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Abstract 
Rating trigger ATE (Additional Termination Event) is a counterparty risk mitigant that allows banks to 

terminate and close out bilateral derivative contracts if the credit rating of the counterparty falls below 

the trigger level. Since credit default is often preceded by rating downgrades, ATE clause effectively 

reduces the counterparty credit risk by early termination of exposure. However, there is still the risk that 

counterparty may default without going through severe downgrade. This article presents a practical 

model for valuating CVA in the presence of ATE. 

Keywords: Counterparty Risk, Credit Valuation Adjustment, Rating Transition, Rating Trigger, Additional 

Termination Event. 

1. Introduction 
Counterparty credit risk refers to the risk that a counterparty to a bilateral financial derivative contract 

may fail to fulfill its contractual obligation causing financial loss to the non-defaulting party. Only over-

the-counter (OTC) derivative contracts are subject to counterparty risk. Exchange traded derivatives 

have very little counterparty risk because the exchange or a clearing house is the central counterparty to 

the transaction. Exchanges/clearing houses are well protected by the financial industry.
1
 

From the perspective of a bank, when the counterparty defaults, the portfolio of all OTC derivative 

contracts between the bank and the counterparty is marked-to-market (MTM) at the time of default.
2
 If 

the value of the portfolio is negative to the bank, the bank is obliged to pay the full MTM value to the 

defaulting counterparty. If, however, the value is positive to the bank, the bank will recover only a 

percentage of that MTM value, usually after a lengthy bankruptcy proceeding.
3
 If the recovered amount 

is less than 100%, ignoring the time value, the bank suffers a credit loss. This potential credit loss due to 

                                                           

 The opinions expressed in this article are those of the author, and do not necessarily reflect the views of Citigroup. 

All errors are author’s own. 
1
 Some clearing house uses haircut to set margin requirement. Clearing funds from participants provide additional 

protection in extreme market condition when margins are insufficient. 
2
 Brigo and Morini (2010) raise the issue of settlement amount. They argue that if the residual deals are replaced 

by another counterparty, the settlement amount could be different than the risk-free amount. We do not consider 

such an issue. 
3
 A lengthy bankruptcy proceeding can be costly to the bank as the money cannot earn interests or be invested. 
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the possibility that the counterparty may default must be factored into the deal price. In a similar way, 

the bank may also benefit from its own risk of bankruptcy. 

An increasingly popular exposure control mechanism is to use some kind of break clause that allows the 

bank to terminate the portfolio with the counterparty in the event that some pre-agreed condition is 

breached by the counterparty.
4
 ATE is such a break condition. ATE can take many forms of which most 

common is perhaps the credit ATE (Gregory 2010). In credit ATE, a credit trigger rating for a party is 

defined. If the party’s credit rating crosses the trigger, the other party is entitled to terminate and close 

out the positions. Theoretically, ATE may effectively reduce the exposure if a default is preceded by an 

ATE event. One might view that ATE creates a sort of right-way exposure profile where the counterparty 

exposure is eliminated if the credit quality worsens significantly. From the modeling standpoint, ATE 

may also be considered as “lossless default” where the contracts are terminated with full recovery, as 

contrasted with default where the contracts are terminated with loss.  However, as pointed out by 

Gregory (2010) that ATE might actually drive the counterparty into default if the positions are closed out 

and the counterparty is significantly out-of-the-money (OTM) on those positions.  

While credit ATE can significantly reduce counterparty risk, it does not completely eliminate it because it 

is still possible that the counterparty might default before an ATE event. This is evident that firms may 

default before being significantly downgraded by the rating agencies. In other words, the residual 

counterparty risk in the presence of ATE comes from the possibility of counterparty default without ever 

crossing the credit trigger. 

CVA modeling has attracted much attention recently. Alavian et al (2009), Gregory (2009, 2010), Pykhtin 

and Zhu (2007) provide excellent overviews of counterparty risk management practice and CVA pricing. 

Zhu and Lomibao (2005) propose a conditional valuation method to calculate exposures for instruments 

whose existence is path dependent. Gregory (2010) gives a general description of various forms of ATE. 

Recently, Yi (2010) proposed a model for CVA under rating trigger. In their model, the time of hitting the 

credit trigger and the time of jump-to-default are modeled by two Poisson processes. Both the 

mandatory and the optional settlements upon breaching the credit trigger are considered. However, 

calibration is a major issue. However, there appears a need for a practical model for bilateral CVA 

calculation subject to ATE.   

In this paper, we present a practical model specifically for calculation of bilateral CVA (BCVA) of a 

portfolio subject to ATE rating trigger. The discretized formulation naturally leads to a rating-based 

Markov chain. We assume that portfolio termination and close-out is mandatory once the ATE trigger is 

breached. For exposition convenience, we assume that all trades in the portfolio have the same ATE 

trigger, so that once the party is downgraded to or below the trigger, the entire portfolio is terminated. 

We also suggest extension of the model to more complicated situations. The main theme of our paper is 

modeling CVA for a general derivative portfolio without regarding to the actual type of trade. We focus 

on how CVA should be calculated in the presence or credit ATE trigger. 

                                                           
4
 Reciprocally, the counterparty may terminate the deals with the bank if the bank breaches the condition. 
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Our model is rating based where obligors having the same rating would have the same rating transition 

probabilities. As such, the spread difference within a rating class is ignored.
5
 We use a copula model for 

the joint rating transition and default. The risk neutral transition matrix is obtained by calibrating the 

historical transition matrix to rating-based generic CDS spread curves generated from the market CDS 

spreads.
6
 To model the ATE trigger, we make the ratings that are equal to or below the ATE trigger 

rating absorbing states such that default paths cannot pass through the ATE trigger rating. This requires 

further modification of the calibrated risk neutral transition matrix. The resulting matrix is ATE rating 

specific. 

