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Abstract 
Credit ATE (Additional Termination Event) clause is a counterparty risk mitigant that allows banks to 

terminate and close out bilateral derivative contracts if the credit rating of the counterparty falls below 

the trigger level. Since credit default is often preceded by rating downgrades, credit ATE can significantly 

reduces the counterparty credit risk by early terminating exposure. However, there is still the risk that 

counterparty may default without going through severe downgrade. This article presents a practical 

model for valuating CVA subject to ATE. 

Keywords: Counterparty Risk, Credit Value Adjustment, Rating Transition, Rating Trigger, Additional 

Termination Event. 

1. Introduction 
Counterparty credit risk refers to the risk that a counterparty to a bilateral financial derivative contract 

may fail to fulfill its contractual obligation causing financial loss to the non-defaulting party. Only over-

the-counter (OTC) derivative contracts are subject to counterparty risk. Exchange traded derivatives 

have very little counterparty risk because the exchange or a clearing house is the central counterparty to 

both parties to the transaction. With an exchange/clearing house as the central counterparty, the two 

counterparties to a transaction are not directly exposed to each other’s default risk, thereby eliminating 
the counterparty risk so long as the exchange/clearing house does not default. Exchanges/clearing 

houses are well protected by the financial industry.
2
 

From the perspective of a bank, when the counterparty defaults, the portfolio of all OTC derivative 

contracts between the bank and the counterparty is marked-to-market (MTM) at the time of default. If 

the value of the portfolio is negative to the bank, the bank is obligated to pay the full MTM value to the 

defaulting counterparty. If, however, the value is positive to the bank, the bank will recover only a 

percentage of that MTM value, usually after a lengthy bankruptcy proceeding.
3
 If the recovered amount 

is less than 100%, ignoring the time value, the bank suffers a credit loss. This potential credit loss due to 

                                                           
1
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2
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protection in extreme market condition when margins are insufficient. 
3
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the possibility the counterparty may default must be factored into the deal price. In a similar way, the 

bank may also benefit from its own risk of bankruptcy. 

Essentially, counterparty risk management is managing counterparty exposure. Recently, an increasingly 

popular exposure control mechanism is to use some form of break clause that allows the bank to 

terminate the portfolio with the counterparty in the event that some pre-agreed condition is breached 

by the counterparty. Such a break clause is called ATE. ATE can take different forms (Gregory 2010). A 

frequently used ATE trigger specification is credit rating. In a credit ATE clause, a credit rating trigger is 

specified for the counterparty. When the counterparty is downgraded to or below the trigger rating, the 

bank is entitled to terminate and close out all trading positions. Because a default is often preceded by 

significant credit downgrade, the credit ATE can effectively reduce counterparty risk by terminating 

exposure prior to default. One might view that credit ATE creates a sort of right-way exposure where the 

counterparty exposure is eliminated if the credit quality worsens significantly. From the modeling 

standpoint, ATE may also be considered as “lossless default” where the contracts are terminated with 

full recovery, as contrasted with default where the contracts are terminated with loss.  However, as 

pointed out by Gregory (2010), ATE might actually drive the counterparty into default if the positions are 

closed out and the counterparty is significantly net out-of-the-money (OTM) on those positions.  

While credit ATE can significantly reduce counterparty risk, it does not completely eliminate it as it is still 

possible that the counterparty can default without triggering the ATE event. This is evident that firms 

may default before being significantly downgraded by the rating agencies. In other words, the residual 

counterparty risk in the presence of credit ATE comes from the possibility of counterparty default 

without ever crossing the credit ATE trigger. 

Counterparty risk modeling has attracted much attention because of the recent credit crisis. Alavian et 

al (2009), Gregory (2010), Pykhtin and Zhu (2007) provided excellent overview of counterparty risk 

management practice and CVA pricing. Zhu and Lomibao (2005) proposed a conditional valuation 

method for exposures of path-dependent derivatives. An overview of various types of ATE can be found 

in (Gregory 2010). Recently, Yi (2010) proposed a model for bilateral CVA subject to credit rating trigger. 

In their model, the time of hitting the credit trigger and jump-to-default are modeled as Poisson process. 

In this paper, we present a practical model specifically for evaluating bilateral CVA (BCVA) of a portfolio 

subject to a credit ATE trigger. The discretized formulation naturally leads to a rating-based Markov 

chain model. We assume that portfolio termination and close-out is mandatory once the credit ATE 

trigger for either party is breached. For exposition convenience, all trades in the portfolio are assumed 

to be associated with the same ATE trigger rating, so that once a party is downgraded to or below its 

ATE trigger, the entire portfolio is terminated. The focus of the paper is modeling the effect of the credit 

ATE trigger on bilateral CVA. We suggest extension of the model to more complicated situations. 

We assume that obligors with the same credit rating have the same rating transition probabilities. As 

such, the spread difference within a rating class is ignored.
4
 We use the normal copula model for joint 
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rating transition and default. The risk neutral generator matrices are obtained by calibrating the 

historical generator matrix to rating-based generic CDS spread curves.
5
 To model the credit ATE trigger, 

we make the ratings that are equal to or below the ATE trigger rating absorbing states. This guarantees 

that default paths that result in credit loss do not cross the ATE trigger at any time, and enables to 

calculate the first passage time of the ATE trigger in terms of the ATE rating transition probabilities.  

The rest of the paper is organized as follows. Section 2 presents the mathematical formulations of the 

bilateral CVA in continuous time and their discretization. We point out how the base model can be 

extended to deal with margins and multiple ATE triggers. Section 3 outlines formulae for calculating the 

joint transition and conditional joint default probabilities subject to credit ATE trigger. We introduce the 

ATE transition matrix and describe how to calculate the probability of hitting ATE trigger in terms of 

transition probabilities. We define the ATE factor profile. Section 4 shows numerical results. Section 5 

concludes the paper. Detailed derivation is shown in the appendices.  

