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Abstract

This paper quantitatively explains high labor share, low productiv-

ity and small farm size in agriculture of low income countries. I develop

a variation of Lucas’ span-of-control model. Specifically, I allow skill to

grow over time as a result of optimal investment in a two-sector OLG

model. The calibrated model is consistent with key features of the

farming sector in the U.S. Given exogenous differences in nonagricul-

tural productivity and land endowment, for a sample 40 countries, the

model can explain almost all of the differences in agricultural produc-

tivity, and about 80% of the differences in labor allocation between the

top and bottom quintile countries. Endogenously generated farm size

distributions are close to actual ones for a large number of countries.
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1 Introduction

Recent studies have put agriculture at the center of understanding economic

growth and income differences1. As pointed out in Restuccia et al. [2008],

high employment share and low labor productivity in the agricultural sec-

tor is the main driver of low aggregate productivity in developing countries.

Hence the central question is why most people in these countries work in a

disproportionately unproductive sector. A counterfactual calculation sim-

ilar to the one in Caselli [2005] will illustrate this point succinctly. If all

countries would have the U.S. agricultural productivity, and maintain their

own labor allocation and nonagricultural productivity, cross-country income

differences would almost disappear. A less ambitious experiment, in which

all countries have the U.S. relative productivity (agriculture/nonagriculture)

and maintain their own labor share and nonagricultural productivity, would

shrink income differences to a factor of 6, from a factor of 32, between the

90th and 10th percentile countries.

This paper provides a quantitative theory of agricultural productivity by

focusing on scale of production. The approach is motivated by observations

from World Census of Agriculture (WCA [1990,2000]) compiled by the Food

and Agriculture Organization. I focus on comparison of holding size across

countries. In WCA, a holding is defined as “an economic unit of agricultural

production under single management comprising all livestock kept and all

land used wholly or partly for agricultural production purposes, without

regard to title, legal form, or size”. The main finding is that mean holding

size positively and strongly correlates with income level. Figure 1 (left panel)

plots mean farm size (log) against log income per worker in 1996. Mean

farm size ranges from below 1 hectare in the poorest countries to above

1000 hectares in the richest countries. Moreover, agricultural production in

low income countries concentrates disproportionately on very small farms.

Figure 1 (right panel) plots the farm size distributions of two representative

countries 2. In Uganda, for example, 73% of the farms are of scale less than 5

1Hansen and Prescott [2002], Gollin et al. [2004, 2007], Restuccia et al. [2008], among
others

2Rich countries: U.S, Canada, Australia, Norway, Switzerland. Poor countries:
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hectares. In contrast, 50% of the farms in the U.S. exceed 50 hectares in size.

Observed variation in scale of production has profound implication about

cross-country differences in agricultural productivity. Using development

accounting, I show that differences in farm size distribution can account for

30% of the variations in agricultural productivity in a sample of 40 countries

(see Appendix 5.2).
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Figure 1: Size of Farms Across Levels of Development

Why does the scale of operation matter for understanding productivity

differences in agriculture? Cross-section data from the U.S. show that larger

farms have higher measured productivity. If one compares average output

per worker of farms in different size classes, the differences in labor pro-

ductivity are marked (see Figure 2). In 2007 census, a 2000+-acre farm on

average produces 16 times more output per worker than a 50-acre farm. In

value added terms, the productivity differences are even more pronounced3

Similar results are obtained when earlier censuses (92, 97 and 02) are used
4. Taking the size-productivity regularity as given - without a theory that

Uganda, Burkina Faso, Ivory Coast, Pakistan, Sri Lanka.
3Differences in capital stock fail to justify observed labor productivity differences under

reasonable factor shares. Computed Solow residual ranges from 3 to 5 times higher in the
largest farms, relative to the smallest ones.

4Historical census also shows an increasing productivity gap between small and large
farms. Cross-country data are limited, see Fan and Chan-Kang [2005] for a set of asian
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explains why, it is clear that differences in the composition of farms will map

into differences in productivity. In Appendix 5.2, a calculation of this kind

shows that observed heterogeneity in farm size distribution can explain up

to 30% of observed variation in agricultural productivity for a sample of 40

countries.
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Figure 2: Productivity by Size of Farm

I deviate from the standard model by allowing skill accumulation in a

dynamic environment. This modification serves three purposes. First, it

allows calibrating the model to the observed farm size distribution in the

U.S, and hence provides reasonable identification of the underlying distribu-

tion of skill types. Second, the model with skill accumulation is consistent

with another cross-section data in U.S. farming - older operators operate

large farms than younger peers. Table 5 in Appendix shows that hetero-

geneity in holding size over operator’s life cycle is nontrivial and robust

over time. Lastly, many economists argue the central role of human capital

accumulation in economic growth and development 5. In the model skill

can be viewed as a form of human capital that is specific to agricultural

production. Modeling the dynamics hence provides an additional avenue of

countries; Byiringiroa and Reardon [1996] for Rwanda, and Clark [1991] for historical
England

5Lucas [1988], Manuelli and Seshadri [2005], Erosa et al. [2007], among others
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understanding cross country differences in agricultural productivity. Indeed,

the model predicts that farm operators in low income countries spend less

time accumulating skills and experience slower growth in productivity over

time. At the aggregate, suboptimal investment in skill improvement further

reduces labor productivity.

