in distribution under �. Noting that
F (�; �) and F (�; �n) are the distribution functions of �(�; �) and �(�; �), respectively, as well as
noting that F (�; �) is continuous in its �rst argument, it follows that F (z; �n) converges to F (z; �)
for every z 2 
. By Assumption P.1 and sup-norm compactness of P(t; �;D) it follows that
every subsequence p�n0 of p�n has a further subsequence p�n00 that converges to an element p

� 2
P(t; �;D) in the sup-norm. But this clearly implies that F (z; �n00) converges to

R
fx2
: x�zg

p� d�

for every z 2 
. It follows that p� = p� a.e., hence everywhere on 
 by continuity of p� and p�.
This proves the �rst claim. For a proof of the second claim see Proposition 5 in Gach (2010).

B Appendix: Properties of the Non-Parametric Likelihood

Function

Proposition 31

(a) For every non-negative B(
)-measurable real-valued function f the map (x1; : : : ; xn) 7!
Ln(f ;x1; : : : ; xn) is B(
)n-B([�1;1))-measurable, and the map (v1; : : : ; vk) 7! Lk(�; f ; v1; : : : ; vk)
is Vk-B([�1;1))-measurable for every � 2 �.
(b) Let F be a set of non-negative bounded real-valued functions on 
.

(b1) Then, for every (x1; : : : ; xn) 2 
n, f 7! Ln(f ;x1; : : : ; xn) is a continuous map from
(F ; k � k
) to [�1;1). The same is true for the map f 7! Lk(�; f ; v1; : : : ; vk) for every � 2 �
and every (v1; : : : ; vk) 2 V k.
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(b2) If the elements f 2 F are additionally also continuous and Assumption R.1 is
satis�ed, then, for every (v1; : : : ; vk) 2 V k, (�; f) 7! Lk(�; f ; v1; : : : ; vk) is a continuous map
from �� (F ; k � k
) to [�1;1).
(c) Let F be a set of non-negative bounded B(
)-measurable real-valued functions on 
 that

are uniformly bounded away from 0.
(c1) Then L(f) is a continuous real-valued function on (F ; k � k
). The same is true for

L(�; f) for every given � 2 �.
(c2) If the elements f 2 F are additionally also continuous and Assumption R.1 is

satis�ed, then L(�; f) is a continuous real-valued function on �� (F ; k � k
).
(d) Let F be a sup-norm compact set of non-negative bounded B(
)-measurable real-valued

functions on 
 that are uniformly bounded away from 0.
(d1) Then

lim
n!1

sup
f2F

jLn(f)� L(f)j = 0 P-a.s.,

and, for every � 2 �,
lim
k!1

sup
f2F

jLk(�; f)� L(�; f)j = 0 �-a.s.

(d2) If the elements f 2 F are additionally also continuous and Assumption R.1 is
satis�ed, then

lim
k!1

sup
��F

jLk(�; f)� L(�; f)j = 0 �-a.s.

(In Part (d) we use the convention that the supremum is 0 if F is empty.)

Proof. (a) The �rst claim is clear as f is B(
)-B([0;1))-measurable by hypothesis and the
extended logarithm is B([0;1))-B([�1;1))-measurable. For the second claim additionally use
that � : V ��! 
 is V-B(
)-measurable in the �rst argument for every � 2 �.
(b) To prove the �rst claim in Part (b1), �x (x1; : : : ; xn) 2 
n. Let fl; f 2 F be such that

kfl � fk
 converges to 0. Since setting log 0 = �1 continuously extends the logarithm to the
interval [0;1), log fl(xi) then converges to log f(xi) for every i, thus establishing the �rst claim.
The second claim in Part (b1) is proved analogously. To prove Part (b2), �x (v1; : : : ; vk) 2 V k
and let �l; � 2 � and fl; f 2 F be such that k�l � �k and kfl � fk
 converge to 0. Use the
triangle inequality to obtain for every i

jfl(�(vi; �l))� f(�(vi; �))j � jfl(�(vi; �l))� f(�(vi; �l))j+ jf(�(vi; �l))� f(�(vi; �))j
� kfl � fk
 + jf(�(vi; �l))� f(�(vi; �))j: (36)

The �rst expression on the r.h.s. of (36) converges to 0 by hypothesis. Making use of Assumption
R.1 and the continuity of f , the second one converges to 0 as well. Continuity of the extended
logarithm on [0;1) delivers Part (b2).
(c) To prove the �rst claim in Part (c1), denote by � > 0 the lower uniform bound of all

elements in F . Let fl; f 2 F be such that kfl�fk
 converges to 0. Then ffl : l 2 Ng is bounded
by some B, 0 < B <1. Since the logarithm is bounded on [�;B], the domination condition

