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Abstract

This paper analyzes a social planner�s solution in a resource-based economy

under a constant-utility criterion. The utility function includes social progress in

a multiplicative form. The resulting paths of consumption include the patterns

of growth that are conventionally used in the literature. This approach extends

conventional link between the utilitarian criterion and the maximin for the cases

with �nite elasticity of marginal utility. The closed form solutions, derived for

the Dasgupta-Heal-Solow-Stiglitz (DHSS) model, include the result of Solow

(1974) and Hartwick (1977) as a speci�c case. The approach is applied to an

example of a distorted resource-extracting economy under the requirement for

smoothness of the paths with respect to historical data.
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1. Introduction

This paper introduces a modi�cation of the Rawls�s (1971) di¤erence princi-

ple (maximin), and analyzes a social planner�s solution under this modi�cation

in a resource-based economy. There is a vast literature devoted to the con-

struction of the criteria of economic growth that do not use the discounting

procedure.1 The essential part of this literature is based on the maximin.

The conventional approach of using the maximin in the problems of intergen-

erational resource allocation is to maximize the level of per capita consumption

c or utility u(c) of the least advantageous generation.2 A negative consequence

of this approach, which is referred to as �perpetuating poverty,� attracts a ma-

jor criticism of the maximin. There are studies that address this shortcoming

by introducing a plausible generalization of the utility function. This general-

ization is based on the assumption � o¤ered by Rawls � that the measure of

utility should take into account not only the current level of consumption but

also the social progress in the form of sympathy for future generations (Arrow,

1973; Dasgupta, 1974; Calvo, 1978; Leininger, 1985; Asheim, 1988; Long, 2007).

The idea of using sympathy for the future can be extended by introducing the

consumption prehistory into the utility function. This extension is intuitive since

the same person estimates the same level of current consumption in di¤erent

ways, depending on whether this level resulted from gains or from losses.3 A

resulting model with the consumption prehistory can yield �Rawlsian growth,�

1The list of references and a review can be found, e.g., in Fleurbaey (2007).
2See, e.g., Solow (1974), Hartwick (1977), Leininger (1985), Asheim et al (2007), Alvarez�

Cuadrado and Long (2009).
3There are �ndings supporting the idea that for estimating utility it is not enough to

calculate a vector of measurable static indicators. Lecomber (1979) noted that �people become

accustomed to rising living standards and are dissatis�ed with static ones� (p. 33). Scanlon

(1991) further mentioned that �we can ask ... how well a person�s life is going and whether

that person is ... better o¤ than he or she was a year ago� (p. 18). There is also evidence

that has �documented the claim that people are relatively insensitive to steady states, but

highly sensitive to changes� and that �the main carriers of value are gains and losses rather

than overall wealth� (Kahneman and Varey, 1991, p. 148).

2



even in a purely egoistic framework.4

The authors of the approach that introduses social progress into the utility

function used an additively separable form of this function, justifying this form

only by technical simplicity (Arrow, 1973, p. 326; Dasgupta, 1974, p. 409).

However, it is interesting to analyze the properties of the constant-utility paths

(a particular case of the maximin) under a multiplicative (Cobb-Douglas) form

of the utility function. This analysis is interesting because the multiplicative

form of utility includes commonly used utility measures as speci�c cases, and

also because the resulting patterns of growth belong to the family of paths

usually considered in the literature. Therefore, the problem with the constant-

utility criterion can be an interesting theoretical tool since all the problems of

growth theory that yield the �regular� patterns of growth (Groth et al., 2006)

are equivalent (in the sense of the resulting paths) to this simple problem.

This paper o¤ers the patterns of optimal investment and the resulting paths

of nonrenewable resource extraction, capital, output, and consumption under

the constant-utility criterion. The closed form solutions are derived for the

Dasgupta-Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal, 1974; Solow,

1974; Stiglitz, 1974).5 The solution includes the Solow-Hartwick result (stag-

nation)6 as a speci�c case and establishes the dependence between the value of

4See, e.g., Phelps and Riley (1978).
5There is mixed evidence about the elasticity of factor substitution between capital and

resource including the results showing that this value is close to unity (Gri¢n and Gregory,

1976; Pindyck, 1979), which means that the use of the Cobb-Douglas technology is not im-

plausible in this framework. However, plausibility is not the main reason for its use in this

paper. As Asheim (2005) put it, �I do not claim that this model describes accurately ...

production possibilities in the real world ... however, it is well-suited to illustrate how a small

variation in the parameters ... may lead to very di¤erent consequences when combined with

criteria for intergenerational justice� (p. 316).
6Solow (1974) showed that per capita consumption can be maintained constant over time

in an economy with a limited nonrenewable resource, which is an input in the Cobb-Douglas

production function. Hartwick (1977) showed that constant consumption in this model results

from investing the resource rent into man-made capital.
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the constant investment rate and the pattern of growth.

This approach is applied to a distorted economy under the requirement of

the smoothness of paths with respect to historical data. The distortion results,

for example, from the instantaneous increment in the resource reserve. The

smoothness of paths results from endogenization of a preference parameter de-

pending on the reserve and the economy�s current state. These smooth paths

can be used either as an independent solution or as transition paths to the new

paths that are optimal with respect to the original preferences.

The paper is structured as follows: Section 2 introduces a version of the

modi�ed maximin; Section 3 derives an optimal investment rule in a resource-

based economy and speci�es it for the DHSS model; Section 4 analyzes the

closed form solutions for the DHSS model; Sections 5 and 6 o¤er a smooth

solution for a distorted economy. The conclusions are presented in Section 7.

2. A modi�ed maximin: care for social progress

Assume that utility depends on social progress expressed both in the form of

the sympathy to the future generations and in consumption prehistory. Then,

the Arrow - Dasgupta approach, in a discrete setting, implies that the utility

function takes the form

eu(c(t)) =
X

i>1

�i(ct � ct�i) + ct +
X

i>1

�ict+i = ct
X

i>0

�i +
X

i>0

�i(ct+i � ct�i);

where � 2 (0; 1) is the discount factor, and the term
P

i>0 �
i(ct+i � ct�i) is

a weighted average of the slopes of the consumption path. Then, there exists

such a value of 
 that eu(c(t)) = eCu(ct; _ct); where eC is a constant and u(ct; _ct) =
ct + 
 _ct;

7 where _c = dc=dt:

Since the additively separable form was introduced only for simplicity, this

paper uses below a multiplicative utility, which, in the general case, takes the

form: u(c; _c) = sgn( _c) � j _cj


c�: Following Solow (1974), the maximin applied to

7This form of utility function was used by Long (2007).
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u(c; _c) implies that already this combination, not consumption per se, should

be kept constant over time.8 Assume for simplicity that � = 1 � 
 and _c > 0:

Then, the constant-utility criterion with the growth weight 
 is

_c
c1�
 = u = const; (1)

yielding the pattern of �regular growth� (Groth et al., 2006, p. 4):

c(t) = c0(1 + 't)

 ; (2)

where ' := ( _c0=c0) =
: The pattern (2) is stagnation when 
 = 0 or one of the

following forms of growth: quasi-arithmetic (or sub-arithmetic) when 
 2 (0; 1),

linear when 
 = 1, super-arithmetic when 
 > 1, or exponential when 
 goes to

in�nity. This relationship between the form of the criterion and the pattern of

growth can be formulated as follows.