2. The Model 
Throughout this article, we refer the two parties to the underlying derivative trades in the portfolio as 

the bank, denoted by B, and the counterparty, denoted by C. We use the term party to refer both B and 

C if it applies to both. We value the portfolio from the bank’s perspective. As such, a positive portfolio 

value or in-the-money (ITM) means the counterparty owes the bank money, and a negative portfolio 

value or out-of-the-money (OTM) means the reverse. 

2.1 Nomenclatures 
Before describing the model, we define the notations that will be used throughout this article without 

further explanation. 

- UCVA: Unilateral CVA. 

-  BCVA: Bilateral CVA. 

-        : Risk-neutral transition matrix from t to T. 

-         : Risk-neutral ATE transition matrix from t to T. 

-                : Rating state space where 1 refers to the highest rating class (e.g. AAA/Aaa) 

and K-1 the lowest rating class. K is the default state. D is also used to refer to the default state.
6
 

-              The rating of party k at time t. 

-         : The ATE trigger rating of party k. If       crosses   , the portfolio is terminated. 

-                                      : Set of ratings that are equal to or 

worse than the ATE trigger rating of party k. 

-                                 : Set of ratings that are better than ATE trigger of k. 

-                          : The first time that the party k crosses its ATE trigger rating. 

                                                           
5
 For pricing credit risk of a firm without market CDS spread, banks create rating-based generic CDS curves that 

map credit ratings to market CDS spreads. Generic CDS curve is essentially some average market quotes of CDS 

spread grouped by credit rating. 
6
 The default state D is not a valid credit rating. However, transition matrix typically includes the default state for 

mathematical convenience. 
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-             : The first-to-ATE time of both the bank B and the counterparty C. 

-         :  The default time of party k without ever crossing the trigger (ATE default time). 

-              : The first-to-default time of both the bank and the counterparty. 

-        : Present (time t) value of the cashflow on the portfolio between s and q where t is the 

valuation time and the portfolio final maturity is T. 

-          : Recovery rate of party k. 

-               : Loss-Given-Default (LGD) of party k. 

-            ,             , and        . 

2.2 Formulation of CVA with Credit ATE 
As stated earlier, this paper is about modeling credit ATE. The key to modeling credit ATE is recognizing 

the only default scenario that can result in credit loss is if the defaulting party was never downgraded to 

or below its ATE trigger rating prior to default. In other words, the default paths leading to credit loss 

must jump from a rating higher than the ATE trigger directly to the default state without ever crossing 

the ATE trigger. Therefore, any sensible model must make sure that, for party k, those paths of rating 

transition that ever cross into    are excluded from the default probability. This is the guiding principle 

of our model. 

We consider a portfolio of derivative contracts which are uncorrelated with the credit quality of either 

the bank or the counterparty.
7
 As a result, the portfolio mark-to-market value        is independent of 

either party.
8
  

When a party (either the bank or the counterparty) defaults, one of the following scenarios applies: 

1) If    , no credit loss will incur to either party as the first-to-default event occurs after the final 

maturity of the portfolio. 

2) If    , the first-to-ATE event occurs before the first-to-default event. Since the portfolio is 

terminated at the first-to-ATE time (mandatory termination), the exposure to either party at first-

to-default is zero and hence no credit loss to either party.  

3) If            , the first-to-default event happens before the portfolio expiry date and the first-

to-ATE event. From the bank’s perspective, the rule of default settlement is as follows: 

a. If the counterparty defaults first,      , then 

i. If the portfolio value at default          , i.e. the counterparty owes the bank 

money. The bank will receive from the counterparty the amount           .
9
 

ii. Else, if          , the bank owes the counterparty money. The bank pays the 

counterparty the full portfolio value         . 

                                                           
7
 Examples are interest rate swaps, caps, swaptions, FX options, equity options. However, CDS or CDO tranches 

where the reference entities are correlated with either party do not belong to this category. 
8
 See Brigo and Chourdakis (2008) for a model of unilateral CVA of CDS when the counterparty and the CDS 

reference entity are correlated. In their case, the portfolio value strongly correlated with the counterparty. 
9
 Brigo and Morini (2010) argue that if the residual deals are taken over by another party, the default settlement 

amount should be different than the risk-free amount as the credit risk of the replacing counterparty should be 

factored in. We assume the risk-free portfolio value at default to be the settlement amount. 
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b. Conversely, if the bank defaults first,      , then 

i. The bank pays the counterparty            if the bank owes the counterparty. 

ii. Else, the bank receives          if the counterparty owes the bank.  

c. In the relatively rare situation where both the bank and the counterparty default at the 

same time,        , the bank would pay           to the counterparty if         , or receive           from the counterparty if         . Simultaneous defaults are 

less frequent than single default, and loss to the bank due to counterparty default and the 

benefit to the bank from its own default often cancel out to a significant extent. 

 The present risky value of the portfolio can be expressed as 

             
                                                                                                                                        

 
  (1) 

where        is the present value of cashflow on the portfolio from time t to the first-to-default time  , 

and        is the present portfolio value at default time  .  

Using the relation                      and                       , we rewrite Eqn. 

(1) in a more intuitive form 

                                                                            (2) 

Eqn. (2) shows that the fair expected present value of the portfolio is the risk-free value of the portfolio 

minus an adjustment due to default by either party or both. This adjustment is commonly referred to as 

the credit value adjustment or CVA. 

The risk-free portfolio value            is independent of the ATE. This is expected because when the 

portfolio is terminated due to breach of ATE trigger, there is no credit loss. One might think of ATE event 

as a default with immediate full recovery, or lossless default. 