Z




sup
l2N

jlog fl(x)j dP(x) <1

is satis�ed. By the already established Part (b1) (with n = 1), log fl(x) converges to log f(x)
for every x 2 
. The �rst claim then follows from the theorem of dominated convergence. The
second claim in Part (c1) is proved in exactly the same manner. To prove Part (c2), let �l; � 2 �
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and fl; f 2 F be such that k�l � �k and kfl � fk
 converge to 0. By the same argument as
before, the domination condition

Z

V

sup
�2�

sup
l2N

jlog fl(�(v; �))j d�(v) <1

is satis�ed. By the already established Part (b2) (with k = 1), log fl(�(v; �l)) converges to
log f(�(v; �)) for every v 2 V . Part (c2) then follows from the theorem of dominated convergence.
(d) To prove the �rst claim in Part (d1), we use Mourier�s strong law of large numbers as

given in Corollary 7.10 of Ledoux & Talagrand (1991) with the separable Banach space (B; k � k)
given by (C(F ; k � k
); k � kF ) and the mapping X given by X(f) = log f(X1) �

R


log fdP for

f 2 F . Note that X has values in C(F ; k � k
) by using the already established Parts (b1) and
(c1) in conjunction with the assumed sup-norm compactness of F . Clearly, X(f) is a random
variable for every f 2 F , and hence X is measurable with respect to the �-�eld on C(F ; k � k
)
that is generated by the point-evaluations. Since this �-�eld coincides with the Borel �-�eld on
C(F ; k � k
) (see, e.g., Problem 1 in Section 1.7 in van der Vaart & Wellner (1996) and observe
that (F ; k � k
) is a compact metric space), X is a Borel random mapping. The integrability
condition E kXk <1 follows from

Z




sup
f2F

j log f(x)jdP(x) <1;

which is true since the elements of F are uniformly bounded and uniformly bounded away from
0 by hypothesis. The second claim in Part (d1) is proved completely analogously. Part (d2) is
proved in a similar manner: Apply Corollary 7.10 in Ledoux & Talagrand (1991) with B the
separable Banach space of all bounded, continuous functions on ��(F ; k�k
) equipped with the
sup-norm k �k��F and with X given by X(�; f) = log f(�(V1; �))�

R
V
log f(�(�; �))d�. Note that

by the already established Parts (b2) and (c2) in conjunction with compactness of ��(F ; k�k
),
X takes its values in the space of (bounded) continuous functions on � � (F ; k � k
). Again X
is a Borel random mapping. The integrability condition E kXk <1 now follows from

Z

V

sup
�2�

sup
f2F

j log f(�(v; �))jd�(v) <1;

which is true since the elements of F are uniformly bounded and uniformly bounded away from
0 by hypothesis.

Proof of Lemma 8: (a) It is su¢cient to show that
Z




(log(pN))
�
dP =

Z

fx2
: pN(x)>0g

(log(pN))
�
pNd� <1:

By Assumption D this is equivalent to showing that
Z

fx2
: 0<pN(x)�1g

h(pN)d� <1; (37)

where h(y) is de�ned by h(y) = �y log y for every y 2 (0; 1]. Since h : (0; 1] ! [0;1) can be
continuously extended to [0; 1] by setting h(0) = 0, it is bounded on the compact interval [0; 1],
and a fortiori on (0; 1]. But this establishes (37) since �(
) < 1 and thus completes the proof
for L. The proof for L(�; �) is analogous upon observing that

Z

V

(log p�(�(�; �)))� d� =
Z

fx2
: p(x;�)>0g

(log(p�))
�
p�d� (38)
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by the change of variable theorem.
(b) For any p 2 P(t; �;D) di¤erent from pN, the set fx 2 
 : p(x) 6= pN(x) > 0g has positive

P-probability since p and pN are continuous functions on 
. In view of the already established
Part (a) the expression L(p)� L(pN) is well-de�ned, and the strict Jensen inequality gives

L(p)� L(pN) =
Z

fx2
: pN(x)>0g

log
p

pN
dP < log

Z

fx2
: pN(x)>0g

p

pN
dP � 0:

(c) Follows similarly to Part (b) in view of the representation

L(�; p�) =

Z

fx2
: p(x;�)>0g

log(p�)p�d�:

�

Part (a) of the following proposition is essentially given in Proposition 3 in Nickl (2007). [We
note that the set V de�ned there is not sup-norm open as implicitly claimed, the apparently
intended de�nition in the notation of Nickl (2007) being V = fd 2 L1(
) : infx2
 d(x) > �=2g.
Inspection of the proof shows that this proposition remains correct for � = 0.] The proof for
Part (b) is completely analogous.