This paper is related to a large literature that studies cross country

income differences, eg., Hall and Jones [1999], Hansen and Prescott [1998],

Klenow and Rodiguez-Clare [1997]. A strand of the literature stresses the

importance of the agricultural sector in understanding aggregate income dif-

ferences. Crdoba and Ripoll [2005] show that ignoring the agricultural sec-

tor results in substantial bias in imputed aggregate TFP. Chanda and Dalgaard

[2008] argue that most of the cross country differences in efficiency come

from differences in relative efficiency between agriculture and nonagricul-

ture. Vollrath [2009] shows that misallocations between agriculture and

nonagriculture go far in explaining aggregate productivity differences. This

paper differs from these studies in using a general equilibrium model with an

explicit agricultural sector. Gollin et al. [2004] argues low agriculture pro-

ductivity can be explained by unmeasured home production, which is rela-

tively cheaper in the agricultural sector. Restuccia et al. [2008] argue that

distortions in intermediate inputs are quantitatively important for under-

standing cross country differences in agricultural and aggregate productiv-

ity. Adamopoulos [2006] document large differences in transportation costs

across countries, and show that theses differences can account for a sizable

share of income differences. Using micro level data, Gollin and Rogerson

[2010] investigate the role of transportation cost in economic development

in Uganda. This paper differs from these studies in stressing the role of

individual heterogeneity and self-selection. Waugh and Lagakos [2009] ar-

gue that low agricultural productivity is due to poor specialization. Both

papers stresses the importance of self-selection. This paper focuses on

farm size heterogeneity, and use farm size distribution to discipline un-

derlying skill distribution. After completing the paper, a recent study by

Restuccia and Adamopoulos [2009] was brought to my attention. Both pa-

pers focus on farm size heterogeneity across countries and use a version of
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Lucas’ span-of-control model to endogenously generate a size distribution.

However, this paper highlights the role of skill accumulation in explaining

cross country variation in farm size distribution and agricultural produc-

tivity, which is abstracted from in their paper. In the respect of modeling

occupation choice using a framework of Lucas’ span of control model, this

paper is similar to Gollin [2007], who explores the secular decline in share

of entrepreneur with rising income.

The paper is organized as follows. Section 2 presents the model. In sec-

tion 3 I calibrate the model and discuss the results. In section 4 I conclude.

2 Model

2.1 Environment

Each period a continuum of mass one individuals are born, and live for T

periods. Individuals of the same cohort constitute a household, with all

decisions made by a hypothetical household head. When born, individuals

within a household draw independently their skill type, z, from a known,

time invariant distribution G(z). The instantaneous utility function of a

household is given by

U(ca, cn) = η · log(ca − ā) + (1 − η) · log(cn)

where (ca, cn) denote, respectively, agricultural consumption and nonagri-

cultural consumption at the household level. η dictates relative taste towards

two consumption goods. ā can be interpreted as subsistence consumption

level. ā ≥ 0 implies an income elasticity of agricultural consumption less

than unity. Each individual is endowed with one unit of physical time.

Households equally own the stock of land L̄. There is no growth in popula-

tion nor lifetime uncertainty.

6



2.2 Household Decision

In this economy, there are two occupations. Each member can either work

as a worker or a farm operator. All workers, regardless of ability type,

supply one unit of physical time in return of wage rate w. A farm operator

combines her skill (z), labor (ha) and land (ℓ) to produce agricultural output

according to

Ya = A · z1−γ
(

hα
a · ℓ1−α

)γ

where q denotes the rental rate of land and A represents the economy-wide

efficiency. The residual profit, or return to skill, π(z) is retained by the farm

operator who supplies skill z to production. It is simple to show

π(z) = z · (1 − γ) · (P · A)
1

1−γ

(

γ
(α

w

)α
(

1 − α

q

)1−α
)

γ

1−γ

where p is the price of agricultural output, relative to nonagricultural output,

which is used as numeraire.

Unlike in the standard span-of-control model, skill can grow over time

through investment. More specifically, the law of motion of skill is given by

zt+1 = zt + zt · s
θ
t

where st is the fraction of physical time denoted to skill augmentation. This

technology highlights a trade-off between current and future income, as in

most human capital accumulation process. An individual with skill zt and

invests st can only supply zt(1 − st) units of skill to market production.

Higher investment today reduces current income, but increases future in-

come flow. Note that this technology assumes time as the sole input . This

is done for several reasons. First, it allows for closed-form solutions and

clearer expositions. Second, data on time allocations of farm operators are

available to discipline relevant parameters. Lastly, data on resources in-

vestment by farm operators in skill accumulation are limited, if available at
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all.

When born, the household head decides the occupation for each mem-

ber, and also the sequences of skill investments so as to maximize discounted

household income. The occupations can’t be changed over time. Since I

focus on the stationary equilibrium, this assumption is harmless. The fol-

lowing lemmas establish some simple yet important results that characterize

the stationary equilibrium, where all prices are constant.

Lemma 1 Workers don’t spend time accumulating skills.

This follows naturally from the assumption that all workers earn the same

wage rate w regardless of skill type. Thus it is not optimal for a worker

to invest in skill accumulation, which reduces current income yet does not

increase future income. Discounted lifetime income of a worker is simply

Yw =
∑T

t=1
w · R1−t, where Rt denotes the return on savings from period

t to t + 1. In contrast, since residual profit is strictly increasing in skill

input, concavity ensures skill investment profitable for all farm operators.

The following lemma characterizes the optimal investment profile of farm

operators.

