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The Current Value of the Mathematical Provision:

A Financial Risk Prospect  

Rosa Cocozza*, Emilia Di Lorenzo**, Marilena Sibillo***   

Abstract

The paper addresses the question of the calculation of the current value of the mathematical provi-

sion and moulds it in a deterministic and stochastic scenario, using a proper term structure of inter-

est rates estimated by means of a Cox-Ingersoll-Ross model. It provides a complete and original 

year-by-year evaluation model for the business performance, and a closed solution for the current 

evaluation of the reserve, together with a comprehensive insight into the dynamics of the reserve 

connected to the selection of a defined term structure of interest rates. Moreover, the calculation of 

the VaR of the mathematical provision is prospected as risk measure useful to appreciate also the 

evaluation rate risk. Future research prospects concern the selection of the stochastic process used 

to describe the dynamics of the interest rates and the possible managerial and regulatory applica-

tion of a VaR measure. The modelling has been applied, as an exemplification, to a life annuity 

portfolio but it can be easily replicated for any kind of policy and any kind of portfolios even non 

homogeneous.  

Key words: Risk indicators, life insurance, solvency, financial risk, demographic risk.  

JEL Classification: G22.  

1. Introduction

Life insurance business is traditionally characterised by a complex system of risks that can be es-

sentially split into two main types of drivers: actuarial and financial; within the pricing process, 

they refer to the insurance company aptitude to select the “right” mortality table, and to apply the 

“right” discounting process, where accuracy covers forecasting proficiency. Both the aspects can 

be regarded at the same time as risk drivers and value drivers, since they can give rise to a loss – or 

a profit – if the ex-ante expected values prove to be higher or lower than the ex-post actual realiza-

tions. With special reference to the intermediation portfolio (contingent claims versus correspond-

ing assets), these e ects can be enhanced by the specific accounting standard applied for the 

financial statement; in other words a fair valuation system can substantially modify the disclosure 

of the economic result and the solvency appraisal in time and space.  

At the end of March 2004, the International Accounting Standards Board issued the International 

Financial Reporting Standard 4 Insurance Contracts. For the first time, it provides guidance on 

accounting for insurance contracts, and marks the first step in the IASB’s project to achieve the 

convergence of widely varying insurance industry accounting practices around the world. More 

specifically, the IFRS permits an insurer to change its accounting policies for insurance contracts 
only if, as a result, its financial statements present information that is more relevant and no less 

reliable, or more reliable and no less relevant. Moreover, it permits the introduction of an ac-

counting policy that involves remeasuring designated insurance liabilities consistently in each pe-
riod to reflect current market interest rates (and, if the insurer so elects, other current estimatesand 

assumptions), thus giving rise to a potential reclassification of some or all financial assets as at fair 

value through profit or loss. On the one hand, the compromising solution derives from the recogni-

tion of a fair value disclosure requirement, also to comply with a more general tendency concern-

ing financial statements. On the other hand, it stems from the equally widespread and deep worries
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concerning the lack of agreement upon a definition of fair value as well as of any guidance from the 

Board on how the fair value has to be calculated. According to the majority of commentators includ-

ing the National Association of Insurance Commissioners, the International Association of Insurance 

Supervisors, and the Basle Committee on Banking Supervision, this uncertainty may lead to fair 

value disclosures that are unreliable and inconsistently measured among insurance entities. As also 

the American Academy of Actuaries (2003) clearly states, market valuations do not exist for many 

items on the insurance balance sheet and this would lead to the reliance on entity specific measure-

ment for determining insurance contract and asset fair values. However, such values would be unrea-

sonably subject to wide ranges of judgment and to significant abuse, and may provide information 

that is not at all comparable among companies. The cause for this concern is the risk margin compo-

nent of the fair value. Risk margins are clearly a part of market values for uncertain assets and liabili-

ties, but with respect to many insurance contracts, their value cannot be reliably calibrated to the 

market. Hence, a market-based valuation basis for them would produce irrelevant information. This 

statement gives rise to a wider trouble. If there is an amendment in the evaluation criteria for the re-

serve from one year to another because of current market yields or even of current mortality tables, 

there is a possible change in the value of the reserve according to the application of a more stringent 

or, at the opposite, a more flexible criterion. This may turn into a proper fair valuation risk.