Eqn. (2) extends the CVA formulation without ATE (for example, Gregory (2009), Alavian et al (2009)) to 

ATE. For example, if the portfolio        in Eqn. (5) of Gregory (2009) is replaced with             , 
we obtain Eqn. (2) above. Put it another way, the exposure in the presence of ATE is contingent upon 

the ATE event not occurring before first-to-default. Eqn. (2) is general in the sense that it is valid for any 

ATE specification.
10

 However, the presence of the indicator function        makes pricing CVA subject 

to ATE much more difficult because the first-to-ATE time   and the first-to-default time   are generally 

correlated. Since        often decreases as the credit quality of either party worsens, ATE creates a 

sort of “right-way” risk exposure, in the sense that the exposure is non-increasing as the party’s credit 
quality deteriorates. 

                                                           
10

 ATE can be specified as credit rating trigger, portfolio market value trigger, etc. (Gregory 2010). Different ATE 

types give rise to different  . 
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The bilateral CVA, denoted by BCVA, is the net expected loss or gain due to default by the counterparty 

and/or by the bank itself, 

                                                              (3) 

BCVA contains two terms. The first term is the credit loss which the bank will suffer if the counterparty 

defaults first prior to the first-to-ATE time and the final portfolio maturity. This is referred to as the 

unilateral CVA, denoted by UCVA. The second term represents the gain by the bank when it defaults first 

prior to the first-to-ATE time and the final portfolio maturity. This second term is referred to as the debt 

value adjustment, or DVA, as it is the benefit to the bank on its own debt. So the BCVA is the difference 

between UCVA and DVA. The BCVA can be negative if DVA exceeds UCVA. An example of negative BCVA 

is a portfolio of short position in options. In this case, the bank is always OTM if it has collected all option 

premiums from the counterparty. 

The UCVA can be obtained by setting      and      in Eqn. (3), (see Remark 2.3)                                                  (4) 

Remark 2.1: The BCVA without ATE can be recovered by setting the ATE trigger equal to the default 

state (       ), meaning that default is the only event that can terminate the portfolio prior to 

the final maturity. In this case, we have    , and hence          . 

Remark 2.2: It is conceivable that deal contracts may require that both S&P and Moody’s ratings breach 

the ATE rating trigger. Ratings of these two rating agencies can occasionally differ (split ratings) although 

the difference is usually no more than one rating notch. We do not consider split ratings and refer to the 

paper of Lando and Mortensen (2005). 

Remark 2.3: Although the credit risk of the bank does not appear explicitly in the UCVA formula (4), it 

does not necessarily imply that the credit quality of the bank has no influence on the UCVA. If we take 

the first term on the right-hand-side of Eqn. (3), the default time    is given by a correlated default 

model. Through the correlation, the bank’s credit risk implicitly influences (adjusts) the unilateral CVA.  

Remark 2.4: In Eqn. (3), simultaneous default by B and C is implied by the condition         and is 

modeled by the same joint transition/default model. This approach is appropriate under normal market 

condition when simultaneous default is infrequent. The likelihood of a simultaneous default tends to 

increase significantly when the credit market is under severe stress or in crisis mode. When the markets 

are in crisis, the systemic default risk is substantial. Simultaneous default can be handled by specifically 

modeling a common default time   (Gregory 2009). 

Remark 2.5: Another approach of modeling credit ATE is using Poisson process where one needs to 

model at least default process with ATE. Yi (2010) pointed out the difficulties in calibrating their model 

as the available market data do not contain credit trigger information. The ATE transition matrix 

proposed later in this paper may be helpful in this regard as it is adjusted for credit ATE trigger. 
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2.3 Discretization 
For numerical discretization, we make the following assumptions: 

(1) The risk-free portfolio value        is independent of the credit rating of either party. This 

assumption is mainly to simplify exposition. The model can easily be extended to rating dependent 

exposure, such as rating dependent margining. 

(2) All obligors of a given rating are considered to have the same transition probabilities. Heterogeneity 

in credit spread between obligors with the same rating is ignored. Consequently, we use rating 

specific credit spreads rather than firm specific spreads. This is a restriction of rating based credit 

models. 

We divide the time domain       into N sub-intervals,               . We consider the loss 

due to default in time period           based on the exposure at   . In the discrete setting, we do 

not distinguish the time of default within the same time period, nor do we the ATE time. Consequently, 

if party C defaults in the interval           and if        , then we say      .  Therefore, we have 

the following set relation  

                                                (5) 

By definition,                    is the first time the rating of C crosses the ATE trigger rating and 

migrates into set   . If we are sure that once in    the counterparty C has no chance to either default 

or come out of   , or equivalently, if we specify the ratings in    to be absorbing states, we have    

                                        (6) 

Base on similar reasoning, we also have 

                                       (7) 

The set relations (5-7) are important because they allow us to express the probability of ATE hitting time         or the survival probability         in terms of the transition probability               
which is the probability of counterparty C migrating from its current rating to rating j at a future 

time t under the restriction that the path of migration cannot cross the ATE trigger. It is easy to see 

that the transition probability            is significantly easier to calculate than        .11
 In the 

following, we will use these set relations to calculate the probabilities of the first-to-ATE time and the 

first-to-default time when subject to credit ATE trigger. 

2.3.1 Unilateral CVA Discretization 

Using relation (5), the Euler discretization of the UCVA of Eqn. (4) is  

                                                        (8) 

                                                           
11

 This is analogous to calculating the distribution of stock price hitting barrier vs the terminal stock price. The 

probability of hitting time or the first-passage-time is much harder to calculate. 
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From the law of total probability and using Eqn. (7), we can calculate the probability in Eqn. (8) in terms 

of the ATE transition probability and one-period conditional default probability 

                                                                  (9) 

where                     is the one-step conditional default probability with the starting 

rating j. These probabilities can be calculated from the martingale ATE rating transition matrix 

which will be described in the following. We note that all default and transition when subject to 

credit ATE trigger is calculated using the martingale ATE transition matrix. 

Substituting Eqn. (9) into Eqn. (8), we obtain                                                                 (10) 

It is clear that the unilateral CVA of a portfolio subject to ATE trigger rating    is entirely due to the 

possibility of counterparty C jumping to default without going through any rating that is not better 

than the credit ATE trigger   .  