Lemma 2 Optimal time investment is independent of skill type

The proof is given in Appendix. The lemma implies all farm operators,

regardless of skill type, face the same skill profile over the life cycle. It is

convenient to define variable xt as follows

xt =







1, t = 1

xt−1 · (1 + sθ
t−1), t = 2, ..., T

{xt}
T
t=1 summarizes the level of skill at time t relative to when born for

an operator. Clearly, {xt} is independent of type. This allows a simple

expression of lifetime discounted income of a type z farm operator

Yf (z) = π(z) ·

T
∑

t=1

xt · (1 − st) · R
1−t
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Note that Yf (z) is linear and strictly increasing in skill type z. In contrast,

discounted lifetime income of a worker Yw is independent of skill type z.

This leads to Lemma 3.

Lemma 3 There exists a cut-off level of skill type, z̄, such that household

members with skill type z ≤ z̄ become a worker, and household members with

skill type z ≥ z̄ become a farm operator.

The most able members will operator farms and utilize their skills. The

less able members will supply inelastically one unit of labor to the market,

and forgo their endowed skills. The marginal operator, whose skill type is

z̄, is indifferent between two occupations. The discounted income of the

household is

Y = (1 − G(z̄))Yw +

∫

z̄

Yf (z)dG(z) + q · L̄/T ·

T
∑

t=1

R1−t

2.3 Nonagriculture Firm’s Optimization

There is a representative firm that produces nonagricultural output with a

linear technology Yn = A · Hn. Two remarks are in order. First, efficiency

parameter A augments both agricultural and nonagricultural production.

Second, Hn represents raw labor and does not embed skills. The represen-

tative firm solves

max
Hn

A · Hn − w · Hn

2.4 Equilibrium

A stationary competitive equilibrium is collection of prices (w, p, q,R), con-

sumption and investment (cat, cnt, st)
T
t=1, factor demand ha(z), ℓ(z),Hn such

that: (1) given prices, (cat, cnt, st)
T
t=1

solve household income maximization

problem; (2) given prices, (ha(z), ℓ(z)) solve farm operator’s profit maxi-

mization problem, and Hn solve nonagriculture firm’s profit maximization

problem; (3) Prices are competitive; (4) All markets clear.
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To solve for prices (p, q), I use indifference condition for the marginal

operator and land market clearing condition.

π(z̄) ·

T
∑

t=1

xt · (1 − st) · R
1−t =

T
∑

t=1

w · R1−t (1)

∫

z̄

ℓ(z)dG(z) ·

T
∑

t=1

xt · (1 − st) = L̄ (2)

Divide equation (1) by (2) yields an expression of land rental price

q =

[

∑T
t=1

xt · (1 − st)
∑T

t=1
xt · (1 − st) · R1−t

]

·





γ · (1 − α) ·
(

∑T
t=1

w · R1−t
)

(1 − γ) · L̄



 ·

∫

z̄
zdG(z)

z̄

(3)

substitute into equation (1) yields relative price of agriculture good

p =

[

∑T
t=1

w · R1−t

z̄ · (1 − γ) ·
∑T

t=1
xt · (1 − st) · R1−t

]1−γ

·

(

γ
(α

w

)α
(

1 − α

q

)1−α
)−γ

·
1

A

(4)

Note the relative price of agriculture output is strictly decreasing in the cut-

off type z̄ and aggregate TFP. Solving for optimal consumption bundles and

aggregating over generations yields aggregate demand of

Ca =

T
∑

t=1

cat =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1
R1−t

∑T
t=1

βt−1

]

·
η

p
+ T · ā (5)

Cn =
T
∑

t=1

cnt =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1
R1−t

∑T
t=1

βt−1

]

· (1 − η) (6)

Detailed derivations are given in appendix. Now turn to the supply side. To-

tal measure of workers in agriculture is Ha =
[

∑T
t=1

xt(1 − st)
]

·
∫

z̄
ha(z)dG(z).

Total measure of worker is T ·G(z̄), so the aggregate output in the nonagri-

culture sector is Yn = A · (T · G(z̄) − Ha) . Aggregate output in agriculture

is given by Ya =
∫

z̄
ya(z)dG(z) ·

[

∑T
t=1

xt(1 − st)
]

. Good markets clearing
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conditions requires Ca = Ya, Cn = Yn. By Walras’law, loan market clears as

well.

In the standard Lucas’ span-of-control model, threshold skill level is in-

dependent of TFP. In this model, however, threshold level increases with

TFP. This highlights the main mechanism through which the model is able

to reconcile high labor share and low productivity in agriculture in low in-

come countries. Low TFP transforms into low wage payment, and hence

render farming more lucrative for even low skill household members, be-

cause price of agriculture output rises more than proportionately to offset

the decline in TFP. Employment in agriculture increases, yet average skill,

and hence productivity, decreases. To see this, consider two economies with

TFP Ar > Ap. The former can be interpreted as a typical rich country, and

the latter a poor one. Holding land endowment fixed, the model predicts

a lower skill threshold and higher interest rate in the poor country. For a

simple proof, assume cut-off and interest rate are the same. From equation

(3), it is straight forward to see that qr = g · qp. Given this, equation (4)

implies pr = pp. These two conditions, together with equation (5), further

implies Yr = g · Yp, i.e, aggregate discounted income are proportional to ag-

gregate TFP. Aggregate production of agriculture good is also proportional

to TFP. However, with nonhomothetic preferences, demand of agricultural

consumption drops by less than a factor of g in the poor economy, as sug-

gested by equation (5). In equilibrium price of agricultural consumption

goes up, and the threshold level of skill is reduced. This implies a higher

labor share and lower productivity in the agricultural sector. Influx of labor

into the agricultural sector reduces the supply of nonagricultural good and

bids up the equilibrium interest rate.

