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Abstract 

To the best knowledge of authors, the use of Random forest as a potential technique for 

residential estate mass appraisal has been attempted for the first time. In the empirical study 

using data on residential apartments the method performed better than such techniques as 

CHAID, CART, KNN, multiple regression analysis, Artificial Neural Networks (MLP and RBF) 

and Boosted Trees. An approach for automatic detection of segments where a model 

significantly underperforms and for detecting segments with systematically under- or 

overestimated prediction is introduced. This segmentational approach is applicable to various 

expert systems including, but not limited to, those used for the mass appraisal.  
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1. Introduction 

According to International Association of Assessing Officers mass appraisal is the 

process of valuing a group of properties as of a given date using common data, standardized 

methods, and statistical testing (Eckert, 1990). Expert systems for mass appraisal allow 

determining the taxable value of a real estate object. The growing number and quality of 

websites with real estate prices and characteristics help researchers to develop formal models for 

mass appraisal. 
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Various methods have been used for real estate mass appraisal, among which parametric 

regression analysis is the traditional choice (Ball, 1973; Lentz and Wang, 1998; Miller, 1982; 

Laakso, 1997; Theriault et al., 2005; Kang and Reichert, 1991; McCluskey and Anand, 1999). In 

some studies nonparametric regressions have been applied successfully (e. g., Filho and Bin, 

2005). Among machine learning methods the most commonly used are neural networks (e. g., 

Verkooijen, 1996; Pace, 1995; McCluskey and Anand, 1999; Verikas et al., 2002; Worzala et al., 

1995; Ge et al., 2003; Curry et al., 2002; Kauko, 2003; Kauko et al., 2002; Liu et al., 2006; 

Selim, 2009). At the beginning of 1990s several authors revealed some problems with neural 

networks (Worzala et al., 1995). For example, the average absolute error varied significantly 

depending on the algorithm used in different software packages, i. e. results are often unstable 

(Worzala et al., 1995; Kontrimas and Verikas, 2010). On the other hand, Nguyen and Cripps 

(2001) showed that neural networks are effective in the case of large heterogeneous datasets. 

Other methods, reported to be effective, include, but are not limited to, k nearest neighbors 

(McCluskey and Anand, 1999), regression trees (Fan et al., 2006) and fuzzy logic techniques 

(Bagnoli and Smith, 1998; Lee et al., 2003; Theriault et al., 2005).  

It should be noted that there is a lack of studies, which compare a sufficiently large 

number of machine learning algorithms for mass appraisal, and, as far as we are concerned, there 

are no studies where such a modern method as Random forest is used. The existing literature also 

pays little attention to model diagnostics. As a rule, to evaluate model quality aggregated 

diagnostic indicators are used (coefficient of determination, mean average percentage error etc.), 

while there are virtually no tools which can be used to reveal problem segments of observations 

and improve models based on this knowledge. Without such diagnostics, model quality is 

questionable, since it may give a much higher than average error when objects from particular 

segments are under consideration. That is why the goals of our study are: (1) to justify the use of 

Random forest for mass appraisal and empirically compare it with 9 other methods; (2) to 

develop a segmentational approach for the diagnostics of mass appraisal models quality. 

 

2. Methodology 

2.1. Expected benefits of using Random forest for residential estate mass appraisal  

Random forest (Breiman, 2001) is a machine learning algorithm used mainly for 

classification problems, which can be applied to regression tasks as well. A random forest is in 

fact a special type of simple regression trees ensemble, which gives a prediction based on the 

majority voting (the case of classification) or averaging (the case of regression) predictions made 

by each tree in the ensemble using some input data. All the trees of the ensemble are built 

independently according to the following algorithm. Let N be the size of the learning sample and 
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M – the total number of predictors. A subset of m<M randomly chosen predictors is used to grow 

each tree on a bootstrap sample of the training data. For each of the bootstrap samples, an 

unpruned regression tree is grown, with the following modification: at each node, rather than 

choosing the best split among all predictors, the best split among a random sample of m variables 

is made. After a large number of trees are generated, predictions are averaged over the different 

trees. 