In the accounting perspective, the introduction of an accounting policy involving remeasuring des-

ignated insurance liabilities consistently in each period to reflect current market interest rates (and, 

if the insurer so elects, other current estimates and assumptions) implies that the fair value of the 

mathematical provision is properly a “current value” or a “net present value”. Consistently, the fair 

value of the mathematical provision could be properly defined as the net present value of the re-

sidual debt towards the policyholders evaluated “at current interest rates and, eventually, at current 

mortality rates”. In a sense, this is marking to market. However, this is the crucial point. The Inter-

national Accounting Standards Committee defines the fair value as the amount for which an asset 

could be exchanged, or a liability settled, between knowledgeable, willing parties in an arms-

length transaction, while the Financial Accounting Standard Board defines the fair value as an 
estimate of an exit price determined by market interactions. Hence, the CAS Fair Value Task 

Force defined fair value as the market value, if a su ciently active market exists, or an estimated 

market value, otherwise. From the accounting side a fair value is not necessarily an equilibrium 

price, but merely a market price.  

The paper addresses the question of the calculation of the current value of the mathematical provi-

sion and moulds it in both a deterministic and stochastic scenario, using a proper term structure of 

interest rates estimated by means of a Cox-Ingersoll-Ross model. To this end, the paper starts with 

a complete and original balance-sheet modelling of the insurance business, which consents: to 

identify all the variables relevant to the capital performance of the insurer (risk and value drivers); 

to monetarily measure the impact of any risk factor change; to use the result for a proper risk based 

approach in a value-at-risk context (cf. section 2); and, from a more general point of view, to take 

specific decision to manage and hedge the risks. A special attention is devoted to the fair valuation 

risk, defined as the change in the economic results due to a change in the evaluation criteria 

adopted for insurance liabilities, which proves to be proportional to the value and the duration of 

the portfolio reserve (cf. section 2.1). The specific question of the current value of the reserve is 

subsequently put into a stochastic context (section 3) by means of a cash flow analysis, where rele-

vant reserve risk drivers are randomly treated. Finally, the appraisal of the mathematical reserve at 

current interest rates is prospected by section 4, where the fair valuation of the mathematical pro-

visions is focused on the financial driver while the actuarial components are appreciated by means 

of an opportunely projected mortality table. In this section the reader will find the details of the 

term structure (section 4.1), the current values in a continuous approach with a closed form for the 

analytical solution to the current valuation of the mathematical provision (section 4.2) and a clue 

on the value-at-risk of the mathematical provision due to a change in the evaluation rate (evalua-

tion rate risk). Research and practical implications are drawn in the last section, since the model-

ling can give rise to a wide range of managerial, regulatory, and accounting applications.  
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From a methodological point of view, it is important to stress that, for the sake of clarity, a syn-

thetic representation of the balance sheet, which serves as a guideline, has been employed in the 

paper although the model, where useful and appropriate, can be extended in order to include also 

components such as loadings and mark-up margins. At the same time, the whole analysis has been 

applied to a life annuity portfolio but it can be easily replicated for any kind of policy and any kind 

of portfolios even non homogeneous.  

2. The balance-sheet scheme  

Let us consider the premium (P) for an immediate temporary (n) unitary annuity:  

n

r

r
xr epP

1

, (1)

where  is the instantaneous rate of interest observed at the beginning of the business and applied for 

premium setting, and xr p  identifies the corresponding probability table used to price the policy.  

The formulation (1) implies that the final equilibrium (time n) of a cohort of c identical policies is 

constrained by:  

0)(
)(

1

AA rn
n

r

xn
erNcPe , (2) 

where A is the instantaneous total rate of return1 on asset purchased with written premiums ob-

served at the end of the business, and )r(N x  is the actual number of survivors at age x + r. The 

formulation (2) computes the result of the portfolio: if it proves positive, the business produced 

profit and, of course, losses, if negative, while the null level sets the minimal equilibrium that is to 

say the insolvency threshold (Cocozza et al., 2001 and 2003).  