3 Calibration and Result

In this section, I parameterize the model. Model period is 10-years. In-

dividuals are born at the age of 25 and live for 5 periods. Assuming an

annual discount rate of 0.96, I set β = 0.9610. TFP for the U.S is nor-

malized to be 1. Parameters in the agricultural production function are
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directly inferred from U.S. Agriculture Value Added data (see Appendix

5.3). Over the period 1980-1999, the average share of income accruing to

operators is 20%. I thus set γ = 1− 0.2 = 0.8. This value is consistent with

several existing estimates. Guner et al. [2008] estimates the span-of-control

parameter to be 0.8 for the aggregate economy. A similar value is used

in Restuccia and Rogerson [2008] for studying the effect of distortions on

aggregate productivity in an economy with heterogeneous plants. For the

manufacturing sector alone, Atkeson and Kehoe [2005] obtains an estimate

of 0.85. Over the same period, return to land and labor are almost identical,

which suggests α = 0.5 is a consistent value.

I restrict the skill type distribution to be lognormal with mean µ and

standard deviation σ. This leaves 5 parameters (ā, η, L̄, µ, σ, θ) to be chosen

simultaneously to match moments of U.S. economy. From World Develop-

ment Indicator, agriculture employs 2% of the labor force. I also target a

long run agricultural employment share of 0.5%6. This corresponds to the

asymptotic agricultural employment share when subsistence consumption

share of income is effectively zero.To discipline θ I turn to data on time allo-

cations of farm operators. Census of Agriculture reports the number of days

off the farm for operators in 5 different age groups: 25-34, 35-44, 45-54, 55-

64, 65+. From there I compute the fraction of total working days supplied

by operators from different age groups at a point of time (see Appendix 5.4).

Within the model, this statistic corresponds to 1−si
∑T

i=1
1−si

because operators

of age i spend (1 − si) fraction of time to farm production. I choose θ to

reproduce the share of operator aged 35-44. However, the implied shares for

operators in other age groups are close to data as well7. Finally the model

is also asked to reproduce the observed size distribution of farms in the U.S.

Parameter values are summarized in Table 6 in Appendix. Figure 3 plots

the calibrated size distribution against data. By construction, the model

generated size distribution matches the data well. In addition, as depicted

in Figure 4 in Appendix, the model also implies a land size distribution that

6Similar calibration strategies are used in Restuccia et al. [2008] and
Waugh and Lagakos [2009]

7See Table 7 in Appendix
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fits data very well, even though it is not targeted. The model also generates

a distribution of hired labor over size class that is reasonably close to data
8.

3.1 Quantitative Experiment

In this section I test the model’s ability to quantitatively explain high labor

share, low productivity and small farm size in agriculture in low income

countries. Data on sectoral productivity, sectoral labor shares and land

endowment are from Restuccia et al., 2008. Mean farm size is calculated

from the World Census of Agriculture (round 1990, 2000) published by Food

and Agriculture Organization. These two data set, however, are not directly

comparable because of time period differences. While the data in Restuccia

et al,. pertains to year 1985, farm size data ranges from 1980-2000 (see 10

for country specific census date). Here I make a strong assumption that

farm size distribution remains relatively stable over the period of time.9. As

a first pass, I merge these two data sets to obtain a sample of 40 countries.

In the following quantitative exercise, all countries are identical except for

their level of TFP (A) and land endowment (L̄). In particular, they all face

the same ex-ante distribution of skill types. For country i, I compute TFP

Ai and land endowment L̄i as follows

Ai =
ynlni

ynlnus

L̄i =
LERi

LERus

· L̄us

where ynlni is Nonagriculture GDP per worker of country i, and LERi =

Land-employment ratio of country i, which is directly available from Restuc-

cia et al., 2008 as well.

For evaluating model performance, I focus on the following metrics: agri-

cultural labor share (La), real agricultural output per worker (ryala), real

8See Figure 5 in appendix. Hired labor is inferred using expenditure data assuming
homogenous wage rate across farms of different sizes.

9This assumption is probably reasonable for rich and poor countries, but not for tran-
sition countries
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GDP per worker (rgdp) and mean farm size (mfs). Note that agriculture

worker include both workers working in the agricultural sector and farm

operators. Because relative price of agricultural output differs across coun-

tries, U.S price is used as international price when computing aggregate

output. To facilitate comparison between model predictions and data, I di-

vide countries in the sample into quintile by GDP per worker in the data.

Productivity in the richest quintile (Q.5) is normalized to be 1. The sample

consists of 40 countries10. The results are summarized in Table 1.

Quintile rgdp ryala La mfs
Data Model Data Model Data Model Data Model

Q.1 0.13 0.19 0.04 0.04 0.66 0.48 7 16
Q.2 0.30 0.35 0.15 0.12 0.34 0.22 56 43
Q.3 0.52 0.59 0.36 0.37 0.18 0.07 83 107
Q.4 0.85 0.87 0.82 0.48 0.08 0.05 68 69
Q.5 1.00 1.00 1.00 1.00 0.05 0.05 515 381