Proposition 32 De�ne U = ff 2 L1(
) : infx2
 f(x) > 0g. Let � be a positive integer, f 2 U ,
and f1; : : : ; f� 2 L1(
).
(a) The �-th Fréchet derivatives of Ln : U ! R and L : U ! R are given by

D
�Ln(f)(f1; : : : ; f�) = (�1)��1(�� 1)!Pn(f��f1 � � � f�);

D
�L(f)(f1; : : : ; f�) = (�1)��1(�� 1)!P(f��f1 � � � f�):

(b) The �-th partial Fréchet derivatives of Lk : �� U ! R and L : �� U ! R with respect
to the second variable are, for � 2 �, given by

D
�Lk(�; f)(f1; : : : ; f�) = (�1)��1(�� 1)!�k(f��(�(�; �))f1(�(�; �)) � � � f�(�(�; �)));

D
�L(�; f)(f1; : : : ; f�) = (�1)��1(�� 1)!�(f��(�(�; �))f1(�(�; �)) � � � f�(�(�; �)))

= (�1)��1(�� 1)!
Z




f��f1 � � � f� p�d�:

The next result is a uniform version of Lemma 2 in Nickl (2007). It provides rates of con-
vergence for all derivatives of the auxiliary log-likelihood function that hold uniformly in � and
p.

Proposition 33 Let � be a positive integer, and let H1; : : : ;H� be bounded subsets of some
Sobolev space Ws

2(
) of order s > 1=2. If Assumption R.2 and � > 0 are satis�ed, then

sup
��P(t;�;D)

kD�Lk(�; p)�D�L(�; p)kH1�����H�
= O�(k

�1=2) as k !1: (39)

Proof. Note that

sup
��P(t;�;D)

kD�Lk(�; p)�D�L(�; p)kH1�����H�
= (�� 1)! k�k � �kH�
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by Proposition 32, where H� = fh(�(�; �)) : h 2 H; � 2 �g and

H =
�
p��h1 � : : : � h� : p 2 P(t; �;D); h1 2 H1; : : : ; h� 2 H�

	
:

Since � > 0, the classH is a bounded subset of the Sobolev-spaceWr
2(
) with r = min(t; s) > 1=2

by Proposition 1. Measurability of the supremum on the l.h.s. of (39) now follows immediately
from Proposition 38 in Appendix D. The class H� is �-Donsker by an application of Proposi-
tion 12(a), hence k�k � �kH� is bounded in probability at rate k�1=2 by Prohorov�s theorem.

The following lemma is a special case of Berge�s (1963) maximum theorem.

Lemma 34 Let X be a metrizable space and Y a compact metrizable space. Let u : X � Y !
[�1;1) be a continuous function that has a unique maximizer, say v(x), on the �ber f(x; y) :
y 2 Y g for every x 2 X. Then the mapping v : X ! Y is continuous.

C Appendix: Proofs for Section 4.2

The following lemma is a consequence of Birman and Solomyak (1967), cf. Lorentz, v.Golitschek,
and Makovoz (1996), p. 506. It can also be obtained from Theorem 1 in Nickl & Pötscher (2007)
via a retraction argument; see Gach (2010).

Lemma 35 Let F be a bounded subset of the Sobolev space Ws
2(
) of order s > 1=2. Then the

sup-norm metric entropy of F satis�es

H(";F ;Ws
2(
); k � k
) . "�1=s:

Proof of Proposition 12: (a) Choose a real number r � s satisfying 1=2 < r < 3=2 and
2r � 1 � a, where a is as in Assumption R.2. Then F can also be viewed as a bounded subset
of Wr

2(
), and hence of C
r�1=2(
), in view of Proposition 1(b),(c). We use this to obtain

sup
f2F

jf(�(v; �0))� f(�(v; �))j � Lrj�(v; �0)� �(v; �)jr�1=2 � Lr
�
R(v)k�0 � �k

�r�1=2

for some �nite constant Lr > 0 and all v 2 V , all �; �0 2 �, where we have made use of
Assumption R.2. A cover of F� is obtained from suitable covers of � and F as follows: Fix " > 0
and set �(") = ("=Lr)

1=� , where � := (r � 1=2). To cover �, note that it is contained in an m-
cube of edge length l and thus in the union of at most dlpm=�(")em-many closed Euclidean balls
B(�i; �(")) with centers �i 2 � and radius �("), where dxe denotes the smallest integer not less
than x. To cover F , we take N(";F ;Ws