Despite the large size of created models, we believe Random forest may become one of 

the most appropriate techniques for mass appraisal due to the following reasons:  

1. Good results in comparative studies (mainly classification problems), comparable with 

Support Vector Machines (SVM) and boosting and often better than those of neural 

networks (e. g. Caruana and Niculescu-Mizil, 2006). It should be noted, however, that 

little is known about the performance of Random forest in regression problems. 

2. Successfully deals with categorical variables with lots of levels. For instance, in the case 

of multiple regression or neural networks, a large number of qualitative variables leads to 

an increased number of estimated parameters, which usually results in overfitting. In 

Random forest a nominal variable with k categories is recoded into k-1 dichotomous 

ones, only a fraction of which is used in building a tree. This helps to avoid most 

problems, caused by the large number of categories and makes Random forest an 

especially good technique for tasks with many categorical variables, such as mass 

appraisal, where there are such non-numeric variables as district, house type, bathroom 

unit type etc.  

3. Adequately works with missing data. If some data is missing for an observation, the 

prediction is made based on the part of the tree which had already been built. Therefore, 

there is no need in excluding any observations or imputing missing values.  

4. Thanks to bagging the method is robust to outliers (they seldom appear in bootstrap 

samples and their influence is reduced). 

5. In contrast to single regression trees, the prediction for each object is a unique number, 

rather than one of discrete values, derived using a set of rules.  

6. Since the method is based on regression trees, it allows for nonlinear links and the 

unsteadiness of variable influence across different segments.  

7. The method does not require a detailed model specification, which delivers from 

accounting for differences in the sets of pricing determinants in different areas. 

8. Predictions for new observations are in the same range as already observed ones, which 

prevents significant overestimation or underestimation of real estate objects.  
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9. There is a way to measure factor importance by finding the average marginal reduction in 

the residual sum of squares for each explanatory variable. 

Thus Random forest is expected to avoid fallacies of many other methods, commonly 

used for mass appraisal. 

 

2.2. Formal criteria for model comparison 

We have chosen the accuracy measures, which would allow us to compare valuation 

quality independent of the methodology used, which comply with the existing standards on 

automated expert systems evaluation. 

Average Sales ratio (SR) with a confidence interval 

The numerator of the sales ratio for a particular transaction would be the estimated value 

generated from the model, while the denominator would be the sale price. The 95% confidence 

interval must overlap 0.9-1.1 range according to international standards (International 

Association of Assessing Officers, 2003). In our study we use bootstrap confidence intervals 

because the distribution of SR is not normal.  

Coefficient of dispersion (COD) 

COD measures the average percentage deviation of SR from its median value. It is often 

considered to be the most useful measure of sales ratio’s variability, because its interpretation is 

not dependent on the normality assumption. In accordance with international standards COD of 

5-20% is acceptable (International Association of Assessing Officers, 2003). 

 Mean average percentage error (MAPE) 

n

i i

i 1 i

1 Y Y
MAPE 100

n Y=

−
= ⋅∑ , where 

i
Y  is the observed and i

Y  is the predicted value of 

object i. MAPE is easy to interpret and reflects the accuracy of the model.  

 

2.3. A segmentational approach for model accuracy diagnostics 

Besides average indicators of prediction accuracy, the homogeneity of valuation quality 

across different segments is important, especially in the context of mass appraisal. If there are 

segments in which the predicted values are systematically over- or underestimated, the model 

cannot be considered satisfactory. This is also true in the case of the segments, where prediction 

errors are significantly higher than average, which also puts tax payers in unequal position. For 

problem segments it is reasonable to apply appraiser assisted AVMs, which still simplify 

experts’ job, but are controlled by them. 