Table 1: Model vs Data, by Income Quintile

The model explains well the data in the four aspects I focus on. In the

sample, the richest (Q.5) countries are about 8 times more productive over-

all and 25 times more productivity in agriculture, relative to the poorest

countries (Q.1). The model generates almost the same magnitude of dif-

ferences. Exogenous differences in TFP account for about 20% of the gap

in agricultural productivity, and the remaining is accounted by the model

through two channels. First, lower TFP pushes up equilibrium price of

agricultural output, and renders farming more attractive than wage work

for member with low skill. This pushes down equilibrium average skill of

operators and agricultural productivity. Second, interest rate has to go up

to offset excess demands in nonagricultural consumption. Higher interest

depresses incentive to accumulate skill, and further reduces average skill of

10Burkina Faso, Egypt, India, Sri Lanka, Morocco, Uganda, Dominica, Pakistan, Ivory
Coast, Greece, Hungary, Italy, Tunisia, Switzerland, Portugal, Ecuador, Peru, Nether-
land, Belgium, Spain, Colombia, Nicaragua, Ireland, Austria, Germany, France, Den-
mark, Venezuela, United Kingdom, Finland, Brazil, Chile, Norway, Sweden, New Zealand,
Canada, Uruguay, Argentina, Australia, United States
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farm operators. Model predictions are close to the data for other quartile

countries. An notable exception is high income country (Q.4), for which the

model substantially under-predicts agricultural productivity11. Since the

level of skill is positively correlated with the optimal scale of production,

the model also generates increasing mean farm size with income level, as

observed in the data. One important feature of this model is its ability to

reproduce not only the first moments, but also the entire farm size distribu-

tion across countries. In Appendix 5.8 I plot the model predicted farm size

distributions along with their empirical counterparts for all countries in the

sample. Even though ex ante all countries face the same skill-type distri-

bution, the ex post size distribution of farms exhibits substantial variations

across levels of income. For a large set of countries the model generated size

distribution is amazingly close to the data.

High employment and low labor productivity in agriculture are jointly

driving low income. It is thus important for the model to be consistent with

data in terms of sectoral labor allocation. For the top quintile countries, the

model correctly predicts the employment share in agriculture. For the bot-

tom quintile countries, the model predicts a 48% agricultural employment

share, about 80% of the actual share. For low income countries (Q.2), the

model also predicts a lower agricultural labor share, compared to data. This

reflects other forces at work. For example, high price of intermediate inputs,

as discussed in Restuccia et al., 2008, induces farm operators to substitute

labor for modern input. This model also abstracts from labor market dis-

tortions, while in low income countries barriers to sectoral labor movements

are common as evidenced by substantial gap in earnings. One famous exam-

ple is the Hukou system in China that imposes institutional restriction on

immigration from rural villages to urban cities. My results show that these

distortions are also important for understanding sectoral labor allocations.

Another stylized fact about economic development is declining importance

of agriculture in aggregate output - one available measure is agriculture

value added as a percentage of GDP. For the top quintile, the model pre-

11Low land endowment and a relatively large elasticity of land are responsible for the
counterfactual prediction
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dicts agricultural output to be 10% of aggregate output, while in the data

it is 3%. For the bottom quintile, the model predicts the value to be 70%,

while in the data is 30%. Finally, the model predicts a higher relative price

of agricultural consumption in low income countries. The ratio between the

poorest (Q.1) countries and the richest (Q.5) countries is 2.8 in the model.

Using ICP data from the World Bank, I compute the relative price between

“agricultural consumption” and “nonagricultural consumption” for all avail-

able countries12. The relative price in 2005 is around 4 times higher in the

10th percentile country, compared to the 90th percentile country.

Recall that in the model, countries are different in two dimensions: TFP

and land endowment. Which exogenous variable is relatively more impor-

tant in determining productivity? To shed light on this question, I perform

a series of counterfactual experiments for a hypothetical country that rep-

resents the poorest countries in the sample13. Relative to the U.S, the

representative poor country has 4.5 times lower TFP, and 2.1 times smaller

land endowment. To disentangle the relative contribution, I change one

exogenous variable at a time. Table 2 summarizes the results.

Exg. variable La ryala mfs

L̄ only 2.5% 1/2 117
A only 24% 1/22 47

Both A and L̄ 53% 1/48 13

Data 70% 1/51 3

Table 2: TFP versus Endowment

If the inferred TFP is maintained at the U.S. level, and land endowment

is reduced by half, equilibrium labor allocation and productivity change

minimally, though mean farm size drops by roughly a half. Differences in

endowment alone can’t go far in explaining differences in labor allocation and

productivity. In contrast, if inferred TFP is reduced - with land endowment

12“Agricultural consumption” is defined as food, non-alcoholic beverage, alcoholic
beverage and tobacco. “Nonagricultural consumption” is defined as the rest of indi-
vidual consumptions plus capital consumption. A similar calculation is done also in
Waugh and Lagakos [2009]

13These countries are Burkina Faso, Uganda, India, Ivory Coast and Pakistan

16



unchanged, there is a massive movement of labor into the agricultural sector.

Moreover, agricultural productivity drops by a factor of 22, and mean farm

size drops further to 47 hectares. TFP thus has a more profound impact on

equilibrium allocations. It is also interesting to note that the decomposition

of TFP and land endowment is not orthogonal. If both TFP and land

endowment are reduced, the representative poor country allocates 53% of

the labor force to agriculture. Output per worker drops massively - by a

factor of 48. An average farm is only about one tenth the size of an average

farm in the U.S..

3.2 Discussion

A novel and crucial feature of the model is to embed skill accumulation in an

otherwise standard Lucas’s span-of-control model. U.S. cross section data

suggests that farm operators become more productive over the life cycle. A

standard human capital accumulation theory, when applied to the farming

sector, can reconcile the observed patterns. Data on time allocation of farm

operators also support this interpretation. Using the model, I test the idea

for a cross-section of countries. In the quantitative exercise, the model is

calibrated to the observed U.S. farm size distribution. It turns out that the

ability of the model to reproduce empirical farm size distribution critically

hinges on skill accumulation. A similar idea was illustrated in Bhattacharya

[2009], who shows that skill accumulation is critical to quantitatively ex-

plain cross-country variation in firm size distribution and income, using a

dynamic version of Lucas’ span-of-control model. While in that paper the

main channel of variation is coming from resources input in skill accumula-

tion, in this model the main mechanism operators through nonhomothetic

preferences. To investigate the quantitative importance of skill accumula-

tion in determining equilibrium outcomes, I recalibrate the model absent

skill accumulation. Then I ask the model to predict for the representative

poor country. The model without skill accumulation in general explains

less of the cross-section differences in labor share and output per worker in

agriculture. Details of calibration and results are postponed in Appendix
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5.6.