2(
); k � k
)-many sup-norm closed balls [fj � 2"; fj +2"]
of radius 2" whose centers fj already belong to F . [Note that this can always be achieved.] We
claim that the brackets

[fj(�(�; �i))�R�=(�)"� 2"; fj(�(�; �i)) +R�=(�)"+ 2"] (40)

with i = 1; : : : ; dlpm=�(")em and j = 1; : : : ; N(";F ;Ws
2(
); k � k
) provide a cover of F�. To see

this, let h 2 F�, that is, h = f(�(�; �)) for some � 2 � and f 2 F , implying that there are indices
i; j such that � 2 B(�i; �(")) and f 2 [fj � 2"; fj + 2"]. Consequently,

h 2 [fj(�(�; �))� 2"; fj(�(�; �)) + 2"]:
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Now,

h(v) � fj(�(v; �)) + 2" � fj(�(v; �i)) + jfj(�(v; �))� fj(�(v; �i))j+ 2"
� fj(�(v; �i)) +R

�=(v)"+ 2"

for all v 2 V , where the last inequality follows from the �rst display in the proof and the choice
of �("). Similarly,

fj(�(v; �i))�R�=(v)"� 2" � h(v):

By construction of r, we have that
R
V

�
R�=

�2
d� < 1, and hence the L2(�)-bracketing size of

any of the brackets in (40) can be bounded by " times a positive constant c that only depends on
R, r, and �. Using the elementary inequality dxem � max(1; (2x)m) this leads to the relationship

N[ ](c";F�; k � k2;�) � max(1;
�
2l
p
mL1=�r

�m
"�m=�)N(";F ;Ws

2(
); k � k
):

Apply Lemma 35 to get

H[ ](";F�; k � k2;�) . max(0; 1� log ") + "�1=s . "�1=s

which proves (15). The claim that F� is �-Donsker now follows from Ossiander�s central limit
theorem (see Theorem 7.2.1 in Dudley, 1999) since clearly F� � L2(V;V; �) holds.
(b) For any �xed " > 0, we take for F� the cover given in (40). Since the elements of F are

bounded below by � > 0, the sets

h
logmax(�; fj(�(�; �i))�R�=(�)"� 2"); log(fj(�(�; �i)) +R�=(�)"+ 2")

i
;

for i = 1; : : : ; dlpm=�(")em, j = 1; : : : ; N(";F ;Ws
2(
); k � k
) are non-empty brackets and cover

logF�. Since the logarithm is Lipschitz on [�;1) with Lipschitz constant ��1, the L2(�)-
bracketing size of these brackets can be bounded by ��1 times the L2(�)-bracketing size of the
corresponding brackets given in (40). Arguing now as in the proof of Part (a) completes the
proof. �

D Appendix: Measurability Issues and An Auxiliary Re-

sult

Lemma 36 Suppose t > 1=2. Then the Borel �-�elds B(Wt
2(
); k � k
), and B(Wt

2(
); k � ks;2)
for 0 � s � t all coincide. In particular, the norms k � k
 and k � ks;2 for 0 � s � t are
B(Wt

2(
); k � k
)-measurable.

Proof. Since the k � k
-topology on Wt
2(
) is coarser than the k � ks;2-topology on Wt

2(
), which
in turn is coarser than the k � kt;2-topology on Wt

2(
) (cf. Proposition 1), it su¢ces to show that
B(Wt

2(
); k � kt;2) � B(Wt
2(
); k � k
). The former �-�eld is generated by the collection of all

closed k � kt;2-balls since (Wt
2(
); k � kt;2) is separable. As shown in the proof of Lemma 3 in Nickl

(2007), these balls are k � k
-compact and hence belong to B(Wt
2(
); k � k
).

Proposition 37 (a) The quantities kp̂n � pNk
, kp̂n � pNks;2 for 0 � s � t, k~pk(�)� p�k
, and
k~pk(�)� p�ks;2 for 0 � s � t are random variables.
(b) Suppose Assumptions P.1 and R.1 are satis�ed. Then sup�2� k~pk(�) � p�k
 and

sup�2� k~pk(�)� p�ks;2 for 0 � s < t are random variables.
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Proof. (a) Follows immediately from Theorem 6 and Lemma 36. (b) By Assumption R.1
and Proposition 30 in Appendix A the parameterization � 7! p�(x) is continuous, and hence is
continuous in the k �k
- and k �ks;2-norms (0 � s < t) in view of Assumption P.1 and Proposition
4. By Theorem 6(b) and again Proposition 4 � 7! ~pk(�) � p� is then continuous in the same
norms. Since � is separable, (b) follows from Part (a).