Despite active development of statistical methods, there are hardly any universal and 

easy-to-use approaches to diagnose and correct the heterogeneity of valuation quality. We 
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propose an approach to revealing segments with high and low prediction error in the context of 

mass appraisal problem.  

1. Let 
i

Y   be the observed market value for object i,  
i

Ŷ  – the value predicted using some 

data analysis method. Then 
i i

i

i

Ŷ Y
PE 100

Y

−
= ⋅  is the percentage error of prediction for 

observation i. 

2. On the training sample build the decision tree, using the CART algorithm with PEi as a 

dependent variable and with all the predictors used for valuation purposes as the 

explanatory variables. The tree splits the sample into segments, differing by MAPE. We 

suggest setting a reasonably large minimum number of cases per node (at least several 

hundred).  

3. If the regression tree does not reveal significantly different segments, then either the 

accuracy of the model may be considered homogeneous or another regression tree 

algorithm can be tried instead of CART. We do not recommend increasing the 

significance level (I type error), since in order to transfer our conclusions to the testing 

sample, we should be confident enough in the regularity of the revealed differences.  

4. If the regression tree reveals significantly different segments, then acceptability of MAPE 

in each segment should be considered. In the case of high MAPE in some segments, 

appraiser assistance may be required for objects belonging to those segments. Building 

separate models for different segments may also lead to an increased overall accuracy. 

Revealing segments with systematically under- and overestimated sales prices requires 

repeating steps 1 – 4 of the previous procedure using SRi instead of PEi. 

It should be noted, that the proposed tree-based approach can be used for diagnostics and 

correction of the prediction quality in various regression problems in the presence of a 

reasonably large training sample. Instead of a percentage error, an absolute error or squared 

residuals may be used depending on a researcher’s purpose. The latter case, for instance, gives a 

tool for heteroscedasticity diagnostics, capable not only of detecting heteroscedasticity of any 

type, but also of describing the detected segments, which gives our approach a competitive 

advantage compared to standard econometric tests.   

 

3. Empirical analysis 

3.1. Data 
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The dataset is based on the largest in Saint-Petersburg (Russia) real estate catalog “Real 

estate bulletin” (www.bn.ru). The content of the bulletin is moderated by its publisher, which 

increases the data quality.  

Our initial sample consisted of 2848 two-room apartments, sold in the spring of 2010 in 

Saint-Petersburg. In order to record prices closest to the actual sales prices, we collected the last 

values, which appeared in the bulletin for each object. We have noticed, however, that these 

values are usually equal to the initial prices. A scatter diagram (“total area - apartment price”) 

helped us to exclude three likely outliers. Thus the empirical analysis is based on the objects with 

the area of up to 160 m
2
 and the price of up to 30 million rubles. Such a range is still very wide 

due to the heterogeneity of apartments in the city, which makes the valuation difficult. The final 

version of the dataset was split into the training sample (2695 observations) and the testing 

sample (150 observations). 

Each object is characterized by the following variables: 

1. Apartment price in thousand rubles (price) 

2. Price per square meter in thousand rubles (price_per_meter) 

3. Total area of the apartment in square meters (total_area) 

4. Living area in square meters (living_area) 

5. The area of the first room in square meters (room1_area) 

6. The area of the second room in square meters (room2_area) 

7. Herfindahl index for room areas:  

2 2

room1_ area room2 _ area
inequality1 100 100

living _ area living _ area
= ⋅ + ⋅
      
      
      

 

8. Absolute percentage difference between room areas: 

( ) ( )( )
( )

max room1_area,room2_area -min room1_area,room2_area

min room1_area,roo
inequ

m2_ar
ali

ea
ty2 100= ⋅  

9. Kitchen area in square meters (kitchen_area) 

10.  Bathroom unit type (bathroom_unit): 1="no bath/shower in the kitchen/bath in the 

kitchen/shower only”; 2="the bathroom unit including the toilet"; 3="the toilet separate 

from the bathroom"; 4="2 or more bathroom units" 