The notion of aggregate efficiency in the model potentially encompasses

various sorts of distortions such as institutions, market incompleteness, la-

bor market distortions, etc. The nature of these distortions are not spelled

out in this study. More importantly, these distortions are not specific to the

agricultural sector. This contrasts with other studies that focus on distor-

tions geared towards the agricultural sector. One important and convincing

study of this kind is Restuccia et al. [2008], who show barriers to intermedi-

ate inputs have sizeable impact on labor allocation and productivity. Here I

consider a variation of the model that incorporates specifically distortions in

intermediate inputs (X). The technology in the agricultural sector is given

by

Ya = A · z1−γ
(

Xφ · hρ · ℓ1−φ−ρ
)γ

One unit of nonagricultural output can be consumed or converted into in-

termediate good at the rate of π. For expositional purposes, I abstract from

skill accumulation to disentangle the effects coming from distortions from

those stemming from skill investment. Detailed calibration and results are

given in Appendix. The main finding is that barrier to intermediate in-

puts account for a sizeable share of differences in agricultural productivity.

Moreover, high price of intermediate inputs also reduces the mean farm size.

Several remarks on the limitation of the model are in order here. Firstly,

calibrated share of land in agriculture production is considerably large, com-

pared to common values used in the literature14. In addition, land endow-

ment is approximated by land-employment ratio, which abstracts from pos-

sible differences in the quality of land. In the model, TFP represents the

economic-wide efficiency. However, in the quantitative analysis, it is approx-

imated by nonagricultural output per worker. While this approach appears

reasonable for rich countries where minimum resources are devoted to the

14Griliches [1964] estimates the share to be around 16% for the U.S., though his esti-
mates are for the period round 1950. For a cross-section, Hayami and V.W.Ruttan [1970]
estimates the share of land to be in a ball park of 10%. Hansen and Prescott [2002] uses
a land share of 30% for the technology in the Malthus era.
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agricultural sector, it is deemed less appropriate for poor countries where

most of the economic activity takes place in the traditional sector.

4 Conclusion

In this paper I develop a model that links agricultural productivity to the

skills of farm operators. In poor countries, subsistence need and low wage

rate renders farming a better option for even low skill individuals. As a result

of self-selection, a large fraction of the labor force work in the traditional

sector. Moreover, the average farm operator has low skill and hence low

measured labor productivity. Since optimal scale of production is tied to

the skill of the operator, an additional implication is increasing farm size

with income level. The model is thus able to reconcile simultaneously high

labor share, low productivity, and small farm size that characterizes the

agricultural sector in poor countries. When skill is allowed to grow over

time through optimal investment, the model is able to capture not only

the differences in the mean farm size, but also the variation in the size

distribution across countries.
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5 Appendix

5.1 Proofs

Proof of Lemma 1 It is useful to first derive the profit function, where

Π(z) = maxh,ℓ py − wh − ql. Using F.O.C, it is easy to show that

π(z) =π̃ · z

where π̃ = (1 − γ) · (P · A)
1

1−γ

(

γ
(α

w

)α
(

1 − α

q

)1−α
)

γ

1−γ

Profit function is thus linear in ability z. In a stationary equilibrium, prices

are constant over time. This implies constant profit per unit of skill. Thus

farm operator’s problem can be written as one that maximizes the sum of

discounted lifetime skill.

max
st

:
t=T
∑

t=1

R1−t
t · zt · (1 − st)

s.t : zt+1 = zt(1 + sθ
t )

Let λt be the Lagrangian multiplier for period t

L =

T
∑

t=1

R1−t · zt · (1 − st) − λt(zt+1 − zt(1 + sθ
t ))

F.O.Cs are

R1−t = λtθsθ−1
t (7)

λt = R−t(1 − st+1) + λt+1(1 − δt + sθ
t ) (8)

From equation(9), if λt+1 is independent of beginning of period skill zt, then

(λt) does not depend on zt. Consequently the equation (8) the optimal time

investment st does not depend on zt as well. To solve the optimal path, I use

backward induction. Clearly, it is optimal to invest no time in the last period,

sT = 0, λT = 0, and hence independent of zT−1. Using the above argument,
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λT−1 and sT−1 does not depend on zT−1. Repeating this argument implies

that the entire path of investment is independent of initial skill type.