As showed elsewhere (Cocozza et al., 2005), the final equilibrium given by the (2) is strictly de-

pendent on the result accrued in each time bucket and therefore solvency is conditional upon the 

ability to keep positive the di erence between the capitalised result up to time t (t<n) and the pre-

sent value of the residual debt; it can be formally expressed as the probability of respecting perma-

nently – that is to say in each period – the general equilibrium condition expressed by:  

10)(Prob
11
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r

r
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x
t

r

t-rxt tLAA  eptNerNcPe , (3) 

where the level of this probability is a political question and sets the amount of capital adequate to 

keep insolvency within a limit, which is considered bearable, with reference to both capital costs 

borne by the intermediaries and the risk level faced by policyholders. When the result of the initial 

capital (K0) invested by the insurer is explicitly included into the formulation, the value of the in-

termediation portfolio at the end of the first year is equal to  

1

1

101
10 11

n

r

r

xr

x LA epNeKcPK  (4) 

from which it can be easily inferred that the net value of the intermediation portfolio depends on 

the insurer initial capital K0, on the actual number of contracts existing at the end of the first year 

( )1(xN ), on the table adopted in the valuation of reserve at the end of the first year (rpx+1), and on 
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the return on assets earned in the first year (
0A ) as well as on the evaluation rate selected for the 

mathematical provision at the end of the first year (
1L ). This net value is directly influenced by 

both the two interest rates while is inversely a ected by an increase in the actual number of survi-

vors at the end of the year, since:  

00
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, (5) 
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Consistently, the selection for the evaluation of the reserve at the end of the year of a mortality 

table divergent from that applied for any previous evaluation (both for pricing and reserving) pro-

duces a variation of the net value of the intermediation portfolio, which is inverse with respect to 

the “sign” of the variation of the table itself. As a matter of fact, the selection for example of a 

more prudent table (showing in this case higher probability of surviving) will produce an increase 

in the present value of future net outflows and therefore a decrease in the net value, while the se-

lection of a table showing lower probability will give rise to an increase in the same value. As far 

as the intensity of this impact is concerned, it is easy to verify that is filtered by the size of the 

portfolio under observation and by its implicit financial discounting process.  

Formulations (5), (6) and (7) define a complete series of risk filters connected to relevant risk driv-

ers and are able to capture the e ect of a change in the relevant variable on the net value of the 

intermediation portfolio. The impact is measured trough the monetary change and the correspond-

ing formulations can be properly identified as risk indicators. The first two (formulations (5) and 

(6)) measure financial risk and can be addressed respectively as investment risk and evaluation

rate risk, since the first approximates the net value change due to a variation in the return on as-

sets, while the second approximates the net value change due to a modification in the rate applied 

for the evaluation of the mathematical provision. The last one (cf. formulation (7)) measures actu-

arial risk, since it approximates the net value change due to a variation in the actual number of 

survivors at the end of the year. As far as the sizes of these impacts are concerned, the most rele-

vant risk drivers can be easily identified in the investment risk and in the evaluation rate risk, since 

they are respectively filtered by the value of the total assets at the beginning of the year, and prox-

ies of the portfolio mathematical provision.  

Similarly, the net value of the intermediation portfolio at the end of the second year can be ex-

pressed in one of the two equivalent following formulations  
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As previously, the value of the K2 portfolio depends on the value K1, on the actual number of con-

tracts existing at the end of the second year [ )2(xN ], on the table adopted in the valuation of re-

serve at the end of the first and second year (rpx+1; rpx+2) and on the first and second year returns on 
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assets
10

; AA  as well as on selected evaluation rates at the end of the first and second year ( L
1
;

L
2
). Also for this the direct dependence on the most recent interest rates holds, since:  
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Generally, for any intermediate t period, the following relations hold:  
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Consistently with formulation (2), with reference also to a total instantaneous rate of return on 

assets ( A) set equivalent to the single period rates, the ultimate result equations are:
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2.1. An insight on the evaluation rate risk  

If we concentrate on the evaluation rate risk it is easy to demonstrate that the dollar change in the 

net value of the intermediation portfolio is directly proportional to the Macaulay duration of the 
mathematical provision (DR

t
) since:  
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Therefore, formulation (17) gives the opportunity to state that the evaluation rate risk can be 

e ectively measured by a sort of value at risk of the mathematical provision due to a change in the 

evaluation rate. It has been proved that the net value change is directly dependent on the current 

value of the reserve (Rt), on a proportionality factor (proxied by Macaulay duration) and on a po-

tential (adverse) movement in yield. As far as the sign is concerned, an increase (decrease) in the 

yield will result in a net value rise (fall), corresponding to a lower (higher) present value of the 

liability. Moreover, since the equity/reseve ratio is by definition less than one, the impact of an 

evaluation rate modification on the net value of the intermediation portfolio is directly proportional 

to the level of the financial-insurance leverage, since:  

tt LR

t

t

t

t D
K

R

K

K
. (18) 

Therefore, apart from the single risk factor time evolution, the size of this impact depends directly 

on the progression of the reserve/equity ratio and of the reserve duration. Since these two quanti-

ties tend to reduce alongside the length of the policy, a variation in the evaluation rate is suscepti-

ble to produce more relevant e ect at the beginning than towards the end of the policy; at the same 

time, ceteris paribus, the impact will reduce alongside the reduction of the entrance age of the in-

sured.  

