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Abstract

This chapter proposes an up-to-date review of estimation strategies avail-
able for the Bayesian inference of GARCH-type models. The emphasis is put
on a novel efficient procedure named AdMitIS. The methodology automatically
constructs a mixture of Student-t distributions as an approximation to the pos-
terior density of the model parameters. This density is then used in importance
sampling for model estimation, model selection and model combination. The
procedure is fully automatic which avoids difficult and time consuming tuning
of MCMC strategies. The AdMitIS methodology is illustrated with an empiri-
cal application to S&P index log-returns where non-nested GARCH-type models
are estimated and combined to predict the distribution of next-day ahead log-
returns.

Keywords: GARCH, Bayesian inference, MCMC, marginal likelihood, Bayesian
model averaging; adaptive mixture of Student-t distributions, importance sam-
pling.

1 Introduction

Volatility forecasting plays an essential role in empirical finance, financial risk man-
agement and derivative pricing. Research on modeling volatility dynamics using time
series models has been active since the creation of the original ARCH model by En-
gle (1982). From there, multiple extensions of the standard ARCH scedastic function
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have been proposed in order to reproduce additional stylized facts observed in financial
markets. These so-called GARCH-type models recognize that there may be important
nonlinearities, asymmetries, and long memory properties in the volatility process; see
Bollerslev et al. (1992), Bollerslev et al. (1994) and Engle (2004) for a review. Well
known extensions are the exponential GARCH model by Nelson (1991), the GJR
model by Glosten et al. (1993) or the TGARCH model of Zakoian (1994) which ac-
count for the asymmetric relation between stock returns and changes in variance (see
Black, 1976). In parallel to the development of alternative scedastic functions, numer-
ous types of disturbances have been used. The Gaussian and Student-t distributions
are common choices while more sophisticated parameterizations such as the skewed
Student-t or the mixture of Gaussian distributions allow to model skewness and fat
tails in the conditional distribution of returns (see Ausin and Galeano, 2007). More
recently, interest has focused on regime-switching GARCH models. In this frame-
work, the GARCH parameters are functions of an unobservable state variable and can
change over time. These processes provide an explanation of the high persistence in
volatility observed with single-regime GARCH models (see, e.g., Lamoureux and Las-
trapes, 1990). Furthermore, as shown by Dueker (1997), Klaassen (2002) and Marcucci
(2005) for instance, the regime-switching GARCH models allow for a quick change in
the volatility level which can lead to significant improvements in risk forecasts.

Until recently GARCH-type models have mainly been estimated using the classical
maximum likelihood technique. However, the Bayesian approach offers an attractive
alternative. It enables small sample results, probabilistic statements on nonlinear
functions of the model parameters, selection and combination of non-nested models.
Due to these numerous advantages, the study of GARCH-type models from a Bayesian
viewpoint can be considered very promising.

This chapter proposes an up-to-date review of simulation techniques used in the
literature to perform the Bayesian estimation of GARCH-type models. The empha-
sis is put on a novel approach referred to as AdMitIS. The algorithm constructs a
mixture of Student-t distributions to perform an efficient estimation of models via
importance sampling. The methodology is fully automatic and has proved to require
less computing time for precise estimation results than several well-known alternatives.
We describe in some details the steps of the algorithm. In an empirical application
to S&P500 index log-returns, we show how it can be used to estimate and combine
distribution forecasts of non-nested GARCH-type models.

The chapter proceeds as follows. In Section 2, we survey the existing simulation
techniques available for Bayesian GARCH-type models. In Section 3, we present the
AdMitIS algorithm. In Section 4, we provide an empirical illustration. Section 5
concludes.

2 Bayesian estimation of GARCH-type models

The maximum likelihood (ML) estimation technique is the most commonly used
scheme of inference for GARCH-type models. ML is easy to understand and to imple-
ment. Nowadays, several econometric softwares contain a GARCH toolbox and ML
estimation of standard GARCH models takes less than one second on a modern com-
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puter. This is highly desirable for automated trading strategies, for instance, where
several models are fitted on thousands of data many times per day. From a theoretical
viewpoint, ML estimators benefit from being asymptotically optimal under certain
conditions (see Bollerslev et al., 1994; Lee and Hansen, 1994).

Despite these appealing features, we face practical difficulties when dealing with
the ML estimation of GARCH-type models. First, the maximization of the likelihood
function must be achieved via a constrained optimization technique since some (or
all) model parameters must be positive to ensure a positive conditional variance. It
is also common to require that the covariance stationarity condition holds. This leads
to complicated non-linear inequality constraints which render the optimization proce-
dure cumbersome. Moreover, the convergence of the optimization is hard to achieve
if the true parameter values are close to the boundary of the parameter space and if
the GARCH process is nearly non-stationary. Optimization results are often sensitive
to the choice of starting values. Second, in standard applications of GARCH models,
the interest usually does not center directly on the model parameters but on possi-
bly complicated nonlinear functions of the parameters. For instance, a trader might
be interested in the unconditional variance implied by a GARCH model, which is a
(highly) non-linear function of the model parameters. In order to assess the uncer-
tainty of such a quantity, classical inference involves tedious delta methods, simulation
from the asymptotic Gaussian approximation of the parameter estimates or the time-
consuming bootstrap methodology. Third, the conditions for the optimal asymptotic
properties of ML estimators to hold are fairly difficult to prove, while often assumed
to hold in practice. Moreover, since GARCH-type models are highly non-linear, the
asymptotic argument would require a very large number of data to hold. This is ob-
viously not always the case in practice. Finally, in the case of GARCH with mixture
disturbances or regime-switching GARCH models, testing for the number of mixture
components or the number of regimes is not possible within the classical framework due
to the violation of regularity conditions (see Frühwirth-Schnatter, 2006, Section 4.4).