Proposition 38 Suppose s > 1=2.
(a) Then

Xn(�x; f) =
p
n

�Z




p̂n(�;x1; : : : ; xn)f(�)d�� P(f)
�

and

Yn(�x; f) = n
�1=2

nX

i=1

(f(xi)� P(f))

are Borel measurable on 
n for every f 2 Ws
2(
), where �x denotes (x1; : : : ; xn) 2 
n. Further-

more, if F is a non-empty bounded subset of Ws
2(
), then supf2F jZn(�x; f)j is Borel measurable

on 
n, where Zn stands for any of Xn, Yn, and Xn �Yn.
(b) Then

Uk(�v; �; f) =
p
k

Z




(~pk(�)(�; v1; : : : ; vk)� p�(�)) f(�)d�

and

Vk(�v; �; f) = k
�1=2

kX

i=1

(f(�(vi; �))� �(f(�(�; �))))

are Borel measurable on V k for every � 2 � and every f 2Ws
2(
), where �v denotes (v1; : : : ; vk) 2

V k. Furthermore, if Assumption R.1 is satis�ed and F is a non-empty bounded subset of Ws
2(
),

then sup�2� supf2F jVk(�v; �; f)j is Borel measurable on V k; if, additionally, Assumption P.1
holds, then sup�2� supf2F jWk(�v; �; f)j is Borel measurable on V k, where Wk stands for any of
Uk and Uk �Vk.
(c) Then

Tk(�v; �; f) = k
�1

kX

i=1

~p�1k (�)(�(vi; �); v1; : : : ; vk)f(�(vi; �))

is Borel measurable on V k for every � 2 � and every f 2 Ws
2(
). Furthermore, if Assump-

tion R.1 is satis�ed, F is a non-empty bounded subset of Ws
2(
), and � > 0 holds, then

sup�2� supf2F jTk(�v; �; f)j is Borel measurable on V k.

Proof. (a) Since (x1; : : : ; xn) 7! p̂n(�;x1; : : : ; xn) is a measurable map from 
n into (P(t; �;D); k�
k
) by Theorem 6, since the map p 7! p

n
�R
pfd�� P(f)

�
is k � k
-continuous on P(t; �;D) for

every f 2 Ws
2(
), and since every f is clearly Borel measurable, we see that Xn(�x; f) as well as

Yn(�x; f) are Borel measurable on 

n for every f 2 Ws

2(
). Furthermore, it is easy to see that
Xn(�x; f) and Yn(�x; f), and thus also Xn(�x; f)�Yn(�x; f), are continuous on (F ; k � k
) for given
�x. Since (F ; k � k
) is clearly separable, Borel measurability of the suprema in Part (a) follows.
(b) The �rst claim is proved completely analogous, making also use of the fact that � is

measurable in its �rst argument. The second claim is also proved analogously by showing that
now Uk(�v; �; f) and Vk(�v; �; f) are continuous on the separable space (� � F ; k�k + k � k
) for
given �v: for Vk use that � 7! �(v; �) is continuous on � by Assumption R.1 and that F is a
sup-norm bounded set of continuous functions. For Uk use the fact that � 7! ~pk(�) as a mapping
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from � into the space (P(t; �;D); k � k
) is continuous by Theorem 6, and that the same is true
for p� in view of Assumption P.1, Proposition 30 in Appendix A, and Remark 5.
(c) Measurability of Tk(�; �; f) for � 2 � and f 2Ws

2(
) follows from measurability of f and
�(�; �) and Remark 7(i). Continuity of Tk(�v; �; �) on the separable space (� � F ; k�k + k � k
)
follows from continuity of ~pk(�)(�; v1; : : : ; vk) and f(�), Assumption R.1, and � > 0.

Lemma 39 Let T be a non-empty compact metric space, and (S; d) a metric space. For every
� 2 T and n 2 N, let Yn(�) be a (not necessarily measurable) mapping from a probability space
(�n;An; Pn) into S; furthermore, for every � 2 T , let Y (�) be a measurable mapping from a
probability space (�;A; P ) into S that has separable range. If Y (�n) Y (�) whenever �n; � 2 T
are such that �n converges to � , then the following statements are equivalent:
(i)

lim
n!1

sup
�2T

�(S;d)(Yn(�); Y (�)) = 0;

(ii) For any �n; � 2 T such that �n converges to � , Yn(�n) Y (�).