11.  Telephone availability (telephone): 0="not available"; 1="available" 

12.  The floor, on which the apartment is situated (floor) 

13.  Number of floors in the house (number_of_floors) 

14.  House type (house_type): 24 categories 
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15.  Distance from the house to the nearest underground station 

(distance_from_underground): 0="1-5 minutes on foot"; 1="6-10 minutes on foot"; 

2="11-15 minutes on foot or 1-5 minutes by bus"; 3="16-20 minutes on foot or 6-10 

minutes by bus"; 4="21-25 minutes on foot or 11-15 minutes by bus"; 5="16-20 minutes 

by bus"; 6="more than 20 minutes by bus" 

16.  Time to the city center by underground (time_to_downtown) 

17.  District (district): 13 categories 

Descriptive statistics for quantitative variables are given in Table 1. 

Table 1 

Descriptive statistics for quantitative variables 

 

  

Number 

of valid 

cases 

Min Max Mean 
Std. 

Deviation 

Coefficient of 

variation, % 

price 2695 1500.0 26500.0 4826.4 2456.1 50.9 

price_per_meter 2695 29.4 375.0 82.1 26.7 32.5 

total_area 2695 22.0 156.0 57.7 13.9 24.0 

living_area 1697 15.0 75.0 33.0 6.3 19.1 

room1_area 2020 7.0 75.0 19.1 6.1 32.1 

room2_area 1905 6.0 48.0 14.8 4.1 27.9 

kitchen_area 1623 4.0 50.0 10.6 5.0 47.7 

floor 2652 1.0 25.0 5.1 3.9 75.4 

number_of_floors 2688 2.0 27.0 9.5 5.3 56.4 

time_to_downtown 2695 0.0 6.0 1.6 1.3 82.6 

 

The following features of the data, which will obviously influence the comparative 

performance of different methods, have been revealed:  

1. Lots of missing values (no data on one or several characteristics for about two 

thirds of observations) 

That is why, valuation methods should be able to cope with such a large number of missing 

values. 

2. Strongly asymmetric distribution of most quantitative variables 

Due to the heterogeneity of the real estate market in the area, most distributions are positively 

skewed, so methods should be robust to the violation of normality assumption, which is often 

used in traditional econometric approaches. 
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3.  The presence of rare characteristics 

This problem has been partly solved by merging some categories into one (e. g. we assume that 

apartments with no bath and those with the shower in the kitchen should cost the same). 

However, for some other variables a priori assumptions would be too strong. Therefore, the 

method should be able to merge some categories automatically. We address a related problem 

further in the text, discussing categorical variables with many levels. 

 4. The presence of categorical variables with many levels 

The variables “district”, “house type”, “distance from the house to the nearest underground 

station”, “bathroom unit type” and “telephone availability” have 13, 24, 6, 4 and 2 levels 

correspondingly, which significantly increases the number of estimated parameters, if we use, for 

example, multiple regression or neural networks.  

5. The heterogeneity of residential apartments market 

In Saint-Petersburg there are various types of apartment houses built in different decades of the 

18
th

, 19
th

, 20
th

 and 21
st
 centuries. The marginal effects of characteristics are likely to differ across 

these segments. That is why standard regression analysis is not a very appropriate modeling tool. 

However methods based on regression trees can account for such a heterogeneous influence. 

 6. Heteroscedasticity 

Heteroscedasticity essentially results in increasing variance of apartment price when the total 

area increases.  We suppose that a two-step procedure can partly solve this problem: first, the 

price per meter is predicted, after that the overall price is calculated. We believe that such 

procedure usually better reflects the logic behind real estate pricing: for instance, the location of 

an apartment in a prestigious district adds a constant value not to the overall price of the 

apartment, but more likely to its price per meter.  

 7. The occurrence of non-typical transactions 

Demand and supply are very limited in some segments, while those segments are still an 

important part of the market. Thus the utilized methods should be robust to non-typical 

transactions, which appear in the database. 