2.2. A risk based approach  

If we denote tK  the future (random) value of the net value of the intermediation portfolio and 0k

the corresponding (known) current value at present and Ft(x) the distribution function of tK ,

whose density function is ft(x), the basic structural property of VaR (t) then is given by  

))((Prob 0 tVaRkK t
 (19) 

from which it is easy to infer that the Value-at-Risk at the confidence level  is that realization of 

the loss amount tKk0 which will not be exceeded with probability 1 . By denoting the -

quantile distribution of tK  as

)()( 1

tFtK  (20) 

we have that 

))((Prob tKK t  (21) 

and, consequently, 

)()( 0 tKktVaR . (22) 

The values of the -quantile distribution of tK  can be split into an expected part E[Kt] and an 

excess quota )(tKKEKZ tt so that formulation (22) can be re-written as  

)()()( 0 tZKEktVaR t . (23) 

If we regard the formulation (23) as the summation of the expected result and an additional quota 

connected to the variance of the result itself, the value-at-risk of the entire net value can be inter-
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preted as the VaR of a portfolio exposed to those risk factors that are the changing parameters of 

the net value itself and can be appreciated by modelling the risk factors and by using risk filters to 

proportionate the e ect on the net value such as, for example, in the case of the reserve duration. 

This approach can be applied to evaluate the e ect of a variation in the risk drivers with respect to 

both the initial setting, i.e. pricing hypothesis, and year-by-year eventual revaluation of the earlier 

hypothesis. Moreover, it can be directly employed with reference to managerial goals and to insti-

tutional targets (risk based capital requirements) and can give rise to a firm specific evaluation if it 

is possible to obtain a complete dataset of correlations among risk factors or a standardised evalua-

tion if these correlations are supposed to be pre-set to fixed values.  

3. The cash flow analysis  

Let us consider a portfolio consisting of c insureds aged exactly x, each of whom having a deferred 

life annuity policy with premiums payable at the beginning of the first t years and benefits payable 

at the beginning of each year after t, in the case the insured is alive.  

Aim of the section is to provide a current valuation of the portfolio reserve in a stochastic envi-

ronment for the interest rate, by means of a gradual construction of the valuation formula.  

With the following notation (e.g. Cocozza et al., 2004):  

ji = curtate future lifetime (ji =0,1,2,...) of the 
thi insured (i=1,2,...,c),

Fi,s = flow of cash at time s (s=0,1,2,...) related to the 
thi policy in portfolio at time 0,  

B i,s = benefit payable to the 
thi insured at time s,

P i,s = premium payable by the 
thi insured at time s,

 we can define the loss of each policy and of the portfolio.  

3.1. A deterministic scenario  

As a first step, we start from a deterministic scenario, considering, for each policy coming in port-

folio at time 0 and for a given value of ji, the following scheme for the cash flow:

sj

jF
j

i
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sif,

, ,
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tsB
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si
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,

,

, .

The loss in ,...)2,1,0(kk connected to the i-th policy is the sum of the discounted net cash 

flows (cf. Frees, 1990):  

kj

ks

kj

ks

isiisiii

i i

ksvjkjLkjL )()(),(),( ,,  (25) 

in which, according to the usual notation, )( ksv represents the present value at time k of one 

monetary unit at time s.

3.2. Inserting the randomness in the future lifetime  

Replacing the future lifetime ij  by a random variable, the projected cash flow results: 



Problems and Perspectives in Management / Volume 5, Issue 2, 2007 

134 
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   (26) 

having indicated by xs p  the probability for a policy at time 0 to be still in portfolio at time s.