Proposition 1. The problem of the construction of the regular sustainable

pattern of growth (2) is equivalent to the solution of the social planner�s problem

with the constant-utility criterion (1).

One of the main approaches to fair allocation of limited resources is the no-

envy principle (Foley, 1967; Kolm, 1997). When there is no strict equality in

distribution, the principle is usually combined with a compensation procedure.

The form (1) of no-envy, which can be rewritten as follows: ( _c=c)
c = u; means

that the decline in the rate of growth _c=c should be compensated by the growing

level of consumption c. The multiplicative form _c
c� includes as speci�c cases:

(a) the conventional function for measuring the utility of the level of growing

with no limit consumption c1��=(1� �) for 
 = 0; � = 1� �; and u = eu(1� �);

8Although the criterion maxcmint sgn( _c) � j _cj

 c� is the �dictatorship of the least advan-

taged� (Alvarez�Cuadrado and Long, 2009), it does not imply that the generation in crisis

( _c < 0) should increase its current consumption by decreasing saving and undermining the

consumption of the future generations. In a crisis, the combination sgn( _c) � j _cj
 c� = u can

be maximized by decreasing the current level of consumption and increasing investment (in-

creasing _c) until u reaches its maximum sustainable level. Hence, the current generation,

maximizing its own utility, can maximize the utility of future generations, and this �care

about the future� can originate from purely egoistic incentives.
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(b) percent change as a conventional measure of the growth of consumption

for 
 = 1 and � = �1;

(c) a sample value function that relates value to an initial consumption c and

to a change of consumption _c (Kahneman and Varey, 1991, p. 157): V ( _c; c) =

b _ca=c for _c > 0; where a < 1 and b > 0;V (0; c) = 0;V ( _c; c) = �Kb(� _c)a=c for

_c < 0; where K > 1:

3. Investment in resource-based economy

In the general case, a resource-based economy produces output q with

the technology: f(k; r) = q; (3)

the investment rule: _k = wq; (4)

the initial stocks: k(0) = k0; s(0) = s0; (5)

where k is man-made capital and r is the rate of the resource extraction.9 The

variables are in per capita units, time-dependent, and smooth enough.

Lemma 1 below provides a known necessary condition for optimal prices in

the problem of �nding

u� = const [c(t); r(t)] = max
c(t);r(t)

_c(t)
c(t)1�
 ; (6)

where r is a nonrenewable resource, c = q � _k; and _s = �r:

Lemma 1. The optimal resource price fr in economy (3) � (5) under

criterion (6) satis�es the Hotelling rule _fr=fr = fk + � with � � 0:

Proof. The approach of Leonard and Long (1992, pp. 300-304) reformulates

problem (6) into the following equivalent form:

maximize V (t) �

Z
1

t

u��e���d� for t = 0 (V (0) = u� = const) (7)

9Economy (3) � (5) represents the conventional approach, which de�nes the optimal (equi-

librium) initial value of the rate of extraction r0 and all other initial values (e.g., q0; c0) that

depend on r0: This approach provides a discontinuous solution with respect to economy�s

prehistory (Bazhanov, 2010) and can be used, e.g., for a resource-extractive �rm that has just

obtained the stock of a resource s0:
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by choosing c(t) and r(t) for an arbitrary constant � subject to (omitting the

dependence on time) _k = q� c; _s = �r; and u( _c; c) = u�: The Hamiltonian of

this problem is H = u��e��t+�k(q� c)� �sr: The utility constraint yields the

Lagrangian to be maximized: L = H + �(u � u�): Then, the Pontryagin-type

necessary conditions for the state variables k and s are10

Lc = �uc � �k = 0; (8)

Lr = �kfr � �s = 0; (9)

_�k = �
@L

@k
= ��kfk; (10)

_�s = �
@L

@s
= 0; (11)

Z
1

0

Lu�dt =

Z
1

0

�
�e��t � �

�
dt = 1�

Z
1

0

�dt = 0: (12)

The time derivative of Eq. (9) is _�kfr + �k
_fr � _�s = 0; which, combined with

Eq. (10) and divided by �kfr, yields the result of the Lemma�

In the conventional approach, where c0 is not �xed, the solution to problem

(6) is not unique. For simplicity, the optimal paths can be found for a constant

optimal investment rate if this rate exists. The optimal investment rate can

be derived, at �rst, for the optimal path of output by reformulating problem

(6).11 Then, if there exists a constant optimal investment rate for the problem

of �nding v� = const [q(t); r(t)] = maxq(t);r(t) _q(t)

q(t)1�
 ; the same investment

rate will be optimal for the initial problem (6).

Criterion (1) implies the speci�c patterns of growth, therefore, Proposition

2 below provides a general formula for the investment rate w(t) that guarantees

the given growth rate when the investment rate is feasible, for example, w 2

(0; 1) for a closed economy. The application of this result is illustrated below

for the DHSS economy.

10Here �k and �s are indexed dual variables unlike uc; fk; and fr; which are the partial

derivatives of u and f:
11The substitution of _q and q for _c and c in (6) does not change the result of Lemma 1.
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Proposition 2. The economy�s output q = f(k; r) grows with the rate _q=q

under the investment rule _k = wq i¤ w is feasible and

w =

 
_q

q
�
fr _fr
qfrr

!
=

�
fk �

frfkr
frr

�
; (13)

where fx = @f=@x and f is smooth enough.

Proof. The growth rate is _q=q = fk _k=q + fr _r=q = fkw + fr _r=q; yielding

w = ( _q=q � fr _r=q) =fk: Substitutions for _r from the equation _fr = fkr _k + frr _r

and then for _k = wq result in equation (13)�

This result can be speci�ed for various criteria, kinds of the resource, and

technologies f(k; r): A classical benchmark in resource economics, the DHSS

model, speci�es the production technology as the Cobb-Douglas function: q =

f(k; r) = k�r� ; where �; � 2 (0; 1); � + � < 1 are constants (1 � � � �

is the share of labor in this economy). Assume that there is no population

growth,12 extraction cost is zero, and the TFP (Total Factor Productivity)

exactly compensates for capital depreciation.13 Then, the following result holds.