2.3.2 Bilateral CVA Discretization 

Analogously, the Euler discretization of BCVA of Eqn. (3) is
12

 

        
                                                                                                                                                                                                           

  
 (11) 

The first term represents the expected loss to the bank when the counterparty defaults first. The second 

term is the benefit the bank would gain if the bank itself defaults first. The third term is the expected PL 

when both B and C default simultaneously. In a normal market, the effect of simultaneous defaults is 

usually, but not always, small compared with the first two terms due to the cancelation effect and the 

fact that the probability of simultaneous default is small relative to single default.
13

 

The forward default probabilities in Eqn. (11) are conditional on no prior first-to-ATE event happening, 

for once an ATE event occurred, the portfolio is terminated and subsequent default will not cause credit 

loss and CVA.  

We now describe how to calculate the forward conditional default probability of counterparty 

conditional on no prior ATE event,                                       , and the forward 

conditional simultaneous default probability                                              . 
By symmetry, other forward probabilities can be obtained from these formulas. 

                                                           
12

 In literatures,              and              are commonly referred to as expected positive exposure (EPE) 

and expected negative exposure (ENE), respectively. 
13

 However, when the credit market is under stress and the systemic risk is high, simultaneous default risk can be 

high. In such a case, simultaneous default should be specifically modeled (Gregory 2009). 
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First, we write the forward probability of counterparty defaulting first as  

                                                                                                                   (12) 

Using the relation                         and the law of total probability, we have 

                                                                                                              (13) 

where the transition probability                          is calculated using Eqn. (B.5), and the 

conditional survival probability                                      is from Eqn. (37).  

                                                                                                         (14) 

where                                is computed using Eqn. (34). 

From the law of total probability, we can express the one-period conditional joint default probability as 

                                                                                                                            (15) 

Derivation of Eqns. (12-14) is provided in Appendix A. These formulas are based on the assumption of 

set    being absorbing, enabling expressing probability of first-passage-time of the trigger by the ATE 

rating transition probability. 

We emphasize that rating transition and conditional default probabilities are based on the condition 

that no ATE trigger has been breached prior to default. To this end, we make sure that once a rating 

crosses its ATE trigger, it will not transit further. There is no possibility that a party can be downgraded 

to or below its ATE trigger and subsequently be upgraded or default.
14

 This can be easily achieved by 

making any rating class in the set          an absorbing state. As a result, the default probability is 

reduced as it is no longer possible to default from ratings in the set   . As shown numerically in section 

3.6, given a transition matrix and an ATE trigger rating, we can quantify the amount of reduction in 

default probability due to credit ATE. 

                                                           
14

 This approach is similar to importance sampling where the probability distribution is altered to exclude those 

paths leading to zero payoff. Here, we exclude the paths that cross the credit ATE trigger. 
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2.4 Model Extensions 
We have used the uncollateralized, rating independent portfolio value        to derive exposure. This 

significantly simplifies notation. In doing so, we implied that (a) all trades in the portfolio are nettable 

under a single netting agreement and (b) the portfolio is not collateralized or no margin requirement.
15

 

In this section, we suggest extension of the model to more practical and complicated portfolios. First, we 

note that extending the model to multiple netting agreements is straightforward (Pykhtin and Zhu 2007) 

since there is still only one ATE rating trigger. 

2.4.1 Extension to Rating-Based Margin Threshold 

Banks often impose margin threshold on their trading partners. Margin threshold is the maximum 

positive portfolio value the counterparty does not need to pose collateral. The purpose of margin 

threshold is to limit the bank’s exposure to the counterparty. Margin threshold is often rating 

dependent where it decreases as the counterparty’s credit quality declines. 

Let      denote the margin threshold for the counterparty with rating j, the UCVA becomes                                                      

                                                                     (16) 

where         is the rating of C immediately before default. We assume the margin is determined at      for exposure time   . The corresponding BCVA can be derived similarly. 

2.4.2 Extension to Multiple ATE Triggers 

Banks are increasingly including a credit ATE clause in the trading agreement. This can create a portfolio 

consisting of deals with heterogeneous ATE trigger ratings. If the netting agreement is based on ATE 

trigger where deals are nettable if they are subject to the same ATE trigger, the above model can be 

directly applied to each ATE trigger. 

If, however, a single netting agreement covers multiple ATE triggers, extension is a little tricky. In this 

case, the unilateral CVA is  

                                             (17) 

where    is the first hitting time of the jth ATE trigger, denoted by   , and    is the total value of all 

deals subject to the jth ATE trigger. Note that Eqn. (17) includes deals without an ATE trigger,  j=0. As 

stated earlier, the non-ATE case is treated by setting     . Because the default state is the only 

termination trigger, we have        and           .   

Recognizing all ATE rating triggers are associated with the same counterparty, breaching of a higher ATE 

trigger must occur no later than a lower ATE trigger. If we index the ATE triggers by        , then 

                                                           
15

 Collateralization and margin agreement are usually specified in CSA (Credit Support Annex). See Alavian et al 

(2009) and Gregory (2010) for overviews of CSA. 
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the relation         must hold, taking into consideration that multiple ATE’s may be breached 
simultaneously. 

A general discrete formulation for Eqn. (17) may be difficult. Here, we briefly consider a portfolio subject 

to two ATE triggers and the non-ATE trigger. The possible ATE hitting time scenarios for this case are 

           ,            , and                  (18) 

By the definition of credit ATE,             when       . Consequently, we have 

                                                                                                                                   (19) 

where            . 
A complication in calculating                          is the need to account for possibility of               , i.e. there are two distinct ATEs, each ATE trigger breach terminates only part of 

the portfolio. We do not elaborate further and leave the details to a future work. 