Taking into account Random forest features described in the methodological section of 

the paper, we expect it to be among the most competitive methods for mass appraisal, since it 

can successfully cope with most of the problems detected in the market data.   

 

3.2. Algorithms comparison 

We have conducted a comparative analysis of performance achieved by 10 algorithms 

(Multiple regression, CHAID, Exhaustive CHAID, CART, k-Nearest Neighbors (2 

modifications), Multilayer Perceptron neural network (MLP) and Radial Basis Function neural 
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network (RBF)), Boosted Trees and Random forest). As far as we know, the results of applying 

Boosted Trees and Random forest to the mass appraisal of residential apartments have not been 

reported by any researchers yet.  

We used algorithms available in StatSoft STATISTICA 8 and SPSS 18. Below we 

mention some key settings we used. For all methods that require setting the significance level the 

standard probability of 0.05 was used. For stepwise regression we used the entry probability 

equal to 0.05 and the removal probability equal to 0.1. For CHAID, Exhaustive CHAID and 

CART the minimum size of nodes was set to 50 to avoid overfitting.  

When applying k-Nearest Neighbors method (Euclidian distance) we used normalized 

values and used automatic feature selection; optimal number of neighbors between 1 and 200 

was chosen automatically by minimizing the error in the learning sample; weights, reflecting the 

importance of characteristics were used. In the case of neural networks, Random forest and 

Boosted Trees the training sample was divided into the actual learning sample and the validation 

one in 4:1 proportion. Then the automatic search was conducted to minimize the validation 

sample error. We used hyperbolic tangent as an activation function in MLP, softmax – in RBF, 

identity – as an output layer function in RBF.  

As for Random forest we have determined by trial and error that good results are 

achieved when 10 out of 13 predictors are used for building each tree on the basis of a 70% 

bootstrap sample. Such algorithm settings are also in compliance with our intuitive beliefs about 

the ensembling in the case of the residential apartments mass appraisal. It is worth mentioning 

that small deviations from the above mentioned specification did not influence the prediction 

error significantly, which positively characterizes the robustness of Random forest to small 

changes in the parameters of the algorithm. In the case of boosting, each tree was the simplest 

tree with 3 nodes; 50% of the training sample was used to build each tree.  

The following criteria, described in the methodological section of the paper, were used in 

order to assess the prediction accuracy achieved with each method: Sales Ratio, MAPE and 

COD. These three indicators were calculated for both learning and testing samples, which 

allowed making conclusions about the degree of overfitting for each method. The comparison is 

presented in Table 2 and Table 3.  

Table 2 

Prediction accuracy in the case of direct valuation 

Method 

Test sample Training Sample 

Mean SR MAPE, % COD, % Mean SR MAPE, % COD, % 
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Regression 1.05 20.02 19.83 1.04 16.79 16.37 

CHAID 1.02 17.37 17.44 1.05 15.06 15.15 

Exhaustive 

CHAID 
1.02 17.54 17.49 1.05 14.91 15.00 

CART 1.04 19.89 19.82 1.05 15.73 16.38 

KNN (mean) 1.06 21.72 21.14 1.05 18.46 17.68 

KNN (median) 1.01 20.87 21.22 1.01 16.34 16.31 

Boosted Trees 1.04 18.33 18.14 1.05 14.66 15.11 

Random forest 1.03 17.25 16.97 1.04 12.57 12.82 

MLP 1.04 19.79 19.49 1.05 16.38 15.50 

RBF 1.05 20.53 19.37 1.06 19.25 18.47 

 