Fortunately, those difficulties disappear when Bayesian methods are used. First,
any constraints on the model parameters can be incorporated in the modeling through
appropriate prior specifications. Second, appropriate Markov chain Monte Carlo
(MCMC) procedures can explore the joint posterior distribution of the model pa-
rameters. These techniques avoid local maxima (i.e., non convergence or convergence
to the wrong values) encountered via ML estimation of sophisticated GARCH-type
models. Third, exact distributions of nonlinear functions of the model parameters can
be obtained at low cost by simulating from the joint posterior distribution. Fourth,
the issue of determining the number of mixture components in mixtures disturbances
or the number of regimes in regime-switching GARCH model can be addressed by
means of marginal likelihoods and Bayes factors. Marginal likelihoods can also be
used for model selection and model combination of non-nested GARCH-type models.
The latter case is especially interesting in the context of financial risk management
since it allows to integrate out model uncertainty, thus accounting for model risk in
the forecasts.

The choice of the sampling algorithm is the first issue when dealing with MCMC
methods and it depends on the nature of the problem under study. For a general
introduction to MCMC methods, see Chapter 2 of this volume. In the case of GARCH-
type models, due to the recursive nature of the conditional variance, the joint posterior
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and the full conditional densities are of unknown forms, whatever assumptions are
made on the scedastic function or the model disturbances. That is, there exists no
conjugate prior under which the parameters’ (conditional) posterior distributions fall
within a known class. Therefore, we cannot use the simple Gibbs sampler and need
more elaborated procedures. Hereafter, we shortly present an up-to-date review of
the different techniques available to perform the Bayesian estimation of GARCH-type
models and discuss their advantages and drawbacks. For a numerical comparison of
some of these approaches in the context of GARCH-type models, we refer the reader
to Asai (2006) and Ardia et al. (2009a).

Griddy-Gibbs The Griddy-Gibbs sampler of Ritter and Tanner (1992) is a vari-
ant of the Gibbs sampler where each parameter is updated by inversion from the
full conditional distribution computed by a deterministic integration rule. The algo-
rithm is intuitive and very simple to implement. However, the procedure is extremely
time consuming due to the numerical integration steps required at each sweep of the
sampler. While this can still be acceptable for simple GARCH specifications, this be-
comes a real burden for sophisticated and highly parametrized GARCH-type models.
Moreover, for computational efficiency, we must limit the range where the probability
mass is computed so that the prior density has to be somewhat informative. In our
viewpoint, the Griddy-Gibbs is attractive for its simplicity and remains a useful tool
for “one-shot” studies. It is however not relevant in real-world applications, where
the models need to be estimated many times on a large number of times series. The
Griddy-Gibbs approach is used in the context of GARCH-type models by Bauwens and
Lubrano (1998), Bauwens et al. (2000), Bauwens and Lubrano (2002), Wago (2004),
Tsay (2005, Chapter 10), Ausin and Galeano (2007), Bauwens and Rombouts (2007)
and Bauwens et al. (in press).

Importance sampling Importance sampling (IS), due to Hammersley and Hand-
scomb (1965), was introduced in econometrics and statistics by Kloek and van Dijk
(1978). The importance sampling approach relies on an importance density which
approximates the posterior density of the model parameters. Draws are generated
from this importance density and weighted, with higher weights given to draws for
which the importance density is relatively small compared with the posterior. Then,
quantities of interest of the posterior distribution (or predictive distribution) are esti-
mated by weighted averages of (functions of) draws. This methodology leads to a fast
estimation since it only requires generating and weighting draws. Moreover, it gener-
ates uncorrelated draws so that the whole posterior sample can be used for Bayesian
inference (i.e., no burn-in or “thinning” is necessary), and so that the precision of the
estimators is easily assessed. However, the key issue for applicability and efficiency is
the choice of the importance density. Finding this can be a bit of an art, especially
if the posterior density is asymmetric or multi-modal. For instance, in the case of a
GARCH model with mixture disturbances, the posterior distribution is multimodal. In
this case, a (standard) unimodal importance density may imply that some draws have
huge weights leading to large inefficiencies in the estimation, or worse, that relevant
parts of the parameters space are completely “missed”. The importance distribution
should be close to the posterior distribution and it is especially important that the
tails of the importance should not be thinner than those of the posterior. Bayesian

4



estimation of GARCH-type models using importance sampling is proposed by Geweke
(1988), Geweke (1989b) and Kleibergen and van Dijk (1993).