Corollary 1. The economy�s output q = k�r� grows with the rate _q=q

under the investment rule _k = wq i¤ w is feasible and

w =
_q

q
�
1� �

fk
+ � (1 + �=fk) ; (14)

where � is the deviation from the standard Hotelling rule: � := _fr=fr � fk:
14

12The United Nations estimates that the world�s population growth is going to �atten out at

a level around 9 billion (UN, 2004). Stabilization has already happened in developed countries,

which are the main users of nonrenewable resources.
13This assumption allows for considering the basic DHSS model with no capital depreciation

and no TFP. At the same time, this approach makes it possible to examine correctly various

patterns of growth in the economy. This TFP is somewhere between optimistic and pessimistic

assumptions about technical change: it is asymptotically linear with a small slope.
14An example of the modi�ed rule was provided, e.g., by Stollery (1998) (�(t) = (fT +

uT =uc)Ts0�s(t)=fr) in the problem, where utility u(c; T ) and production are negatively af-

fected (uT < 0; fT < 0) by growing damage T (s0� s); and the damage is rising due to oil use

in the economy. A review of the literature and the reasons, distorting the standard Hotelling

rule, can be found, e.g., in Gaudet (2007).
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Proof. In the DHSS case, the expressions for the derivatives in equation

(13) are: fr = �q=r; fk = �q=k; fkr = ��q=(rk); frr = �q(� � 1)=r
2; and the

generalized Hotelling rule gives _fr = (fk + �)�q=r: Direct substitution of these

formulas into equation (13) results in equation (14)�

In the Solow (1974) - Hartwick (1977) case, namely, when � � 0 and _q � 0

(
 = 0); Corollary 1 implies that the Hartwick rule (w(t) � �) is a necessary

and su¢cient condition for constant per capita consumption in this economy,

which coincides with known results (Dixit et al., 1980).

Another interesting illustration of Corollary 1 is Stollery�s (1998) problem,

for example, with � = uTTs0�s= (ucfr), when utility u alone is a¤ected by

damage T: In the DHSS case, � = � _q(1 � �)=(q�); which yields w(t) � �;

coinciding with Stollery�s conclusion.15

The next result extends the Solow - Hartwick case by de�ning the optimal

investment rule depending on the pattern of growth, determined by 
:

Corollary 2. Let the economy q = k�r� follow the investment rule _k = wq;

and � � 0: Then q(t) = q0(1+'t)

 i¤ w is feasible and satis�es the equation:

w(t) = w� � (w� � w0)(1 + 't)
a; (15)

where w0 = w(0);

w� = �=

�
1�


(1� �)

�(1 + 
)

�
= �

�
1 +


(1� �)

�� 
(1� �� �)

�
; (16)

a = 
(1 � �)=(�q0) � 
 � 1; q0 = k�0 r
�
0 (s0); ' := ( _c0=c0) =
; c0 = (1 � w0)q0;

_c0 = (1� w0) _q0 � _w0q0; _q0 = �w0k
2��1
0 r2�0 (s0) [w0 � �(1� w0)=(1� �)] ; _w0 =

�a(w� � w0):

Proof. Equation (14) implies, for � � 0 and q(t) = q0(1 + 't)

 ; that w =

�
_q0=(q

2
0(1 + 't)


+1)
�
k(1 � �)=� + �; which, using the investment rule, can be

15The growth of consumption in the Stollery�s case is associated with � < 0; which is caused

by the externality. The criterion u(cT�1) = const requires less initial rate of extraction r0

and more gradual decline in r(t), which, in combination with the same Hartwick rule as in

the constant-consumption case, gives a richer �ow of inputs, causing growth of consumption,

starting from a lower level (Bazhanov, 2011).
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rewritten as follows:
R
w(t)(1 + 't)
dt = [w(t)� �] (1 + 't)
+1A; where A :=

�q20= [ _q0(1� �)] : The last formula, after di¤erentiating and dividing by (1 +

't)
+1; becomes a separable di¤erential equation _w = [wp1 + p0] =(1+'t) with

the solution w(t) = [C(1 + 't)a � p0] =p1; where a := p1='; p1 := 1=A�'(
+1);

p0 := �'(
+1): The constant of integration C; de�ned from the initial condition

w(0) = w0; is C = w0p1 + p0: Then, the formula for w(t) takes the form of (15)

with w� := �p0=p1; which after substitution of p0 and p1 yields formula (16),

and the expression for a; using ' = _q0=(q0
); becomes 
(1� �)=(�q0)� 
 � 1.

Then _w(t) = �a(w� � w0)(1 + 't)
a�1; de�ning _w0�

Corollary 2 provides the unique constant investment rate w�; which main-

tains the speci�c pattern of growth, implied by criterion (1) for a given 
:When

w0 deviates from w�, the path q(t) = q0(1+'t)

 can be sustained under a vari-

able w(t) that asymptotes to w� for a < 016 in accord with Eq. (15).

The result is intuitive since the faster growth requires more investment

(@w�=@
 > 0) and less consumption. The optimal trade-o¤ is de�ned here by

the preference parameter 
: The same qualitative result for this economy was

obtained by Hamilton et al. (2006, Proposition 1), showing that consumption

grows when the investment rate is more than �:17 A similar result was reported

by Asheim et al. (2007) for the maximin with 
 = 0 : an �additional� invest-

ment allows for quasi-arithmetic population growth and/or for quasi-arithmetic

growth of per capita consumption.18 Corollary 2 speci�es the general result of

Hamilton and Hartwick (2005, Proposition 1),19 by providing the link between

16The de�nition of a implies that a < 0 i¤ q0 > (1� �) = [� (1 + 1=
)] : This condition, e.g.,

takes the form q0 > 0 when 
 = 0 or, when 
 = 1; q0 > (1� �) = (2�) ; which can be satis�ed

by the choice of units of measure for capital and extraction.
17The di¤erence is that Hamilton et al. (2006) considered constant returns to scale with

respect to capital and the resource (� + � = 1), which resulted in logarithmic growth for

w > �, whereas here, following Solow (1974, p. 35), returns to scale are constant with respect

to capital, resource, and labor.
18Similar to Corollary 2, Asheim et al (2007, Theorem 13) showed that the saving rate

asymptotically converges to a constant w� > �:
19The result implies, in particular, that a positive constant genuine saving (w > �) with
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the value of the investment rate and the pattern of growth.

Note also, that according to (16), the larger share of capital in production

implies less e¤ort in investment for the same rate of growth (@w�=@� < 0).

Formula (16) establishes a strict relationship between the �desirable� rate of

growth, expressed in 
; the optimal investment rate w�; and the technological

abilities of the economy (� and �). Then, the feasibility of the investment rate

alone put the restriction on the pattern of growth that could be maintained

forever. This result about the limitation of the rates of growth in a resource-

based economy is speci�ed in the following Corollary.

Corollary 3. Under the conditions of Corollary 2, the optimal path exists

if 
 < �=(1� �):

Proof follows directly from the feasibility condition w� < 1 after substitu-

tion for w� from formula (16).

In theory, the constraint 
 < �=(1 � �) is not binding since 
 ! 1 with

�! 1; however, empirical estimates of �; which are around 0.3 (e.g., Nordhaus

and Boyer, 2000), restrict the value of 
 by 0.43. Further restriction on the rate

of growth, imposed by limitedness of the resource, is considered below.

4. Optimal paths in the DHSS economy

The following Proposition extends the Solow - Hartwick case by providing

the social planner�s optimal paths under the generalized criterion (6) with the

optimal investment rate w�; de�ned by formula (16).

Proposition 3. The optimal with respect to criterion (6) paths in economy

(3) � (5) with f(k; r) = k�r� and w = w� are:

� � 0 yields the growth of consumption.