We show that, in the presence of ATE rating trigger, the CVA is due to the possibility of the counterparty 

jumping to default without triggering the ATE event.  For a given counterparty, the CVA is smaller the 

lower are the ATE trigger ratings. 

Our contributions are that we extend the bilateral CVA calculation to including ATE trigger ratings 

through a rigorous mathematical model framework, and propose a practical model for implementation 

by financial institutions. A salient point is the introduction of the ATE transition matrix that enables to 

calculate the first passage time of the ATE trigger using the modified rating transition probabilities.  

The rest of the article is organized as follows. Section 2 presents the mathematical formulations of the 

bilateral CVA in continuous time and their discretization. We point out how the base model can be 

extended to deal with margins and multiple ATE triggers. Section 3 outlines formulae for calculating the 

joint transition and conditional joint default probabilities. We define the ATE transition matrix that 

enables to calculate the probability of hitting ATE trigger in terms of transition probabilities. We also 

define the ATE factor profile can be used to estimate the effectiveness of ATE trigger for given exposure 

profile. Section 4 concludes the paper. Detailed formulation derivation is shown in appendices.  

2. The Model 
Throughout this article, we refer the two parties to the underlying derivative trades in the portfolio as 

the bank, denoted by B, and the counterparty, denoted by C. We use the term party to describe both B 

and C if it applies to both. We value the portfolio from the bank’s perspective. As such, positive portfolio 
value or in-the-money (ITM) indicates the counterparty owes the bank money, and negative portfolio 

value or out-of-the-money (OTM) means the reverse. 

2.1 Nomenclatures 
Before describing the model, we define the notations that will be used throughout this article without 

further explanation. 

- UCVA: Unilateral CVA. 

                                                           
5
 Spread difference within a rating class can vary substantially. Additionally, it is often observed in the CDS/bond 

markets that the credit spreads of a lower rated firm can be lower than those of a higher rated firm.  
6
 For pricing credit risk of a firm without market CDS spread, banks create rating-based generic CDS curves that 

map credit ratings to market CDS spreads. Generic CDS curve is essentially some average market quotes of CDS 

spread grouped by credit rating. 
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-  BCVA: Bilateral CVA. 

-        : Risk-neutral transition matrix from t to T. 

-         : Risk-neutral ATE transition matrix from t to T. 

-                : Rating state space where 1 refers to the highest rating class (e.g. AAA/Aaa) 

and K-1 the lowest rating class. K is the default state. D is also used to refer to the default state.
7
 

-              The rating of party k at time t. 

-         : The ATE trigger rating of party k. If       crosses   , the portfolio is terminated. 

-                                      : Set of ratings that are equal to or 

worse than the ATE trigger rating of party k. 

-                                 : Set of ratings that are better than ATE trigger of k. 

-                          : The first time that the party k crosses its ATE trigger rating. 

-             : The first-to-ATE time of both the bank B and the counterparty C. 

-         :  The default time of party k without ever crossing the trigger (ATE default time). 

-              : The first-to-default time of both the bank and the counterparty. 

-        : Present (time t) value of the cashflow on the portfolio between s and q where t is the 

valuation time and the portfolio final maturity is T. 

-          : Recovery rate of party k. 

-               : Loss-Given-Default (LGD) of party k. 

-            ,             , and        . 

2.2 Credit Value Adjustment (CVA) 
We consider a portfolio of derivative contracts that is uncorrelated with the credit quality of neither the 

counterparty nor the bank.
8
 Hence, we assume that the portfolio value        is independent of either 

party.
9
  

When a party defaults, one of the following scenarios will apply: 

1) If    , no credit loss will incur to either the bank or the counterparty as the first default occurs 

after the final maturity of the portfolio. 

2) If    , an ATE event occurs before the first-to-default time. Since the portfolio is terminated at 

the first-to-ATE time (mandatory termination),
10

 the exposure to either party at default is zero and 

no credit loss to either party.  

3) If            , a default event happens before the portfolio expiry date and before the first-to-

ATE time. From the bank’s perspective, the rule of default settlement is as follows: 

a. If the counterparty defaults first,      , then 

                                                           
7
 The default state D is technically not a valid credit rating class. However, transition matrix typically includes the 

default state for mathematical convenience. 
8
 Examples of such trades are interest rate swaps, caps and swaptions, FX options and cross-currency swaps, equity 

options. However, CDS or CDO tranches where the reference entities are correlated with either party do not 

belong to this category. 
9
 See Brigo and Chourdakis (2008) for a model of unilateral CVA of CDS when the counterparty and the CDS 

reference entity are correlated. In their case, the portfolio value strongly correlated with the counterparty. 
10

 If termination is optional, additional criteria must be considered (Yi 2010).  
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i. If the portfolio value at default          , i.e. the counterparty owes the bank 

money, the bank will receive from the counterparty the amount           . 

ii. Else, if          , the bank owes the counterparty money, the bank pays the 

counterparty the full portfolio value         . 

b. Conversely, if the bank defaults first,      , then 

i. The bank pays the counterparty            if the bank owes the counterparty, or 

ii. The bank receives          if the counterparty owes the bank.  

c. In the relatively rare situation where both the bank and the counterparty default at the 

same time,        , the bank would pay the counterparty           if         , 

or receive from the counterparty           if         . Since simultaneous defaults 

are usually much less frequent than single default, and loss to the bank due to counterparty 

default and the benefit to the bank from its own default cancel out to a significant extent, 

simultaneous default contribution to bilateral CVA is generally smaller than unilateral CVA. 