Metropolis-Hastings The Metropolis-Hastings (MH) algorithm was introduced by
Metropolis et al. (1953) and generalized by Hastings (1970). The approach constructs
a Markov chain by generating draws from a candidate density; the candidate draw
is then accepted (or rejected) based on an acceptance probability. If the candidate
is accepted, the chain moves to the new value, otherwise the chain stays in the cur-
rent state. After a burn-in period, which is required to make the influence of initial
values negligible, draws from the Markov chain are considered as (correlated) draws
from the joint posterior distribution of interest. Two variants of the MH approach
are most common: (i) the independence chain MH and (ii) the random-walk MH. In
the former case, candidate draws are generated from an unconditional candidate dis-
tribution whereas in the latter draws are generated from a distribution conditional on
(and around) the current value of the chain. In both variants the candidate distribu-
tion must be tuned to achieve a reasonable acceptance rate and to explore sufficiently
the domain of the posterior distribution. This tuning process requires preliminary
runs and some knowledge of MCMC techniques from the user. Hence, the method is
not automatic which is not a desirable property. In addition, for interpreted languages
such as R (R Development Core Team, 2009), MATLAB c© (The MathWorks Inc., 2009)
or Mathematica c© (Wolfram Research, 2009), the MH algorithm can be significantly
slower than the importance sampling strategy. This is so because the probability of
acceptance of the new draw depends on the current state of the Markov chain; hence,
the algorithm cannot be vectorized. Finally, the MH algorithm creates a sequence of
correlated draws from the posterior distribution. Therefore, robust techniques must be
used to assess the precision of the estimators and more draws are required to achieve
the same degree of (numerical) precision as the importance sampling approach. The
MH algorithm is used in the context of GARCH-type models by Müller and Pole
(1998), Vrontos et al. (2000), Tsay (2005, Chapter 10), Gerlach and Chen (2006), Mi-
azhynskaia and Dorffner (2006), Aussenegg and Miazhynskaia (2006), Miazhynskaia
et al. (2006), Chen et al. (2008), Chen and Gerlach (2008) and Chen et al. (2009).
Another example is the chapter by Ausin and Lopes in this book.

An interesting strategy has been proposed to automate the MH algorithm and
improve its efficiency. This approach is proposed by Nakatsuma (1998, 2000) and
consists of a MH algorithm where the proposal distributions are constructed from
auxiliary ARMA processes on the squared observations. In addition to be fully auto-
matic and more efficient than naive MH approaches, the methodology can be extended
to regime-switching GARCH models; see Ardia (2008b, Chapter 7) and Ardia (2009).
Note however that the construction of the proposal distributions highly depends on
the form of the scedastic function and is not applicable to all GARCH-type mod-
els. Moreover, the algorithm requires filtering steps which significantly increase the
computational burden for highly parametrized models. The approach of Nakatsuma
(1998, 2000) is used in Nakatsuma and Tsurumi (1999), Kaufmann and Frühwirth-
Schnatter (2002), Kaufmann and Scheicher (2006), Rachev et al. (2008, Chapter 11),
Henneke et al. (2009), Ardia (2008b) and Ardia (2009). The algorithm is implemented
in the R package bayesGARCH (Ardia, 2008a; Ardia and Hoogerheide, 2009) for the
GARCH(1,1) model with Student-t disturbances.
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AdMitIS Recently, Ardia et al. (2009a) and Ardia et al. (2009c) relied on a special
case of the adaptive approach proposed by Hoogerheide (2006); Hoogerheide et al.
(2007) for performing the Bayesian estimation of GARCH-type models. The method-
ology, named AdMitIS for importance sampling with adaptive mixture of Student-t
distributions, consists of two steps. First, the algorithm fits adaptively a mixture
of Student-t distributions to the kernel of the posterior density. Then, importance
sampling is used to obtain quantities of interest for the target posterior distribution,
using the fitted mixture as the importance density. The estimation procedure is fully
automatic. Moreover, Ardia et al. (2009a) compared the methodology to standard
cases of importance sampling and MH algorithm using a naive candidate and to the
Griddy-Gibbs approach. Overall, they demonstrate the superiority of the AdMitIS
approach both in terms of efficiency and reliability.

Due to its flexibility, the adaptive algorithm is able to provide a suitable importance
distribution for non-elliptical, possibly multi-modal, posterior distributions. But it is
not only useful for sophisticated GARCH-type models. For large samples and/or
simple scedastic specifications, the posterior distribution of the model parameters is
likely to be roughly elliptical. In these cases, the adaptive approach will stop with
one or two mixture components, leading to a simple unimodal symmetric importance
density. The adaptive fitting together with the importance sampling estimation is
achieved fairly quickly. Therefore, models can be re-estimated many times on many
data sets without practical issues. This is clearly an appealing aspect for practitioners.
Moreover, Ardia et al. (2009c) show that the approach allows an efficient and reliable
estimation of marginal likelihood, which lies at the heart of model selection and model
combination. The approach can therefore be used to estimate, select and combine
GARCH-type models in a simple, quick and efficient fashion.