11



c(t) = c0(1 + 't)

 ;

q(t) = q0(1 + 't)

 ;

k(t) = k0 +
w�q0

(
 + 1)'

�
(1 + 't)
+1 � 1

�
;

r(t) =
�
q(t)k(t)��

�1=�
;

where

' := ( _c0=c0) =
 = �
fk(0)

�� 
 (1� �� �)
=

��r�0
k1��0 [�� 
 (1� �� �)]

; (17)

_c0 = (1 � w�)
h
�k2��10 r2�0 (w� � �(1� w�)=(1� �))

i
; c0 = (1 � w�)q0; q0 =

k�0 r
�
0 ; and the relationship between k0; s0 and r0 is:

s0 = �
(k0; r0); (18)

where

�
(k0; r0) :=
k1��0 r1��0 [1� 
(1� �� �)=�]

[�� � � 
(1� �)]
� 2F1(1; a2; a3;�) (19)

and 2F1(�) is the Gauss hypergeometric function with the parameters a2 :=

�
(1� �)= [�(1 + 
)] ; a3 := �=� + a2:

The optimal value of utility is

u� =

(
��
k�0 r

�
0

k0 [�� 
 (1� �� �)]

)

(1� w�)k�0 r

�
0 : (20)

Proof is in Appendix 1.

Formula (18) provides an explicit expression for r0(s0; k0) :

r0 =

�
s0 [�� � � 
(1� �)]

k1��0 [1� 
(1� �� �)=�] 2F1(1; a2; a3;�)

�1=(1��)
: (21)

This expression can be used when the planner solves a discontinuous problem

with respect to the initial rate of extraction, e.g., the stock s0 has just been

discovered or obtained at an auction.
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The Solow - Hartwick case emerges here with 
 going to zero: the paths c

and q are constant over time (' > 0), capital is linear with k(0) = k0; and the

relationship between k0; s0; and r0 becomes

s0 = k
1��
0 r1��0 =(�� �) (22)

(or r0 =
�
s0(�� �)=k

1��
0

	1=(1��)
) because all the terms in the series 2F1(�) go

to zero except the �rst one, which equals unity.

Quasi-arithmetic paths were derived in the literature from the di¤erent

frameworks, namely, under the assumptions of quasi-arithmetic population growth

(Asheim et al., 2007) or quasi-arithmetic technical change and discount factor

(Pezzey, 2004), whereas, here, this pattern follows directly from the criterion.

Formulae (10.30) and (10.32) in Dasgupta and Heal (1979, p. 305) also

yield quasi-arithmetic growth of consumption for the DHSS economy under the

utilitarian criterion
R
1

0
e��tu(c(t))dt with � = 0 and u(c) = �c�(��1); where

� > 1: Proposition 3 implies that this problem is equivalent to the maximin

applied to u( _c; c) = _c
c1�
 with


 =
��

�(� � 1)2 + (� � 1)(1 + � � �) + (1� �)
: (23)

Formula (23) extends the conventional link between the utilitarian criterion and

the maximin for the cases with � <1:

Formula (18) allows to continue the analysis of existence of the sustainable

optimal paths, which was started in Corollary 3. Note that the denominator of

the fraction in formula (19) goes to zero when 
 approaches the value 
max =

(���)=(1��); while 2F1(�) monotonically declines, remaining positive when 


increases from 0 to 
max:
20 Then, given k0 and s0; the initial rate of extraction

strictly monotonically goes to zero when 
 approaches 
max:

20
2F1 has the points of discontinuity when a3 is negative integer; a3 is positive when


 < �=(1 � � � �): Here, a3 is always positive since 
max < �=(1 � � � �) for the feasible

values of �; �; and 
. The behavior of 2F1(�) in the range 
 2 [0; 
max] was examined

numerically for the whole range of parameters 0 < � < � < 1 s.t. �+ � < 1:
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Another interpretation of this outcome is that, given k0 and r0; the higher

rates of sustainable growth of consumption require larger reserve s0; which

strictly monotonically goes to in�nity with 
 ! 
max: The result can be formu-

lated as follows.

Corollary 4. Under the conditions of Proposition 3, the optimal paths exist

if 
 < (�� �)=(1� �):

This restriction, imposed by the �niteness of the resource, is more binding

than the one, placed by the feasibility of the saving rate (Corollary 3).

Comparison of this result with the results in the literature on the limit

to population growth shows that the resource restriction binds the growth of

consumption under the assumption of constant population more, than it binds

the growth of population under the constant per capita consumption21 since


max = (� � �)=(1 � �) < (� � �)=�: The latter limit was obtained for the

quasi-arithmetic population growth by Mitra (1983) and Asheim et al. (2007,

Theorem 12). Another comparison shows that the value of 
max corresponds to

�min = (1 � �)=(� � �) in Dasgupta and Heal (1979), which can be shown by

direct substitution of �min for � in formula (23).

Following Groth et al. (2006), denote g1(t) := _q(t)=q(t) � the �rst order

growth rate. For the constant investment rate, g1(t) = _c(t)=c(t): Then the limit

on the rate of growth implied by Corollary 4 can be formulated as follows.

Corollary 5. In the economy q = k�r� under the conditions of Proposition

3, the optimal rate of the sustainable growth of consumption (output) is restricted

by the technology in the following way:

g1(t) < 1=
�
g�11 (0) + !t

�
;

where ! := (1� �)=(�� �).

Proof follows from formula (2): g1(t) = _c=c = g1(0)=(1 + 't): Substitution

for ' = g1(0)=
 gives g1(t) = 1=(g
�1
1 (0) + t=
); which, after applying Corollary

21This result can be explained by the fact that population, unlike consumption, is an input

in the production function.
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4, yields the result�

Regular growth, by the de�nition of Groth et al. (2006), satis�es the condi-

tion g2 = �(1=
)g1; where g2(t) := _g1(t)=g1(t) is the second order growth rate,

and 1=
 is the damping coe¢cient. The growth approaches exponential when

1=
 goes to zero (
 !1), which is possible in this framework only when �! 1:

The last condition means that the shares of the resource (�) and labor (1����)

go to zero (complete automatization of the production with complete recycling

and/or regeneration of the resource). Note also, that when the resource share

is close to the one of capital (�� � close to zero), then, given other parameters

�xed, the damping coe¢cient goes to in�nity, resulting in stagnation.22

There is a conventional practice of formulating the goals of economic pro-

grams in the �xed values of the percent change of some indicators. This practice

was questioned more than three decades ago, for example, by Dasgupta and Heal

(1979): �The rate of growth of GNP cannot function well as a primitive ethical

norm. And yet it is very often so used� (p. 311). This measure of progress

is still commonly used because of its convenience, especially in the formulation

of the programs of sustainable development,23 where the measures of progress

are presumed to be sustained for a long time. These practical needs and the

fact that growth can be less than exponential imply an important application

of the measure _c
c1�
 since it can be constant along a path, even if the path is

not a stagnation and not an exponential growth. This expression can be called

geometrically weighted percent, and it can be used as an alternative measure of

sustainable growth instead of regular percent.