 The present value of the portfolio can be generally expressed as 

             
                                                                                                                                        

 
  (1) 

where        is the present value of cashflow of the portfolio from time t to the first-to-default time  , 

and        is the present portfolio value at default time  .  

Eqn. (1) above extends the formulation of Gregory (2009) to the case of ATE. Specifically, if the portfolio        in Eqn. (5) of Gregory (2009) is replaced with             , we obtain Eqn. (1) above. Put it 

another way, the exposure in the presence of ATE is contingent upon ATE event not occurring before 

default. However, the presence of        makes pricing CVA subject to ATE much more difficult to 

model because the first-to-ATE time   and the first-to-default time   are generally correlated. Since 

function        decreases as the credit quality worsens, ATE creates a sort of “right-way” risk 
exposure, in the sense that the counterparty exposure is non-increasing as the counterparty’s credit 
quality deteriorates. 

Using the relation                      and                       , Eq. (1) can be 

written in a more convenient form 

                                                                            (2) 

Eqn. (2) shows that the fair expected present value of the portfolio is equal to the counterparty risk-free 

value of the portfolio minus an adjustment due to default by either party or both. This adjustment is 

commonly referred to as credit value adjustment or CVA. 
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It is interesting to see that the risk-free value            is independent of the ATE. This is expected 

because when the portfolio is terminated due to breach of ATE trigger, there is no credit loss. One might 

think of ATE event as a default with immediate full recovery. 

The bilateral CVA, denoted by BCVA, is the net expected loss or gain due to default by the counterparty 

and/or by the bank itself, 

                                                              (3) 

The bilateral CVA contains two terms. The first term is the credit loss that the bank will suffer if the 

counterparty defaults first before the first-to-ATE time and the final maturity of the portfolio. This is the 

unilateral CVA, denoted by UCVA. The second term represents the gain by the bank should it default first 

before the first-to-ATE time and the final maturity of the portfolio. This second term is also called Debt 

Value Adjustment, or DVA, to reflect the benefit to the bank on its own debt. So the BCVA is equal to the 

difference between the unilateral CVA and DVA. The BCVA can be negative if DVA exceeds UCVA. An 

example of negative BCVA is a portfolio of short position of options. In this case, the bank is always OTM 

if it has collected all option premiums from the counterparty. 

The unilateral CVA, UCVA, is the expected loss to the bank if the counterparty defaults, and can be 

obtained by setting      and      in eqn. (1), (also see Remark 2.3)                                                  (4) 

Remark 2.1: The CVA formulation of Gregory (2009) without ATE can be recovered by setting the ATE 

rating trigger to be equal to the default state (       ), meaning that a default by either party is 

the only event that can terminate the portfolio prior to the final maturity. In this case, we have    , 

and hence          . 

Remark 2.2: In some cases, the deal contracts may require that ratings from both S&P and Moody’s 
breach the ATE rating trigger. Ratings of these two rating agencies can occasionally differ (split ratings) 

although the difference is usually no more than one rating class. We do not consider split ratings and 

refer to the paper of Lando and Mortensen (2005). 

Remark 2.3: Although the credit risk of the bank does not appear explicitly in the unilateral CVA formula 

(4), it does not necessarily imply that the bank has no influence on the unilateral CVA. One possibility is 

to model the default time    using a correlated default model. Through the correlation, the bank’s credit 
risk implicitly influences the default timing of the counterpart. An example is given by Gregory (2009). 

Remark 2.4: In Eqn. (2), simultaneous default by B and C is implied by the condition         and is 

modeled by the same joint transition/default model. This approach is appropriate under normal market 

condition when simultaneous default is infrequent. The likelihood of a simultaneous default tends to 

increase significantly when the credit market is under severe stress or in crisis mode. When the markets 
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are in crisis, the systemic default risk is substantial.
11

 Simultaneous default can be handled by specifically 

modeling a common default time   (Gregory 2009). 

2.3 Discretization 
For ease of exposition of numerical implementation, we make the following assumptions: 

(1) The portfolio value        is independent of the credit rating of either party. This assumption is 

mainly to simplify exposition. The model can easily be extended to rating dependent exposure, such 

as rating dependent margining. 

(2) All obligors of a given rating are considered to have the same transition probabilities. Heterogeneity 

in credit spread between obligors of the same rating class is ignored. This is generally a restriction of 

rating based credit model. To model intra-rating spreads would greatly complicate the model. 

We divide the time domain       into N sub-intervals,               . We consider the loss 

due to default in time period           based on the exposure at   . In the discrete setting, we do 

not distinguish the time of default within the same time period, nor do we the ATE time. In other words, 

if party C defaults in the interval           and if        , then we say      .  Therefore, we have 

the following set relation  

                                                (5) 

By definition,                    is the first time that the rating of C crosses the trigger rating and 

migrates into set   . If we are sure that once in    the counterparty C has no chance to either default 

or come out of   , or equivalently, we force the non-defaulting rating class equal and below the ATE 

trigger    absorbing state, we have
12

   

                                        (6) 

Base on the similar reasoning, we can also derive 

                                       (7) 

The set relations (5-7) are important because they enable to express the probability of ATE hitting time         or the survival probability         in terms of the transition probability               
which is the probability of counterparty C migrating from the current rating to rating j at a future 

time t under the restriction that the path of migration cannot cross the ATE trigger. It is easy to see 

that the transition probability            is significantly easier to calculate than        .13
 In the 

following, we will use these set relations to calculate the probabilities of first-to-ATE and first-to-default 

when subject to ATE trigger. 