3 Adaptive mixture of Student-t method

The adaptive mixture of Student-t distributions (AdMit) procedure has been de-
veloped by Hoogerheide (2006); Hoogerheide et al. (2007); see also Hoogerheide and
van Dijk (2008). The AdMit methodology consists of the construction of a mix-
ture of Student-t distributions which approximates a target distribution of interest.
The fitting procedure relies only on a kernel of the target density, so that the nor-
malizing constant is not required. In a second step this approximation is used as
an importance function in importance sampling (AdMitIS) or as a candidate den-
sity in the independence chain MH algorithm (AdMitMH). Both AdMitIS and Ad-
MitMH strategies have been implemented in the R package AdMit (Ardia et al., 2008)
which is freely available from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/package=AdMit. The usage of the package with em-
pirical examples is discussed in Ardia et al. (2009a) and Ardia et al. (2009b).

Hoogerheide et al. (2007) mention several reasons why mixtures of Student-t dis-
tributions are natural importance or candidate distributions. Indeed, a Student-t
mixture

• provides an accurate approximation to a wide variety of target distributions,
with substantial skewness and high kurtosis; it can deal with multi-modality
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and with non-elliptical shapes.

• can be constructed in a quick, iterative procedure and is easy to sample from.

• has fatter tails than the Gaussian distribution (especially if one specifies Student-
t components with few degrees of freedom). Therefore, the risk is small that
the tails of the importance or candidate are thinner than those of the target
distribution.

Moreover, from a purely theoretical framework, mixture of Student-t densities can
approximate any density function to arbitrary accuracy under certain conditions (Zeevi
and Meir, 1997).

Because of its superiority compared to several alternative methods, both in terms
of efficiency and reliability of posterior estimation (see Hoogerheide, 2006; Hoogerheide
et al., 2007; Ardia et al., 2009a) and of marginal likelihood estimation (see Ardia et al.,
2009c), we will make use of the AdMitIS approach in the sequel.

For a given GARCH-type model, we denote by θ ∈ Θ ⊆ R
d the vector of parame-

ters, p(θ |y) the posterior density of θ and y
.
= (y1, . . . , yT )

′ the vector of log-returns.
The joint posterior density of θ is then obtained by Bayes’ theorem as

p(θ |y) = p(y |θ)p(θ)
∫

Θ
p(y |θ)p(θ)dθ , (1)

where p(y |θ) is the joint density of y given θ, i.e., the likelihood, and p(θ) is the
exact prior density of θ, i.e., not merely a prior kernel. In expression (1), we define
k(θ)

.
= p(y |θ)p(θ) as the kernel function of the joint posterior and

p(y)
.
=

∫

Θ

k(θ)dθ (2)

as the marginal likelihood. It is clear that the marginal likelihood is equal to the
normalizing constant of the joint posterior density (1). As the key ingredient in Bayes
factors, the marginal likelihood lies at the heart of model selection and model com-
bination in Bayesian statistics (see, e.g., Kass and Raftery (1995) and Section 5.1 of
Chapter 1 in this book).

The AdMit methodology constructs a mixture of Student-t distributions in order
to approximate the posterior density p(θ |y). The density of a mixture of Student-t
distributions can be written as

q(θ) =
H
∑

h=1

ηh td(θ |µh,Σh, ν) ,

where {ηh} are the mixing weights of the Student-t components (0 6 ηh 6 1 and
∑H

h=1 ηh = 1) and td(θ |µh,Σh, ν) is a d-dimensional Student-t density with mode
vector µh, scale matrix Σh, and ν degrees of freedom. The adaptive mixture approach
determines H, {ηh}, {µh} and {Σh} based on the kernel k(θ). It consists of the
following steps:
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Step 0 Compute the mode µ1 and scale Σ1 of the first Student-t distribution in the
mixture as µ1 = argmaxθ∈Θ log k(θ), the mode of the log kernel function, and
Σ1 as minus the Hessian of log k(θ) evaluated at its mode µ1. Then draw a set
of N points {θ[i]} from this first stage candidate density q(θ) = td(θ |µ1,Σ1, ν),
with small ν to allow for fat tails. N is typically a very large number, e.g.,
N = 100 000.

After that add iteratively components to the mixture by performing the following
steps:

Step 1 Compute the importance sampling weights

w(θ[i])
.
=

k(θ[i])

q(θ[i])
(3)

for i = 1, . . . , N . In order to determine the number of components H of the
mixture, we make use of a simple diagnostic criterion: the coefficient of variation,
i.e., the standard deviation divided by the mean, of the importance sampling
weights {w(θ[i])}. If the relative change in the coefficient of variation of the
importance sampling weights caused by adding one new Student-t component to
the candidate mixture is small, e.g., less than 10%, then the algorithm stops and
the current mixture q(θ) is the approximation. Otherwise, the algorithm goes
to step 2.

Step 2 Add another Student-t distribution with density td(θ |µh,Σh, ν) to the cur-
rent mixture. The new component is based on the ratio of the previous mixture
of Student-t densities and the target density kernel k(θ). It is located where
this ratio is relatively high, which does not depend on the normalizing constant
of the target density. Since for most GARCH-type specifications the region of
integration Θ is bounded, it may occur that w(θ) attains its maximum at a
boundary of Θ. In this case, minus the inverse Hessian of logw(θ) evaluated at
its mode (which would otherwise provide µh and Σh) may be a very poor choice;
in fact this Hessian may not even be positive definite. Therefore, in order to
avoid any numerical problem, µh and Σh are obtained as the estimated mean
and covariance based on a subset of draws corresponding to a certain percentage
of largest weights. More precisely, µh and Σh are obtained as