22The conventional estimate of � = 0:3 yields 
max = 0:357 for � = 0:05 and 
max = 0:071

for � = 0:25: The patterns of growth with these values of 
max are closer to stagnation than

to a linear function.
23For example, the Brundtland Report (World Commission, 1987) claimed that �the key

elements of sustainability are: a minimum of 3 percent per capita income growth in developing

countries� (p. 169). Further, the Report suggested that �annual global per capita GDP growth

rates of around 3 percent can be achieved. This growth is at least as great as that regarded

in this report as a minimum for reasonable development� (p. 173).
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5. Smooth paths under distortions

In the conventional approach, the path of extraction r(t) results from the

optimal paths of output and capital or from an optimality condition in the form

of a �rst-order di¤erential equation24 with the constant of integration derived

from the e¢ciency condition s0 =
R
1

0
rdt: This r(t); including r0; is completely

determined by s0; k0; and other parameters of the model.

The conventional approach proved a convenient tool for qualitative analyses

of changes in an economy using, e.g., comparative statics. However, the resulting

discontinuity of the paths at t = 0 can be inadequate with the goals of some

studies when historical data at t = 0 do not satisfy the �perfection� condition

(18) implied by the criterion. For example, according to the estimate published

in Oil & Gas Journal, the world�s oil reserve on January 1, 2010 was s0 = 185:5

bln t.25 The production function q = k�r� with k0 = 6:246 yields from Eq.

(22) for 
 = 0 the socially optimal value of r0 = 3:525 bln t/year, which is the

rate of world oil extraction on January 1, 2010 (World Oil, 2009). At the same

time, Cambridge Energy Research Associates claimed that the actual world�s

reserve is around 512.33 bln t (CERA, 2006). An approach requiring immediate

satisfaction of the e¢ciency condition by a discontinuous shift in the rates of

extraction would, in this case, result in the jump to r0 = 13:66 bln t/year, which

is unacceptable in the real economy.

Hence, when a planner is recalculating smooth optimal paths under some

changes in the formulation of the problem, there are two general options:

(I) to adhere to the past preferences and to solve a transition problem in

order to adjust the paths of s(t); k(t); and r(t) to condition (18), and to enter

smoothly new optimal paths in �nite time;

(II) to adjust a preference parameter in accord with the updates in order to

satisfy condition (18) and enter smoothly new optimal paths at t = 0:

The �rst option was considered in Bazhanov (2010), where a distorted econ-

24For example, _r=r = �fk for 
 = 0:
25Ton of crude oil equals here 7.3 barrels.
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omy switched to a new level of constant consumption (
 = 0) in �nite time.

The second problem can be either an independent option or a partial solution

to the �rst problem. The following section provides a solution to problem II.

6. Smooth second-best paths in a distorted DHSS economy

Formulae (18) and (21) mean that the socially optimal extraction starts with

r0; de�ned by the given parameter 
 and the initial stocks k0 and s0: This r0

can take any feasible value since it is assumed that the stock s0 has just been

discovered or the transition from the historical r0 to the optimal one is not

relevant, and so r0 is treated as �the future.�

This section examines another problem, in which a social planner constructs

smooth constant-utility paths starting from t = 0 in a distorted economy that

has already been extracting the resource for a period of time. The paths are the

smooth continuations of the economy�s current state, including the short-run

trend of extraction (growing or declining), so the values of r0 and _r0 coincide

with the last available estimates � on January 1 of the current year, for example

� implying zero adjustment costs at t = 0.

In this case, r0 is treated as � the past,� and condition (18) shows how much

reserve s0 the economy needs to maintain constant utility in the in�nite horizon

problem. If the actual reserve is larger or smaller than s0; the economy is either

ine¢cient or unsustainable. In this sense, the discrepancy in equation (18) can

be used as a measure of distortion in the economy. The other indicators of

distortion are connected with the deviations from the optimal investment rule

and from the speci�c formulation of the Hotelling rule, when the model does

not include all the phenomena that can modify the rule in the real economy.

Hence, a distorted economy is de�ned here as follows.

De�nition 1. A resource-extracting economy with the initial state (k0; s0; r0; _r0)

is distorted with respect to a criterion at t = 0 if either of the following holds:

(1) the relationship s0 � �(k0; r0) = 0; implied by the criterion, is violated;

(2) the economy does not follow the optimal investment rule;
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(3) the path of the resource price is not optimal (a speci�c formulation of

the Hotelling rule does not hold at t = 0).

A distortion can result either from �positive� or from �negative� e¤ects. For

example, the condition s0 � �(k0; r0) = 0 can be violated due to an instant

increment in reserve (positive distortion) or due to overextraction in the case of

insecure property rights (negative distortion).

De�nition 2. A distorted economy is imperfect if the distortion negatively

a¤ects the sustainability of the economy.26

Let us assume for de�niteness that the reasons distorting the Hotelling rule

can be expressed in terms of e¤ective tax,27 and consider the following example

of an economy distorted with respect to a benchmark (Solow-Hartwick) case

under criterion (1) with 
 = 
0 = 0 :

(i) condition (18) is violated: s0 > �
0(k0; r0);
28

(ii) the investment rule is optimal for 
 = 0; namely, w � �;

(iii) the Hotelling rule is distorted at t = 0, namely, _fr(0)=fr(0) = fk(0)+�0;

where �0 = �(0) < 0:

The motivation for choosing the example is twofold: �rst, to show how

the constant-utility criterion can work in a distorted economy, and second, to

provide an illustration of Proposition 1 in Bazhanov (2008), which claims that

a resource-based economy can grow even with underinvestment. The growth

can be sustainable if the reserve is large enough and the resource is optimally

allocated among generations in the sense of a constant-utility criterion.

Hence, the problem of a planner is: to construct a sustainable path of con-

26Arrow, Dasgupta and Mäler (2003) de�ne imperfect economies as the �economies su¤ering

from weak, or even bad, governance� (p. 648). Imperfection can also result from imperfect

knowledge, e.g., in justice theory or in estimate of the path of technical change, even when

the decisions of a planner are �perfect.�
27For example, insecure property rights lead to shifting extraction from the future towards

the present (Long, 1975). The same e¤ect can be obtained by subsidizing the resource ex-

tracting industry.
28 I consider large s0 since the paper is devoted to the analysis of the patterns of growth.

When s0 < �
0 (k0; r0); the economy needs a transition period with declining consumption.
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sumption growth (2) with the 
 satisfying condition (18) (if this path exists)

subject to the condition that the paths in the economy are the smooth continua-

tions of the given initial state. The planner imposes a tax that, for simplicity, is

only extraction-distorting, while the pattern of investment remains unchanged.29

It follows from the inequality s0 > �
0(k0; r0) and from the strict monotonic-

ity of the dependence between s0 and 
 that there exists a unique 

�(s0) >


0 such that s0 = �
�(k0; r0); satisfying the e¢ciency condition. The strict

monotonicity of w�(
) and the optimality of w� imply that 
�(�) < 
� (w�) for

the same reserve s0 = �
�(�)(k0; r0; �) = �
�(w�)(k0; r0; w
�); which is intuitive

since the optimal investment rate gives a higher rate of growth for the same s0:

The existence of the growth path in this example, despite the underinvest-

ment, follows from Proposition 1 in Bazhanov (2008), which states that _q > 0

in the DHSS economy i¤ � < fk(w=�� 1): Hence, any negative deviations from

the standard Hotelling rule (� < 0) result in output growth for w � �:

Endogenization of the preference parameter is a well-known approach in jus-

tice theory and in human practice.30 In the current case, this approach solves

the following problems: (a) the optimal paths are smooth despite the changes in

the parameters (consistent with the given initial state), (b) the path of extrac-

tion satis�es the e¢ciency condition s0 =
R
1

0
r(t; 
�)dt, and (c) consumption

grows with the maximum 
 among the sustainable paths.