3. Transition and Conditional Default Probability 
Eqns. (8-15) show that CVA calculation involves two components. One is the calculation of EPE and ENE 

at the time nodes   . The other involves the calculation of the martingale ATE transition and the default 

probability conditional on that the ATE trigger has not been breached. Since this paper focuses on 

modeling ATE trigger and assumes that the portfolio has a unique ATE trigger for each party, we will not 

elaborate on exposure calculation, and refer to the paper of Zhu and Lomibao (2005) for background 

and further references. In this section, we describe a model for calculating rating transition probability 

and default probability conditional on no prior violation of ATE trigger. 

The presence of credit ATE trigger necessitates modeling rating transition in addition to default. As a 

result, we adopt rating based models. As stated previously that, under the credit rating ATE clause, the 

portfolio between the bank and its counterparty is terminated and closed out once either party has 

crossed its respective ATE trigger. This implies that we only need to consider those paths of transition 

that never cross its ATE trigger. This is achieved by making the rating class set    absorbing. 

The model is comprised of the following steps: 

1) Choose a historical transition matrix, usually the one-year average transition matrix published by 

Moody’s or Standard & Poor’s. The transition matrix may be preprocessed to smooth out irregular 

behavior (Lando and Mortensen 2005). Calculate the corresponding historical generator matrix 

using either the JLT (Jarrow et al 1997) method or the IRW (Israel et al 2001) method.  

2) Calibrate the historical generator matrix to the generic CDS spread term structure for each rating 

using the JLT method. This generates the martingale generator matrix. 
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3) For the ATE trigger rating    of party k, modify the martingale generator matrix by setting rows 

from    to     to zero. The resulting ATE martingale generator matrix guarantees that the paths 

resulting in credit loss, or loss paths, cannot cross the trigger   .  

4) Calculate the required transition probabilities based on the martingale ATE generator matrix. 

5) For BCVA, the joint ATE transition probabilities are evaluated using the normal copula model. 

3.1 The Historical Transition Matrix 
Although its shortcomings for credit derivative pricing are well documented (Schonbucher 2003), 

virtually all rating-based credit pricing models use a statistical transition matrix estimated from historical 

corporate default experience. A major reason is that it is simply impractical to imply all entries of the 

rating transition matrix from market price data. A historical transition matrix provides a structure upon 

which (model based) adjustments are made such that the (rating based) model prices match the market 

prices. This adjustment transforms the historical transition probability into the martingale transition 

probability. This transformation is necessary as CVA is the risk-neutral price of counterparty default risk. 

Given a historical transition matrix P, we calculate its generator matrix denoted by  .
16

 Unfortunately, 

majority of the historical transition matrices do not admit a valid generator as they fail the test of 

Theorem 3.1(c) of IRW, thereby guaranteeing non-existence of a valid generator matrix.
17

 

One solution is to smooth the empirical transition matrix to avoid obvious violation of Theorem 3.1 of 

IRW, and then calculate a generator matrix. Lando and Mortensen (2005) (LM here after) proposed a 

method where the smoothing algorithm imposes some constraints based on economic considerations. 

Since Theorem 3.1 of IRW are sufficient but not necessary conditions for non-existence of a valid 

generator matrix, the smoothed transition matrix still does not guarantee  a valid generator matrix. 

Another approach is to assume a generator exists and to search for one. Methods of generator matrix 

calculation can be found, for example, in IRW, JLT, and Kreinin et al (KS here after) (2001). The JLT 

method is the simplest and guarantees to give a valid generator. The IRW method is shown to be more 

accurate as it results in a smaller fitting error to the historical transition matrix, but is more 

computationally involved.  

In this paper, we also assume a generator matrix exists. We apply the JLT method (p. 505) to estimate a 

generator matrix from the Moody’s one-year average transition matrix (Moody’s 2009) proportionally 
adjusted for WR. We follow the suggestion of JLT (p. 504) that the martingale generator matrix be 

expressed as a product of the historical generator matrix and a time-dependent diagonal matrix which 

can be interpreted as risk premium. Next section describes the calibration of martingale generator 

matrix. 

                                                           
16

 A generator matrix         of transition matrix P is a     matrix with the property (1)         , and (2)                      , where      is the intensity of jump to rating j from i in an infinitesimal time interval. 
17

 KS examined 32 empirical matrices and found that all passed the test of Theorem 3.1 (a) and (b) of IRW, but 

most failed test of (c). If the smoothed matrix is without zero entries, it passes test of (c). 
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3.2 Martingale Generator Matrix Calibration 
Since CVA is an adjustment to the fair value of the portfolio, CVA valuation requires risk-neutral 

transition probabilities. Change from the actuarial rating transition probabilities to the risk-neutral ones 

is by fitting to the market prices of traded instruments, CDS premiums and bond, broken down by rating.  

With the JLT method, the martingale transition matrix is assumed to be a product of a diagonal matrix, 

interpreted as risk premium, and the historical matrix. The martingale transition matrix is then used to 

fit the prices of bond of each rating. JLT method is simple and has clear interpretation. However, as 

shown by LM, the scheme is unstable as the risk premia can be very large especially for high ratings, 

resulting in unrealistic or even negative rating transition probabilities. Kijima and Komoribayashi (KK) 

(1998) proposed an alternative fitting procedure that avoids the issue of stability. However, their 

method results in counterintuitive behavior that the adjustments to non-default transition probabilities, 

whether downgrade or upgrade, are always opposite to the adjustment to the PD. For example, if the 

PD for AAA is adjusted upwards, the probabilities of transition to all ratings are adjusted downwards. 

Based on economic intuition, LM suggested adjusting downgrade probability in the same direction of PD 

adjustment and upgrade probability in the opposite direction. This is a very appealing idea as one would 

expect a higher downgrade probability when PD is higher. LM showed that their method yielded more 

reasonable transition probabilities than JLK and KK methods. A price to pay is that the fitting scheme 

becomes more complex.  

