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Abstract 

 

In this paper we propose new aggregate or ‘group’ primal and dual scale elasticity measures of an economic 

system (e.g., industry consisting of several firms, etc.).  The main contribution of the paper is that we 

show under what assumptions a formal relationship between these new aggregate scale elasticity 

measures and the individual scale elasticities can be established.  The derivations are based on the 

principles of economic optimization, and in particular on the duality theory of Shephard (1953) and the 

aggregation theory of Koopmans (1957). 
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1. Introduction 
 
Applied economists are often interested in measuring economies of scale present in an economic system 

(e.g., industry consisting of several firms, etc.).  To do so, researchers often resort to estimating the scale 

elasticity at the mean of the data or, alternatively, take the equally-weighted mean of the individual (for 

each observation) estimates of scale elasticities.  Both measures have some theoretical appeal, although 

not equal in general.  In this study we propose another theoretical measure of the scale elasticity of a 

group of independent decision making units (DMUs)—the analogue to individual scale elasticity measure 

but defined on the aggregate technology.  We then show under which assumptions a formal relationship 

between these new aggregate scale elasticity measures and the individual scale elasticities can be 

established.  The derivations are based on the principles of economic optimization, and in particular on 

the duality theory of Shephard (1953) and the aggregation theory of Koopmans (1957). 

 

The rest of the paper is structured as follows.  In Section 2, we outline the main definitions for the 

technology characterizations and scale elasticity measurement of an individual firm.  In Section 3, we 

introduce the notions of aggregate or group technology characterization and the related aggregate or 

group scale elasticity measurement and then derive the relationship to their individual analogues.  In 

Section 4 we discuss the issue of price independent weights.  In Section 5 we discuss limitations of the 

presented results and noting on possible extensions and future work.  Section 6 concludes. 

 
 

2. Individual Technology Characterization and Scale Elasticity Measures 
  
Consider an example of an economic system (e.g., industry) where each decision making unit (DMU, e.g., 

a firm) },...,1{ Kk∈  uses vector of N inputs, denoted with NTk

N

kk xxx +ℜ∈= ),...,( 1 , to produce vector 

of M outputs, denoted by MTk

M

kk yyy +ℜ∈= ),...,( 1 .  Following Shephard (1953) and Färe and Primont 

(1995), suppose technology of a firm },...,1{ Kk∈  can be characterized by the input requirement set, 
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  }:{)( kkk yproducecanxxyL ≡ , Mky +ℜ∈     (2.1) 

 
which we assume satisfies the standard regularity axioms of production theory (see Färe and Primont 

(1995) for details), so that this technology can be characterized (dually) via the cost function,  

 

  )}(:{min),( kk

x

kk yLxwxwyC ∈≡ ,     (2.2) 

 

where N

Nwww ++ℜ∈≡ ),...,( 1  denotes the vector of input prices. In a single-output case (M=1) 

technology of a firm k can be characterized by the production function.  For the multi-output case (M>1), 

we can use the input orientated Shephard’s (1953) distance function }{: 1 ∞∪ℜ→ℜ×ℜ +++
NMk

iD ,  

 

  )}()/(:0{sup),( kkkkkk

i yLxxyD ∈>≡ θθθ ,    (2.3) 

 
which gives an alternative (primal) characterization of technology of the firm k, in the sense that 

 

)(1),( kkkkkk

i yLxxyD ∈⇔≥ .      (2.4) 

 
Both the dual, given in (2.2), and the primal, given in (2.3), characterizations are often used in measuring 

properties of a technology.  The focus of our paper is on the scale economies, which can be inferred from 

the notion of scale elasticity, defined for the dual and primal frameworks as (Färe and Primont, 1995): 
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and   

kkkk

i

T

y
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i yxyDxye k ),(
ln

ln
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1,1

−∇=
∂
∂

≡
== λθθ

λ
  such that 1),( =λθ kkk

i xyD  (2.6) 

 

respectively. Letting kx *  be a solution to (2.2), we get the dual and primal measures being equal, i.e.,  
 

),(),( *kk

i

k

c xyewye = , )}(:{minarg* kk

x

k yLxwxx ∈≡ .  (2.7) 
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This result states that the same information about the scale elasticity of an individual firm k can be 

obtained from primal and dual approaches.  In the next section we show analogous results for the 

measures of scale elasticity of a group and its relationship to these individual measures. 