µh =
∑

j∈Jc

w(θ[j])
∑

j∈Jc
w(θ[j])

θ[j] ,

Σh =
∑

j∈Jc

w(θ[j])
∑

j∈Jc
w(θ[j])

(θ[j] − µh)(θ
[j] − µh)

′ ,

where Jc denotes the set of indices corresponding to the c percents of the largest
weights using the sample {w(θ[j)} from q(θ) we already have. Since our aim is to
detect regions with relatively too little candidate probability mass as compared
with the target distribution (e.g., a distant mode), the percentage c is typically
a low value, e.g., 5%.
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Step 3 Choose the probabilities {ηh} in the mixture q(θ) =
∑H

h=1 ηh td(θ |µh,Σh, ν)
by minimizing the coefficient of variation of the importance sampling weights.

Step 4 Draw a sample of N points {θ[i]} from the new mixture of Student-t distri-
butions q(θ) =

∑H
h=1 ηh td(θ |µh,Σh, ν) and go to Step 1.

The coefficient of variation of the importance sampling weights is a natural and
intuitive measure of quality of the candidate as an approximation to the target. If
the candidate and the target distributions coincide, all importance sampling weights
are equal, so that the coefficient of variation is zero. For a poor candidate that not
even roughly approximates the target, some importance sampling weights are huge
while most are (almost) zero, so that the coefficient of variation is high. The better
the candidate approximates the target, the more evenly the weight is divided among
the candidate draws, and the smaller the coefficient of variation of the importance
sampling weights. We refer the reader to Ardia et al. (2009a) for theoretical reasons
justifying the coefficient of variation.

The mode and Hessian of the log kernel function (step 0), the coefficient of vari-
ation of the importance sampling weights (steps 1 and 3), and the scaled weights
w(θ[j])/

∑

j∈Jc
w(θ[j]) (step 2) do not depend on the normalizing constant of the tar-

get density, which explains why the whole AdMit procedure only requires a target
density kernel (which is also a property of the MH algorithm).

Once the adaptive mixture of Student-t distributions has been fitted to the target
density p(θ |y) through the kernel function k(θ), the approximation q(θ) is used in
importance sampling to obtain quantities of interest of the posterior p(θ |y) or perform
model selection and model combination. The importance sampling technique is based
on the relationship

Ep

[

g(θ)
]

=

∫

Θ
g(θ)p(θ |y)dθ
∫

Θ
p(θ |y)dθ =

∫

Θ
g(θ)w(θ)q(θ)dθ
∫

Θ
w(θ)q(θ)dθ

=
Eq

[

g(θ)w(θ)
]

Eq

[

w(θ)
] , (4)

where g(θ) is a given function (integrable with respect to p(θ |y)), Ep denotes the ex-
pectation with respect to the posterior density p(θ |y) and Eq denotes the expectation
with respect to the Student-t mixture q(θ). The importance sampling estimator of
Ep

[

g(θ)
]

is given by

Êp

[

g(θ)
]

=

∑L
l=1 g(θ

[l])w(θ[l])
∑L

l=1 w(θ
[l])

, (5)

where {θ[l]} is a sample of L i.i.d. draws from the importance density q(θ). Under
certain conditions, Êp is a consistent estimator of Ep (see Geweke, 1989a). The choice
of the function g(θ) allows to obtain different quantities of interest; for instance, the
posterior mean is obtained with g(θ)

.
= θ and the posterior probability of a set S ⊆ R

d

is obtained with g(θ)
.
= 1{θ∈S}, where 1{·} denotes the indicator function.

As for any time series model, prediction is essential. The Bayesian framework
allows for obtaining predictive densities that by construction incorporate parameter
uncertainty when forecasting future observations. For instance, the one-step ahead
predictive density is obtained by setting g(θ) to the density of the one-step ahead
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observation yT+1 in expression (4). Formally,

p(yT+1 |y) =
∫

Θ

p(yT+1 |θ,y)p(θ |y)dθ . (6)

This quantity is easily estimated using (5) since p(yT+1 |θ,y) is known in closed-form
for any GARCH-type model. For multi-step ahead forecasts, the predictive density is
of unknown form and we must rely on simulation in conjunction with the method of
composition. We refer the reader to Ardia (2008b, Chapter 6) for an illustration.

The Bayesian framework is also appealing for selecting and combining models,
which is achieved through the computation of the posterior model probability. As-
sume that we have M (possibly non-nested) GARCH-type models Mi with marginal
likelihood pi(y) and prior model probability p(Mi). Usually, the prior model probabil-
ity is equal for all models or favors parsimonious specifications. The posterior model
probability of model Mi is then given by

p(Mi |y) =
pi(y)p(Mi)

∑M
i=1 pi(y)p(Mi)

,

where the importance sampling approach immediately provides the estimator for the
marginal likelihood pi(y)

p̂i(y) =
1

L

L
∑

l=1

wi(θ
[l]
i ) , (7)

as shown by Kloek and van Dijk (1978) for instance. In expression (7), wi(θi) denotes
the weight function (3) based on the kernel ki(θi) and the Student-t mixture density

qi(θi) corresponding to model Mi, and {θ[l]
i } are L i.i.d. draws generated from qi(θi),

where θi ∈ Θi ⊆ R
di . Therefore, estimator (7) is simply obtained as the sample

counter-part of (2) for Mi, which can be expressed as

pi(y) =

∫

Θi

ki(θi)dθi =

∫

Θi

ki(θi)

qi(θi)
qi(θi)dθi =

∫

Θi

wi(θi)qi(θi)dθi .