Technically, the approach introduces the two new �xed parameters: r0 and

_r0, which are used to �nd the two new unknowns: the parameter 
, solving dis-

29The change in 
 means that w � � becomes non-optimal (the preference of population

does not coincide with the preference of the planner), providing only the second-best optimum.
30Pezzey (2004, formula (15), p. 477) endogenized preference parameter by specifying the

discount factor in utilitarian criterion for given technological parameters and the current state

of economy in order to solve the problem of dynamic inconsistency. The approach is consistent

with Koopmans� (1964, p. 253) idea about adjusting preferences to economic opportunities,

�viewing physical assets as opportunities;� with Hadamard�s (1902) principle of a well-posed

mathematical problem, and with Bellman�s Principle of Optimality. The review of studies in

justice theory can be found in Elster (1989).
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tortion (i), and the initial value of the distortion �0; which includes the in�uence

of known and unknown e¤ects of imperfect institutions, government policies, and

externalities.31 The given initial state (k0; s0; r0; _r0) and investment rule imply

that c0 and _c0 are known, which results in the unique sustainable optimal path

determined by 
: A way of constructing this path is shown below.

Lemma 2. Let a distorted economy q = k�r� with the initial state ( k0; s0; r0; _r0)

follows the investment rule _k = �q; and the Hotelling rule at t = 0 is _fr(0)=fr(0) =

fk(0) + �0; where �0 is determined by the initial state: �0 = �(0) = �(1 �

�)
h
_r0=r0 + �k

��1
0 r�0

i
: Then the unique path of the Hotelling rule distortion

�(t) = �
1� �

�

_q0=q0
1 + 't

= �
1� �

�

_q

q
; (24)

where ' := ( _q0=q0) =
; is socially optimal with respect to criterion (1).

Proof. The general investment rule _k = wq implies that _fr=fr = wfk �

(1� �) ( _r=r); which, according to the Hotelling rule, equals fk+� ; or fk(w�1)�

(1��)( _r=r) = � : The last equation yields _r=r = � [(1� w)=(1� �)] [fk + �=(1� w)] ;

which for w � � becomes _r=r = �fk � �=(1� �): Then, _q=q = � _k=k + � _r=r =

� (fk + _r=r) = ���=(1� �):

From the criterion, _c
c1�
 = (1 � �) _q
q1�
 = u or _q
q1�
 = u=(1 �

�): Substitutions for q = c0(1 + 't)
=(1 � �) and _q = q��=(� � 1) give:

(q��=(� � 1))


q1�
 = (��=(� � 1))



q = u=(1 � �): Substitution for q yields

[��=(� � 1) (1 + 't)]


= u=c0 or � = (u=c0)

1


 (� � 1)= [�(1 + 't)] = �(1 �

�)( _q0=q0)= [�(1 + 't)] : The value of �0 can be derived from the Hotelling rule.

For the general investment rate w; it is �0 = �(1� �) _r0=r0� (1�w)�k
��1
0 r�0�

The following Lemma provides the path of an e¤ective extraction tax T that

is equivalent to the distortion �(t) shifting the economy from the Solow-Hartwick

case. The tax includes all the existing at t = 0 taxes/subsidies32 and the tax

31This approach, as any approach with an aggregate model, does not pretend on high

quantitative accuracy; therefore the path of �(t) includes also the inaccuracy of the model.
32This tax, however, does not include the tax that brings the economy from the laissez-faire

state to the Solow-Hartwick case.
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imposed by the planner at t = 0 to adjust the path of extraction in accord with

the criterion. The Solow-Hartwick case, therefore, corresponds here to T � 0:

Lemma 3. Under the conditions of Lemma 2, the e¤ect of the tax

T (t) = e
R
fk(t)dt

�
bT +

Z
�fre

�

R
fk(t)dtdt

�
; (25)

with bT = bT (T0) and T0 = T (0) = fr(0)��k0= [s0 (�� �)] ; on the distortion in
the Hotelling rule is equivalent to the e¤ect of �(t):

Proof. Since �(t) can be expressed in terms of tax, there exists an e¤ective

tax T (t) such that the equation _fr=fr = fk+ � takes the form:
33 ( _fr� _T )=(fr�

T ) = _fr=fr�� = fk: This equation can be rewritten as follows: _T � _fr+fk(fr�

T ) = 0 or _T �Tfk� _fr+fkfr = 0; which is equivalent to the following dynamic

condition for tax

_T � Tfk � �fr = 0 (26)

with the general solution in the form of (25). The initial condition T (0) can

be found from the fact that, for 
 = 0 (Solow-Hartwick case), the condition

s0 � �(k0; r0) = 0 takes the form (22). Then, f�r (0) with no distortions equals

fr(0)� T (0) = �q
�

0=r
�

0 ; (27)

where q�0 = k�0 (r
�

0)
�
and r�0 satis�es �perfection� condition (22): (r

�

0)
��1

=

k1��0 = [s0 (�� �)] : Substitution of this expression into (27) yields T (0); and

equation (26) gives the initial tax change: _T (0) = T (0)fk + �(0)fr(0)
34�

Lemmas 3 and 4 have established the link between � ; the planner�s tax, and

the rate of growth, providing the way to construct the paths with desirable

properties. The following Proposition uses this link for deriving the smooth

closed form solutions by using the given r0; _r0 and redetermining 

� > 
0 from

the e¢ciency condition.

33This dynamic e¢ciency condition was used by Hamilton (1994) in the form _n=n = fk for

the net rent per unit of resource n = fr � C � T; where C is the marginal cost of extraction.
34 In the Solow-Hartwick case, fr � �q�=r� implying T � 0:When, e.g., the initial extraction

is small (r0 < r�0) and growing ( _r0 > 0), the tax T is positive and declining.
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Proposition 4. Let a distorted economy q = k�r� with the initial state

( k0; s0; r0; _r0) satisfy conditions (i)-(iii). Then the e¤ective tax

T (t) = T0(k=k0)
�=� � fr

h
(q=q0)

1=��1
� 1
i

is socially optimal with respect to criterion (1). This tax implies the following

paths of capital and the resource use:

k(t) = k0 +
�q0

(
� + 1)'

h
(1 + 't)


�+1 � 1
i
;

r(t) = q
1=�
0 (1 + 't)


�=�
k(t)��=� ;

where ' := ( _q0=q0) =

�; q0 = k�0 r

�
0 ; _q0 = �k�0 r

�
0 (�k

��1
0 r�0 + _r0=r0); and 


� =


�(s0) is a unique solution of the equation

s0 =
1 + 
�

�� � � 
�(1� �)
� k1��0 r1��0 � 2F1 (1; a2; a3; z) ; (28)

where a2 := �

�(1��)
�(1+
�) ; a3 := �=� + a2; and z := 1� k0'(1 + 


�)=(�q0):

Proof is in Appendix 2.