 
 

3. Aggregation of Technology and of Scale Elasticity  
 
Define the group (e.g., industry, sub-industry, etc) input requirement set to be 

 

∑
=

=
K

k

kkK yLyyL
1

1 )(),...,( .      (3.1) 

 
The group cost function, which is the group analog of the (2.2), can be defined as 

 

  )},...,(:{min),,...,( 11 K

x

K yyLxwxwyyC ∈≡ ,    (3.2) 

  

and the group input oriented distance function—the group analog of (2.3)—can be defined as 

 

)},...,()/(:0{sup),,...,( 1

11

1 KK

k

kK

k

kK
i yyLxxyyD ∈>≡ ∑∑ ==

θθθ .  (3.3) 

 
The scale economies for the group can be inferred from measures of scale elasticities defined for the aggregate 

technology in the same manner as for the individual technologies. Thus, for the dual framework we have 
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where )/),,...,(,...,/),,...,((),,...,( 1111 KKKKT

Y ywyyCywyyCwyyC ∂∂∂∂≡∇ , and TKyyY ),...,( 1≡ .  

On the other hand, for the primal framework, given 1),,...,(
1

1 =∑
=

λθθ k
K

k

K
i xyyD , we have 

YxyyDxyyE k
K

k
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i

T

Y

k
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1

1
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1 ∑∑
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.  (3.5) 

 

Let *x  be a solution to (3.2), then the dual and primal measures of group scale elasticities are equal, i.e.,  

 

),,...,(),,...,( *11 xyyEwyyE K
i

K
c = ,      (3.6) 

where  
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  )},...,(:{minarg 1* K

x yyLxwxx ∈≡ .  

 
This is an analog to the relationship (2.7) that was derived for the individual level by Färe and Primont 

(1995) and for the group level it is established in a similar manner. 

 
We now want to establish the relationship between the aggregate (group) and the individual scale 

elasticities and the key instrument for this would be the following theorem. 

 
Theorem.  Given definitions (2.1), (2.2), (3.1) and (3.2), we have 
 

∑
=

=
K

k

kkK wyCwyyC
1

1 ),(),,...,( .      (3.7) 

 
In words, the group (e.g., industry) cost function is the sum of individual cost functions of all DMUs 

(e.g., firms) in this industry. This theorem is from Färe, Grosskopf and Zelenyuk (2004) and is the cost 

analog of the Koopmans (1957) theorem for profit functions. (Färe and Zelenyuk (2003) provide 

revenue analog.  Also see Kuosmanen et al. (2006) and Zelenyuk (2006, 2010) for use of this result in 

other contexts.)    It might be worth noting that despite the fact that (3.7) looks quite intuitive it shall not 

be accepted as a universal truth that one could get without going through derivations.  Indeed, the 

fundamental result (3.7) relies on explicit assumptions: (i) about the structure of aggregate technology 

(additive in input requirement sets), stated in (3.1), (ii) the law of one price for inputs, and (iii) 

optimization behavior.  If another aggregation structure is assumed (e.g., summation of output sets rather 

than input sets or, alternatively, summation of technology sets, etc.) then a different aggregation result 

might emerge. We return to this issue in the next section. 

 
Meanwhile, by treating expression (3.7) as an identity we can differentiate both sides of it along the ray 

from the origin through the point TKyyY ),...,( 1≡  (i.e., looking at the change in costs due to 
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infinitesimal equi-proportional change of all outputs) and obtain the desired aggregation result.  Specifically, 

such differentiation of the l.h.s. of (3.7) along the ray gives 
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And, differentiating the r.h.s. along the same ray gives 
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Putting the two sides together yields the desired result: 
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This mathematical fact has quite intuitive economic appeal: The dual scale elasticity of the group can be 

obtained as the weighted sum of the individual dual scale elasticities of all firms in this group, where the 

weights are the cost shares.  It is worth emphasizing here again that the weights in (3.10) are not ad hoc, 

but derived from agents’ optimization behavior and other explicit assumptions mentioned above, and 

change of these assumptions might lead to the change of the aggregation result, as we discuss more about 

it in the next section. 

 
We can also obtain the aggregation result for the primal measures of scale elasticities (based on the group 

and individual input distance functions).  By recalling (2.7) and (3.6), we have 
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where )},...,(:{minarg 1* K

x yyLxwxx ∈≡ ,   and   )}(:{minarg* kk

x

k yLxwxx ∈≡ . 
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The result (3.11) gives us a practical way of obtaining the (primal) group scale elasticity measure 

immediately from the (primal) individual scale elasticity measures.  Specifically, it states that the primal 

group or aggregate scale efficiency measure can be obtained by taking the weighted arithmetic average of 

individual scale elasticities of all firms in this group, where the weights are the cost shares—the same as 

in the dual framework. Again, although simple, the aggregation function and weights are not ad hoc but 

derived from economic principles, with explicit assumptions on aggregate technology, equality of input 

prices across firms and cost minimizing behavior. 