For model discrimination, the model with the largest posterior probability will then
be selected. The posterior probability can can also be used to produce a combination
of the predictive distributions, an approach referred to as Bayesian model averaging
(BMA) in the literature (see Kass and Raftery, 1995). For instance, the one-step ahead
BMA predictive density is given by

pBMA(yT+1 |y) =
M
∑

i=1

pi(yT+1 |y)p(Mi |y) , (8)

where pi(yT+1 |y) denotes the predictive density of model Mi, which is easily obtained
using (6) with the density pi(yT+1 |θi,y) and the posterior pi(θi |y) corresponding to
Mi. Expression (8) is nothing else than the weighted average of the M single-model
one-step ahead predictive densities, where the weights are the posterior model proba-
bilities. This distribution of the one-step ahead observation accounts for uncertainty
on both parameter values and model choice.

10



4 Empirical illustration

This section proposes an illustration of the AdMitIS strategy with the Bayesian
estimation of two non-nested GARCH-type models. The posterior model probabilities
are estimated and used to combine the predictive densities of the one-day ahead log-
returns. This case study aims at describing in a real-life example the mechanics of the
AdMitIS strategy and demonstrating its effectiveness.

We apply our Bayesian estimation methods to daily observations of the S&P500
index log-returns. The sample period is from April 28, 1995, to October 27, 1997, for a
total of 633 observations. The reason for this particular data window of two and a half
years, which is long enough to estimate GARCH-type models, is that it ends with an
extremely negative return, which makes the differences between forecasts from the two
models more clearly visible. Further, for this data set the typically imposed restrictions
on the models (for ensuring stationarity and positivity of the volatility process) seem
to be supported by the data. The analysis of the correctness of the model restrictions
falls outside the scope of this chapter. The time series has been demeaned and the
nominal returns are expressed in percent. Robust autocorrelation tests do not exhibit
any autocorrelation in the returns, whereas significant autocorrelation is detected for
the squared log-returns, thus suggesting GARCH effects in the data.

The two models are based on two non-nested scedastic functions. For the variance
dynamics, we use the parsimonious but effective GJR(1,1) (see Glosten et al., 1993)
and EGARCH(1,1) (see Nelson, 1991) specifications. These models are well-known in
univariate GARCH modeling for their ability to reproduce the asymmetric behavior of
the conditional variance observed in equity markets. For the model disturbances, we
consider Student-t innovations, which allow to reproduce fat tails in the conditional
distribution.

Formally, the log-returns {yt} can be expressed as

yt = σt ̺ εt (t = 1, . . . , T ) ,

where the scedastic function σ2
t can be of either type:

GJR σ2
t
.
= ω + α y2t−1 + γ y2t−1 1{yt−1<0} + β σ2

t−1 (ω > 0, α, γ, β ≥ 0)

EGARCH log(σ2
t )

.
= ω + α

[

| yt−1

σt−1
| − E(| yt−1

σt−1
|)
]

+ γ yt−1

σt−1
+ β log(σ2

t−1) ,

and where the disturbances εt are i.i.d. Student-t variates,

p(εt)
.
=

Γ
(

ν+1
2

)

Γ
(

ν
2

)

(πν)1/2

(

1 +
ε2t
ν

)− ν+1
2

(ν > 2) .

The scalar ̺ is the normalizing factor
√

(ν − 2)/ν to ensure that the conditional vari-
ance is σ2

t . For the Student-t variates yt−1/σt−1 that are normalized to have variance
one, we have

E(| yt−1

σt−1
|) =

√
ν − 2 Γ(ν−1

2
)√

π Γ(ν
2
)

.
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Note the positivity constraints on the model parameters in order to ensure a positive
conditional variance and the constraint on the degrees of freedom parameter to ensure
the existence of a finite conditional variance. Moreover, we require the process to be
covariance stationary, i.e., α + γ/2 + β < 1 for the GJR(1,1) model and |β| < 1 for
the EGARCH(1,1) model. Note that the model specifications are used for illustrative
purposes only; checking for possible model misspecification is beyond the scope of the
present paper.

For both models we specify weakly informative, proper prior distributions on the
parameters that can roughly be interpreted as the proper versions of the improper pri-
ors used by Vrontos et al. (2000). We use proper priors for computing posterior model
probabilities and performing Bayesian model averaging. For the GJR(1,1) model, we
specify a Gaussian distribution for log(ω) with mean log(0.01) and standard devi-
ation log(10), which amounts to a 95% prior interval for ω between 0.0001 and 1.
For α, γ and β we use a uniform prior on the subspace with α > 0, γ > 0, β > 0,
α+γ/2+β < 1. We specify an exponential prior distribution with mean 20 for (ν−2).
For the EGARCH(1,1) model we choose a uniform prior on [-1,1] for β. For ω, α and γ
we use Gaussian priors with zero mean and standard deviation 0.1. Again we specify
an exponential prior distribution with mean 20 for (ν − 2).