We assume for each rating class there is a generic term structure of CDS premium. Assuming a constant 

recovery rate, rating-based PD term structure, denoted by        , can be obtained by bootstrapping 

the generic CDS curves.
18

 We obtain the one-step martingale generator matrix by equating, at time    

and for rating  , the cumulative martingale default probability with         . 
Let         be the martingale transition matrix from t to T, and recall that the martingale generator        
is the product of the historical generator   and a diagonal matrix

19
                                                            (20) 

Assuming matrix      to be piecewise constant, the incremental martingale transition matrix over the 

period           is                                                    (21) 

Since the rating transition is a Markov chain, the cumulative martingale transition matrix over the period        can be obtained recursively 

                                                     (22) 

                                                           
18

 An alternative is to calibrate to the CDS spreads or bond prices directly.  
19

 The last element of      does not matter because the last row of the historical generator   is zero. 
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Since the rating-based default probability at    is given by the Kth (last) column of         , provided            is known, the risk premium matrix         satisfies 

             
                                               

    
                               

 
     (23) 

Eqn. (21) is nonlinear and requires matrix exponential calculation which can be expensive.
20

 For a small 

time period    , Eqn. (21) can be approximated by the first-order expansion 

                                                 (24) 

Substituting the last column of Eqn. (24)  

  
                                               

       
                                           

    
        

 
    (25) 

into Eqn. (23), and solve the resulting equation for matrix        , we obtain 

   
                               

                 
                               

         (26) 

where (notice that     is the jK-th entry of the generator matrix  )  

                                          (27) 

Since     is the default intensity of rating j in an infinitesimal period, a non-zero default intensity,      , cannot correspond to a zero cumulative probability,      . It must be       if      . 

The implication is that the above calibration algorithm breaks down if       for some j. Note that the 

cumulative default probability is not necessarily zero even if the corresponding default intensity is. Eqns. 

(25) and (26) also show why JLT method can produce very large risk premia. 

The JLT method guarantees positive (zero)     if the rating j’s historical default probability     is positive 

(zero). Unfortunately, the one-year rating transition matrices published by Moody’s and S&P have 
consistently shown zero one-year PD for Aaa/AAA rating, although the five-year PD is not zero. The zero 

one-year PD for Aaa/AAA rating is an issue of data reliability which we do not address here.  

                                                           
20

 Matrix exponential functionality is not available in many software packages. Developing efficient matrix 

exponential computer codes is not trivial. 
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Lando and Mortensen (2005) proposed a sophisticated method to transform the original historical 

transition matrix into a smoothed one that satisfies the imposed constraints justified by economic 

arguments. Their results showed (Appendix C of LM) that the smoothed matrix has no zero PD. JLT 

method simply assigned a reasonable non-zero value to     whenever it is equal to zero.  

We believe that a sophisticated approach, such as the LM method, is warranted as it produces a 

smoother historical transition matrix. Since the transition matrix is used as an input, there is virtually no 

computational cost for enterprise application except the initial cost of developing methodology and 

computer program. Nevertheless, for the sake of simplicity, we adopt the simpler JLT approach in our 

numerical computation. First, we “arbitrarily” assign a value to the one-year PD for Aaa in the historical 

transition matrix. We then calculate the historical generator matrix   from   using the JLT method. The 

historical generator   guarantees no zero entry in the last column so the diagonal matrix   of Eqn. (27) 

is well defined. 

Having calibrated the risk premium matrix        , we proceed to calculate the one-period incremental 

risk-neutral transition matrix             using Eqn. (24). The time    martingale transition matrix          is obtained from Eqn. (22). However,          cannot be directly used for CVA calculation when 

credit ATE triggers are present as it did not exclude the possibility that the obligor can breach the ATE 

trigger and recover. This brings us to the subject of adjusting the generator matrix to account for ATE 

trigger. 

Remark 3.1: Since the risk premium matrix     is time-dependent but deterministic, the transition 

process is Markov but time inhomogeneous.  

3.3 The ATE Generator and Transition Matrices 
The main idea of using a credit ATE trigger as counterparty risk mitigant is that it may eliminate the 

bank’s exposure to counterparty by terminating the portfolio when the counterparty is downgraded 

below the ATE trigger. 

Effective modeling of ATE rating trigger requires that the set    be absorbing, so that the probability of 

jump to default without crossing ATE trigger – credit loss probability – is not overstated.
21

 This can be 

achieved by modifying either the martingale transition matrix or the martingale generator matrix. The 

difference is that the generator matrix is for continuous time Markov chain, and the transition matrix is 

for discrete Markov chain. Under the continuous Markov chain setting there is absolutely no possibility 

to migrate out of   , whereas in the discrete Markov chain migration into and then out of    in the 

same period is still possible. As will be shown in section 4.1, both the probability of default and the 

probability of not breaching ATE are smaller with the generator matrix approach than with the transition 

matrix approach. 

Given the ATE trigger rating  , we define the risk-neutral ATE generator matrix as 

                                   (28) 

                                                           
21

 If the loss probability is overstated, CVA is overstated, defeating the purpose of ATE. 



16 

 

where  

                                   (29) 

is a matrix operator that sets the rows of the operand equal or below   to zero.  

The one-period risk-neutral ATE transition matrix is defined as 

                                                   (30) 

Clearly, for rows of             below    , the off-diagonal entries are equal to zero and the diagonal 

entries are equal to one. This guarantees that the set                 be absorbing.  

The time    martingale ATE transition matrix is  

                                    (31) 

Given the current (t = 0) counterparty rating      , we can calculate the probability in Eqn. (10) as 

                                          (32)                                             (33) 

where the rating     . In our model, rating belong to the rating set    do not contribute to the CVA 

calculation. 

3.4 The Joint Rating Transition 
If the rating transition of the bank is independent of that of the counterparty, the bilateral CVA is simply 

the difference of the two standalone CVAs, one for counterparty risk and the other (DVA) for bank’s own 
default risk, each evaluated using the unilateral CVA model without regarding the other.  