                                                           
11

 An example is the financial crisis of 2008 brought upon by subprime mortgage and the overleveraged ABSCDO 

markets. See Hull (2009) for an excellent analysis. 
12

 It may be helpful to consider    as a set of states similar to default state D in the sense that they are all 

absorbing states. Once C transits into a state in   , it will stay there with probability 1 
13

 This is analogous to calculating the distribution of stock price hitting barrier vs the terminal stock price. The 

probability of hitting time or the first-passage-time is much harder to calculate. 
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2.3.1 Unilateral CVA Discretization 

Utilizing relation (5), the Euler discretization of the UCVA of Eqn. (4) is  

                                                        (8) 

From the law of total probability and utilizing Eqn. (7), we can rewrite the probability in Eqn. (8) in terms 

of transition probability and one-period default probability 

                                                                  (9) 

where                     is the period k default probability with the starting rating j. These 

probabilities can be calculated from the martingale ATE rating transition matrix which we will 

describe later in this paper. We note that all default and rating transition when subject to ATE 

trigger is calculated using the ATE transition matrix. 

Using Eqns. (9), we can rewrite Eqn. (8) as                                                                 (10) 

It is clear that the unilateral CVA of a portfolio subject to ATE rating trigger    is caused by the 

possibility of counterparty jumping to default without going through any rating below or equal to 

the ATE trigger   . The probability of this jump to default from rating j is                    . 
2.3.2 Bilateral CVA Discretization 

The Euler discretization of BCVA of Eqn. (3) is 

        
                                                                                                                                                                                                           

  
 (11) 

In Eqn. (11), the first term represents the expected loss to the bank when the counterparty defaults first. 

The second term is the benefit the bank would gain if the bank defaults first. The third term is expected 

PnL when both B and C default simultaneously. It can be seen that the effect of simultaneous defaults is 

generally small compared with the first two terms due to the cancelation effect and the fact that the 

probability of simultaneous default is usually small.
14

 

The joint default probabilities appearing in eqn. (11) are  

                                                                                                                   (12) 

                                                           
14

 When the credit market is under stress and the systemic risk is high, simultaneous default risk can be high. In 

such a case, a term specifically modeling the simultaneous default should be added (see Gregory 2009).  
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                                       (13) 

Using the set relation                         and from the law of total probability, we 

have 

                                                                                                              (14) 

                                                                                                         (15) 

                                                                                                        (16) 

                                                                          (17) 

Derivation of Eqns. (12-17) is provided in Appendix A. These formulas are based on the assumption of 

set    being absorbing, enabling expressing probability of first-passage-time of the trigger by the ATE 

rating transition probability. 

From the law of total probability, we can express the one-period joint default probability as 

                                                                                                                            (18) 

We emphasize that rating transition and conditional default probabilities are based on the condition 

that no ATE trigger has been breached. To this end, we make sure that once a rating crosses its ATE 

trigger, it remains there. There is no possibility that a party can migrate to or below its ATE trigger and 

upgrade back. This can be easily achieved by making any rating class in the set          an absorbing 

state. As a result, the default probability is reduced as it is no longer possible to default from ratings in 

set   . As shown numerically in section 3.6, given a transition matrix and an ATE trigger rating, we can 

quantify the amount of reduction in default probability due to ATE. 

2.4 Model Extensions 
We have used the portfolio value        to derive exposure. This significantly simplifies notational 

exposition. In doing so, we implied that (a) all trades in the portfolio are nettable under a single netting 
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agreement and (b) the portfolio is not collateralized or no margin requirement.
15

 In this section, we 

suggest extension of the model to more practical and complicated portfolios. First, we note that 

extending the model to multiple netting agreements is straightforward (Pykhtin and Zhu 2007) since 

there is still only one ATE rating trigger. 

2.4.1 Extension to Rating-Based Margin Threshold 

Banks often impose margin threshold on their trading partners. The margin threshold is the maximum 

positive portfolio value that the counterparties do not need to pose margin. Furthermore, it makes 

economic sense for the margin threshold to decrease as the counterparty credit quality declines. 

Let the margin threshold for the counterparty be denoted as          where the time-dependency is 

through the counterparty’s rating. The unilateral CVA is given by                                                      

                                                                     (19) 

Note that we assume that the margin is determined at      for exposure time   . The corresponding 

BCVA can be derived similarly. 

2.4.2 Extension to Multiple ATE Triggers 

A recent trend is that banks are increasingly including a credit ATE clause in the trading agreement. This 

creates a counterparty portfolio consisting deals with heterogeneous ATE rating triggers. If the deal 

netting is based on ATE trigger where deals are nettable if they are subject to the same ATE trigger, the 

model outline above can be directly applied to each ATE trigger. 

If, however, a single netting agreement covers multiple ATE rating triggers, extension is a little tricky. In 

such a case, the unilateral CVA is  

                                             (20) 

where    is the first hitting time of the jth ATE trigger denoted by   , and    is the total value of all 

deals subject to the jth ATE trigger. Note that Eqn. (20) includes the case of no ATE clause where the ATE 

trigger rating is the default rating,     . Because the default state is the only termination trigger, we 

have        and           .   

Recognizing that all ATE rating triggers are associated with the same counterparty, breaching of a higher 

ATE trigger must be no later than a lower trigger. Therefore, if we index the ATE triggers        , 

then the relationship         must hold, taking into consideration that multiple ATE’s may be 
breached simultaneously. 

                                                           
15

 Collateralization and margin agreement are usually specified in CSA (Credit Support Annex). See Alavian et al 

(2009) and Gregory (2010) for an introduction of CSA. 
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A general discrete formulation for Eqn. (20) is rather cumbersome. Instead, we consider the case of two 

non-default ATE triggers plus the no ATE trigger. The possible ATE scenarios for this case are 

           ,            , and                  (21) 

By definition of ATE,            if      . Consequently, we have 

                                                                                                                                   (22) 

where            . 
A complication of calculating                          is that we need to account for the 

possibility of               , i.e. there are two distinct ATEs, each violation only results in partial 

termination of the portfolio.  