Proof of Lemma 2 Life time budget constraint can be written as

T
∑

t=1

pcat + cnt

Rt−1
≤ Y

where Y is the discounted lifetime income. The Lagrangian is

L =
∑

βt(ηlog(cat − ā) + (1 − η)log(cnt)) − λ

[

∑ pcat + cnt

Rt−1
− Y

]

F.O.C yields

βtη

cat − ā
= λ

p

Rt−1
(9)

βt(1 − η)

cnt

= λ
1

Rt−1
(10)

(1) divided by (2) yields the intratemporal allocation between two con-

sumption goods as

p(cat − ā)

cnt
=

η

1 − η
. (11)

Iterating (1) and (2) one more period yields the usual intertemporal alloca-

tions

(ca,t+1 − ā) = βR(cat − ā) (12)

cn,t+1 = βRcnt (13)
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Substitute F.O.C into budget constraints we have

T
∑

t=1

p
[

·(ca1 − ā) · (βR)t−1 + ā
]

+ (βR)t−1 · cn1

Rt−1
= Y

→p · (ca1 − ā) + cn1 =
Y − p · ā

∑T
t=1

R1−t

∑T
t=1

βt−1

→ca1 = η ·
Y − p · ā

∑T
t=1

R1−t

∑T
t=1

βt−1
/p + ā

cn1 = (1 − η) ·
Y − p · ā

∑T
t=1

R1−t

∑T
t=1

βt−1

Aggregate consumption at a point of time is given by

Ca =

T
∑

t=1

cat =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1
R1−t

∑T
t=1

βt−1

]

·
η

p
+ T · ā

Cn =

T
∑

t=1

cat =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1
R1−t

∑T
t=1

βt−1

]

· (1 − η)

5.2 Development Accounting Exercise

To simply the calculation, I assume that all farms in size class [sl, sh] have

the same size (sl+sh)/2. Let si denote the mean farm size, and µi denote the

corresponding share in class i. In addition, let yi and hi denote, respectively,

the output and labor. Using U.S. data, I estimate the following equations

log ((y/h)i) = b1 + b2 · log(si)

log ((hl)i) = c1 + c2 · log(si)

Note that yi is measured by the total market sales of goods net of govern-

ment payments, and hi is measured by the sum of farm operators and hired

workers. The methodology in U.S. agriculture census assumes one farm op-

erator per farm. Let ni note the number of farms report hired labor, and

let hli denote the number of hired labor, the total number of worker in size

class i is simply ni + hli. For 2007, the estimated coefficients are (b1, b2)
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= (-0.916,0.548) and the R2 is 93% for the first regression. For the second

regression, the estimated coefficients are (c1, c2) = (1.62, 0.058) and the R2

is 72%. Given size distribution µi over size class, then aggregate output per

worker is computed as

Y =
∑

i

[(b1 + b2 · log(si)) · hi · µi]

hi =
(c1 + c2 · log(si)) · µi + µi

∑

i [(c1 + c2 · log(si)) · µi + µi]

where the second equation gives the distribution of workers over size classes.

5.3 Estimating Return to Scale Parameters in Agriculture

Based on data from USD [1980-1989], total output(YA), is the summation

of crop production, livestock production and revenues from services and

forestry. Total output, net of government transfers, are fully dissipated into

the following factors of production: intermediate inputs, capital, labor, land

and operators. In the data, these components corresponds to Purchased

Inputs (PI), Capital Consumption plus Real Estate and Non Real Estate

Interest (CCI), Compensation to Hired Labor (CHL), Net Rent Received

by Non-operator Landlord (RL) and Net Farm Income (NFI), i.e.,

Y A = PI + CCI + CHL + RL + NFI

Here I implicitly assume that real estate and non real estate interest income

are capital income because structures are typically considered as a compo-

nent of capital. Net farm income represents “ entrepreneurial earnings of

those individuals who share in the risks of production and materially par-

ticipate in the operation of the business”, and thus captures the return to

skills provided by farm operator. For the period 1980-1999, the estimated

income are given in the table blow.
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1985 1980-1990 1990-1999 1980-1999

Intermediate 0.47 0.48 0.51 0.49
Capital 0.24 0.24 0.15 0.20
Labor 0.05 0.05 0.07 0.06
Land 0.05 0.04 0.05 0.04

Operator 0.18 0.18 0.23 0.20

Table 3: Factor Shares in U.S. Farming

5.4 Working Days by Operator Age

From 1992 census of agriculture, I extract the number of days not working

on the farm for farm operators by age (Panel A). To compute the the hours

supplied by operator of a certain age, I assume 250 working days a year.

In addition, I use the midpoint of the interval as the average days off farm.

For example, “None” in the table means operators work 250 days a year.

Operators work 200 days if in interval “ 1-99 days”, 150 working days if in

interval “100-199 days”, and 25 working days if in interval “200 days+”.

This allows me to compute the total number of working days a year for

operators in any age category. Finally, I compute the share of days supplied

by operators in age group i (Panel B) as si = wdi
∑I

i=1
wdi

, where wdi is the

number of working days for operators in age group i.

Panel A

25-34 35-44 45-54 55-64 65+ Total

None 52,938 104,375 110,380 158,629 249,512 675,834
1-99 days 18,015 29,804 25,428 27,061 19,267 119,575
100-199 days 7,872 14,648 14,308 12,423 6,169 55,420
200 days + 10,028 15,565 14,681 11,082 5,087 56,443

Panel B

Work Days (1000s) 17875 33908 34478 46589 66975
% Days 0.09 0.17 0.17 0.23 0.34

Table 4: Days off Farm by Age of Operator
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Age 25-34 35-44 45-54 55-64 65+

1992 602 838 921 785 562
1997 654 872 997 807 589
2002 490 632 807 678 678
2007 575 857 909 736 542

Source: U.S. Census of Agriculture, Vol 1, Chapter 1:
Table 48(92,97), Table 60(02), Table 63(07).