Table 3 

Prediction accuracy in the case of the two-step procedure 

Method 

Test sample Training Sample 

Mean SR MAPE, % COD, % Mean SR MAPE, % COD, % 

Regression 1.04 18.33 18.10 1.04 13.97 14.31 

CHAID 1.04 16.92 16.93 1.04 13.94 13.54 

Exhaustive CHAID 1.04 17.02 16.92 1.04 14.34 13.53 

CART 1.04 17.36 17.16 1.04 14.62 13.72 

KNN (mean) 1.02 15.63 15.41 1.03 14.93 14.44 

KNN (median) 1.02 18.53 18.70 1.02 13.62 14.75 

Boosted Trees 1.04 15.71 15.52 1.04 12.69 13.22 

Random forest 1.03 14.86 14.77 1.04 11.70 12.25 

MLP 1.09 20.53 19.75 1.02 16.89 11.54 

RBF 1.03 16.90 16.78 1.05 14.94 16.17 

 

The following conclusions can be made from Tables 2 and 3: 

1. For all algorithms and for any of the procedures (either one step or two-step) Sales Ratio 

is in the acceptable range of 0.9-1.1. 
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2. For the majority of the algorithms MAPE and COD decreased on both training and test 

samples after the two step procedure had been used. This leads to a conclusion that it is 

reasonable to use this procedure instead of assessing the overall price of a real estate 

object. In our study we will use the two-step procedure as the main one.  

3. Despite the presence of a validation sample to avoid overfitting, neural networks (MLP 

and RBF), often considered as the best class of methods for real estate appraisal, are not 

among the best performing techniques in our study. Neural networks could probably 

deliver better results after some fine-tuning, but we think mass appraisal algorithms 

should be as independent of an analyst and as universal as possible. The main reason of 

neural networks poor performance is the small number of observations without any 

missing values and the large number of explanatory variables: in such a case it is very 

difficult to prevent overfitting. 

4. Independent of the estimation method (either one step or two-step) Random forest has 

shown the best results. Whether Random forest will be the best choice on other datasets 

can be revealed only after a large number of comparative studies. However, we already 

now can suppose that this algorithm has advantage over neural networks in the cases 

when there are lots of explanatory variables and many missing values. Besides, in our 

case the prediction error was almost invariably falling with the growth of the number of 

trees in the ensemble, which indicates that Random forest is not prone to overfitting. This 

makes it a less risky choice for the use in automated expert systems compared to neural 

networks.  

We have segmented the methods by two criteria: MAPE and COD (Fig. 1). It is easy to 

see that there are three groups of methods: 

1. Providing high accuracy and low sales ratio variability (Random forest, Boosting, KNN 

(mean)). 

2. Providing average model quality (CHAID, Exhaustive CHAID, CART, RBF). 

3. Providing relatively low accuracy and high sales ratio variability (Regression, KNN 

(median), MLP). 

 

Fig. 1. Model quality indicators for methods which are being compared 

The stability of the revealed segments should be verified on other datasets having similar 

structure. 

 

3.3. The Random forest model diagnostics 

3.3.1. Assesing feature importance  
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The importance of every variable is proportional to the average decrease in the residual 

sum of squares after splitting by this variable is done. The most important variable gets the score 

of 1; scores for other variables are derived by standardizing their average relative to the largest 

one. The importance of each predictor is presented in Table 4 (the dependent variable is the price 

of an apartment per square meter, since in the case of the total price the area is obviously the 

most important factor). 

Table 4 

The importance of price per meter predictors 

 Variable Importance score (max=1) 

district 1.000 

time_to_downtown 0.923 

house_type 0.903 

total_area 0.608 

bathroom_unit 0.591 

kitchen_area 0.451 

living_area 0.419 

distance_from_underground 0.411 

number_of_floors 0.383 

inequality2 0.291 

inequality1 0.290 

floor 0.220 

telephone 0.085 

 

The district appeared to be the most important factor, which is why its importance score 

is 1. We broke down all the predictors into 4 groups: 

1. Very important factors: 

• District 

• Time to the city center by underground 

• House type 

2. Important factors: 

• Total area of the apartment in square meters 

• Bathroom unit type 

3. Factors of average importance: 

• Kitchen area in square meters 
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• Living area in square meters 