The priors are combined with the likelihood function, leading to the posterior
kernel functions. These kernels are used in the AdMit algorithm. For each model,
AdMit was applied with N = 100 000 draws. For both models, the algorithm led to
a mixture of three Student-t distributions as the importance sampling distribution.
Figure 1 illustrates the steps of the AdMit algorithm for the marginal posterior of ν
in the EGARCH model. The first candidate is a Student-t distribution around the
posterior mode. Second, a Student-t component is added that is located in the right
tail, yielding a right-skewed candidate. This consists of a substantial improvement of
the approximation to the posterior, shown in Figure 3, so that the AdMit algorithm
continues. Third, a Student-t component is added that is placed in the short left tail.
This is only a minor improvement of the candidate, so that the AdMit algorithm stops
at three components. Notice that the AdMit algorithm provides an approximation
of the joint posterior in the five-dimensional parameter space; Figure 1 displays the
one-dimensional marginal candidate distribution of ν only for illustration.

The densities constructed by AdMit for each models are used to perform the
Bayesian estimation of the model parameters via importance sampling (AdMitIS) us-
ing L = 100 000 draws. Results are reported in Table 1 and marginal posterior densities
are shown in Figures 2 and 3. We notice the strong evidence for the leverage effect in
the time series (γ > 0 in GJR, γ < 0 in EGARCH), as well as conditional leptokurtic-
ity in the data with a rather small ν. The standard deviations of the parameters are
quite large. We also report the numerical standard errors (NSE), i.e., the square root
of the variance of the estimates that can be expected if the simulations were to be
repeated with different random numbers. The RNE is the relative numerical efficiency
of the estimate, i.e., the ratio between an estimate of the variance of a hypothetical es-
timator based on direct sampling and the importance sampling estimator’s estimated
variance with the same number of draws. RNE is an indicator of efficiency of the cho-
sen importance function; if the target and importance densities coincide, RNE equals
one, whereas a very poor importance density will have a RNE close to zero. Both NSE
and RNE are estimated by the method given in Geweke (1989a). The numerical stan-
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Figure 1: The AdMit algorithm automatically and iteratively approximates the skewed shapes of the marginal
posterior of ν in the EGARCH model.

dard error and relative numerical efficiency indicate a reasonable degree of efficiency
for the methods, which may be difficult to achieve for non-elliptical, skewed, multidi-
mensional posterior distributions. Table 2 reports estimation results for importance
sampling using a naive importance density, i.e., a Student-t distribution around the
posterior mode. Note the lower RNE for all coefficients in both models, as compared
with AdMitIS. For the GJR parameter ω and EGARCH parameter ν, for which the
marginal posteriors are substantially skewed, the RNEs are 3.4 and 2.6 times higher
in the AdMitIS approach. Further, note the lower estimate of the posterior standard
deviation of the EGARCH parameter ν. Even for L = 100 000 draws, the naive ap-
proach may hardly cover some relevant regions of the parameter space. This failure
of the naive approach does not show up in the NSE and RNE, as these only concern
the parameter subspace that is visited by the draws. It should be mentioned here that
the models that are used in practice often have more than five parameters, and that
posterior shapes can be much further from normality than those in our application
(e.g., not only skewness but also curved ridges or even multimodality). In such cases,
the naive simulation method’s problem of neglecting relevant parts of the parameter
space can be even much larger. Then estimation, prediction and risk measurement
can suffer from substantial biases.

As explained in the previous section, the AdMit algorithm also delivers a suitable
importance density for marginal likelihood estimation. The natural logarithm of the
AdMitIS estimate of the marginal likelihood is given by -725.6930 and -724.5382 for
the GJR and EGARCH model, respectively. This implies a Bayes factor of 3.1734
in favor of the EGARCH model, given the observed data. Under equal prior model
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probabilities, i.e., a prior odds ratio of one, the posterior probabilities for the GJR and
EGARCH models are estimated as 0.2396 and 0.7604, respectively.

M1: GJR Student-t M2: EGARCH Student-t

θ Êp(θ) NSE RNE V̂
1/2
p (θ) θ Êp(θ) NSE RNE V̂

1/2
p (θ)

ω 0.0205 0.0002 0.0927 0.0147 ω -0.0105 0.0001 0.1198 0.0117
α 0.0349 0.0002 0.1232 0.0240 α 0.1384 0.0002 0.2525 0.0367
γ 0.1124 0.0005 0.1404 0.0566 γ -0.0737 0.0002 0.2230 0.0318
β 0.8898 0.0004 0.1207 0.0424 β 0.9733 0.0002 0.1201 0.0201
ν 6.4843 0.0201 0.0693 1.6745 ν 6.6905 0.0140 0.1844 1.9667

Table 1: Posterior results for the two non-nested models using AdMitIS. Êp(θ) posterior mean estimate. NSE:
numerical standard error of the posterior mean estimate. RNE: relative numerical efficiency of the posterior mean

estimate; V̂
1/2
p (θ): posterior standard deviation estimate. The number of importance sampling draws is L = 100 000.