The paths, o¤ered in Proposition 4, are the smooth continuations of the

initial conditions (Fig. 1). Indeed, the initial value of the e¤ective tax coincides

with the historical value T0; which means that the �additional� tax, introduced

at t = 0; is zero at this moment, regardless of the shocks in the parameters at

t = 0 including the shock in s0: Unlike the conventional approach, the claim

of CERA (2006) about larger reserve results here only in changes in the plans

for the paths of the tax ( _T < 0), extraction (�r > 0), and consumption (�c > 0)

(dotted lines in Fig. 1). This sustainable economy is asymptotically e¢cient

because � ! 0 with t ! 1; and 
� is speci�ed by the necessary e¢ciency

condition35
R
1

0
r(t; 
�)dt = s0:

Another interesting property of this solution is that the path of extraction

r includes the multiplier (1 + 't)

�=�

implying that the �second-best� initial

extraction can be growing (Fig. 1a). Indeed, the distorted Hotelling rule with

35 I mean here the conventional notion of e¢ciency in terms of consumption (e.g., Malinvaud

(1953), Mitra (1978), Dasgupta and Heal (1979, p. 216)) without _c in utility (
 = 0).
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Figure 1: The second-best paths of (a) extraction [bln t/year] and (b) consumption in a

distorted economy for the world�s oil reserve estimated by: Oil & Gas Journal - as a solid

line; CERA (2006) - as a dotted line; time is in years starting from 2010.

the initial investment _k0 = w0q0 yields _r0 = �r0

h
�k��10 r�0 (1� w0) + �0

i
=(1�

�); which is positive when �0 < �fk(0)(1� w0):

It is natural to expect that sustainable growth is not a¤ordable for any

initial states. Formulas (18) and (28) show that, for overconsuming economies

(s0 < �
0(k0; r0)), sustainable growth paths, including stagnation, do not exist.

The condition s0 < �
0(k0; r0) implies that the current level of consumption c0

is higher than the maximum sustainable level of consumption available for the

economy by a discontinuous jump at t = 0.36

In a smooth economy, however, the notion of �the maximum sustainable

level of consumption� is unde�ned because, for example for s0 > �
0(k0; r0);

the economy�s consumption can grow quasi-arithmetically, and, at any t > 0;

the economy can switch to a sustainable constant consumption path with the

level of consumption higher than c(t) (Bazhanov, 2010). Hence, the longer

is the �transition period� along the quasi-arithmetic path the higher is the

maximum sustainable level of consumption with limt!1
c(t) = 1 due to the

unboundedness of quasi-arithmetic growth.

36The latter level is de�ned in Martinet (2007) as a Sustainable Consumption Indicator.
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In an overconsuming economy, the maximin applied to the expression sgn( _c)�

j _cj


c1�
 do not imply that this expression is constant along the optimal path.

In this case, a simpli�ed formulation of the criterion, for example, in the form

of the �xed percent change or the constant-utility criterion, is not applicable to

the formulation of a long-run program.

7. Concluding remarks

This paper has examined the social planner�s solutions in a resource-based

economy under the constant-utility criterion. The utility function depends on

social progress _c in the multiplicative form u(c; _c) = _c
c1�
 = c( _c=c)
 ; realizing

a form of the no-envy principle where the lower rate of growth is compensated

by the higher level of consumption. This criterion implies the �regular� (Groth

et al., 2006) paths of consumption growth, which include conventional patterns

such as stagnation (
 = 0), quasi-arithmetic (0 < 
 < 1), linear (
 = 1),

super-arithmetic (
 > 1), and exponential (
 ! 1). This link renders the

problem with the constant-utility criterion an interesting theoretical tool since

this problem is equivalent � in the sense of resulting growth � to any problem

in growth theory resulting in a path from this family. For example, this tool

extends the conventional link between the utilitarian criterion and the maximin

for the cases with �nite values of the elasticity of marginal utility � by providing

the dependence between 
 and � in the form of (23).

The optimal investment rule was obtained for a general resource-based econ-

omy and speci�ed for the DHSS model. The optimal constant investment rate

depends on the shares of capital (�), the resource (�), and labor (1 � � � �)

in the following way: w� = � f1 + 
(1� �)= [�� 
(1� �� �)]g : This formula

includes the Hartwick rule (w� � �) as a particular case for 
 = 0: The closed

form solutions showed in particular that 
; determining the rate of growth, is

limited from above: 
 < (� � �)=(1 � �): This restriction implies that growth

can be exponential only when � ! 1; which is possible when the shares of the

resource and labor go to zero (complete automatization of the production with
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complete recycling and/or regeneration of the resource).

Since economic growth can be less then exponential, the measure _c
c1�


or geometrically weighted percent can be used as an alternative measure of

sustainable growth instead of regular percent. This combination can be constant

along the path with declining rates, which is convenient for formulating long-run

programs of sustainable development.

A modi�cation of this problem was considered for a distorted (underex-

tracting) resource economy under the constant-consumption criterion (
 = 0).

The requirement for the paths to be smooth continuations of the given initial

state combined with the endogenization of 
 and a monotonically declining tax

result in the smooth, asymptotically e¢cient paths with the monotonic (quasi-

arithmetic) growth of per capita consumption. Using these paths for transition

to a new constant level of consumption can result in unrestrictedly high new

levels of consumption depending on the duration of the transition period.
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9. Appendix 1 (Proof of Proposition 3)

The paths of consumption and output follow directly from criterion (1) and

from the investment rule. Then the investment rule _k = w�q gives the path of

capital, implying the path of extraction r from the production function, given q

and k: Then, the initial rate of extraction r0 can be expressed via the initial stock

s0 from the necessary e¢ciency condition s0 =
R
1

0
r(r0; t)dt in the following way.