3. Transition and Conditional Default Probability 
Eqns. (8-18) show that CVA calculation involves two components. One is the expected positive exposure 

(EPE) and the expected negative exposure (ENE) at time nodes   . The other involves the transition and 

default probability conditional on that the ATE trigger has not been breached. Since this paper focuses 

on modeling ATE trigger and assumes that the portfolio has a unique ATE trigger for each party, we will 

not consider exposure calculation. Interested readers may be referred to the paper of Zhu and Lomibao 

(2005) for some background and further references. In this section, we outline a model for calculating 

rating transition probability and default probability conditional on no prior violation of ATE trigger. 

The presence of ATE necessitates modeling of rating transition in addition to default. Consequently, we 

use rating based models. As stated previously that, under the credit rating ATE clause, the portfolio 

between the bank and its counterparty is terminated and closed out once either party has crossed its 

ATE trigger. This implies that the paths of rating transition cannot cross the ATE trigger. This condition 

means rating class set    must be absorbing. 

Our model contains the following steps: 

1) Choose a historical transition matrix, say, Moody’s one-year average default rate. Calculate the 

corresponding generator matrix using either JLT or IRW method. 

2) Calibrate the time inhomogeneous generator matrix to the generic CDS spread term structure. This 

generates the martingale generator matrix. 

3) For an ATE trigger rating   , we modify the martingale generator matrix by setting rows from   to     to zero. The resulting ATE martingale generator matrix guarantees that the paths that lead to 

credit loss, or loss paths, cannot cross the trigger into   .  

4) The ATE martingale generator matrix is used to calculate the required transition probabilities. 

5) For BCVA, ATE martingale transition probabilities are calculated using the normal copula method. 
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3.1 The Historical Transition Matrix 
Although its shortcomings for credit derivative pricing are well documented (Schonbucher 2003), all 

rating-based credit pricing models use a statistical transition matrix estimated from historical corporate 

default experience over a period of time. A major reason is that it is simply impractical to imply all 

entries of a rating transition matrix from market price data. A historical transition matrix provides a 

structure upon which (model based) adjustments can be made such that the model prices match the 

market prices. This adjustment transforms from the actuarial probability to risk-neutral probability, or 

equivalent martingale transition probability. This probability measure change is necessary because CVA 

is the price of counterparty default risk. 

Given a historical transition matrix P, we calculate its generator matrix  .
16

 Unfortunately, majority of 

the historical transition matrices does not admit a valid generator as they fail the test of Theorem 3.1(c) 

of the paper by Israel et al (2001) (referred to as IRW hereafter), thereby guaranteeing non-existence of 

a valid generator.
17

 

One solution is to smooth the empirical transition matrix (Lando and Mortensen 2005) to avoid obvious 

violation of Theorem 3.1 of IRW, and then calculate a generator matrix. Even with smoothing, the 

existence of a valid generator is still not assured.
18

 Another approach is to assume that a generator 

exists and proceed to search for one. Methods of generator matrix calculation can be found, for 

example, in IRW, Jarrow et al  (1997) (JLT hereafter), and Kreinin et al (KS) (2001). The JLT method is the 

simplest and guarantees to give a valid generator. The IRW method has shown to be more accurate as it 

yields a smaller fitting error to the historical transition matrix, but is more computational involved.  

In this paper, we also assume a generator matrix exists. We follow the suggestion of JLT (p. 504) that the 

martingale generator matrix be expressed as a product of a historical generator matrix and a time-

dependent diagonal matrix which can be interpreted as risk premium. We apply the JLT method (p. 505) 

to estimate a generator matrix for the Moody’s one-year average transition matrix (Moody’s 2009) 
proportionally adjusted for WR. Next section describes the calibration of martingale generator matrix. 

3.2 Risk-Neutral Generator Matrix Calibration 
We assume that, for each rating class, there exists a generic term structure of CDS premium. Assuming a 

recovery rate, usually 40%, a rating specific term structure of PD, denoted by        , can be obtained 

by bootstrapping the generic CDS curves.
19

 We adjust the one-step generator matrix by equating at each    and for each rating   the cumulative martingale default probability with         . 
                                                           
16

 A generator matrix         of transition matrix P is a     matrix with the property (1)         , and (2)                      , where      is the intensity of jump to rating j from i in an infinitesimal time interval. 
17

 KS examined 32 empirical matrices and found that all passed the test of Theorem 3.1 (a) and (b) of IRW, but 

most failed test of (c). If the smoothed matrix is without zero entries, it passes test of (c). 
18

 Theorem 3.1 of IRW is a sufficient but not necessary condition for non-existence of a valid generator matrix. 
19

 An alternative is to calibrate to the CDS spreads or bond prices directly.  
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Let         be the martingale transition matrix from t to T, and recall that the martingale generator        
is the product of the historical generator   and a diagonal matrix

20
                                    ,                  (23) 

We assume that risk-premium matrix      is piecewise constant, and define the transition matrix over 

the period           as                                                    (24) 

Because the rating transition is a Markov chain, we can express the transition matrix at    recursively 

                                                     (25) 

Since the rating-based default probability at    is given by the Kth (last) column of         , and suppose 

we have calibrated      up to     , the risk premium matrix         satisfies 

             
                                               

    
                               

 
     (26) 

Eqn. (24) is nonlinear and requires calculating matrix exponential which is expensive. For small time 

period    , we approximate Eqn. (24) by the first-order expansion 

                                                 (27) 

From Eqn. (27), the last column of the one-period transition matrix             is 

  
                                               

       
                                               

 
     (28) 

Thus, Eqn. (26) can be solved to yield 

   
                               

                 
                               

         (29) 

where 

                                                           
20

 The last element of      does not matter because the last row of the historical generator   is zero. 
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                                            (30) 

Empirical evidence appears to indicate that       leads to      , but the reverse is not true. The JLT 

method guarantees positive (zero)     if the rating j’s historical default probability     is positive (zero). 