Table 5: Mean Holding Size by Age of Operator

5.5 Parameter Values

η ā θ L̄ µ σ

0.015 0.221 0.3157 0.7842 -3.1236 4.1693

Table 6: Parameter Values

Age 25-34 35-44 45-54 55-64 65+

Data 0.09 0.17 0.17 1.23 0.34
Model 0.08 0.16 0.21 0.26 0.29

Table 7: Time Share by Age of Operator: Model against Data
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Figure 3: Calibrated Size Distribution
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Figure 4: Implied Distribution of Land
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Figure 5: Implied Distribution of Hired Labor
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5.6 Model Performances

1. Baseline Model Prediction
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Figure 6: Model Prediction Against Data

2. Model without Skill Accumulation

I calibrate (η, ā, µ, σ) to match: current agricultural employment (2%),

long run agriculture employment (0.5%), Mean farm size (178) and co-

efficient of variation of farm size distribution (0.5). I ask the model

to predict for a representative poor country with 4.5 times lower TFP

and a 2.1 times smaller land endowment.
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Exg. variable La ryala mfs

L̄ only 3.3% 1/1.6 65
A only 26% 1/16 20

Both A and L̄ 48% 1/28 6

Data 70% 1/51 3

Table 8: TFP versus Endowment (No Skill Accumulation)

3. Model with Intermediate Inputs

I set γ = 0.8, φ = 0.5 and ρ = 0.2. For the U.S, π = 1. I choose

(η, ,̄µ, σ) to target a 2% current agriculture employment, 0.5% long

run agriculture employment, 2% share of agriculture output of GDP,

and the mean farm size. Again I ask the calibrated model to predict

equilibrium allocations for the representative poor country, which has

4.5 times lower TFP, 2.1 times smaller land endowment and 3 times

higher relative price of intermediate inputs.

Exg. variable La ryala mfs

L̄ only 2.4% 1/1.2 88
A only 29% 1/17 18
π only 3.1% 1/1.6 135

A and L̄ 34% 1/20 7
A and π 49% 1/28 12
π and L̄ 3.6% 1/1.9 57

A, π and L̄ 58% 1/33 5

Data 70% 1/51 3

Table 9: TFP versus Endowment (With Intermediate)
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5.7 Model Predicted Farm Size Distribution (Q.1)
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5.8 Model Predicted Farm Size Distribution (Q.2)
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5.9 Model Predicted Farm Size Distribution (Q.3)
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5.10 Model Predicted Farm Size Distribution (Q.4)

<1  <2  <5  <10 <20 <50 <100 <200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u

m
u

la
ti
v
e

 D
e

n
s
it
y

Italy

 

 

Data

Model

< 2 < 5 <10 <20 <50 <100 <200 <500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u

m
u

la
ti
v
e

 D
e

n
s
it
y

United Kingdom

 

 

Data

Model

<2  <5  <10 <20 <50 <100 <2  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u

m
u

la
ti
v
e

 D
e

n
s
it
y

Finland

 

 

Data

Model

<1   <2   <5   <10  <20  <50  <100 <200 <500 <1000 <2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u

m
u

la
ti
v
e

 D
e

n
s
it
y

Austria

 

 

Data

Model

<10 <20 <50 <100 <200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Denmark

 

 

Data

Model

<5   <10  <20  <40  <60  <80  <100 <200 <400 <600 <800 <1000<2000<4000<5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

New Zealand

 

 

Data

Model

<2  <5  <10 <20 <30 <50 <100 <200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Sweden

 

 

Data

Model

<1  <5  <10 <20 <50 <100 <1  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

France

 

 

Data

Model

35



5.11 Model Predicted Farm Size Distribution (Q.5)
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Code rgdpwok MFS (Ha) No. Holding Area (Ha) Census Year

ARG 25715 468.97 378357 177437398 1988
AUS 46436 3,601.68 129540 466561000 1990
AUT 45822 26.42 273210 7217498 1990
BEL 50600 16.06 87180 1400364 1990
BFA 1824 2.79 886638 2472480 1993
BRA 18797 72.76 4859865 353611246 1996
CAN 45304 241.94 280043 67753700 1991
CHE 44152 11.65 108296 1262167 1990
CHL 23244 83.74 316492 26502363 1997
CIV 4966 3.89 1117667 4351663 2001
COL 12178 23.28 1547846 36033713 1988
DEU 42708 32.84 566900 18617900 1990
DNK 45147 34.14 81267 2774127 1989
DOM 12508 2.34 9026 21146 1995
ECU 12664 14.66 842882 12355831 1999
EGY 12670 0.95 3475502 3297281 1990
ESP 39033 18.79 2284944 42939208 1989
FIN 39611 61.88 199385 12338439 1990
FRA 45152 28.42 1006120 28595799 1988
GBR 40620 70.21 244205 17144777 1993
GRC 31329 4.50 802400 3609000 1995
HUN 21554 6.67 966916 6448000 1993
IND 9903 1.69 97155000 164562000 1985
IRL 47977 26.04 170578 4441755 1991
ITA 51060 7.51 3023344 22702356 1990
LKA 7699 0.81 1787370 1449342 2002
MAR 11987 5.84 1496349 8732223 1996
NIC 5697 31.34 199549 6254514 2001
NLD 45940 16.99 127367 2163472 1989
NOR 50275 9.97 99382 991077 1989
NZL 37566 223.43 70000 15640348 2000
PAK 6995 3.80 5071112 19252672 1990
PER 10240 20.15 1756141 35381809 1994
PRT 30086 6.74 594418 4005594 1989
SWE 40125 93.87 81410 7641890 1999
TUN 17753 11.58 471000 5455300 1994
UGA 1763 2.16 1704721 3683288 1991
URY 20772 288.31 54816 15803763 1990
USA 57259 186.95 2087759 390311617 1987
VEN 19905 60.02 500979 30071192 1997

Table 10: Summary Statistics of WCA
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