However, as shown by Gregory (2009), default correlation between the parties can significantly impact 

the CVA, even the unilateral CVA. For calculating bilateral CVA under the rating-based Markov chain 

model described above, it is convenient to adopt a normal copula model for correlated rating 

transition.
22

 The details are given in Appendices B and C. Here we give the formulae for joint rating 

transition and conditional joint default probabilities. 

The formulation for time    transition probability                      is given by Eqn. (B.5). For 

rating pair             and from Eqn. (B.6), we obtain                                                                  
                                                      (34) 

                                                           
22

 Other copula models, such as t-copula copula, can also be used. The t-copula has tail dependency resulting in a 

larger joint default probability than the normal copula which has no tail dependency. 
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Let                   be the set of all non-default ratings. Using Eqn. (B.5) and the set relation  

                    and                       (35) 

we obtain 

                                                                                (36) 

where           is the standard bivariate normal distribution function, and                                                                                                                                                                           (37) 

where 

                                                 (38) 

3.5 The ATE Factors 
The purpose of credit ATE is to eliminate counterparty exposure when counterparty credit risk increases. 

As a result, credit ATE reduces CVA. Obviously, the extent of CVA reduction depends on the exposure 

profiles                  and                 . Generally, ATE is more effective for portfolio 

with long final maturity. As portfolio exposure calculation is often expensive, it is desirable to be able to 

estimate the percentage of CVA reduction given the credit ratings of both parties and the placement of 

the credit ATE triggers. This can be accomplished by the ATE factors.  

The ATE factors are multipliers that, when applied to each period CVA without ATE, produces CVA 

subject to ATE. ATE factors depend only on the ratings of the two parties and their respective credit ATE 

triggers. 

Notice that the BCVA without ATE trigger is given by 

               
                                                                                                                                                                 

  
  (39) 

where     is the default time without ATE for party      . Remember, as we emphasized repeatedly 

in this paper, that CVA with ATE is calculated using the risk-neutral ATE transition matrix, and     and    

follow different distributions. 

We define bilateral ATE factor profiles for the bank B and the counterparty C, 
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                                                                                                                                                                     (40) 

                                                                                                                                                                     (41) 

As mentioned earlier, while the paths of    cannot go through   , there is no such restriction on    . The 

possible paths of    are a subset of those of    . Hence,     and    follow different distributions where                                         . Therefore, we have the bounds  

                     and                         (42) 

In terms of the ATE factor profiles, we can rewrite the BCVA formulation (11) as  

                                                                                                                             (43) 

The bilateral ATE factor profiles may be useful as guideline in setting ATE trigger, as well as adapting 

existing CVA calculation computer programs to CVA with ATE. 

4. Numerical Results 
We now present numerical results to show the difference between the transition matrix, generator 

matrix based transition matrix, and the ATE transition matrix. For this purpose and for clarity, we use an 

artificial matrix as the input transition matrix.  

4.1 ATE Transition Matrix: An Example 
This example shows that an ATE trigger reduces the probabilities of portfolio remaining alive or default 

with loss. This effect is more pronounced if the ATE transition matrix is based on the ATE generator since 

the generator does not allow any possibility that the rating can transit from the ATE trigger rating or 

below. This latter observation is the reason we use the risk-neutral ATE generator to calculate the risk-

neutral transition matrix. The fact that ATE reduces the probability of default is the fundamental reason 

for CVA reduction. 

Suppose we are given a transition matrix P of four rating classes A, B, C and D where D is the default 

state. The generator matrix of P is Λ.  
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Without ATE trigger, the two-period transition probability is the probability of transition from one rating 

to another or default over the two period time where any non-default rating can transit to any rating or 

default. For example, rating A may transit to rating C at the end of period one and from rating C back to 

rating A in the second period. Thus, over the two periods, rating A stays where it starts consists of three 

possible transition paths,             and      . The two-period probability of     is the sum of the probabilities of these three paths. The non-ATE two-period transition matrix is 

                                                              

4.1.1 Case 1: High ATE Trigger Rating 

When the ATE trigger rating is B, the one- and two-period ATE transition matrices directly from P are 

                                                                                                                                                

Comparing the two-period ATE transition matrix     with the non-ATE matrix P2 shows that ATE trigger 

at rating B 

1) Reduces the probability of remaining at rating A and default; and 

2) Increases the probabilities of crossing the trigger rating. 

The ATE generator matrix    and the associated two-period ATE transition matrix          are 

                                                                                                                                                                                                                            

Comparing with    , we see that in         , 
a) The probability of default and remaining at A is further reduced, and reduction in PD is significant; 

b) The probability of crossing the ATE trigger rating B is further increased. 

Again, we emphasize that the underlying reason for this pattern is that    prohibits only inter-period 

transition from ratings B and C back to rating A. But it implicitly permits intra-period rating transition 

from B and C. On the contrary,          strictly prohibits intra-period migration from B and C. 

4.1.2 Case 2: Low ATE Trigger Rating 

We now move the trigger rating a notch lower from rating B to rating C. We want to illustrate that rating 

C as the trigger is less effective than rating B in the sense that PD with loss is greater in Case 2 than in 

Case 1, and the probability of crossing the trigger is lower in Case 2 than in Case 1.  

When rating C is ATE trigger, the one- and two-period ATE transition matrices directly from P are 
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The ATE generator matrix    and its associated two-period ATE transition matrix          are 

                                                                                                                                                                                                                              

It can be easily verified that all conclusions from Case 1 still hold.  

We see from comparing          with          that  

1) The two-period default probability of rating A is 0.1443 when the trigger is C (Case 2) which is 

significantly higher than the PD of 0.0822 when the trigger is B (Case 1).  

2) The total ATE termination probability is 0.5854 in Case 1, and is 0.3045 in Case 2. So there is a much 

greater likelihood that ATE occurs in Case 1 than Case 2.  