Unfortunately, the one-year rating transition matrices published by Moody’s and S&P have consistently 

shown that the one-year PD for Aaa/AAA rating is zero, although the five-year PD is not zero. The zero 

one-year PD for Aaa/AAA rating is an issue of data reliability which we do not address here.  

Based on economic justification, Lando and Mortensen (LM) (2005) proposed a method to transform the 

original historical transition matrix into a smoothed on that satisfies the imposed conditions. Their 

results showed (Appendix C of LM) that the smoothed matrix has no zero PD. Another, more ad hoc, 

approach, used by JLT, is simply assign a reasonable non-zero value to     whenever it is equal to zero. 

For example, we may equate the one-year PD with the scaled five-year historical PD for AAA, and adjust 

other entries in the same row accordingly. In this paper, we adopt the JLT approach. First, we assign one 

fifth of the five-year PD to the one-year PD. Then the historical transition matrix   has no zero entry in 

the last column. We then obtain the historical generator matrix   from   using the JLT method. The 

historical generator   guarantees no zero entry in the last column so the diagonal matrix   defined in 

Eqn. (30) is well defined. 

Having calibrated the risk premium matrix        , we can calculate the one-period incremental risk-

neutral transition matrix             using Eqn. (27). From Eqn. (25), we obtain the time    martingale 

transition matrix         . However, the martingale transition matrix          cannot be directly used 

for CVA calculation under ATE as it did not exclude the possibility that the obligor can breach the ATE 

trigger and recover. This brings us to the subject of adjusting the generator matrix to account for ATE. 

Remark 3.1: Since the risk premium matrix     is time-dependent but deterministic, the transition 

process is Markov but time inhomogeneous.  

3.3 The ATE Generator Matrix and Transition Matrix 
The main idea of using a credit ATE trigger as counterparty risk mitigant is that it eliminates the bank’s 
exposure to counterparty by terminating the portfolio when the counterparty’s credit quality reduces to 

or below a threshold. Consequently, there is no exposure to either party after the first crossing of ATE 

trigger. 

Effective modeling of ATE rating trigger requires that the set    be absorbing, such that the probability 

of jump to default without going through ATE is not overstated. This can be achieved by modifying 

either the martingale transition matrix or the martingale generator matrix. The difference is that the 

generator matrix is for continuous time Markov chain, and the transition matrix is for discrete Markov 

chain. Under the continuous Markov chain setting, there is absolutely no possibility to migrate out of   , whereas in the discrete Markov chain, migration into and then out of    in the same period is still 

technically possible. As will be shown in section 3.5, the probability of default and the probability of not 

breaching ATE are smaller with the generator matrix approach than with the transition matrix approach. 
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Given the ATE trigger rating  , we define the risk-neutral ATE generator matrix as 

                                   (31) 

where  

                                   (32) 

is a matrix operator that sets the rows of the operand equal or below   to zero.  

We define the one-period risk-neutral ATE transition matrix by 

                                                   (33) 

Clearly, for rows of             that are equal to or greater than  , the off-diagonal entries are equal to 

zero and the diagonal entries are equal to one. This guarantees that the set                 
be absorbing.  

The time    martingale ATE transition matrix is  

                                    (34) 

Given the current (t = 0) counterparty rating       and by definition, we can calculate the probability in 

Eqn. (10) as 

                                          (35)                                             (36) 

3.4 The Joint Rating Transition 
If the rating transition of the bank is independent of the counterparty, the bilateral CVA is simply the 

difference of the two standalone CVAs, one for counterparty risk and the other (DVA) for bank’s own 
default risk, each evaluated using the unilateral CVA model described above without regarding the 

other.  

However, as shown by Gregory (2009), default correlation between the parties can significantly impact 

the CVA, even the unilateral CVA. For calculating bilateral CVA under the rating-based Markov chain 

model described above, it is convenient to adopt a simple normal copula model for correlated rating 

transition.
21

 The details are given in Appendices B and C. Here we give the formulae for rating the joint 

transition and conditional joint default probabilities.
22

 

                                                           
21

 Other copula models, such as t-copula, can also be used in place of the normal copula. The t-copula has tail 

dependency resulting in a larger joint default probability. The normal copula has no tail dependency. 
22

 N and N2 are respectively the standard and the bivariate normal distribution functions.  
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The time    transition probability                      is given by Eqn. (B.5). For rating pair             and from Eqn. (B.6), we obtain                                                                  
                                                      (37) 

Defining                   as the set of non-default rating classes, using Eqn. (B.5) and the 

relationship  

                    and                       (38) 

we obtain 

                                                            (39) 

and                                                                                                                                                                           (40) 

Where (      , and 

                                            (41) 

3.5 The ATE Factor Profiles 
Since the main purpose of ATE trigger is to mitigate counterparty credit risk, a natural question to ask is: 

how much CVA would ATE be able to reduce? The answer is clearly that it depends on the exposure 

profiles                  and                 . It is useful to build a profile independent of 

the actual exposure that can be used to estimate the effectiveness of the ATE trigger. 

Notice that the BCVA without ATE trigger is given by 

               
                                                                                                                                                                 

  
  (42) 

where     is the default time without ATE for party      .  