 
4. Price Independent Weights 

 
When the primal information is used, a researcher may have no price information available to obtain the 

cost functions used to compute the weights.  A feasible option then might be to use the shadow prices, 

estimated from the primal information.  Alternatively, the unavailability of price information can be 

circumvented by deriving the price independent weights in the manner similar to Färe and Zelenyuk 

(2003, 2007).  This would require imposing additional standardization,  

 

( )
i

N

i

K

k

k

ii

K

k

k

ii axwxw =∑ ∑∑ = == 1 1

*

1

* ,   i = 1, … , N,   (4.1) 

 

where ia  is a known (or estimated) constant between zero and unity. Intuitively, (4.1) says that the share 

of the industry expenditures on input i in the industry total cost equals ia .  Now, letting 

∑ =
=

K

k

k

i

k

i

k

i xx
1

/ϖ  be the share of k’s firm in the group in terms of ith-input, and using (3.11) with the 

standardization (4.1) we obtain the price-independent weights, with an intuitive economic meaning, 

 

  ∑ =
=

N

i i

k

i

k aS
1
ϖ ,  k = 1, … , K.     (4.2) 

 
Intuitively, (4.2) says that firm’s weight is the weighted average over all input-shares of this firm in the 

group, where the weights are the shares of the industry expenditures on input i  in the industry total cost. 



 8 

 

5. Limitations, Alternatives and Possible Extensions  
 

As was mentioned above, researchers sometimes summarize their results by presenting the simple 

(equally-weighted) averages of scale elasticities. This statistic is certainly useful as an estimator of the 

population mean of scale elasticity distribution for a given population. Yet, because the scale elasticities 

are normalized quantities, and as a result they ignore the size of the unit that generated it, the equally-

weighted averages might give distorted picture of the reality. For this reason the aggregation scheme with 

weights accounting for economic importance of each unit entering the aggregation derived in this paper 

must be very useful.   

 
The aggregation function and the weights that came out from the derivations in this paper turned out to 

be quite intuitive. Yet, the value of the paper is not in proposing a new aggregation scheme per se, but 

rather in justifying and explaining a one with precise assumptions and formal derivations that have 

economic meaning (e.g., optimization, etc.). The resulting aggregation scheme, however simple or 

complicated it is, would then be not ad hoc, but based on some theoretical grounds, with clear 

implications and restrictions on its use. Remarkably, note that the aggregation solution derived here not 

only does not impose a particular functional form for the production or distance or cost (revenue) 

function but also allows for totally different technologies underlying those functions.  However, there are 

three important assumptions underlying the resulting aggregation scheme (3.10)-(3.11) and let us recall 

and discuss each assumption in more detail.   

 
The first assumption states that the aggregate technology structure must satisfy (3.1). This assumption 

must not be confused with the union of the input requirement sets, but rather understood as the total 

requirements for inputs to produce certain levels of outputs by each individual decision making unit 

(DMU). That is, a reallocation of outputs to be produced, given by ),...,( 1 Kyy ,  across the DMUs is not 

allowed, while reallocation of inputs is allowed.  As a result, the use of the presented aggregation scheme 
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would not be adequate for the case when there is a ‘central planner’ of the group of DMUs that can 

decide on reallocation of outputs to be produced across the DMUs.  One example of such case is an 

industry in a socialist-type economy, where the central planner can reallocate the output plans across 

firms in the industry.  Another example could be when the economic system under investigation is a firm 

consisting of several plants and the central management of the firm has power to reallocate the output 

plans across the plants.  For these cases, different assumption on aggregate technology might be more 

appropriate.1  

 
One approach to allow for the reallocation of outputs would be to use the elasticities based on revenue 

functions and Shephard’s output distance functions, then one can assume aggregation technology as the 

sum of output sets (as in Färe and Zelenyuk (2003)), and so allow for cross-firm reallocation of outputs 

(although not of inputs). The derivations would be analogous to those presented above.   

 
Another approach to allow for the reallocation of outputs is to assume that aggregate technology is the 

sum of the technology sets (as in Koopmans (1957), Li and Ng (1995) and Nesterenko and Zelenyuk 

(2007)) and thus allow for cross-firm reallocation of both inputs and outputs.  In this case, a different 

aggregation scheme might emerge (e.g., for the context of aggregation of technical efficiency, Nesterenko 

and Zelenyuk (2007) arrived to harmonic weighted average) and exploration of this possibility is a subject 

in itself, and so we leave it for the future research. 