In k each policy incurs the expected random loss, with respect to the future lifetime, given by the 

expression:  

kxks

ks

sii pksvFkL )()( , . (27) 

3.3. Inserting the randomness in the number of policies in portfolio  

Indicating by )()( kN x
 the number of survivors at time k belonging to the initial group of c in-

sureds at time 0, we can write the expression of the loss in k of the portfolio existing at this time, 

on the basis of the information the insurer owns at time 0:  

),()(
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1
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kLkL
kN

i

i

x

  (28)

Supposing the s'i
j mutually independent and identically distributed random variables, the random 

loss at time k of the entire portfolio existing at that time is given by the sum of the losses referred 

to each policy:

)()()( )( kLkNkL i

x
 (29) 

3.4. Inserting the randomness in the interest rate used for the valuations  

Now we extend what said above to a stochastic interest rate scenario. The discounting factor is 

described by a stochastic process 
0

)( hhv  modelling the evolution in time of the interest rate 

and this scenario is shared by all the policies in portfolio. Two more assumptions hold: the random 

variables )(kLi are independent and identically distributed given the sequence
0

)( hhv  and the 

sj ’s and )(hv  are mutually independent.  

Within a more general formal scheme, let us denote by ),,( P , ),,( P  respectively, 

two probability spaces, with  the -algebra containing the financial events and  the -

algebra containing the survival events. Therefore in the probability space ),,( P , generated 

by the preceding two, the -algebra  contains both the information about mortality 

and financial history, by means of the filtration k  where kkk , with 

k  and k .

In the following we will assume a frictionless market with continuous trading, no restrictions on 

borrowing or short-sales, zero-bonds and stocks both infinitely divisible. So we take the expecta-

tion in equations (27) and (28) under the risk-neutral probability measure, following a canonical 

procedure well stated in the financial literature:

kkxks

ks

siki ksvEpFkLE |)(|)( ,
.  (30) 
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Then we obtain the expected value in k of the loss referred to the entire portfolio:

kkxks

ks

s,ixkki

x

kk |)ks(vEpFpc|)k(L)k(NE|LE . (31) 

The problem of the hypothesis of market completeness in the demographic framework is well 

known in literature; some papers present the construction of an opportune probability measure, in 

order to guarantee the appropriate properties of the price function (cf. De Felice et al., 2004 for a 

brief survey on the subject). As a matter of fact, by virtue of the intrinsic characteristics of the re-

serves, we consider reasonable to express the current valuations by means of the expectation 

framed within the best prediction of the demographic scenario. In this order of ideas, we obtain 

proxies of the reserve market values, which are deduced consistently with the model, so that we 

can say they are “marked to model”.  

4. Applications

4.1. Background hypotheses  

A possible application is given by the calculus of (16) and (17) for the case of an immediate tem-

porary (n = 10 years) unitary annuity for a male policyholder (x = 40), by means of a term struc-

ture of interest rates and of a projected mortality table. The term structure was based on a Cox-

Ingersoll-Ross square root model according to a simple discretisation (Chan et al., 1992; Deelstra 

et al., 1995), in which the continuous centred interest rate is defined by the stochastic di erential 

equation  

tttt dBrdtkrdr , (32) 

where k and  are positive constants,  is the long term mean, Bt is a Brownian motion and rt is the 

shifted interest rate set equal to the single observation net of the historical mean. The solution of 

(32) is given by  
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t
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for which expected value, covariance and variance are respectively (Deelstra et al., 1995, 734-

735):  
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As far as data are concerned, interest rates derive from Bank of Italy o cial statistics and consist 

of annualised net interest rate of Government 3-month T-Bill rate covering the period from Janu-

ary 1996 until January 2004; mortality rates have been derived from the RG48 Italian Male table. 

The following simple discretisation  

ttatt arrr 11           (37) 

estimated as shown by Deelstra et al. (1995, 741) gave the results shown by Table 1.  

Table 1 
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CIR parameters and corresponding term structure of interest rates 

r0 starting value
 long term 

mean  initial value

volatility 
coeff. (discrete 

case)  

 drift coff. 
(discrete case)   diffusion 

coeff.

1,72%  4,52%  97,40%  0,52%  2,63%  0,53%  

Time  0 1 2 3 4 5 6 7 8 9 10 

Expected 
rate  

1,72% 2,48% 3,03% 3,43% 3,73% 3,94% 4,10% 4,21% 4,29% 4,35% 4,40% 

Standard 
deviation  

0,00% 0,23% 0,31% 0,37% 0,40% 0,43% 0,44% 0,46% 0,47% 0,47% 0,48% 

4.2. Current values of projected cash-flows (a continuous approach)  

As Chan et al. (1992), we adopt the same parameters in both the discrete and the continuous proc-

esses, obtaining the estimation for k  posing 1k and using the equation a .