We define bilateral ATE factor profiles. One is for the counterparty, and the other for the bank.
23

 

                                                           
23

 Obviously, unilateral ATE factor profile can be similarly defined, and we do not repeat here. 
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                                                                                                                                                                     (43) 

                                                                                                                                                                     (44) 

As mentioned earlier that, while the paths of    cannot go though   , there is no such restriction on    , 

i.e. the possible paths of    is a subset of those of    . Hence,     and    follow different distributions 

with                                         . Therefore, we deduce the bounds  

                     and                         (45) 

In terms of the ATE factor profiles, we can rewrite the BCVA formulation (11) as  

                                                                                                                             (46) 

The bilateral ATE factor profiles may be used as guideline in setting ATE trigger by estimating how 

effective a potential ATE trigger might be in reducing CVA, both unilateral and bilateral.  

3.6 Effect of ATE on Transition Matrix: An Example 
We use an example to demonstrate the effects of ATE trigger on the transition and default probability. 

Generally, ATE trigger increases the probability of rating migrating into the trigger rating, but reduces 

the probabilities of transiting to all other ratings and default. This effect is more pronounced if the ATE 

matrix is calculated from the ATE generator since the generator does not allow any possibility that the 

rating can transit from the ATE trigger rating or below. This latter observation is the reason we use the 

risk-neutral ATE generator to calculate the risk-neutral transition matrix. The fact that ATE reduces the 

probability of default is the fundamental reason for CVA reduction. 

Suppose we are given a transition matrix P of four rating classes A, B, C and D where D is the default 

state. From the matrix P, we calculate the generator Λ.  

,

1000

3.04.02.01.0

2.02.05.01.0

1.01.02.06.0



















P  


























0000

4213.00463.14482.01767.0

1972.04719.08222.01531.0

0678.01294.03535.05507.0

 

Without ATE trigger, the two-period transition probability is the probability of transition from one rating 

to another or default over the two period time where any non-default rating can transit to another 

rating or default. For example, rating A may transit to rating C at the end of period one and from rating C 
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back to rating A in the second period. Thus, over the two periods, rating A stays put actually consists of 

three possible transition paths,             and      . The probability is the sum of 

probability over these three paths. The non-ATE two-period transition matrix is given by 





















1000

47.021.02.012.0

37.019.031.013.0

23.014.024.039.0

2 PPP  

3.6.1 Case 1: ATE Trigger Rating    

Setting the ATE trigger to rating B, the one- and two-period ATE transition matrices directly modified 

from P are 

 ;

1000

0100

0010

1.01.02.06.0



















B
P

   




















1000

0100

0010

16.016.032.036.0

2
BBB

PPP  

Comparing the two-period ATE transition matrix     with the non-ATE matrix P2 shows that the 

presence of ATE, which makes it necessary to treat ratings B and C as absorbing, 

1) Reduces the probability of remaining at rating A as well as the PD; 

2) Increases the probability of being in ratings B and C. 

The ATE generator matrix 
B and its associated two-period ATE transition matrix 

B
Q
~

 are 

;

0000

0000

0000

0678.01294.03535.05507.0



















B

 

 

   




















1000

0100

0010

0822.01569.04285.03324.0

22,0
~ BB

ExpQ

 

Comparing with    , we see that in         , 
a) The probability of default and remaining at A is further reduced. The reduction in PD is significant; 

b) The probability of being in the ATE trigger rating B is further increased. 
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Again, we emphasize that the underlying reason for this pattern is that    disallow only inter-period 

transition from ratings B and C back to rating A. But it implicitly permits intra-period rating transition 

from B and C. on the contrary,          strictly prohibits migration from B and C in any time interval. 

3.6.2 Case 2: ATE Trigger Rating    

We now move the trigger rating a notch lower from rating B to rating C. We want to illustrate that 

trigger C is less effective than trigger B. 

Setting the ATE trigger to rating C, the one- and two-period ATE transition matrices directly modified 

from P are 

 ;

1000

0100

2.02.05.01.0

1.01.02.06.0



















C
P

   




















1000

0100

31.031.027.011.0

2.02.022.038.0

2
CCC

PPP  

The ATE generator matrix    and its associated two-period ATE transition matrix          are 

;

0000

0000

1972.04719.08222.01531.0

0678.01294.03535.05507.0






















C

 

 

   




















1000

0100

2075.04922.02189.00814.0

1443.03045.01879.03632.0

22,0
~ CC

ExpQ

 

It can be easily verified that all conclusions from Case 1 still hold.  

From comparing          with         , we see that  

1) The two-period default probability of rating A is 0.1443 when the trigger is C (Case 2) which is 

significantly higher than the PD of 0.0822 when the trigger is B (case 1).  

2) The total ATE termination probability is 0.5854 in Case 1, and is 0.3045 in case 2. So there is a much 

greater likelihood that ATE occurs in case 1 than case 2.  

Since CVA is a measure of loss upon default and the likelihood of default, and that ATE termination is 

equivalent to lossless default, CVA is smaller in case 1. This demonstrates that the ATE is more effective 

when it is placed near the current rating than distant.  
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4. Conclusions 
We presented a rating-based Markov chain model for valuation of bilateral CVA of a derivative portfolio 

subject to ATE rating trigger. Starting from the first principle, we derive, in the continuous time setting, a 

fundamental formulation for the bilateral CVA as the adjustment to the portfolio value without 

accounting for the counterparty credit risk. The continuous time formulation is then discretized using 

the first-order Euler scheme. The discretized CVA formulation is convenient for using the Markov 

chain/rating transition model. 