The production function and the investment rule imply r = q1=�k��=� =

(1=w)1=� _k1=��1k��=� _k: Integration by parts with p := _k1=��1 and dv := k��=� _kdt

yields s0 = (1=w)
1=�
R
1

0
pdv = (1=w)1=�

h
_k
1=��1
0 k

1��=�
0 = (�=� � 1) + I1 (1� �) = (�� �)

i
;

where I1 :=
R
1

0
k1��=� _k1=��2

::

kdt: Note that criterion (1) implies that
::

k =

d
h
wk�0 r

�
0 (1 + 't)



i
=dt = 
'k

1=

0
_k1�1=
 : Let eu := 
' = �wk��10 r�0 + �r

�1
0 _r0

and bk := k0� _k0= [eu+ '] : Then I1 = eu _k1=
0 I2; where I2 =
R
1

0
k1��=� _k1=��1�1=
dt;

and k _k�1�1=
 = bk _k�1�1=
+_k�1=
0 ; which gives k1��=� _k1=��1�1=
 = k��=� _k1=�
h
bk _k�1�1=
 + _k

�1=

0 = (eu+ ')

i
:

Then I2 = bkI3+
h
_k
�1=

0 = (eu+ ')

i R
1

0
k��=� _k1=�dt; where I3 :=

R
1

0
k��=� _k1=��(1+1=
)dt:

The second integral in the formula for I2 equals w
1=�s0 and then the original

integral can be expressed from the equation
Z
1

0

rdt = (1=w)1=�
n
� _k

1=��1
0 k

1��=�
0 = (�� �) + eu _k�1=
0 (1� �) = (�� �)

�

�
_k
�1=

0 = (eu+ ')

Z
1

0

rdt+ bkI3
��

as follows:
Z
1

0

rdt = (1=w)1=�
eu+ '

eu(�� 1) + '(�� �)
h
� _k

1=��1
0 k

1��=�
0 + (1� �)eu _k1=
0

bkI3
i
:

Integration of I3 by parts with p := _k1=��1�(1+1=
); dv := k��=� _kdt; and

with the same substitutions yields
Z
1

0

rdt = (1=w)1=�

 + 1

�� � � 
(1� �)

n
� _k

1=��1
0 k

1��=�
0 +

+

(
 + 1)(1� �)' _k

1=

0
bk

�� � � 
(1� �) + �(
 + 1)

�
� _k

1=��1�(1+1=
)
0 k

1��=�
0 + (1� � � �(1 +

1



))eu _k1=
0

bkI6
�)
;

where I6 :=
R
1

0
k��=� _k1=��2(1+1=
)dt: Consecutive application of this procedure

with the substitution of the investment rule _k0 = wk
�
o r

�
0 and rearrangement of

terms leads to the following formula for s0 :
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Z
1

0

rdt =
�

w

1 + 


�� � � 
(1� �)
k1��0 r1��0 f1+ (29)

+

(1� �)

�� � � 
(1� �) + �(
 + 1)

��
'(
 + 1)

w
k1��0 r��0 � 1

�
+ : : :

+

(1� �)� (i� 1)�(
 + 1))

�� � � 
(1� �) + i�(
 + 1)

(�
'(
 + 1)

w
k1��0 r��0 �

1


 + 1

�i
+ : : :

)#)
:

Note that ' := _c0=(c0
) =
h
�wk��10 r�0 + � _r0=r0

i
=
: The value of _r0 can be

obtained from the expression
h
_fr(0)=fr(0)

i
= � _k0=k0 � (1 � �) _r0=r0; which,

according to the Hotelling rule, equals �q0=k0: After substitution of _k = wq;

the formula for _r0 becomes _r0 = ��k��10 r1+�0 (1 � w)=(1 � �); which implies,

�rst,

' = �r�0 (w � �)=
�

k1��0 (1� �)

�
; (30)

and, second, '(
 + 1)k1��0 r��0 =w = � (1� �=w) (
 + 1)=
: Denote z := 1 �

� (1� �=w) (
+1)=
; then, after dividing the fractions before brackets by �(
+

1); denoting a2 := �
(1� �)= [�(
 + 1)] ; a3 := �=� � (
 + �)= [�(1 + 
)] + 1 =

�=� + a2; and opening the brackets, formula (29) takes the form:

s0 =

Z
1

0

rdt =
�

w

1 + 


�� � � 
(1� �)
k1��0 r1��0

1X

i=0

(1; i)(a2; i)

(a3; i)(1; i)
zi; (31)

where (d; i) is the Pochhammer symbol: (d; i) := d(d + 1) � � � (d + i � 1) and

(d; 0) := 1: The sum
P

1

i=0(�) in formula (31) coincides with the de�nition of the

Gauss hypergeometric function 2F1(1; a2; a3; z) (Luke 1969, p. 39); therefore

the connection between s0 and r0 is:

s0 =
�

w

1 + 


�� � � 
(1� �)
k1��0 r1��0 2F1(1; a2; a3; z): (32)

Function 2F1(�) converges for jzj < 1:The substitution w = w�37 results in

z = � < 1 and in formula (17) after substituting w = w� into equation (30).

Then formula (32) becomes

s0 =
1� 
(1� �� �)=�

�� � � 
(1� �)
k1��0 r1��0 2F1(1; a2; a3;�);

37Formula (16).
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which coincides with formula (18) in the Proposition, and substitution for '

from formula (17) into the equation u� = (
')
(1 � w�)k�0 r
�
0 yields formula

(20).

10. Appendix 2 (Proof of Proposition 4)

Lemma 2 showed that the path �(t) = �(1 � �)( _q0=q0)= [�(1 + 't)] is bi-

uniquely connected with the pattern of growth q(t) = q0(1 + 't)

 implied by

criterion (1). For this �(t); Proposition 3 provides the patterns of capital and

extraction.

The path of e¤ective tax can be obtained from formula (25) in Lemma 3:

T (t) = exp

�Z
fk(t)dt

��
bT +

Z
�fr exp

�
�

Z
fk(t)dt

�
dt

�
:

Consider the following integral, given the investment rule:
R
fkdt = �

R
(q=k)dt =

(�=�)
R
( _k=k)dt = (�=�) ln k+C1: This expression implies exp

�R
fkdt

�
= C2k

�=�

and equation (24) gives �fr exp
�
�
R
fkdt

�
= [ _q=q] [(� � 1)=�] [�q=r] k��=�=C2

= [(� � 1)=C2] q
�1=� _q = [�=C2]

�
d(q1�1=�)=dt

�
; which yields

T (t) = k�=�
h
bT + �q1�1=�

i
; (33)

where bT can be expressed via T0 = T (0): bT = T0k��=�0 � �q
1�1=�
0 : Then, since

k�=�q�1=� = r�1; formula (33) becomes

T (t) = T0 (k=k0)
�=�

� fr

h
(q=q0)

1=��1
� 1
i
;

which is the expression formulated in the proposition.

Formula (28) results from the same procedure as formula (18) derived in

Appendix 1. A technical di¤erence is that for a non-optimal investment rule

(w � � < w�) the variable z in 2F1 depends on 
 and on the initial val-

ues k0; r0; _r0; which can result in jzj > 1: However, there are formulas for the

analytic continuation of 2F1 for any parameters (Luke 1969, p. 69; Becken,

Schmelcher 2000). These formulas are the part of major software like MAPLE,

MATHEMATICA and MATLAB.
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Note that the value of 2F1(�) is 1.157 for the numerical example (Section 6)

and so, taking into account the existing uncertainty in the reserve estimate, the

following formula can be used in some cases as a ��rst-order approximation:�

s0 =
R
1

0
rdt = k1��0 r1��0 (1 + 
)= [�� � � 
(1� �)] ; which yields an explicit

expression for 
(s0) : 
 =
h
(�� �)s0 � k

1��
0 r1��0

i
=
h
(1� �)s0 + k

1��
0 r1��0

i
:

This formula captures the main qualitative properties of the behavior of the

closed form solution (28). In particular, it has the same horizontal and vertical

asymptotes�
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