Proof. We �rst prove that (i) implies (ii). Suppose that �n 2 T converges to � 2 T . Observe
that

�(S;d)(Yn(�n); Y (�)) � �(S;d)(Yn(�n); Y (�n)) + �(S;d)(Y (�n); Y (�))

� sup
�2T

�(S;d)(Yn(�); Y (�)) + �(S;d)(Y (�n); Y (�)):

The �rst term on the r.h.s. of the last display converges to 0 by (i), whereas the second term
converges to 0 because Y (�n)  Y (�). Hence, the l.h.s. converges to 0, which just means that
Yn(�n) Y (�) by Theorem 3.6.4 in Dudley (1999).
That (ii) implies (i) is seen as follows: Let �n 2 T be a sequence such that the distance between

�(S;d)(Yn(�n); Y (�n)) and sup�2T �(S;d)(Yn(�); Y (�)) converges to zero. Since T is compact, we
can �nd for every subsequence of �n a subsubsequence, �n0 say, that converges to some � 2 T .
It follows that the l.h.s. of the inequality

�(S;d)(Yn0(�n0); Y (�n0)) � �(S;d)(Yn0(�n0); Y (�)) + �(S;d)(Y (�n0); Y (�))

converges to 0 because the r.h.s. does so in view of (ii) (applied to the sequence ��n given by �n0
when n = n0 and by � otherwise) and since Y (�n0) Y (�) by hypothesis.

E Appendix: Uniform Rates of Convergence and Entropy

Bounds for Empirical Processes

The subsequent theorem is a uniform version of Theorem 3.2.5 in van der Vaart & Wellner (1996).

Theorem 40 Let (�;A; P ) be a probability space, S and T non-empty sets, and let d be a non-
negative real-valued function on T � T . Consider a sequence of real-valued stochastic processes
(Hk(�; �) : � 2 S; � 2 T ) de�ned on (�;A) and a function H : S�T ! R with the property that
for every � 2 S there exists a �(�) 2 T such that for all � 2 T

H(�; �)�H(�; �(�)) � �Cd�(� ; �(�)) (41)

holds, where C;� > 0 are constants neither depending on � nor � . Suppose, for all � > 0,

E
� sup
�2S

sup
�2T;d(�;�(�))��

p
k j(Hk �H)(�; �)� (Hk �H)(�; �(�))j � 'k(�) (42)
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is satis�ed for real-valued functions 'k such that for some � < � the functions � 7! ���'k(�)
are all non-increasing in �. Assume further that, for every � 2 S, �̂k(�) : �! T satis�es

Hk(�; �̂k(�)) � Hk(�; �) for all � 2 T; (43)

and let rk be a sequence of positive reals such that

sup
k2N

r�k'k(r
�1
k )p
k

<1: (44)

Then, for every � 2 S, �(�) is a maximizer of H(�; �), and

sup
�2S

d(�̂k(�); �(�)) = O
�
P (r

�1
k ) as k !1.

Proof. We have to show that for every N 2 N

lim
N!1

lim sup
k!1

P �
�
rk sup

�2S
d(�̂k(�); �(�)) > 2

N

�
= 0:

For k; j 2 N, set Vk;j = f(�; �) : 2j�1 < rkd(� ; �(�)) � 2jg. Then

rk sup
�2S

d(�̂k(�); �(�)) > 2
N

implies that there is some �0 2 S such that rkd(�̂k(�0); �(�0)) > 2N , which in turn gives
(�0; �̂k(�0)) 2 Vk;j0 for some j0 > N . Combine this with (41) and (43) to get

(Hk �H)(�0; �̂k(�0))� (Hk �H)(�0; �(�0)) � Cd�(�̂k(�0); �(�0)) > Cr��k 2�j0��:

This implies

P �
�
rk sup

�2S
d(�̂k(�); �(�)) > 2

N

�

�
X

j>N

P �

 

sup
(�;�)2Vk;j

���
p
k(Hk �H)(�; �)�

p
k(Hk �H)(�; �(�))

��� � C
p
kr��k 2�j��

!

:

Via Markov�s inequality (for outer probability) and (42), the r.h.s. in the previous display can
be bounded by

X

j>N

'k(2
jr�1k )r�k

C
p
k2�j��

�
X

j>N

2�j'k(r
�1
k )r�k

C
p
k2�j��

� 2�

C
sup
k2N

r�k'k(r
�1
k )p
k

X

j>N

2(���)j ;

where the �rst inequality follows from 'k(c�) � c�'k(�) for c � 1. Note that the upper bound is
�nite by (44) and does not depend on k; since

P
j>N 2

(���)j converges to 0 as N !1 as � < �
holds, the proof is complete.