• Distance from the house to the nearest underground station  

• Number of floors in the house 

4. Not so important factors: 

• Absolute percentage difference between room areas  

• Herfindahl index for room areas  

• The floor, on which the apartment is situated 

• Telephone availability 

 

3.3.2. The diagnostics of the Random forest model accuracy using a segmentational 

approach 

The calculation of COD and MAPE allowed us to carry out a preliminary comparison of 

different methods. Unfortunately, using these indicators it is difficult to give recommendations 

on how to increase accuracy homogeneity across different segments and decrease prediction 

error. That is why we use the approach for homogeneity of model accuracy diagnostics 

introduced in Subsection 2.3. Using this approach we will make the diagnostics of Random 

forest predictions that were considered the best in our comparative study. 

To begin with, we build a regression tree that will allow revealing apartment segments 

which differ the most in the average MAPE. As we want to pick out the most stable segments, 

we set the minimum number of observations in a node equal to 300. 

The diagnostics (see Table 5) showed that the pooled model based on all observations of 

the training sample gives an average error of less than 9.8% for apartments with area of below 

61.5 sq. meters, while MAPE is 19.4% for apartments with greater area, among which MAPE for 

districts 4, 5, 6, 9, 11, 12 is 12.9% and for other districts – 23.6%. Hence we can recommend the 

correction of valuations in the third segment with the help of experts or by developing another 

model for this segment. Our experience showed that the separate model building for this segment 

did not decrease the error. This can be partly explained by the fact that transactions of relatively 

big apartments in these districts have many features that are hard to take into account in mass 

appraisal models: therefore, the error can hardly be significantly reduced by applying some other 

method without adding other variables to the dataset. The segment that requires special attention 

accounts to approximately 18% of the market. It is easy to ascertain that the revealed regularity 

is stable and the differences among the obtained segments appear on the test sample, as well as 

on the training sample. 
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Table 5 

Segments with different MAPE revealed by CART algorithm 

Segment 

number 

Segment 

description 

MAPE 

(training 

sample) 

MAPE 

(test sample) 

% of the 

market 

(training 

sample) 

% of the 

market 

(test 

sample) 

1 Total area≤61.5 9.783 12.364 69.8 69.3 

2 Total area>61.5 19.401 20.498 30.2 30.7 

3 

Total area>61.5 

and districts 4, 5, 

6, 9, 11, 12 

12.852 14.423 11.9 10.0 

4 

Total area>61.5 

and districts 1, 2, 

3, 7, 8, 10, 13 

23.643 23.438 18.3 20.7 

Total sample 12.688 14.859 100 100 

 

In order to verify if there are segments with systematically under- and overvalued objects, 

we build a similar tree with SR as a dependent variable (see Table 6). As a result of our analysis, 

2 segments were revealed that are likely to systematically overestimate the predicted price 

compared to real sales prices (SR for one of the segments is 1.018, for the other – 1.073). 

 

Table 6 

Segments with different SR revealed by CART algorithm (training sample) 

Segment number Segment description MAPE % of the market 

1 
Districts 3, 4, 5, 6, 8, 9, 

11, 12 
1.018 68.5 

2 Districts 1, 2, 7, 10, 13 1.073 31.5 

Total sample 1.035 100 

 

We calculated bootstrap confidence intervals for the average SR in each segment (see 

Table 7). 

Table 7 

Confidence intervals for the average SR 
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Segment 

Point estimate 

of the average 

SR 

Lower bound of the 

average SR confidence 

interval 

Upper bound of the 

average SR confidence 

interval  

1 1.018 1.011 1.025 

2 1.073 1.055 1.088 

 

We use the lower and the upper bound of the confidence interval as well as the point 

estimate of the average SR as correction coefficients. If values predicted by Random forest are 

divided by the lower bound of the confidence interval in the corresponding segment, MAPE was 

14.06% in the test sample (reduced by 0.80 percentage points); in the case of using the point 

estimate of the average SR as the correction coefficient, MAPE decreased to 13.98% (reduced by 

0.88 percentage points); finally, when the upper bound of the confidence interval was used, 

MAPE decreased to 13.95% (reduced by 0.91 percentage points). Taking into account already 

relatively low error provided by the Random forest algorithm, the obtained improvements should 

be considered quite substantial. Meanwhile, we suppose that using lower bound of 95%-

confidence interval is the most conservative and safe variant. 