M1: GJR Student-t M2: EGARCH Student-t

θ Êp(θ) NSE RNE V̂
1/2
p (θ) θ Êp(θ) NSE RNE V̂

1/2
p (θ)

ω 0.0202 0.0003 0.0271 0.0148 ω -0.0106 0.0001 0.0608 0.0117
α 0.0350 0.0003 0.0890 0.0241 α 0.1389 0.0003 0.1722 0.0372
γ 0.1112 0.0008 0.0516 0.0565 γ -0.0734 0.0002 0.1710 0.0318
β 0.8903 0.0006 0.0427 0.0424 β 0.9732 0.0003 0.0467 0.0202
ν 6.5077 0.0291 0.0337 1.6884 ν 6.6508 0.0180 0.1028 1.8265

Table 2: Posterior results for the two non-nested models using naive importance sampling (i.e., using a Student-t
distribution around the posterior mode). See Table 1 for explanations.

In Figures 4 and 5, we display the predictive densities for the volatility σT+1 and
log-return yT+1 for the date October 28, 1997, for the GJR and EGARCH models as
well as for Bayesian model averaging (BMA) which combines the predictive densities
from the models via the posterior model probabilities. Approximate values of risk
measures such as the value-at-risk (VaR) can be read from the figure.

Precise estimation of the VaR at the 100α% risk level can be obtained via impor-
tance sampling as follows. First, L draws {θ[l]} are simulated from the importance
density, and the corresponding importance weights {w(θ[l])} are computed. Second,

for the L̃ (L̃ ≤ L) draws with non-zero weights a log-return y
[l]
T+1 is simulated from

its distribution given the model and parameter values. Third, the simulated log-
returns y

[l]
T+1 are sorted ascending as y

(i)
T+1 (i = 1, . . . , L̃) and the VaR is estimated

as y
(k)
T+1 with Sk = (1 − α) where Sk

.
=

∑k
j=1 w̃(θ

(j)) is the cumulative sum of scaled

weights w̃(θ(j))
.
= w(θ(j))

∑L̃
i=1 w(θ(i))

(i.e., scaled to add to one) corresponding to the ascending

log-returns. In general there will be no k such that Sk = (1 − α), so that one inter-

polates between the values of y
(k)
T+1 and y

(k+1)
T+1 where Sk+1 is the smallest value with

Sk+1 > (1 − α). For importance sampling estimation of VaR in case of more general
profit and loss functions, see Hoogerheide and van Dijk (in press). Hoogerheide and
van Dijk (in press) also introduce an additional approximation step, targeted particu-
larly on generating high loss scenarios, that can make the simulation-based estimation
of VaR even more efficient.
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Figure 2: Marginal posterior densities for parameters in GJR model.
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Figure 3: Marginal posterior densities for parameters in EGARCH model.
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Figure 4: Predictive density of σT+1 for EGARCH model, GJR model and Bayesian model averaging (BMA) of the
two models.
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Figure 5: Predictive density of yT+1 for EGARCH model, GJR model and Bayesian model averaging (BMA) of the
two models.
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Table 3 reports the values for the one-day-ahead VaR for October 28, 1997, for both
models and BMA. Figures 4 and 5 and Table 3 show that the GJR model predicts
higher risk than EGARCH, with BMA results naturally taking a position in between.
Accounting for both the uncertainty on estimated parameters and the uncertainty on
model choice, we obtain BMA estimates of VaR (at the 95% risk level) at -3.7524
percent.

α M1: GJR Student-t M2: EGARCH Student-t BMA

0.95 -4.7124 -3.4304 -3.7524
0.99 -7.6982 -5.6465 -6.3128

Table 3: Estimates of the 100α% one-day-ahead value-at-risk for the GJR model, EGARCH model, and Bayesian
model averaging (BMA) of the two models.

Finally, note that instead of integrating out the parameter (and model) uncertainty
in the VaR forecast, we could also determine the impact of the parameter (and model)
uncertainty on the VaR estimate. We do not investigate this point here but refer
the reader to the chapter by Ausin and Lopes in this volume; see also Ardia (2008b,
Chapter 6) for an illustration of the impact of the parameter uncertainty to the VaR
and expected shorfall term structures.

5 Conclusion

The study of GARCH-type models from a Bayesian viewpoint is relatively recent
and can be considered very promising due to the advantages of the Bayesian approach
compared to classical techniques. In particular, the Bayesian framework enables small
sample results, robust estimation, probabilistic statements on nonlinear functions of
the model parameters and model discrimination. Moreover, the Bayesian paradigm
allows to combine model forecasts, thus accounting for model risk in the predictions,
which is crucial from a risk management perspective.

This chapter reviewed existing methods for the Bayesian estimation of GARCH-
type models. We focused our presentation on a novel approach, named AdMitIS, which
performs importance sampling with an adaptive mixture of Student-t distribution as
the importance distribution. The methodology allows a quick and efficient estimation
of any kind of GARCH-type models. Moreover, with this approach, it is easy to com-
bine forecasts of non-nested models. The estimation procedure is fully automatic and
is achieved within a reasonable computational time compared to alternative MCMC
techniques. This is of primary importance for automated trading systems for instance,
where models are estimated frequently and for numerous datasets.

The AdMitIS algorithm was described in details and we provided an application to
S&P500 index log-returns. We illustrated how two non-nested GARCH-type models
can be estimated and combined in order to forecast the next-day ahead log-returns
distribution.
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