Since CVA is a measure of loss upon default and the likelihood of default, and that ATE termination is 

equivalent to lossless default, CVA is smaller in Case 1. This example explains why ATE is more effective 

when the trigger rating is higher.   

5. Conclusions 
We have presented a rating-based Markov chain model for valuation of bilateral CVA of a derivative 

portfolio subject to a credit ATE trigger. The model is comprised of several key components. First, as 

most rating-based credit risk model, we take a (one-year) historical rating transition matrix which is 

readily available from the major rating agencies. From this historical transition matrix, we compute the 

historical generator matrix.  

Second, we use the JLT method to calculate the risk-neutral generator matrix by calibrating to the 

market implied CDS spread curves broken down by rating. 

Third, the credit ATE trigger is modeled by the risk-neutral ATE transition matrix. Assuming mandatory 

termination and close-out of the portfolio upon first breaching of ATE trigger, the risk-neutral ATE 

generator matrix is obtained by assigning zero value to the appropriate rows of the risk-neutral 

generator matrix of the 2
nd

 step. The ATE transition probabilities permit to transform calculating the 

probability of first crossing the ATE trigger into calculating transition probability. 

The ATE transition matrix is comprised of the transition probability from one rating to another without 

ever crossing the ATE trigger. ATE transition matrix is appropriate since the default under ATE is the 

jump-to-default from above the ATE trigger rating where jump means jumping over all ratings equal to 

and below the ATE trigger. The paths of jump-to-default are only a subset of all possible paths that lead 

to default. Hence, the PD under ATE is lower than the actual PD, as shown by a numerical example. It is 

this reduction in PD that mitigates the counterparty default risk.  
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Fourth, we use the normal copula model for joint rating transition where the marginal rating transition 

thresholds are mapped to the rating transition probability of each party viewed standalone. 

We introduce the ATE factor profile defined as the ratio of PD with ATE and PD without ATE. The ATE 

factor profile depends only on the firm’s credit ratings and the ATE triggers, and does not involve the 

actual portfolio composition. 

Appendix A: Rating Transition and Conditional Default Probability 
In this section, we prove Eqns. (12-14). Again, we emphasize that, with credit ATE, our method assumes 

the rating classes not higher than the ATE trigger are absorbing states. For party k, any rating transition 

path leading to a live rating - either the default or another rating above the ATE trigger - cannot pass 

through the set    at any time.  

From the set relation 

                                                               
                                                     (A.1) 

and the law of total probability, we obtain                                                                                                        (A.2) 

This proves Eqn. (13). 

To prove Eqn. (14), noticing the set relation 

                                                                   
                                                (A.3) 

where we have used the set relation                        .  
Again, by virtue of the law of total probability, Eqn. (A.3) implies that                                                                                                   (A.4) 

which proves Eqn. (14). 
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Appendix B:  A Copula Model for Joint Rating Transition 
We describe a simple one-factor normal copula model for joint rating transition of the counterparty and 

the bank. This model is an extension of the model used in the credit VaR model (RiskMetrics 1997).  

Let    denote the credit quality index of party k. in the one-factor model,    is decomposed into a 

systemic component Y (market factor) that is common to both parties and a firm specific component    

(idiosyncratic factor) 

                           (B.1) 

where Y and    are assumed to follow the standard normal distribution.   is the asset correlation that 

measures the co-movement of the credit indices. Eqn. (B.1) is used for modeling the conditional joint 

default over the one-step           as well as the long step        rating transition matrix. As such, the 

correlation   perhaps should be associated with a maturity tag and calibrated accordingly.  

Suppose we know the risk-neutral ATE transition matrix            and the current rating       for 

party k, we calculate                      where          . The use of ATE transition 

matrices guarantees there would be no prior breach of ATE trigger by party k. 

We map    onto a grid of rating change from the current rating      . The grid size is determined by 

the risk-neutral ATE transition matrix            or              . To this end, we introduce the time    

rating transition thresholds for party k by
23

 

                                      (B.2) 

Given the initial rating      , the grid thresholds are determined such that           when                . In the normal copula method, the thresholds are calculated recursively by 

                                                       (B.3) 

where                    is the          -th entry of           , and      and        are, respectively, 

the standard normal distribution function and the standard inverse normal distribution function. 

Recall that    obeys the standard normal distribution, solving for     recursively we obtain 

                                              (B.4) 

Having obtained the rating transition thresholds for both the bank and the counterparty, the joint 

transition probability from the initial joint rating state                     to the joint rating 

state at                          is 

                                                   
                                                           
23

 Actually,       is a result of                          . 
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                                                                    (B.5) 

Setting the current time to      and following the same procedure, we obtain the one-step conditional 

joint default probability                                                                                          (B.6) 

Eqn. (B.6) is the base formula from which other conditional joint probabilities in section 3.4 can be 

obtained.  

Appendix C:  Correlation Estimation 
If the credit index    in Eqn. (B.1) is interpreted as the log asset return of the party k, the parameter   is 

the pair-wise asset return correlation between the two parties. The correlation is an unobservable 

parameter and needs to be estimated. Asset correlation estimation is very difficult. 

Here, we mention several methods for estimating asset return correlation. These are by no means the 

only asset correlation estimation models. 

Other than picking a fixed number, the simplest estimating/forecasting method is to use the equity 

correlation as proxy for asset correlation for the equity correlation is readily available from the equity 

price. In the CreditMetrcs method, a firm’s equity return is assumed to be a weighted average of the 

returns of country/industry indices with the weights specified based on the firm’s industry participation 

(RiskMetrics 1997). A major drawback of using equity correlation as a proxy is it ignores the significant 

difference between equity and asset, especially for financial firms (Zeng and Zhang, 2001a).  

Another approach is to infer the pair-wise asset correlation from the joint and the single name default 

probabilities of the two parties.  

Zeng and Zhang (2001b) assessed the performance of three widely used asset correlation estimation 

models - historical models, average models and factor models.  They concluded that the KMV’s Global 
Correlation Model performed best.  
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