While the effectiveness of the proposed correction method requires further inquiry, the 

segmentational approach itself, that allows revealing problem segments, undoubtedly helps carry 

out substantially deeper diagnostics of automated appraisal systems in comparison with 

calculating just a few integral accuracy indicators for the whole sample of objects. 

 

4. Conclusion and future research 

In our study we have validated the application of the Random forest method to the mass 

appraisal that is characterized by the stability to outliers, the ability to work properly with 

missing values and categorical variables with many levels. We have also proposed and validated 

the segmentational approach to the model accuracy diagnostics that, in contrast to a number of 

widely used integral indicators, allows not only to evaluate the overall quality of a model, but to 

pick out the market segments which differ the most in the average MAPE and to detect segments 

with systematically under- and overvalued predictions. The proposed approaches may be useful 

for various regression analysis applications, especially those with strong heteroscedasticity. 

The effectiveness of Random forest has been supported by the empirical research based 

on Saint-Petersburg residential apartments dataset. A comparative study has shown that all 

algorithms perform better if the price per meter is predicted, followed by calculating the total 

price. We believe that using this two-step procedure instead of valuating the overall price of a 

real estate object is likely to increase model performance in most mass appraisal expert systems 
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due to the heteroscedasticity and some other problems inherent in real estate data. Feature 

importance diagnostics has revealed that the district, time to the city center by underground, 

house type, total area of the apartment and bathroom unit type comprise the two most important 

groups of price per square meter predictors. The factors of low importance include indicators of 

inequality between room areas, the floor, on which the apartment is situated, and telephone 

availability. A deeper diagnostics using the proposed segmentational diagnostic approach has 

been conducted for the best model (Random forest). The diagnostics showed that the pooled 

model based on all observations of the training sample gives an average error of less than 9.8% 

for apartments with area under 61.5 sq. meters, while MAPE is 19.4% for apartments with 

greater area, among which MAPE for districts 4, 5, 6, 9, 11, 12  is 12.9% and for other districts – 

23.6%. Hence we can recommend the correction of valuations in the problem segment with the 

help of experts or by developing another model for this segment. The diagnostics of 

systematically under- and overestimated values and calculating bootstrap confidence intervals for 

the average SR in the segments revealed by the procedure allowed to implement the correction 

coefficients and reduce MAPE in the test sample by 0.80-0.91 percentage points depending on 

the choice of correction coefficient.  

Although our study provides not only empirical, but also some theoretical grounds for the 

wide use of the Random forest algorithm, we plan to conduct a comparative analysis on other 

datasets that, as we expect, will prove the superiority of Random forest over at least most 

methods used for the mass appraisal nowadays.  

It is worth noting that Random forest requires choosing the optimal settings (the number 

of variables selected for building each tree and the bootstrap pseudosample size). Our 

preliminary observations have shown that the optimal parameters for the mass appraisal 

seemingly differ from the recommended by the algorithm authors and used as the default settings 

in some statistical software. However, the choice of these settings in our research is not 

rigorously grounded yet. Taking into account that Prinzie and Van den Poel (2008) showed 

Random forest prediction accuracy (for classification problems) to be rather sensitive to the 

parameters set by an analyst, we plan to compare the accuracy of several Random forest 

specifications in the future. 

The use of correction coefficients for segments with systematically under- or 

overestimated predicted values of the dependent variable seems to be very promising, however it 

requires a deeper study of the entailed consequences. 
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