We calculate the expected values of the current value of the reserves. Our example of application 

refers to the case of an immediate temporary (10) unitary annuity for an insured aged 40. On the 

basis of equation (31) we get the current values of the reserves at the beginning of each of the ten 

years constituting the policy duration.

In Table 2 we report the results and compare them with the corresponding values calculated at the 

contractual annual rate 0.04.  

The current values of the reserves are less than the contractual premiums. The influence of the 

financial risk due to the evaluation rate can be observed in the behaviour of the di erence between 

the current value premium and the contractual one, always negative but decreasing when the refer-

ence time increases.  

Table 2 

Current values of the mathematical provision 

Evaluation time  0  1  2  3  4  5  6  7  8  9  10  

Fixed value 4%  8,06  7,39  6,69 5,97 5,22 4,43  3,61 2,77 1,88  0,96  0,00  

Current value 
(CIR-discrete)  

8,04  7,30  6,59 5,87 5,14 4,37  3,57 2,74 1,87  0,96  0,00  

Current value 
(CIR-continuous)  

7,61  7,02  6,39 5,73 5,03 4,30  3,53 2,71 1,85  0,95  0,00  

Difference (4%-
CIR discr.)

0,02  0,09  0,11 0,10 0,08 0,06  0,04 0,03 0,01  0,00  0,00  

Difference (4%-
CIR cont.)

0,45  0,37  0,30 0,24 0,18 0,13  0,09 0,05 0,03  0,01  0,00  

4.3. Risk indicators for projected cash-flows (a discrete approach)  

The calculations give us the opportunity to evaluate not only a synthetic risk indicator such as the 

duration but also the VaR, based on the cash flows mapping, as shown by Table 3. Setting apart 

from the actuarial risk components, a first order approximation of the variation due to a change in 

the evaluation interest rate can be obtained through the cash flow mapping of the portfolio reserve. 

The mathematical provision can be seen as a portfolio of n zero coupon bonds whose nominal 

value is the certain-equivalent of the conditional payment with maturity equal the each single criti-
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cal (remaining) instant r and with portfolio contribution equal to w. The corresponding duration 

(formulation (16)) can be calculated as  
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Table 3 

VaR of the mathematical provision at issue time 

Time/item  Total  1  2  3  4  5  6  7  8  9  10  

Certain 
equivalent 
(RG48)

0,9991  0,9981  0,9970 0,9959  0,9946  0,9931  0,9916  0,9899  0,9881  0,9863 

Current value 
(CIR discrete)  

8,0413 0,9749  0,9402  0,9010 0,8602  0,8198  0,7805  0,7429  0,7072  0,6733  0,6413 

Portfolio 
weights  

100%  12,12%  11,69%  11,20% 10,70% 10,19% 9,71%  9,24%  8,79%  8,37%  7,98%  

Modified 
duration  

0,9758  1,9411  2,9004 3,8562  4,8104  5,7638  6,7171  7,6706  8,6245  9,5787 

Individual item 
change  

0,0022  0,0057  0,0095 0,0133  0,0168  0,0200  0,0228  0,0253  0,0274  0,0293 

Individual item 
VaR99%

0,4008 0,0051  0,0133  0,0222 0,0309  0,0391  0,0464  0,0530  0,0587  0,0638  0,0682 

8,041  0,4008  0,2788 -0,1220 Var Report 
(99%)

Value
100%

Undiversified 
4,98%  

Portfolio
3,47% 

Correlation
-1,52%

In this perspective, the value of the reserve, as a portfolio, depends on the passage of time and on a 

vector of n  risk factors nffff ,...,, 21  made up by the interest rate on each single node of 

the term structure1. Then first order approximation is given by  
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where µR
t
is the change in value resulting from the passage of time, and s  is the so-called aggre-

gate delta-factor.  

Once we recall that the vector of changes in the underlying factors follows a multivariate normal 

with known mean and covariance matrix (cf. section 4.1 formulations (34), (35) and (36)), the first 

derivative of reserve value with respect to “bond-equivalent” prices can be calculated from the 

deltas of the individual instruments that is to say through the duration components of the reserve. 