The rating-based CVA model consists of several key components. First, as most rating-based credit risk 

model, we take a (one-year) historical rating transition matrix. This matrix is readily available from the 

major rating agencies. From this historical transition matrix, we compute the historical generator matrix 

which can be considered as the starting point of the model. Second, we use the JLT method to calculate 

the risk-neutral generator matrix by calibrating to the market implied CDS spread curves for ratings. 

However, the martingale generator matrix needs further modification to account for ATE. 

Third, we define the ATE transition matrix for those rating transition paths where either the portfolio 

survives or a party defaults. Assuming mandatory termination and close-out of the portfolio upon first 

breaching the ATE trigger, we model the ATE trigger by making the rating classes equal to or below the 

ATE trigger absorbing states. This is achieved by setting to zero the rows of the risk-neutral generator 

matrix that are equal to and below the trigger rating. This permits to transform the problem of 

calculating the probability of first crossing the ATE trigger into the problem of calculating transition 

probability under the constraints that any path, whether leading to default or to remaining above the 

ATE trigger rating, cannot cross the ATE trigger. The resulting ATE generator matrix is used to calculate 

the transition matrix. 

The ATE transition matrix contains the probability of transiting from one rating to another without ever 

crossing the ATE trigger. As such, the default under ATE is the jump-to-default from above the ATE 

trigger rating. Jump means jumping over all ratings below the ATE trigger. The paths of jump-to-default 

are only a subset of all possible paths that lead to default without ATE. Hence, the PD under ATE is 

smaller than he PD of the party. It is this reduction in PD that mitigates the counterparty default risk. 

Fourth, we use the normal copula model for joint rating transition where the marginal rating transition 

thresholds are mapped to the rating transition probability of each party viewed standalone. 

We defined the ATE factor profile which is the ratio of ATE PD and PD without ATE. The ATE factor 

profile depends only on the party’s credit rating and the ATE triggers, and does not involve the actual 

deal. It can be used to estimate the potential effectiveness of ATE trigger for given exposure profile. 

Given the counterparty, this is potentially useful in deciding where the ATE trigger should be. 

Appendix A: Rating Transition and Conditional Default Probability 
In this section, we provide detailed derivation of Eqns. (12-17) used in the bilateral CVA calculation. We 

stress that in the presence of ATE, the rating class equal to and below the ATE trigger are absorbing 
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states. For party k, any rating transition path leading to either the default or another rating above the 

ATE trigger cannot pass through the set    at any time.  

The bilateral CVA calculation requires joint transition and default probabilities. From the set relationship 

                                                               
                                                     (A.1) 

and the law of total probability, we can verify that                                                                                                        (A.2) 

which is Eqn. (17). 

To prove Eqn. (15), we notice that 

                                                                   
                                                (A.3) 

The term         drops out by virtue of relationship (A.1). 

Eqn. (A.3) implies that                                                                                                   (A.4) 

The remaining equations can be similarly proven. 

Appendix B:  A Copula Model for Joint Rating Transition 
We describe a simple one-factor normal copula model for joint rating transition of the counterparty and 

the bank. This model is similar to that used in the credit VaR model (RiskMetrics 1997).  

Let    denote the credit quality index of party k. further, we assume that    can be decomposed into a 

systemic component Y (market factor) that is common to both parties and an idiosyncratic component    (idiosyncratic factor) that is specific to party k 

                           (B.1) 

where Y and    are assumed to follow the standard normal distribution.   is the correlation that 

measures the co-movement of the credit indices. Eqn. (B.1) is used for modeling the conditional joint 
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default over the one-step           as well as the long step        rating transition matrix. As such, the 

correlation   perhaps should be associated with a maturity tag and calibrated accordingly.  

Suppose we know, for party k, the martingale ATE transition matrix            and the current rating      , we calculate                      where          . The use of ATE transition matrices 

guarantees there would be no prior breach of ATE trigger by either party. 

We map    onto a grid of rating change from the current rating       and the martingale ATE transition 

matrix           . To this end, we introduce the time    rating transition thresholds for party k  

                                      (B.2) 

Starting from the initial rating      , the thresholds are defined that, if               ,          . 
Mathematically, this can be expressed as 

                                         (B.3) 

where                    denotes the             entry of           . 
Recall that    obeys the standard normal distribution, solving for     recursively for         yields 

                                       (B.4) 

Having obtained the rating transition thresholds for both the bank and the counterparty, the joint 

transition probability from the initial rating state               to a state                       is 

given by 

                                                                                                                       (B.5) 

Setting the current time to      and following the same procedure, we obtain the one-step conditional 

joint default probability                                                                                          (B.6) 

Eqn. (B.6) is the base formula from which other conditional joint probabilities in section 3.4 are 

obtained.  

Appendix C:  Correlation Estimation 
If the credit index    in Eqn. (B.1) is the log asset return of the party k, the parameter   is the pair-wise 

asset return correlation between the two parties. Asset correlation estimation is extremely difficult. 



23 

 

Here, we selectively mention several methods for estimating asset return correlation. These are by no 

means the only asset correlation estimation models. 

Other than picking a fixed number, the simplest estimating/forecasting method is to use the equity 

correlation as proxy primarily due to the availability of equity data. CreditMetrcs uses a method that 

maps equity return to country/industry indices and assigns weights to the indices by the firm’s industry 

participation (RiskMetrics 1997). Asset value is unobservable and is calculated from the firm’s equity 
value, debt and capital structure. A major drawback of this approach is that it ignores the significant 

difference between equity and asset, especially for financial firms (Zeng and Zhang, 2001a).  

Another approach is to infer the pair-wise asset correlation from the joint and the single name default 

probabilities of the two parties.  

Zeng and Zhang (2001b) assessed the performance of three widely used asset correlation estimation 

models - historical models, average models and factor models.  They concluded that the KMV’s Global 
Correlation Model performed best.  
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