We next present an upper bound for E� k
p
n(Pn � P )kF for sup-norm bounded classes of

functions F . This result is essentially well-known, see Lemma 3.4.2 in van der Vaart & Well-
ner (1996), but we provide explicit constants. A proof, under the additional assumption that
Y1; : : : ; Yn are the coordinate projections on a product space, can be found in Gach (2010);
inspection of the proof reveals that this assumption is unnecessary.
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Theorem 41 Suppose (�;A; P ) is a probability space, Y1; : : : ; Yn are i.i.d. with law P , and Pn
denotes the empirical measure associated with Y1; : : : ; Yn. Let F be a non-empty class of A-
measurable functions on �, which are bounded by B, 0 < B < 1, in the sup-norm and by �,
0 < � <1, with respect to k � k2;P . Then

E
� k
p
n(Pn � P )kF � (1696 + 64

p
2) I[ ](�;F ; k � k2;P )

�
1 +

B

�2
p
n
I[ ](�;F ; k � k2;P )

�
:

F Appendix: Auxiliary Results for SMD-Estimation

Lemma 42 Suppose P� � L2(
) and � 7! p� is a continuous mapping from � into (L2(
); k �
k2). Let f : 
! R be an integrable function satisfying infx2
 f(x) > 0. Then

H(�) :=

Z




(f � p�)2f�1d�

is a continuous real-valued function on �.

Proof. Rewrite the integrand as f � 2p� + p2�=f , and note that each term is integrable by the
hypotheses. Hence, H is real-valued. For continuity, let �l; � 2 � be such that k�l��k converges
to 0. Letting c = infx2
 f(x),

jH(�l)�H(�)j =

����

Z




p2�lf
�1d��

Z




p2�f
�1d�

���� � c
�1

Z




��p2�l � p
2
�

�� d�

� c�1kp�l � p�k2(kp�l � p�k2 + 2kp�k2)! 0 for l!1:

Proposition 43 (a) Suppose P� � L2(
) and � 7! p� is a continuous map from � into
(L2(
); k � k2). Then, on the event where infx2
 p̂n(x) > 0,

Qn(�) =

Z




(p̂n � p�)2p̂�1n d�

holds and Qn is a continuous real-valued function on �. [In particular, in case � > 0 holds, the
above event is the entire sample space 
n.]
(b) Let Assumption R.1 be satis�ed. Then, on the event where infx2
 p̂n(x) > 0,

Qn;k(�) =

Z




(p̂n � ~pk(�))2p̂�1n d�

holds and Qn;k is a continuous real-valued function on �. [In particular, in case � > 0 holds,
the above event is the entire sample space 
n � V k.]
(c) Suppose P� � L2(
) and � 7! p� is a continuous map from � into (L2(
); k � k2). If

Assumption D.2 holds, then Q is a continuous real-valued function on �.

Proof. Parts (a) and (c) are immediate consequences of Lemma 42. We next prove Part (b):
Since p̂n and ~pk(�) belong to P(t; �;D) by construction, these densities are sup-norm bounded
by CtD. Hence, Qn;k is real-valued whenever infx2
 p̂n(x) > 0. Since the map � 7! ~pk(�) is
continuous by Theorem 6(b), continuity of Qn;k then follows from the theorem of dominated
convergence.
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Proposition 44 (a) Suppose P� � L2(
) and � 7! p� is a continuous map from � into
(L2(
); k � k2). Let further Assumptions D.1 and D.2 be satis�ed. Then

sup
�2�

jQn(�)�Q(�)j = o�P(1) as n!1:

(b) Let Assumptions D.1, D.2, P.1, P.2, and R.1 be satis�ed. Then

sup
�2�

jQn;k(�)�Q(�)j = o�Pr(1) as min(n; k)!1:

(c) Suppose � > 0 holds and Assumptions P.1 and R.2 are satis�ed. Then

sup
n2N

sup

n

sup
�2�

jQn;k(�)�Qn(�)j = O��(k�t=(2t+1)) as k !1.

If Assumption P.1 is strengthened to P.3, then

sup
n2N

sup

n

sup
�2�

jQn;k(�)�Qn(�)j = O�Pr(k�1=2) as k !1.