More specifically, at issue time the first addendum of the formulation (39) is null while the second 

can be expressed for chosen level of confidence linked to the parameter  as

T
VaRCVaR

T

tRtR wwRRVaR
tt

 , (40) 

                                                          

1 The risk factor vector is made up exactly of n elements, equal to the number of assets constituting the portfolio, since each 

of them is exposed to a specific interest rate. 
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where VaR is the n-vector of individual undiversified VaRs, VaR
T

is its transpose, and C is the 

nn  complete matrix of return correlations. Formulation (40) shows that the value-at-risk of the 

mathematical provision depends on underlying “primitive” factors (i.e. the variance-covariance 

matrix ) and relevant scale factors (i.e. the weights embodied in w and overall reserve size tR ).  

A reserve VaR calculation at issue time is given by Table 3, which in the VaR report section 

shows at a 99% confidence level the maximum increase in the reserve value we are likely to ex-

periment if, immediately after the issue of the policy, there is an interest rate shock for both market 

and accounting reasons.  

5. Conclusions

The paper addressed the question of the calculation of the current value of the mathematical provi-

sion in a deterministic and stochastic scenario, using a proper term structure of interest rates and 

providing an original model of year-by-year evaluation of relevant risk factors. At a first level, it 

has been showed that the evaluation of relevant risk factors can be usefully performed through a 

complete sensitivity analysis, which can be split in a number of segments reflecting the numbers of 

relevant risk factors. As can be appreciated from calculations reported by Table 2, the current 

value is strictly dependent on the evaluation parameters. As far as the interest rate is concerned, 

the use of a term structure expressing a long term mean slightly higher (4,52%) then the corre-

sponding fixed rate (4%) results in a systematically lower value of the reserve, both in the continu-

ous and in the discrete approach.  

The evaluations in the stochastic continuous framework in section 3 support the results obtained in 

the other sections, by means of closed formulations. The continuous scheme tries to provide a uni-

tary view of the main risk components a ecting the current valuations of the insurance business, 

according to the recent suggestions from IASB.  

In this order of ideas, treating reserves, because of their specific nature, cannot be set within a ref-

erence market. So the liability exchange is virtual and the mathematical model is aimed to a pric-

ing system according to a coherent representation of the insurance realm. This implies the choice 

of models which better represent the evolution in time of interest and mortality rates, mainly fo-

cusing on the demographic reference system. In fact this one does not present the fundamental 

characteristics required for a risk neutral valuation leading to market values; in this sense it is rea-

sonable to consider an appropriate proxy of properly defined market value, referring to evaluations 

consistent with the model.  

At a second level, the application to the case of the evaluation rate risk has shown that it is possi-

ble to measure the impact also of a change in the evaluation criteria and to appreciate precisely the 

performance modification. Apart from the numerical di erence, there is a further question: the use 

of a rising term structure )( 0r  implies the inclusion of future profits arising from roll-over 

strategies, although these margins are definitely uncertain both for the realization of the interest 

rates and for the application of roll-over strategies. This implies that the application of a rising 

term structure may give rise to an under-evaluation of the reserve. Consistently, the use of a falling 

term structure )( 0r  may give rise to an over-evaluation of the reserve itself, since it is based 

on decreasing interest rates. Given these problems, the possibility of calculate a reserve VaR can 

provide for an insight into its evaluation dynamic. In this perspective, the knowledge of a maxi-

mum likelihood value change can provide for a benchmark of the evaluation itself. For example, 

with reference to the numerical application, it could be considered a maximum variation of the 

3,47% or, alternatively, the corresponding amount could be set apart in a special provision to 

o set future unrealized profit margins.  

Other implications, opening future research prospects, concern the selection of the stochastic proc-

ess used to describe the dynamics of the interest rates and the possible managerial and regulatory 
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application of a VaR measure. With reference to the first point, the selection of a CIR model seems 

to be particularly relevant, since the evaluation rate is by definition a non-negative rate. Other 

processes, such as the Ornstein-Uhlenbeck collection for example, may be more appropriate for 

the investigation of the investment risk (cf. section 2), since they embody even negative returns. 

With reference to the second aspect, the managerial and regulatory targets could be defined 

through VaR measures for both solvency and strategic decisions.  
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