 
The second assumption is that all DMUs face the same input prices. This type of “Law of One Price” 

assumption might be viewed as somewhat undesirable (see Kuosmanen et al. (2006) for a related 

discussion), rarely fulfilled in practice, yet it is a necessary condition to obtain (3.7).  Noteworthy, it is not 

the first time that a positive aggregation results in economics require additional, often very strict or even 

undesirable assumptions (e.g., recall about the aggregation of demands over goods or consumers).  One 

                                                           
1 We thank anonymous referee for this important insight. 
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could think of it as a theoretical abstraction, a simplification consistent with many existing economic 

models (e.g., assumption on perfectly competitive input markets, etc.) as well as in empirical analysis.  

One could also think of this assumption here as a tool to get a theoretically justifiable benchmark for 

aggregate scale measures that accounts for economic importance of each DMU in the sample.  The 

question of deviation from this benchmark due to price variability across firms might be another 

direction of research.  

 
The third assumption is that each DMU individually as well as a group of them exhibit optimizing behavior 

(minimization of cost functions for this case).  This type of assumption is usual in neo-classical 

economics and, in a sense, not only restricts but also empowers the meaning of the result of derivations.   

 
Overall, anyone who would or did use the aggregation scheme (3.10)—(3.11), however intuitive it may 

sound, must essentially accept these three assumptions, whether they like them or not.  Alternative route 

would be to show that some other assumptions would imply this or other aggregation scheme and we 

hope our work would encourage such research.  

 
Finally, it is worth noting that this paper is just the first step in laying the new theoretical foundation for 

analyzing aggregate scale elasticities. The next step must be laying out the statistical foundation, because 

besides presenting an average of the data, researchers often need to do some statistical testing for 

inferring on various hypotheses. A hypothesis of an interest, for example, might be whether the true 

aggregate scale elasticity for a particular sub-group is different from, say, unity (i.e., local CRS) or not.  

Another hypothesis of interest might be whether the scale elasticity is equal across different sub-groups 

or not, or across time for the same sub-groups, etc.  For the context of using the equally-weighted 

sample mean this issue is somewhat standard.  On the other hand, estimating characteristics of the 

sampling distribution of a statistic for a weighted mean and related testing is more complicated.  One 

potential and currently popular solution is to adapt the bootstrapping techniques (e.g., see Efron, 1979).  
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This extension is likely to be similar in some parts to the recent work of Simar and Zelenyuk (2007) for 

bootstrapping the aggregate efficiency scores, but is a subject in itself and so we leave it for future 

research. 

 
6. Concluding Remarks 

 
In this paper we introduced the aggregate primal and dual measures of scale elasticities and showed under 

what assumptions they can be obtained by weighted aggregation of individual scale elasticities. Specifically, 

we showed that when economic agents follow cost minimizing behavior, aggregate technology is 

characterized by the summation of individual input requirement sets and all individuals face the same 

input prices, then the observed cost shares would be theoretically justifies weights in the arithmetic 

average of the individual scale elasticities.  We also suggested price independent weights—when dual 

(price or cost) information is not available.  Similar analysis can be applied to the context of the revenue 

and the profit maximizations, in which case the output distance function and the directional distance 

functions (or, alternatively, the hyperbolic measures), respectively, might be used to characterize 

technology.   

 
The aggregation results we derived can also be extended to the case of aggregation within distinct sub-

groups (e.g., public and private, regulated and non-regulated, etc.) and then for aggregation between these 

sub-groups into a larger group (for the related theorem, see Simar and Zelenyuk (2007)). Similar 

derivations can be done for the case when revenue function or output distance function is used to 

measure scale elasticity—the approach useful when cross-DMU reallocation of output must be allowed.  

A separate research is needed to derive aggregation scheme for the case when cross-DMU reallocation of 

both inputs and outputs must be allowed, e.g., as in Nesterenko and Zelenyuk (2007). 

 
Finally, similar analysis can be applied for other ‘derivatives’ of the cost, revenue and profit functions—

to obtain aggregation of demand and supply functions (using Shephard’s/Hotelling lemmas), which we 
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have not focused on in this paper, but it would be a natural direction for future research.  Furthermore, 

bootstrapping procedures must be developed for the benefit of the practical use of these measures for 

enabling various statistical hypotheses testing. 

 
Overall, we believe the aggregate measures of scale elasticity that were presented and theoretically 

justified in this paper, must serve as useful tools for empirical researchers in analyzing and presenting 

their results as well as for laying the new grounds for future theoretical work. 
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