Proof. (a) Set � = 2�1 infx2
 pN(x) and observe that � > 0 by Assumption D.2. In view of
Remark 10(i) there is a sequence of events An that have probability converging to 1 as n ! 1
such that infx2
 p̂n(x) > �. On these events we then have

sup
�2�

jQn(�)�Q(�)j = sup
�2�

����

Z




p2�
p̂n
d��

Z




p2�
pN
d�

���� � �
�2 sup

�2�
kp�k22 kp̂n � pNk
:

Since � is compact, the assumptions on P� imply that sup�2� kp�k2 <1. Part (a) of Theorem 9
now completes the proof.
(b) Let � and An be as in the proof of Part (a). On An we have

sup
�2�

jQn;k(�)�Q(�)j � sup
�2�

����

Z




~pk(�)
2

p̂n
d��

Z




p2�
pN
d�

����

� sup
�2�

����

Z




(~pk(�)� p�)
~pk(�) + p�

p̂n
d�+

Z




p2�

�
1

p̂n
� 1

pN

�
d�

����

� 2��1 sup
�2�

k~pk(�)� p�k
 + ��2D2kp̂n � pNk
:

The result then follows from Parts (a) and (c) of Theorem 9.
(c) Note that ~pk(�) 2 P(t; �;D) by construction and p� 2 P(t; �;D) by Assumption P.1.

Hence, these densities are sup-norm bounded uniformly in � (and v1; : : : ; vk 2 V in case of
~pk(�)). Observe now that

Qn;k(�)�Qn(�) =
Z




(~pk(�)� p�)
~pk(�) + p�

p̂n
d�:

Using � > 0, Part (d) of Proposition 1 applied to fp̂n : x1; : : : ; xn 2 
; n 2 Ng shows that
f1=p̂n : x1; : : : ; xn 2 
; n 2 Ng is bounded in Wt

2(
). By Assumption P.1 and the construction
of ~pk(�), it follows from Part (a) of Proposition 1 that

�
~pk(�) + p�

p̂n
: � 2 �; x1; : : : ; xn 2 
; v1; : : : ; vk 2 V; n; k 2 N

�
(45)

is contained in a Sobolev ball Ut;B for some B satisfying 0 < B <1. The �rst claim then follows
from Theorem 13 with s = 0 (note that under � > 0 Assumption P.1 implies Assumption P.2),
where we have made use of the inequality

R


jf jd� � �(
)1=2kfk2 and the fact that the set in

(45) is bounded in the sup-norm. If Assumption P.1 is strengthened to P.3, we may apply Part
(c) of Theorem 16 with F equal to the set given in (45) to obtain the second claim.
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Remark 45 If � > 0 holds, then the events An in Parts (a) and (b) of the above proof are the
entire sample space and Qn �Q, respectively Qn;k �Q, is continuous on �. By separability of
�, the measurability of the respective suprema then follows.

Lemma 46 (a) Let Assumptions P.1 and P.5 be satis�ed. Then, on the event infx2
 p̂n(x) > 0,
the objective function Qn is twice continuously partially di¤erentiable on �

� with

@Qn
@�i

(�) = �2
Z




(p̂n � p�)
@p

@�i
(�; �)p̂�1n d�;

@2Qn
@�i@�j

(�) = 2

Z




�
@p

@�i
(�; �) @p

@�j
(�; �) + @2p

@�i@�j
(�; �)p�

�
p̂�1n d�;

for i; j = 1; : : : ;m.
(b) Let Assumptions D.2, P.1, and P.5 be satis�ed. Then Q is twice continuously partially

di¤erentiable on �� with

@Q

@�i
(�) = �2

Z




(pN � p�)
@p

@�i
(�; �)p�1

N
d�;

@2Q

@�i@�j
(�) = 2

Z




�
@p

@�i
(�; �) @p

@�j
(�; �) + @2p

@�i@�j
(�; �)p�

�
p�1
N
d�;

for i; j = 1; : : : ;m.

Proof. Note that the densities involved are all uniformly bounded by Assumption P.1. Under
the respective assumptions, di¤erentiation and integration can be interchanged, leading to the
above formulae upon noting that the integral of @2p=(@�i@�j)(�; �) is zero. Continuity of the
partial derivatives follows from the theorem of dominated convergence.

Proposition 47 Let Assumptions D.1, P.1, and P.5 be satis�ed and suppose � > 0. Then, for
all i; j = 1; : : : ;m,

sup
�2��

����
@2Qn
@�i@�j

(�)� @2Q

@�i@�j
(�)

���� = oP(1) as n!1: (46)

Proof. Let b <1 be a bound for all the integrals appearing in Assumption P.5. By Lemma 46
the l.h.s. of (46) is not larger than 2��2b(1+CtD)kp̂n�pNk
, which converges to 0 in probability
by Theorem 9(a). Measurability of the supremum in (46) follows from continuity of the second
derivatives (Lemma 46) and separability of ��.

Remark 48 If � = 0 the assertion of the preceding proposition still holds true in outer prob-
ability under Assumptions D.1, D.2, P.1, and P.5, if @2Qn(�)=@�@�

0 is interpreted as the zero
matrix on the event where infx2
 p̂n(x) = 0.
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